ENSYSTEX®

SAFETY DATA SHEET

NOVITHOR TPC Powder

Issue Date: 16/02/2023

Chemwatch: 5591-18 Version No: 2.1

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Issue Date: **16/02/2023**Print Date: **16/02/2023**L.GHS.AUS.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	Novithor TPC Powder
Chemical Name	Not Applicable
Synonyms	Not Available
Chemical formula	Not Applicable
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses For machine grouting and general construction grouting for termite protection.

Details of the manufacturer or supplier of the safety data sheet

Registered company name	Ensystex Australasia Pty Ltd	
Address	Unit 3 The Junction Estate, 4-6 Junction Street, AUBURN NSW 2147 Australia	
Telephone	3 35 36	
Fax	(02) 9647 2189	
Website	www.NOVITHOR.com	
Email info@Ensystex.com.au		

Emergency telephone number

Association / Organisation	Ensystex Australasia Pty Ltd	
Emergency telephone numbers	13 35 36 (All hours)	
Other emergency telephone numbers		

SECTION 2 Hazards identification

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Chemwatch Hazard Ratings

	Min	Max	
Flammability	1		
Toxicity	1		0 = Minimum
Body Contact	3	- i	1 = Low
Reactivity	1		2 = Moderate
Chronic	3		3 = High 4 = Extreme

Poisons Schedule Not Applicable	
Classification [1] Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 1, Specific Target Organ Toxicity - Resposure (Respiratory Tract Irritation) Category 3, Germ Cell Mutagenicity Category 2, Specific Target Organ Toxicity - Resposure Category 2	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Novithor TPC Powder

Issue Date: 16/02/2023 Print Date: 16/02/2023

Label elements

Hazard pictogram(s)

Signal	word
Siuliai	word

Hazard statement(s)

H315	Causes skin irritation.	
H317	May cause an allergic skin reaction.	
H318	Causes serious eye damage.	
H335	May cause respiratory irritation.	
H341	Suspected of causing genetic defects.	
H373 May cause damage to organs through prolonged or repeated exposure.		

Precautionary statement(s) Prevention

P201 Obtain special instructions before use.		
P260 Do not breathe dust/fume.		
P271 Use only outdoors or in a well-ventilated area.		
P280 Wear protective gloves, protective clothing, eye protection and face protection.		
P264 Wash all exposed external body areas thoroughly after handling.		
P272 Contaminated work clothing should not be allowed out of the workplace.		

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P308+P313	IF exposed or concerned: Get medical advice/ attention.	
P310	P310 Immediately call a POISON CENTER/doctor/physician/first aider.	
P302+P352 IF ON SKIN: Wash with plenty of water and soap.		
P333+P313 If skin irritation or rash occurs: Get medical advice/attention.		
P362+P364 Take off contaminated clothing and wash it before reuse.		
P304+P340 IF INHALED: Remove person to fresh air and keep comfortable for breathing.		

	Troductionary statement(s) storage	
	P405 Store locked up.	
P403+P233 Store in a well-ventilated place. Keep container tightly closed.		

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
14808-60-7.	30-60	graded sand
65997-15-1	10-30	portland cement
7778-18-9	0-5	calcium sulfate
12005-25-3	0-5	calcium aluminate sulfate
65996-69-2	0-2	blast furnace slag
471-34-1	0-2	calcium carbonate
13397-24-5	0-2	gypsum
Not Available	balance	Ingredients determined not to be hazardous
Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L: * EU IOEL Vs available		

SECTION 4 First aid measures

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:

- Immediately hold eyelids apart and flush the eye continuously with running water.
- Figure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

 Chemwatch: 5591-18
 Page 3 of 16
 Issue Date: 16/02/2023

 Version No: 2.1
 Print Date: 16/02/2023

Novithor TPC Powder

	 Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

For acute or short-term repeated exposures to highly alkaline materials:

- Respiratory stress is uncommon but present occasionally because of soft tissue edema.
- b Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary.
- Oxygen is given as indicated.
- ▶ The presence of shock suggests perforation and mandates an intravenous line and fluid administration.
- Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue.

Alkalis continue to cause damage after exposure.

INGESTION:

▶ Milk and water are the preferred diluents

No more than 2 glasses of water should be given to an adult.

- ▶ Neutralising agents should never be given since exothermic heat reaction may compound injury.
- * Catharsis and emesis are absolutely contra-indicated.
- * Activated charcoal does not absorb alkali.
- * Gastric lavage should not be used.

Supportive care involves the following:

- Withhold oral feedings initially.
- If endoscopy confirms transmucosal injury start steroids only within the first 48 hours.
- ▶ Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention.
- Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia).

SKIN AND EYE:

Injury should be irrigated for 20-30 minutes.

Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology]

SECTION 5 Firefighting measures

Extinguishing media

- ► There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Fighting

Fire/Explosion Hazard

Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- When silica dust is dispersed in air, firefighters should wear inhalation protection as hazardous substances from the fire may be adsorbed on the silica particles.
- ▶ When heated to extreme temperatures, (>1700 deg.C) amorphous silica can fuse.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves in the event of a fire.
 - Prevent, by any means available, spillage from entering drains or water courses
 - Use fire fighting procedures suitable for surrounding area.
 - ▶ DO NOT approach containers suspected to be hot.
 - Cool fire exposed containers with water spray from a protected location.
 - $\,{}^{\blacktriangleright}\,$ If safe to do so, remove containers from path of fire.
 - ▶ Equipment should be thoroughly decontaminated after use.

$\ensuremath{\,^{\blacktriangleright}\,}$ Solid which exhibits difficult combustion or is difficult to ignite.

- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion.
- Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited; once initiated larger particles up to 1400 microns diameter will contribute to the propagation of an explosion.
- A dust explosion may release large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people.
 Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage
- or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this
 - Dry dust can also be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
 - Build-up of electrostatic charge may be prevented by bonding and grounding.
 - Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Chemwatch: 5591-18 Page 4 of 16 Issue Date: 16/02/2023 Version No: 2.1 Print Date: 16/02/2023

Novithor TPC Powder

All movable parts coming in contact with this material should have a speed of less than 1-metre/sec. Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) sulfur oxides (SOx) silicon dioxide (SiO2) metal oxides other pyrolysis products typical of burning organic material May emit poisonous fumes May emit corrosive fumes **HAZCHEM** Not Applicable

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

- Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.

Minor Spills

- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping
- Place in suitable containers for disposal.

