Temperature
 Measuring Transducer MU125

- Universal input for Pt100, Pt1000, thermocouple, NTC and resistance measurement value
- Configuration via front DIP switches
- Analog actual value output 4 .. 20 mA
- Zero point and limit value can be adjusted via trim potentiometers on the front
- With Pt100 and Pt1000 sensors, monitoring of sensor break and short-circuit
- Wide-range mains adapter or 24 V DC
- Optional supply via carrier rail bus
- Removable coded screw terminals or optional push-in terminals
- Housing width 12.5 mm
- Carrier rail mounting TS35 EN60715

Characteristics

Devices of the MU125 series convert a temperature measurement value or resistance measurement value from various sensors to a current signal of $4 . .20 \mathrm{~mA}$.
The universal configurability of the measuring inputs reduces the stock requirement for various applications.
The housing width of only 12.5 mm enables space-saving installation in the switch cabinet.

Measurement inputs			
Switchable via DIP switch:			
	Measuring range	Basic precision	Temperature deviation *)
Pt100	$-50 . .50^{\circ} \mathrm{C}$	0.4\%	0.01\%/K
	0.. $50^{\circ} \mathrm{C}$	0.6\%	0.02\%/K
	$0 . .100^{\circ} \mathrm{C}$	0.4\%	0.02\%/K
	$0 . .150^{\circ} \mathrm{C}$	0.4\%	0.01\%/K
	$0 . .200^{\circ} \mathrm{C}$	0.3\%	0.01\%/K
	$0 . .250^{\circ} \mathrm{C}$	0.3\%	0.01\%/K
	$0 . .300^{\circ} \mathrm{C}$	0.2\%	0.005\%/K
	$0 . .500^{\circ} \mathrm{C}$	0.2\%	0.005\%/K
Pt1000	-50.. $50^{\circ} \mathrm{C}$	0.4\%	0.01\%/K
	-30.. $70^{\circ} \mathrm{C}$	0.4\%	0.01\%/K
	-20.. $40^{\circ} \mathrm{C}$	0.4\%	0.01\%/K
	0.. $50^{\circ} \mathrm{C}$	0.6\%	0.02\%/K
	$0 . .100^{\circ} \mathrm{C}$	0.4\%	0.02\%/K
	$0 . .150^{\circ} \mathrm{C}$	0.4\%	0.01\%/K
	$0 . .200^{\circ} \mathrm{C}$	0.3\%	0.01\%/K
	$0.250^{\circ} \mathrm{C}$	0.3\%	0.005\%/K
FeCuNi	$0 . .250^{\circ} \mathrm{C}$	1.0\%	0.04\%/K
	$0 . .500^{\circ} \mathrm{C}$	0.5\%	0.03\%/K
NiCrNi	$-50 . .250^{\circ} \mathrm{C}$	0.7\%	0.05\%/K
	$0 . .500^{\circ} \mathrm{C}$	0.5\%	0.04\%/K
	$0 . .750^{\circ} \mathrm{C}$	0.4\%	0.03\%/K
	$0 . .1000^{\circ} \mathrm{C}$	0.3\%	0.02\%/K
	$0 . .1250^{\circ} \mathrm{C}$	0.3\%	0.02\%/K
PtRhPt	$0 . .1500^{\circ} \mathrm{C}$	1.0\%	0.04\%/K
NTC $\begin{aligned} & R_{25}=10 \mathrm{k} \Omega \\ & \mathrm{~B}_{25 / 85}=3977 \mathrm{~K} \end{aligned}$ NTC	$0 . .100^{\circ} \mathrm{C}$	1.0\%	0.01\%/K
$\begin{aligned} & \mathrm{R}_{25}=10 \mathrm{k} \Omega \\ & \mathrm{~B}_{25 / 85}=3977 \mathrm{~K} \end{aligned}$			
$\begin{aligned} & \mathrm{R}_{25}=2 \mathrm{k} \Omega \\ & \mathrm{~B}_{25 / 85}=3528 \mathrm{~K} \end{aligned}$			
Resistance linear**)	0.. $2 \mathrm{k} \Omega$	0.3\%	0.005\%/K
	0.. $5 \mathrm{k} \Omega$	0.5\%	0.01\%/K
	$0 . .10 \mathrm{k} \Omega$	0.3\%	0.005\%/K

*) Measurement deviation depending on the environmental temperature in the switch cabinet $\left(-10 . .+60^{\circ} \mathrm{C}\right)$
**) Adjusting zero point and limit value via the integrated trim potentiometers makes it possible to also connect KTY sensors for these measuring ranges. The linearisation must then be accomplished with the help of a parallel resistor.
(Special measurement ranges available on request)

