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Abstract: The concept of trained immunity has become one of the most interesting and potentially
commercially and clinically relevant ideas of current immunology. Trained immunity is realized by
the epigenetic reprogramming of non-immunocompetent cells, primarily monocytes/macrophages
and natural killer (NK) cells, and is less specific than adaptive immunity; therefore, it may cross-
protect against other infectious agents. It remains possible, however, that some of the observed
changes are simply caused by increased levels of immune reactions resulting from supplementation
with immunomodulators, such as glucan. In addition, the question of whether we can talk about
trained immunity in cells with a life span of only few days is still unresolved.

Keywords: trained immunity; glucan; macrophages; NK cells; basophils

1. Types of Immunity of Multicellular Organisms

Contrary to plants and invertebrates, the defense of body integrity and its internal
environment of all vertebrates can be divided into constitutive (natural, or nonspecific)
and acquired (adaptive, or specific) immunity. The nonspecific immunity is innate, which
means that it manifests itself fully from birth and acts for the entire life of an individual.
Specific immunity, on the other hand, takes more time to develop until it becomes fully
functional.

Adaptive immunity gradually creates a more precisely targeted response to the
“nonself” foreign antigenic structures that the individual encounters during its life. In
addition, it stores mechanisms of this specific response in the form of immunological
memory, which can last for the entire life.

Constitutive immunity recognizes foreign structures by the germline-encoded mo-
lecular sensors, pattern recognition receptors (PRRs) [1,2], that evolve before the tissues,
cells, and effector mechanisms of adaptive immunity. PRRs are expressed mainly by den-
dritic cells, macrophages, monocytes, neutrophils, and epithelial cells [3]. They bind to
molecular structures expressed on the surfaces of pathogenic organisms, which poten-
tially endanger the integrity of an individual’s uniqueness, called pathogen-associated
molecular patterns (PAMPs) (for review, see Santoni et al., 2015 [4]) and danger-associ-
ated molecular patterns (DAMPs) [5,6]. The binding reaction of PRRs with PAMPs and
DAMPs is very effectively realized by engulfing invading pathogenic microorganisms by
phagocytic cells, followed by killing them via production of oxygen species, numerous
enzymes, and cytokines. Both ways end with the destruction of the threatening agent.

For decades, immunologists have assumed that constitutive immunity is not en-
dowed by any type of immunological memory. In recent years, however, conclusive evi-
dence has accumulated demonstrating that innate immunity may also possess some ad-
aptation ability. It recognizes and remembers the non-self, the foreign molecular patterns
not only in vertebrates but also in invertebrates [7-10], and even in plants, and is termed
“systemic acquired resistance” [11-13] (for review, see Gourbal et al., 2018 [14]).
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In invertebrates, which represent up to 97% of the total biodiversity on Earth [15],
adaptive immunity is lacking, and protection of their internal milieu depends solely on
their innate immune systems by which they recognize PAMP and DAMP pathogenic
structures and mount a defense against them. However, there is supposition that inverte-
brates must also be endowed by some type of immunological memory because, without
the ability to remember their previous meetings with threatening pathogens and their
more rapid disposal, their survival and evolutionary success could hardly be imagined. It
was recently demonstrated that the first infection in invertebrates induces a more rapid
and stronger defensive response against the secondary infection by the same pathogen
[16,17]. Moreover, it was also observed that certain infections and vaccinations can induce
specific protection mediated by innate immunity mechanisms (also against other patho-
gens) [18,19]. This type of defense has been observed in all animals endowed by an innate
immunity, including vertebrates, in which an evolutionary new form of defense, specific
adaptive immunity, developed [9].

These observations have led to the hypothesis that innate immunity could be influ-
enced by previous encounters with PAMPs and DAMPs or other products of pathogenic
microorganisms and develop mechanisms to remember these structures (Figure 1). This
ability of innate immunity to display, by some degree, innate immune memory was
coined “trained immunity” by M. G. Netea in 2011 [20]. Trained immunity is sometimes
also called “innate immune memory” and is not specific.
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Figure 1. An overview of immune response. PAMP recognition initiates both parts of the immune
response. Antimicrobial response followed by an inflammatory response plays a role in the devel-
opment of trained immunity.

The germline-encoded PRRs of innate immune systems are activated by numerous
environmental factors, including PAMPs and DAMPs of microbial and viral origin. A vast
majority of those factors are food-borne antigenic substances. PRRs trigger activation of
inflammasomes formation, which are needed for the elimination of harmful stimuli and
for the recovery of damaged tissues. The inflammasomes contain multimeric protein com-
plexes that activate inflammatory response and are defined by their PRRs. Five types of
PRRs forming inflammasomes have been described: the nucleotide-binding oligomeriza-
tion domain (NOD), leucine-rich repeat (LRR)-containing proteins, (NLR) family mem-
bers NLRP1, NLRP3, and NLRC4, as well as absent-in-melanoma 2 (AIM2) and pyrin
[21,22].