- ▶ Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by all means available, spillage from entering drains or water courses.
- Consider evacuation (or protect in place).
- No smoking, naked lights or ignition sources.
- **Major Spills**
- Increase ventilation. Stop leak if safe to do so.
- ▶ Water spray or fog may be used to disperse / absorb vapour.
- Contain or absorb spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Collect solid residues and seal in labelled drums for disposal
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Safe handling

Precautions for safe handling

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- ▶ DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
 - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Programic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions)
- Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame.
- Establish good housekeeping practices
- ▶ Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds.
- b Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area.
- Do not use air hoses for cleaning.
- Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used.
- · Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition.
- Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance
- Do not empty directly into flammable solvents or in the presence of flammable vapors

Novithor TPC Powder

Issue Date: **16/02/2023**Print Date: **16/02/2023**

The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.
- Store in original containers.
- ► Keep containers securely sealed.
- Store in a cool, dry area protected from environmental extremes.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

For major quantities:

- Consider storage in bunded areas ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams).
- Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities.

Conditions for safe storage, including any incompatibilities

Suitable container

Other information

Multi-ply paper bag with sealed plastic liner or heavy gauge plastic bag.

NOTE: Bags should be stacked, blocked, interlocked, and limited in height so that they are stable and secure against sliding or collapse. Check that all containers are clearly labelled and free from leaks. Packing as recommended by manufacturer.

Storage incompatibility

- Avoid strong acids, bases.
- Avoid contact with copper, aluminium and their alloys.
- Avoid reaction with oxidising agents

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	graded sand	Silica - Crystalline: Quartz (respirable dust)	0.05 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	portland cement	Portland cement	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	calcium sulfate	Calcium sulphate	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	calcium carbonate	Calcium carbonate	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	gypsum	Calcium sulphate	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
graded sand	0.075 mg/m3	33 mg/m3	200 mg/m3
calcium carbonate	45 mg/m3	210 mg/m3	1,300 mg/m3

Ingredient	Original IDLH	Revised IDLH
graded sand	25 mg/m3 / 50 mg/m3	Not Available
portland cement	5,000 mg/m3	Not Available
calcium sulfate	Not Available	Not Available
calcium aluminate sulfate	Not Available	Not Available
blast furnace slag	Not Available	Not Available
calcium carbonate	Not Available	Not Available
gypsum	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
blast furnace slag	С	> 0.1 to ≤ milligrams per cubic meter of air (mg/m³)
Notes:	, , ,	als into specific categories or bands based on a chemical's potency and the f this process is an occupational exposure band (OEB), which corresponds to a rker health.

MATERIAL DATA

Exposure controls

Appropriate engineering controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Chemwatch: 5591-18 Page 6 of 16

Novithor TPC Powder

Issue Date: 16/02/2023 Version No: 2.1 Print Date: 16/02/2023

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

- Figure 2 Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area.
- Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system.
- Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within.
- Open-vessel systems are prohibited.
- Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation.
- Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system.
- For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas).
- Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air.
- Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 0.76 m/sec with a minimum of 0.64 m/sec. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed.

Personal protection

Eye and face protection

- ▶ Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure.
- Chemical goggles.whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted.
- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face
- Alternatively a gas mask may replace splash goggles and face shields.
 - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

Hands/feet protection

See Hand protection below

► Elbow length PVC gloves

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. · Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- · Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed

Chemwatch: **5591-18**Version No: **2.1**

Novithor TPC Powder

Issue Date: **16/02/2023**Print Date: **16/02/2023**

	moisturiser is recommended. Neoprene rubber gloves Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. polychloroprene. nitrile rubber. butyl rubber. fluorocaoutchouc. polyvinyl chloride. Gloves should be examined for wear and/ or degradation constantly.
Body protection	See Other protection below
Other protection	 Overalls. P.V.C apron. Barrier cream. Skin cleansing cream. Eye wash unit.

Respiratory protection

Type -P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	P1 Air-line*	-	PAPR-P1
up to 50 x ES	Air-line**	P2	PAPR-P2
up to 100 x ES	-	P3	-
		Air-line*	-
100+ x ES	-	Air-line**	PAPR-P3

* - Negative pressure demand ** - Continuous flow

 $A(All\ classes) = Organic\ vapours,\ B\ AUS\ or\ B1 = Acid\ gasses,\ B2 = Acid\ gas\ or\ hydrogen\ cyanide(HCN),\ B3 = Acid\ gas\ or\ hydrogen\ cyanide(HCN),\ E = Sulfur\ dioxide(SO2),\ G = Agricultural\ chemicals,\ K = Ammonia(NH3),\ Hg = Mercury,\ NO = Oxides\ of\ nitrogen,\ MB = Methyl\ bromide,\ AX = Low\ boiling\ point\ organic\ compounds(below\ 65\ degC)$

- · Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- · Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- · Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU)
- · Use approved positive flow mask if significant quantities of dust becomes airborne.
- · Try to avoid creating dust conditions.

SECTION 9 Physical and chemical properties

Information on book while of and about on any arrival

nformation on basic physical	and chemical properties		
Appearance	Grey powder; insoluble in water.		
Physical state	Divided Solid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable
pH (as supplied)	Not Applicable	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Applicable
Initial boiling point and boiling range (°C)	Not Applicable	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Applicable	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Applicable
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity

See section 7

Chemwatch: 5591-18 Page 8 of 16 Issue Date: 16/02/2023 Version No: 2.1 Print Date: 16/02/2023

Novithor TPC Powder

Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Inhaled

Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. Effects on lungs are significantly enhanced in the presence of respirable particles. Overexposure to respirable dust may produce wheezing, coughing and breathing difficulties leading to or symptomatic of impaired respiratory function.

Ingestion

Accidental ingestion of the material may be damaging to the health of the individual.

Skin Contact

Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

The material may accentuate any pre-existing dermatitis condition

Skin contact may result in severe irritation particularly to broken skin. Ulceration known as "chrome ulcers" may develop. Chrome ulcers and skin cancer are significantly related.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye

When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Strong evidence exists that the substance may cause irreversible but non-lethal mutagenic effects following a single exposure.

Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway

hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive.

Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive.

Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or

biochemical systems

Chronic

Red blood cells and rabbit alveolar macrophages exposed to calcium silicate insulation materials in vitro showed haemolysis in one study but not in another. Both studies showed the substance to be more cytotoxic than titanium dioxide but less toxic than asbestos. In a small cohort mortality study of workers in a wollastonite quarry, the observed number of deaths from all cancers combined and lung cancer

were lower than expected. Wollastonite is a calcium inosilicate mineral (CaSiO3). In some cases, small amounts of iron (Fe), and manganese (Mn), and lesser amounts of magnesium (Mg) substitute for calcium (Ca) in the mineral formulae (e.g., rhodonite)

In an inhalation study in rats no increase in tumour incidence was observed but the number of fibres with lengths exceeding 5 um and a diameter of less than 3 um was relatively low. Four grades of wollastonite of different fibre size were tested for carcinogenicity in one experiment in rats by intrapleural implantation. There was no information on the purity of the four samples used. A slight increase in the incidence of pleural sarcomas was observed with three grades, all of which contained fibres greater than 4 um in length and less than 0.5 um in diameter.