Technical data

Wide-range power supply	
Supply voltage	: 20..125VDC and
	20..250VAC (47..63Hz), max.1.5W
24 V power supply	
Supply voltage	24V DC +/-15\%, max. 1.5W
Combined data	
Rated voltage	253 V AC
Test voltage	: 3kV AC between
	supply // input = output
Working temperat	: $-10 . .60^{\circ} \mathrm{C}$
Storage temperatu	e : $-20 . .80^{\circ} \mathrm{C}$
Humidity	: 10..90\% (no condensation)
Measurement inputs	
Pt100	linearised, measuring current approx. 1.6 mA
Pt1000	: linearised, measuring current approx. $130 \mu \mathrm{~A}$ In the event of a sensor break or short circuit, the analog output drops to 0 mA . The operation LED blinks red
Thermocouple	: linearised with comparison position compensation (optionally without internal compensation)
NTC	: linearised for $\mathrm{B}_{25 / 85}=3977 \mathrm{~K}$ or 3528 K Max. load $200 \mu \mathrm{~W}$ (averaged)
Linear resistance	: Mb. $0 . .2 \mathrm{k} \Omega$: approx. 1.4 mA Mbs. $0 . .5 \mathrm{k} \Omega, 0 . .10 \mathrm{k} \Omega$: approx. $300 \mu \mathrm{~A}$
Zero point setting	: +/-40\% of the factory measuring range (= end value - start value) via 12-turn trim potentiometer
End value	
reduction	: -50\% based on the factory end value via 12-turn trim potentiometer
	Note: The measuring accuracy drops proportionally with the narrowing of the measuring range
Potentiometer setting	
limits	Limitation of the aforementioned adjustment ranges
	Pt100 -50..500 ${ }^{\circ} \mathrm{C} \quad\left(. .600^{\circ} \mathrm{C}\right)$
	Pt1000 -50.. $250^{\circ} \mathrm{C}$ (..300 $\left.{ }^{\circ} \mathrm{C}\right)$
	FeCuNi $-100 . .500^{\circ} \mathrm{C} \quad\left(.800^{\circ} \mathrm{C}\right)$
	$\mathrm{NiCrNi} \quad-150 . .1250^{\circ} \mathrm{C}$
	PtRhPt $0 . .1500^{\circ} \mathrm{C}\left(. .1600^{\circ} \mathrm{C}\right)$
	NTC (10k Ω) -20.. $100^{\circ} \mathrm{C}$ (..150 $\left.{ }^{\circ} \mathrm{C}\right)$
	NTC ($2 \mathrm{k} \Omega)-40 . .100^{\circ} \mathrm{C} \quad\left(-50^{\circ} \mathrm{C} . .150^{\circ} \mathrm{C}\right)$
	R linear $\quad 0 . .10 \mathrm{k} \Omega$
	(values in parentheses apply for optional, customer-specific special measuring
	ranges that are configured at the factory)
Analog output	: $4 . .20 \mathrm{~mA}$, max. burden 400Ω, no galvanic isolation from the input signal (max. burden error of 0.2% at 4000 hm)
Dimensions (WxDxH): $12.5 \times 114 \times 108 \mathrm{~mm}$	
Material	: PA6.6, light grey,
	Flammability class V0 (UL94)
Weight	: 120g
Protection rating	: IP20
Screw terminals	: 0.2..2.5 mm², AWG 24..14, removable, coded
Push-in terminals	: 0.5..1.5 mm², AWG 25..16,
(spring-type	Double connection (12A between
terminals)	the connections), removable, coded
Power Rail	: 8A over the entire bus system (power supply via removable terminals 0.2..2.5 mm², AWG 24..14)

A service mode for the trim potentiometers on the front offers the following possibilities:

1) A check of whether potentiometers are positioned at the calibrated factory settings
2) The pre-adjustment of a new output characteristic curve only with connection of a current measuring device.
(a temperature calibrator is not necessary)
3) Specification of a constant value at the current output, e.g. in order to test the reaction of connected devices. (Limited range from 5.6..20mA)

Dimensions

Connection diagram

Ordering code

1.	Device version	
	125 L	Supply voltage 24V DC +/-15\%
	125 LP	Supply voltage:24V DC +/-15\% with carrier rail bus connection *)
	125 M	Wide-range mains adapter $20 . .125 \mathrm{VDC} \mathrm{/} \mathrm{20..253V} \mathrm{AC}$
4.	Options	
	00	No options
	01	Push-in terminals (plug-in)

*) see separate Power-Rail information sheet