In two studies by intraperitoneal injection in rats using wollastonite with median fibre lengths of 8.1 um and 5.6 um respectively, no intraabdominal tumours were found.

Evidence from wollastonite miners suggests that occupational exposure can cause impaired respiratory function and pneumoconiosis. However animal studies have demonstrated that wollastonite fibres have low biopersistence and induce a transient inflammatory response compared to various forms of asbestos. A two-year inhalation study in rats at one dose showed no significant inflammation or fibrosis

The synthetic, amorphous silicas are believed to represent a very greatly reduced silicosis hazard compared to crystalline silicas and are considered to be nuisance dusts.

When heated to high temperature and a long time, amorphous silica can produce crystalline silica on cooling. Inhalation of dusts containing crystalline silicas may lead to silicosis, a disabling pulmonary fibrosis that may take years to develop. Discrepancies between various studies showing that fibrosis associated with chronic exposure to amorphous silica and those that do not may be explained by assuming that diatomaceous earth (a non-synthetic silica commonly used in industry) is either weakly fibrogenic or nonfibrogenic and that fibrosis is due to contamination by crystalline silica content

Occupational exposure to aluminium compounds may produce asthma, chronic obstructive lung disease and pulmonary fibrosis. Long-term overexposure may produce dyspnoea, cough, pneumothorax, variable sputum production and nodular interstitial fibrosis; death has been

 Chemwatch: 5591-18
 Page 9 of 16
 Issue Date: 16/02/2023

 Version No: 2.1
 Novithor TPC Powder
 Print Date: 16/02/2023

reported. Chronic interstitial pneumonia with severe cavitations in the right upper lung and small cavities in the remaining lung tissue, have been observed in gross pathology. Shaver's Disease may result from occupational exposure to fumes or dusts; this may produce respiratory distress and fibrosis with large blebs. Animal studies produce no indication that aluminium or its compounds are carcinogenic.

Because aluminium competes with calcium for absorption, increased amounts of dietary aluminium may contribute to the reduced skeletal mineralisation (osteopenia) observed in preterm infants and infants with growth retardation. In very high doses, aluminium can cause neurotoxicity, and is associated with altered function of the blood-brain barrier. A small percentage of people are allergic to aluminium and experience contact dermatitis, digestive disorders, vomiting or other symptoms upon contact or ingestion of products containing aluminium, such as deodorants or antacids. In those without allergies, aluminium is not as toxic as heavy metals, but there is evidence of some toxicity if it is consumed in excessive amounts. Although the use of aluminium cookware has not been shown to lead to aluminium toxicity in general, excessive consumption of antacids containing aluminium compounds and excessive use of aluminium-containing antiperspirants provide more significant exposure levels. Studies have shown that consumption of acidic foods or liquids with aluminium significantly increases aluminium absorption, and maltol has been shown to increase the accumulation of aluminium in nervous and osseus tissue. Furthermore, aluminium increases oestrogen-related gene expression in human breast cancer cells cultured in the laboratory These salts' estrogen-like effects have led to their classification as a metalloestrogen. Some researchers have expressed concerns that the aluminium in antiperspirants may increase the risk of breast cancer.

After absorption, aluminium distributes to all tissues in animals and humans and accumulates in some, in particular bone. The main carrier of the aluminium ion in plasma is the iron binding protein, transferrin. Aluminium can enter the brain and reach the placenta and foetus. Aluminium may persist for a very long time in various organs and tissues before it is excreted in the urine. Although retention times for aluminium appear to be longer in humans than in rodents, there is little information allowing extrapolation from rodents to the humans.

At high levels of exposure, some aluminium compounds may produce DNA damage in vitro and in vivo via indirect mechanisms. The database on carcinogenicity of aluminium compounds is limited. No indication of any carcinogenic potential was obtained in mice given aluminium potassium sulphate at high levels in the diet.

Aluminium has shown neurotoxicity in patients undergoing dialysis and thereby chronically exposed parenterally to high concentrations of aluminium. It has been suggested that aluminium is implicated in the aetiology of Alzheimer s disease and associated with other neurodegenerative diseases in humans. However, these hypotheses remain controversial. Several compounds containing aluminium have the potential to produce neurotoxicity (mice, rats) and to affect the male reproductive system (dogs). In addition, after maternal exposure they have shown embryotoxicity (mice) and have affected the developing nervous system in the offspring (mice, rats). The available studies have a number of limitations and do not allow any dose-response relationships to be established. The combined evidence from several studies in mice, rats and dogs that used dietary administration of aluminium compounds produce lowest-observed-adverse-effect levels (LOAELs) for effects on neurotoxicity, testes, embryotoxicity, and the developing nervous system of 52, 75, 100, and 50 mg aluminium/kg bw/day, respectively. Similarly, the lowest no-observed-adverse-effect levels (NOAELs) for effects on these endpoints were reported at 30, 27, 100, and for effects on the developing nervous system, between 10 and 42 mg aluminium/kg bw per day, respectively.

Controversy exists over whether aluminium is the cause of degenerative brain disease (Alzheimer's disease or AD). Several epidemiological studies show a possible correlation between the incidence of AD and high levels of aluminium in drinking water. A study in Toronto, for example, found a 2.6 times increased risk in people residing for at least 10 years in communities where drinking water contained more than 0.15 mg/l aluminium compared with communities where the aluminium level was lower than 0.1 mg/l. A neurochemical model has been suggested linking aluminium exposure to brain disease. Aluminium concentrates in brain regions, notably the hippocampus, cerebral cortex and amygdala where it preferentially binds to large pyramid-shaped cells - it does not bind to a substantial degree to the smaller interneurons. Aluminium displaces magnesium in key metabolic reactions in brain cells and also interferes with calcium metabolism and inhibits phosphoinositide metabolism. Phosphoinositide normally controls calcium ion levels at critical concentrations.

Under the microscope the brain of AD sufferers show thickened fibrils (neurofibrillary tangles - NFT) and plaques consisting of amyloid protein deposited in the matrix between brain cells. Tangles result from alteration of "tau" a brain cytoskeletal protein. AD tau is distinguished from normal tau because it is hyperphosphorylated. Aluminium hyperphosphorylates tau in vitro. When AD tau is injected into rat brain NFT-like aggregates form but soon degrade. Aluminium stabilises these aggregates rendering them resistant to protease degradation. Plaque formation is also enhanced by aluminium which induces the accumulation of amyloid precursor protein in the thread-like extensions of nerve cells (axons and dendrites). In addition aluminium has been shown to depress the activity of most neuro-transmitters similarly depressed in AD (acetylcholine, norepinephrine, glutamate and GABA).

Aluminium enters the brain in measurable quantities, even when trace levels are contained in a glass of tap water. Other sources of bioavailable aluminium include baking powder, antacids and aluminium products used for general food preparation and storage (over 12 months, aluminium levels in soft drink packed in aluminium cans rose from 0.05 to 0.9 mg/l). [Walton, J and Bryson-Taylor, D. - Chemistry in Australia, August 1995] Cement contact dermatitis (CCD) may occur when contact shows an allergic response, which may progress to sensitisation. Sensitisation is due to soluble chromates (chromate compounds) present in trace amounts in some cements and cement products. Soluble chromates readily penetrate intact skin. Cement dermatitis can be characterised by fissures, eczematous rash, dystrophic nails, and dry skin; acute contact with highly alkaline mixtures may cause localised necrosis.

Cement eczema may be due to chromium in feed stocks or contamination from materials of construction used in processing the cement. Sensitisation to chromium may be the leading cause of nickel and cobalt sensitivity and the high alkalinity of cement is an important factor in cement dermatoses [ILO].

Repeated, prolonged severe inhalation exposure may cause pulmonary oedema and rarely, pulmonary fibrosis. Workers may also suffer from dust-induced bronchitis with chronic bronchitis reported in 17% of a group occupationally exposed to high dust levels.

Respiratory symptoms and ventilatory function were studied in a group of 591 male Portland cement workers employed in four Taiwanese cement plants, with at least 5 years of exposure (1). This group had a significantly lowered mean forced vital capacity (FCV), forced expiratory volume at 1 s (FEV1) and forced expiratory flows after exhalation of 50% and 75% of the vital capacity (FEF50, FEF75). The data suggests that occupational exposure to Portland cement dust may lead to a higher incidence of chronic respiratory symptoms and a reduction of ventilatory capacity.

Chun-Yuh et al; Journal of Toxicology and Environmental Health 49: 581-588, 1996

Prolonged inhalation of high concentrations of magnesite (magnesium carbonate) dust caused pulmonary deposition and retention. Roasted magnesite (magnesium oxide) produced a greater degree of fibrosis than did crude magnesite. No cases of human systemic poisoning due to exposure to magnesite have been recorded. Pneumoconiosis was found in about 2% of workers exposed to high concentrations of dust from crude or roasted magnesite that also contained 1-3% silicon dioxide. Exposure periods ranged from 6-20 years. This condition occurred mainly in workers exposed to roasted (calcined) magnesite. The pneumoconiosis appeared to be "benign" and was often associated with chronic bronchitis and lung emphysema.

In other reports the severity of the pneumoconiosis was associated with the crystalline silica content of the dust or in a case of magnesium carbonate used in insulating materials, the severity of the disease depended on the asbestos content.

Complaints of coughing are rare amongst magnesite workers, and more frequent among dianase and grog (crushed refractory materials) workers.

Airborne dust concentrations were lowest in dianase facilities but crystalline silica was high. Chronic bronchitis then, appears to increase where concentrations of crystalline silica are highest

Repeated exposure to synthetic amorphous silicas may produce skin dryness and cracking.

Available data confirm the absence of significant toxicity by oral and dermal routes of exposure.

Numerous repeated-dose, subchronic and chronic inhalation toxicity studies have been conducted in a number of species, at airborne concentrations ranging from 0.5 mg/m3 to 150 mg/m3. Lowest-observed adverse effect levels (LOAELs) were typically in the range of 1 to 50 mg/m3. When available, the no-observed adverse effect levels (NOAELs) were between 0.5 and 10 mg/m3. Differences in values may be due to particle size, and therefore the number of particles administered per unit dose. Generally, as particle size diminishes so does the NOAEL/ LOAEL. Exposure produced transient increases in lung inflammation, markers of cell injury and lung collagen content. There was no evidence of interstitial pulmonary fibrosis.

Overexposure to the breathable dust may cause coughing, wheezing, difficulty in breathing and impaired lung function. Chronic symptoms may include decreased vital lung capacity and chest infections. Repeated exposures in the workplace to high levels of fine-divided dusts may produce a condition known as pneumoconiosis, which is the lodgement of any inhaled dusts in the lung, irrespective of the effect. This is particularly true

Chemwatch: 5591-18 Version No: 2.1

Novithor TPC Powder

Issue Date: **16/02/2023**Print Date: **16/02/2023**

when a significant number of particles less than 0.5 microns (1/50000 inch) are present. Lung shadows are seen in the X-ray. Symptoms of pneumoconiosis may include a progressive dry cough, shortness of breath on exertion, increased chest expansion, weakness and weight loss. As the disease progresses, the cough produces stringy phlegm, vital capacity decreases further, and shortness of breath becomes more severe. Other signs or symptoms include changed breath sounds, reduced oxygen uptake during exercise, emphysema and rarely, pneumothorax (air in the lung cavity).

Removing workers from the possibility of further exposure to dust generally stops the progress of lung abnormalities. When there is high potential for worker exposure, examinations at regular period with emphasis on lung function should be performed.

Inhaling dust over an extended number of years may cause pneumoconiosis, which is the accumulation of dusts in the lungs and the subsequent tissue reaction. This may or may not be reversible.

Chromium(III) is considered an essential trace nutrient serving as a component of the "glucose tolerance factor" and a cofactor for insulin action. High concentrations of chromium are also found in RNA. Trivalent chromium is the most common form found in nature.

Chronic inhalation of trivalent chromium compounds produces irritation of the bronchus and lungs, dystrophic changes to the liver and kidney, pulmonary oedema, and adverse effects on macrophages. Intratracheal administration of chromium(III) oxide, in rats, increased the incidence of sarcomas, and tumors and reticulum cell sarcomas of the lung. There is inadequate evidence of carcinogenicity of chromium(III) compounds in experimental animals and humans (IARC).

Chronic exposure to hexavalent chromium compounds reportedly produces skin, eye and respiratory tract irritation, yellowing of the eyes and skin, allergic skin and respiratory reactions, diminished sense of smell and

taste, blood disorders, liver and kidney damage, digestive disorders and lung damage. There is sufficient evidence of carcinogenicity of chromium(VI) compounds in experimental animals and humans to confirm these as Class 1 carcinogens (IARC).

Exposure to chromium during chrome production and in the chrome pigment industry is associated with cancer of the respiratory tract. A slight increase in gastrointestinal cancer following exposure to chromium compounds has also been reported. The greatest risk is attributed to exposure to acid-soluble, water-insoluble hexavalent chromium which occurs in roasting and refining processes. Animal studies support the idea that the most potent carcinogenic compounds are the slightly soluble hexavalent compounds. The cells are more active in the uptake of the hexavalent forms compared to trivalent forms and this may explain the difference in occupational effect. It is the trivalent form, however, which is metabolically active and binds with nucleic acid within the cell suggesting that chromium mutagenesis first requires biotransformation of the hexavalent form by reduction.

Hexavalent chromes produce chronic ulceration of skin surfaces (quite independent of other hypersensitivity reactions exhibited by the skin). Water-soluble chromium(VI) compounds come close to the top of any published "hit list" of contact allergens (eczematogens) producing positive results in 4 to 10% of tested individuals. On the other hand only chromium(III) compounds can bind to high molecular weight carriers such as proteins to form a complete allergen (such as a hapten). Chromium(VI) compounds cannot. It is assumed that reduction must take place for such compounds to manifest any contact sensitivity. The apparent contradiction that chromium(VI) salts cause allergies to chromium(III) compounds but that allergy to chromium(III) compounds is difficult to demonstrate is accounted for by the different solubilities and skin penetration of these compounds. Water-soluble chromium(VI) salts penetrate the horny layer of the skin more readily than chromium(III) compounds which are bound by cross-linking in the horny layer ("tanning", as for leather) and therefore do not reach the cells involved in antigen processing. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.

Chronic excessive iron exposure has been associated with haemosiderosis and consequent possible damage to the liver and pancreas. Haemosiderin is a golden-brown insoluble protein produced by phagocytic digestion of haematin (an iron-based pigment). Haemosiderin is found in most tissues, especially in the liver, in the form of granules. Other sites of haemosiderin deposition include the pancreas and skin. A related condition, haemochromatosis, which involves a disorder of metabolism of these deposits, may produce cirrhosis of the liver, diabetes, and bronze pigmentation of the skin - heart failure may eventually occur.

Such exposure may also produce conjunctivitis, choroiditis, retinitis (both inflammatory conditions involving the eye) and siderosis of tissues if iron remains in these tissues. Siderosis is a form of pneumoconiosis produced by iron dusts. Siderosis also includes discoloration of organs, excess circulating iron and degeneration of the retina, lens and uvea as a result of the deposition of intraocular iron. Siderosis might also involve the lungs - involvement rarely develops before ten years of regular exposure. Often there is an accompanying inflammatory reaction of the bronchi. Permanent scarring of the lungs does not normally occur.

High levels of iron may raise the risk of cancer. This concern stems from the theory that iron causes oxidative damage to tissues and organs by generating highly reactive chemicals, called free radicals, which subsequently react with DNA. Cells may be disrupted and may be become cancerous. People whose genetic disposition prevents them from keeping tight control over iron (e.g. those with the inherited disorder, haemochromatosis) may be at increased risk.

Iron overload in men may lead to diabetes, arthritis, liver cancer, heart irregularities and problems with other organs as iron builds up. [K. Schmidt, New Scientist, No. 1919 pp.11-12, 2nd April, 1994]

	TOXICITY	IRRITATION
Novithor TPC Powder	Not Available	Not Available
	TOXICITY	IRRITATION
graded sand	Oral (Rat) LD50: 500 mg/kg ^[2]	Not Available
	TOXICITY	IRRITATION
portland cement	Not Available	Not Available
	TOXICITY	IRRITATION
calcium sulfate	Inhalation(Rat) LC50: >3.26 mg/l4h ^[1]	Not Available
	Oral (Rat) LD50: >1581 mg/kg ^[1]	
	TOXICITY	IRRITATION
	TOXICITY dermal (rat) LD50: >2000 mg/kg ^[1]	IRRITATION Not Available
calcium aluminate sulfate		· · · · · · · · · · · · · · · · · · ·
calcium aluminate sulfate	dermal (rat) LD50: >2000 mg/kg ^[1]	· · · · · · · · · · · · · · · · · · ·
calcium aluminate sulfate	dermal (rat) LD50: >2000 mg/kg ^[1] Inhalation(Rat) LC50: >3.26 mg/l4h ^[1]	· · · · · · · · · · · · · · · · · · ·
	dermal (rat) LD50: >2000 mg/kg ^[1] Inhalation(Rat) LC50: >3.26 mg/l4h ^[1] Oral (Rat) LD50: >1581 mg/kg ^[1]	Not Available
calcium aluminate sulfate blast furnace slag	dermal (rat) LD50: >2000 mg/kg ^[1] Inhalation(Rat) LC50: >3.26 mg/l4h ^[1] Oral (Rat) LD50: >1581 mg/kg ^[1] TOXICITY	Not Available IRRITATION
	dermal (rat) LD50: >2000 mg/kg ^[1] Inhalation(Rat) LC50: >3.26 mg/l4h ^[1] Oral (Rat) LD50: >1581 mg/kg ^[1] TOXICITY dermal (rat) LD50: >4000 mg/kg ^[1]	IRRITATION Eye: no adverse effect observed (not irritating) ^[1]
	dermal (rat) LD50: >2000 mg/kg ^[1] Inhalation(Rat) LC50: >3.26 mg/l4h ^[1] Oral (Rat) LD50: >1581 mg/kg ^[1] TOXICITY dermal (rat) LD50: >4000 mg/kg ^[1] Inhalation(Rat) LC50: >5.235 mg/L4h ^[1]	IRRITATION Eye: no adverse effect observed (not irritating) ^[1]

Chemwatch: 5591-18 Page 11 of 16

Version No: 2.1 Print Date: 16/02/2023 **Novithor TPC Powder**

	Inhalation(Rat) LC50: >3 mg/l4h ^[1]	Eye: no adverse effect observed (not irritating)[1]	
	Oral (Rat) LD50: >2000 mg/kg ^[1]	Skin (rabbit): 500 mg/24h-moderate	
		Skin: no adverse effect observed (not irritating) $^{[1]}$	
	TOXICITY	IRRITATION	
gypsum	TOXICITY Inhalation(Rat) LC50: >3.26 mg/l4h ^[1]	IRRITATION Not Available	
gypsum		-	

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

PORTLAND CEMENT

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's gedema. The pathogenesis of contact

eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Toxicity from calcium is not common because the gastrointestinal tract normally limits the amount of calcium absorbed. Therefore, short-term intake of large amounts of calcium does not generally produce any ill effects aside from constipation and an increased risk of kidney stones. However, more severe toxicity can occur when excess calcium is ingested over long periods, or when calcium is combined with increased amounts of vitamin D, which increases calcium absorption. Calcium toxicity is also sometimes found after excessive intravenous administration of calcium. Toxicity is manifested by abnormal deposition of calcium in tissues and by elevated blood calcium levels (hypercalcaemia). However, hypercalcaemia is often due to other causes, such as abnormally high amounts of parathyroid hormone (PTH). Usually, under these circumstances, bone density is lost and the resulting hypercalcaemia can cause kidney stones and abdominal pain. Some cancers can also cause hypercalcaemia, either by secreting abnormal proteins that act like PTH or by invading and killing bone cells causing them to release calcium. Very high levels of calcium can result in appetite loss, nausea, vomiting, abdominal pain, confusion, seizures, and even coma. for calcium chloride:

CALCIUM ALUMINATE SULFATE

Acute toxicity: The acute oral toxicity of calcium chloride is low: LD50 in mice is 1940-2045 mg/kg bw, 3798-4179 mg/kg bw in rats, and 500-1000 mg/kg bw in rabbits. The acute oral toxicity is attributed to the severe irritating property of the original substance or its high-concentration solutions to the gastrointestinal tract. In humans, however, acute oral toxicity is rare because large single doses induce nausea and vomiting. The dermal acute toxicity is negligible: LD50 in rabbits >5000 mg/kg bw. No significant change was found by gross necropsy examination except skin lesions at or near the site of administration. Hypercalcaemia may occur only when there exists other factors that alter calcium homeostasis, such as renal inefficiency and primary hyperthyroidism.

Irritation/corrosiveness studies conducted under OECD test guidelines indicate that calcium chloride is not/slightly irritating to skin but severely irritating to eyes of rabbits. Prolonged exposure and application of moistened material or concentrated solutions resulted in considerable skin irritation, however. Irritating effect of the substance was observed in human skin injuries caused by incidental contact with the substance or its high-concentration solutions.

Repeat dose toxicity: A limited oral repeated dose toxicity study shows no adverse effect of calcium chloride on rats fed on 1000-2000 mg/kg bw/day for 12 months. Calcium and chloride are both essential nutrients for humans and a daily intake of more than 1000 mg each of the ions is recommended. The establishment of the ADI for calcium chloride has not been deemed necessary by JECFA (Joint FAO/WHO Expert Committee on Food Additives)

Genotoxicity: Genetic toxicity of calcium chloride was negative in the bacterial mutation tests and the mammalian chromosome aberration test. Reproductive and developmental toxicity: No reproductive toxicity study has been reported. A developmental toxicity study equivalent to an OECD Guideline study, on the other hand, reveals no toxic effects on dams or foetuses at doses up to 189 mg/kg bw/day (mice), 176 mg/kg bw/day (rats) and 169 mg/kg bw/day (rabbits).

Derived No Adverse Effects Level (NOAEL) in the range of 1000 mg/kg/d.

In humans, synthetic amorphous silica (SAS) is essentially non-toxic by mouth, skin or eyes, and by inhalation. Epidemiology studies show little evidence of adverse health effects due to SAS. Repeated exposure (without personal protection) may cause mechanical irritation of the eye and

When experimental animals inhale synthetic amorphous silica (SAS) dust, it dissolves in the lung fluid and is rapidly eliminated. If swallowed, the vast majority of SAS is excreted in the faeces and there is little accumulation in the body. Following absorption across the gut, SAS is eliminated via urine without modification in animals and humans. SAS is not expected to be broken down (metabolised) in mammals.

After ingestion, there is limited accumulation of SAS in body tissues and rapid elimination occurs. Intestinal absorption has not been calculated, but appears to be insignificant in animals and humans. SASs injected subcutaneously are subjected to rapid dissolution and removal. There is no indication of metabolism of SAS in animals or humans based on chemical structure and available data. In contrast to crystalline silica, SAS is soluble in physiological media and the soluble chemical species that are formed are eliminated via the urinary tract without modification. Both the mammalian and environmental toxicology of SASs are significantly influenced by the physical and chemical properties, particularly those of solubility and particle size. SAS has no acute intrinsic toxicity by inhalation. Adverse effects, including suffocation, that have been reported were caused by the presence of high numbers of respirable particles generated to meet the required test atmosphere. These results are not representative of exposure to commercial SASs and should not be used for human risk assessment. Though repeated exposure of the skin may cause dryness and cracking, SAS is not a skin or eye irritant, and it is not a sensitiser.

BLAST FURNACE SLAG

Repeated-dose and chronic toxicity studies confirm the absence of toxicity when SAS is swallowed or upon skin contact.

Long-term inhalation of SAS caused some adverse effects in animals (increases in lung inflammation, cell injury and lung collagen content), all of which subsided after exposure.

Numerous repeated-dose, subchronic and chronic inhalation toxicity studies have been conducted with SAS in a number of species, at airborne $concentrations \ ranging \ from \ 0.5 \ mg/m3 \ to \ 150 \ mg/m3. \ Lowest-observed \ adverse \ effect \ levels \ (LOAELs) \ were \ typically in \ the \ range \ of \ 1 \ to \ 50 \ mg/m3.$ mg/m3. When available, the no-observed adverse effect levels (NOAELs) were between 0.5 and 10 mg/m3. The difference in values may be explained by different particle size, and therefore the number of particles administered per unit dose. In general, as particle size decreases so does the NOAEL/LOAEL.

Neither inhalation nor oral administration caused neoplasms (tumours). SAS is not mutagenic in vitro. No genotoxicity was detected in in vivo assays. SAS does not impair development of the foetus. Fertility was not specifically studied, but the reproductive organs in long-term studies were not affected.

For Synthetic Amorphous Silica (SAS)

Repeated dose toxicity

Oral (rat), 2 weeks to 6 months, no significant treatment-related adverse effects at doses of up to 8% silica in the diet.

Inhalation (rat), 13 weeks, Lowest Observed Effect Level (LOEL) = 1.3 mg/m3 based on mild reversible effects in the lungs. Inhalation (rat), 90 days, LOEL = 1 mg/m3 based on reversible effects in the lungs and effects in the nasal cavity.

For silane treated synthetic amorphous silica:

Repeated dose toxicity: oral (rat), 28-d, diet, no significant treatment-related adverse effects at the doses tested.

Issue Date: 16/02/2023

Chemwatch: **5591-18**Version No: **2.1**

Page 12 of 16 Novithor TPC Powder

Issue Date: 16/02/2023 Print Date: 16/02/2023

There is no evidence of cancer or other long-term respiratory health effects (for example, silicosis) in workers employed in the manufacture of SAS. Respiratory symptoms in SAS workers have been shown to correlate with smoking but not with SAS exposure, while serial pulmonary function values and chest radiographs are not adversely affected by long-term exposure to SAS.

No evidence of carcinogenic properties. No evidence of mutagenic or teratogenic effects.

CALCIUM CARBONATE

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

GRADED SAND & PORTLAND CEMENT & CALCIUM ALUMINATE SULFATE & BLAST FURNACE SLAG & GYPSUM

No significant acute toxicological data identified in literature search.

PORTLAND CEMENT & CALCIUM SULFATE & BLAST FURNACE SLAG & CALCIUM CARBONATE & GYPSUM

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

Gypsum (calcium sulfate dihydrate) is a skin, eye, mucous membrane, and respiratory system irritant. Early studies of gypsum miners did not relate pneumoconiosis with chronic exposure to gypsum. Other studies in humans (as well as animals) showed no lung fibrosis produced by natural dusts of calcium sulfate except in the presence of silica. However, a series of studies reported chronic nonspecific respiratory diseases in gypsum industry workers in Gacki, Poland.

Unlike other fibers, gypsum is very soluble in the body; its half-life in the lungs has been estimated as minutes. In four healthy men receiving calcium supplementation with calcium sulfate (CaSO4-1/2H2O) (200 or 220 mg) for 22 days, an average absorption of 28.3% was reported. Several feeding studies in pigs on the bioavailability of calcium in calcium supplements, including gypsum, have been conducted. The bioavailability of calcium in gypsum was similar to that for calcitic limestone, oyster shell flour, marble dust, and aragonite, ranging from 85 to 102%. In mice, the i.p. and intragastric LD50 values were 6200 and 4704 mg/kg, respectively, for phosphogypsum (98% CaSO4-H2O). For Plaster of Paris, the values were 4415 and 5824, respectively. In

rats, an intragastric LD50 of 9934 mg/kg was reported for phosphogypsum

Repeat dose toxicity: In a study of 241 underground male workers employed in four gypsum mines in Nottinghamshire and Sussex for a year (November 1976-December 1977), results of chest X-rays, lung function tests, and respiratory systems suggested an association of the observed lung shadows with the higher quartz content in dust rather than to gypsum; the small round opacities in the lungs were characteristic of silica exposure.

Prophylactic examinations of workers in a gypsum extraction and production plant (dust concentration exceeded TLV 2.5- to 10-fold) reported no risk of pneumoconiosis due to gypsum exposure, while another study of gypsum manufacturing plant workers reported that chronic occupational exposure to gypsum dust had resulted in pulmonary ventilatory defect of the restrictive form.

Three cases of idiopathic interstitial pneumonia with multiple bullae throughout the lungs were seen in Japanese schoolteachers (lifetime occupation) exposed to chalk; 2/3 of the chalk was made from gypsum and small amounts of silica and other minerals.

In rats exposed to an aerosol of anhydrous calcium sulfate fibers (15 mg/m3) or a combination of milled and fibrous calcium sulfate (60 mg/m3) six hours per day, five days per week for three weeks, gypsum dust was quickly cleared from the lungs of via dissolution and mechanisms of particle clearance.

In guinea pigs given intraperitoneal (i.p.) injections of gypsum (doses not provided), gypsum was absorbed followed by the dissolution of gypsum in surrounding tissues. In another study, after i.p. injection of gypsum (2 cm3 of a 5 or 10% suspension in saline) into guinea pigs, which were sacrificed at intervals up to 180 days, most of the dust was found distributed in the peritoneum of the anterior abdominal wall. Gypsum dust produced irregular and clustered nodules, which decreased in size over time.

Direct administration of WTC PM2.5 [mostly composed of calcium-based compounds, including calcium sulfate (gypsum) and calcium carbonate (calcite)] (10, 32, or 100 µg) into the airways of mice produced mild to moderate lung inflammation and airway hyperresponsiveness at the high dose. [It was noted that WTC PM2.5 is composed of many chemical species and that their interactions may be related with development of airway hyperresponsiveness.] In female SPF Wistar rats intratracheally (i.t.) instilled with anhydrite dust (35 mg) and sacrificed three months later, an increase in total lipid or hydroxyproline content in the lungs was not observed compared to controls.

In inhalation (nose-only) experiments in which male F344 rats were exposed to calcium sulfate fiber aerosols (100 mg/m3) for six hours per day, five days per week for three weeks, there were no effects on the number of macrophages per alveolus, bronchoalveolar lavage fluid (BALF) protein concentration, or BALF g-glutamyl transpeptidase activity (g-GT). Following three weeks of recovery, nonprotein thiol levels (NPSH), mainly glutathione, were increased in animals. In follow-up experiments, rats were exposed to an aerosol of anhydrous calcium sulfate fibers (15 mg/m3) or a combination of milled and fibrous calcium sulfate (60 mg/m3) for the same duration. Calcium levels in the lungs were similar to those of controls; however, gypsum fibers were detected in the lungs of treated animals. Significant increases in NSPH levels in BALF were observed in rats killed immediately after exposure at both doses and in recovery group animals at the higher dose. At 15 mg/m3, almost all NPSH was lost in macrophages from all treated animals (including those in recovery), but a significant decrease in extracellular g-GT activity was seen only in recovery group animals. Overall, the findings were "considered to be non-pathological local effects due to physical factors related to the shape of the gypsum fibers and not to calcium sulphate per se."

Intratracheal administration of man-made calcium sulfate fiber (2.0 mg) once per week for five weeks resulted in no deaths or significant body weight changes in female Syrian hamsters compared to controls.

Inflammation (specifically, chronic alveolitis with macrophage and neutrophil aggregation) was observed in the lung.

In guinea pigs, inhalation of calcined gypsum dust (1.6 x 104 particles/mL) for 44 hours per week in 5.5 days for two years, followed with or without a recovery period of up to 22 months, produced only minor effects in the lungs. There were 12 of 21 deaths over the entire experimental period. These were due to pneumonia or other pulmonary lesions; however, no significant gross signs of pulmonary disease or nodular or diffuse pneumoconiosis became significant. Beginning near 11 months, pigmentation and atelectasis were seen. During the recovery period, four of ten guinea pigs died; two died of pneumonia. Pigmentation continued in most animals but not atelectasis. Low-grade chronic inflammation, occurring in the first two months, also disappeared.

Mercury emissions controls on coal-fired power plants have increased the likelihood of the presence of mercury in synthetic gypsum formed in wet flue gas desulfurisation (FGD) systems and the finished wallboard produced from the FGD gypsum. In a study at a commercial wallboard plant, the raw FGD gypsum, the product stucco (beta form of CaSO4-1/2H2O), and the finished dry wallboard each contained about 1 ug Hg/g dry weight. Total mercury loss from the original FGD gypsum content was about 0.045 g Hg/ton dry gypsum processed

Synergistic/Antagonistic Effects: In rats, i.t. administration of anhydrite (5-35 mg) successively and simultaneously with quartz reduced the toxic effect of quartz in lung tissue. This protective effect on quartz toxicity was also seen in guinea pigs; calcined gypsum dust prevented or hindered the development of fibrosis. Natural anhydrite, however, increased the fibrogenic effect of cadmium sulfide in rats. Additionally, calcined gypsum dust had a stimulatory effect on experimental tuberculosis in guinea pigs.

Cytotoxicity: In Syrian hamster embryo cells, gypsum (up to 10 ug/cm2) did not induce apoptosis. Negative results were also found in mouse peritoneal macrophages (tested at 150 ug/mL gypsum dust) and in Chinese hamster lung V79-4 cells (tested up to 100 ug/mL).

Carcinogenicity: In female Sprague-Dawley rats, i.p. injection of natural anhydrite dusts from German coal mines (doses not provided) induced

CALCIUM SULFATE & GYPSUM

Novithor TPC Powder

Issue Date: 16/02/2023 Print Date: 16/02/2023

granulomas; whether gypsum was the causal factor was not established. In Wistar rats, four i.p. injections of gypsum (25 mg each) induced abdominal cavity tumours, mostly sarcomatous mesothelioma, in 5% of animals; first tumour was seen at 546 days. In a subsequent experiment using the same procedure, female Wistar rats exhibited the first tumour at 579 days after the last injection. Mean survival of the tumour-bearing rats (5.7% of test group) was 583 days, while mean survival of the test group was 587 days. Tumour types seen were a sarcoma having cellular polymorphism, a carcinoma, and a reticulosarcoma.

Intratracheal administration of man-made calcium sulfate fiber (2.0 mg) once per week for five weeks produced tumours in three of 20 female Syrian hamsters observed two years later. An anaplastic carcinoma was found in the heart, and one dark cell carcinoma was seen in the kidney. Two tumours of unspecified types were observed in the rib.

In guinea pigs, inhalation of gypsum (doses not provided) for 24 months produced no lung tumours.

In rats, i.t. administration of gypsum (doses not provided in abstract) from FGD for up to 18 months produced no arterial blood gas changes or indications of secondary heart damage as compared to controls.

In another study, a single i.t. dose (25 mg) of flue gas gypsum dust did not produce a pathological reaction when observed for up to 18 months. There were also no signs of developing granuloma of fibrosis of the lungs. Lead quickly accumulated in the femur after injection but was eliminated during the observation period. In the Ames test, the flue gas gypsum dust was negative.

Genotoxicity: Calcium sulfate (up to 2.5%) was negative in Salmonella typhimurium strains TA1535, TA1537, and TA1538 and in Saccharomyces cerevisiae strain D4 with and without metabolic activation.

Developmental toxicity: In pregnant mice, rats, and rabbits, daily oral administration of calcium sulfate (16-1600 mg/kg bw) beginning on gestation day 6 up to 18 produced no effects on maternal body weights, maternal or foetal survival, or nidation (embryo implantation); developmental effects were also not seen.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	✓
Mutagenicity	✓	Aspiration Hazard	×

Legend:

— Data either not available or does not fill the criteria for classification

- Data available to make classification

SECTION 12 Ecological information

Toxicity

<u> </u>					
	Endpoint	Test Duration (hr)	Species	Value	Source
Novithor TPC Powder	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
graded sand	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
portland cement	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	72h	Algae or other aquatic plants	>79mg/l	2
calcium sulfate	LC50	96h	Fish	>79mg/l	2
	NOEC(ECx)	0.25h	Fish	75mg/l	4
	EC50	96h	Algae or other aquatic plants	3200mg/l	4
	Endpoint	Test Duration (hr)	Species	Value	Source
	LC50	96h	Fish	>83mg/l	2
calcium aluminate sulfate	EC50	72h	Algae or other aquatic plants	4.8mg/l	2
	EC50	48h	Crustacea	6.8mg/l	2
	EC10(ECx)	72h	Algae or other aquatic plants 2.3mg/l		2
	Endpoint	Test Duration (hr)	Species	Value	Source
	NOEC(ECx)	72h	Algae or other aquatic plants	>=100mg/l	2
blast furnace slag	EC50	72h	Algae or other aquatic plants	>100mg/l	2
	LC50	96h	Fish	>100000mg/L	2
	EC50	48h	Crustacea	>100mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
a a la boma a a mb e contr	NOEC(ECx)	1h	Fish	4-320mg/l	4
calcium carbonate	LC50	96h	Fish	>165200mg/L	4
	EC50	72h	Algae or other aquatic plants	>14mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
gypsum	EC50	72h	Algae or other aquatic plants	>79mg/l	2

Chemwatch: 5591-18 Page **14** of **16** Version No: 2.1

Novithor TPC Powder

Issue Date: 16/02/2023 Print Date: 16/02/2023

LC50	96h	Fish	>79mg/l	2
NOEC(ECx)	0.25h	Fish	75mg/l	4
EC50	96h	Algae or other aquatic plants	3200mg/l	4

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
calcium sulfate	HIGH	HIGH
gypsum	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
calcium sulfate	LOW (LogKOW = -2.2002)
gypsum	LOW (LogKOW = -2.2002)

Mobility in soil

Ingredient	Mobility
calcium sulfate	LOW (KOC = 6.124)
gypsum	LOW (KOC = 6.124)

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.

SECTION 14 Transport information

Labels Required

Labels required	
Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
graded sand	Not Available
portland cement	Not Available
calcium sulfate	Not Available
calcium aluminate sulfate	Not Available
blast furnace slag	Not Available
calcium carbonate	Not Available
gypsum	Not Available

Transport in bulk in accordance with the IGC Code

Product name	Ship Type
graded sand	Not Available
portland cement	Not Available
calcium sulfate	Not Available
calcium aluminate sulfate	Not Available
blast furnace slag	Not Available
calcium carbonate	Not Available

Version No: 2.1

Novithor TPC Powder

Issue Date: **16/02/2023**Print Date: **16/02/2023**

Product name	Ship Type
gypsum	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

graded sand is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Model Work Health and Safety Regulations - Hazardous chemicals (other than lead) requiring health monitoring

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 1: Carcinogenic to humans

portland cement is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

calcium sulfate is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

calcium aluminate sulfate is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

blast furnace slag is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

calcium carbonate is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

gypsum is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (graded sand; portland cement; calcium sulfate; calcium aluminate sulfate; blast furnace slag; gypsum)
China - IECSC	No (blast furnace slag)
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (portland cement; calcium aluminate sulfate; blast furnace slag)
Korea - KECI	No (blast furnace slag)
New Zealand - NZIoC	Yes
Philippines - PICCS	No (portland cement; calcium aluminate sulfate; blast furnace slag)
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	No (calcium aluminate sulfate; blast furnace slag)
Vietnam - NCI	Yes
Russia - FBEPH	No (calcium aluminate sulfate; blast furnace slag)
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	16/02/2023
Initial Date	16/02/2023

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

Chemwatch: 5591-18 Page 16 of 16 Issue Date: 16/02/2023 Version No: 2.1 Print Date: 16/02/2023

Novithor TPC Powder

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors

BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers
ENCS: Existing and New Chemical Substances Inventory
KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.
TEL (+61 3) 9572 4700.