The NLRP3 type of inflammasome is important for immune response against bacte-
rial, fungal, and viral infections. In addition, it is interconnected with some chronic, non-
communicable diseases, such as atherosclerosis, Alzheimer disease, diabetes 2, gout, auto-
inflammatory diseases, and atherosclerosis [23,24]. In vitro cellular experiments revealed
that innate immune response may be induced by oxidized low-density lipoprotein (ox-
LDL) cholesterol particles, which are known to trigger innate memory immune response
in human monocytes [25]. This means that the composition of some unhealthy diets,
among those especially so-called Western diets, could trigger long-lasting inflammation,
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which ultimately results in the induction of innate immune memory and trained immun-
ity [26].

Conversely, when a vertebrate encounters a potential threat to their internal integrity
disruption through the activation of clones of lymphoid cells, it recognizes specific anti-
gens from the invading pathogens and consequently rearranges its gene segments respon-
sible for the production of immunoglobulins (antibodies), binding those antigens. From
an evolutionary point of view, the adaptive immune system, in which immunocompetent
cells of lymphoid origin mediate immunological memory, is a relatively recent develop-
ment in the predecessors of vertebrates from 500 million years ago [27-29].

2. Cells Mediating the Trained Immunity

Trained immunity differs from classical immunological memory of adaptive immun-
ity in several important respects. It is performed by a row of cellular populations differing
from each other by their origin and effector functions. They are primarily myeloid cells,
monocytes and macrophages, NK cells, and dendritic cells. Even innate lymphoid cells
(ILCs) are functionally different from those involved in classical immunological memory
(for review, see Netea, et al. 2020 [30]).

2.1. Basophils

Basophils are capable of capturing antigen specific IgE antibodies via expression of
surface IgE receptors, resulting in fast capture and clearance of the pathogen [31]. The
reason for this increased response is the ability of specific antigen recognition by IgE an-
tibodies, i.e., antibodies produced by adaptive immune mechanisms [32]. In hookworm:s,
basophils have been reported to protect against reinfection with Nippostrongylus brasili-
ensis, independently of mast cells and memory T helper 2 (Th2) cells [33]. There is a low
probability of basophils acquiring a “memory” phenotype after their first encounter with
a parasite, because they have a life span of several dozen hours and hence, could not per-
sist until a secondary exposure [34]. Yet the presence of a parasite could induce changes
in hematopoiesis [35], leading to epigenetic and transcriptomic changes in the progenitor
cell subpopulation of basophils, which induces a long-term protective innate immune
memory, a common feature of trained immunity [36,37]. However, these findings all need
to be tested in future experiments to definitively prove that these cells possess the capa-
bility to develop trained immunity.

2.2. Neutrophils

Neutrophils also represent a short-lived subpopulation of myeloid cells. The main
cell type is granulocytes, which are primarily engaged in bacterial infection, during which
they act as phagocytes and kill the pathogens, produce reactive oxygen species, and re-
lease neutrophil extracellular traps and different types of proteases [38]. They form the
innate immune compartment which, after helminth infection, acquires an alternative tran-
scriptional profile, allowing them to induce long-term immunity with many features re-
sembling the trained immunity in lung-resident macrophages, which protect during sec-
ondary infection [39]. This innate memory of activated macrophages is associated with
the subpopulation or innate lymphoid cells of group 2 and CD4 T cells in the lung [40]. It
could be assumed that the mechanism of induction of trained neutrophils is very similar
to that in basophils: as invading pathogens induce neutrophil progenitors, the epigenetic
changes cause the development of an innate type of immune memory. As with basophils,
these conclusions need to be supported by further study.

2.3. Mononuclear Phagocytes

Besides the main effector function of macrophages and phagocytosis, they also pro-
duce reactive oxygen species and soluble cytokines and alert other cells to the presence of
an infectious agent [41]. Macrophages exert features of immune memory during
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secondary immune response against a bacterial infection and adoptive transfer of macro-
phages from immunized donors to naive recipients, sufficiently conferring protection.
Furthermore, the inhibition of lymphocyte functions by cytostatics does not impair the
induced protection [42] (more details below). In one of the few studies focused on the
duration of trained immunity, stimulation by 3-glucan was found to be rather short-lived,
and no effects were found after 20 days [43].

2.4. Innate Lymphoid Cells

The recently discovered lymphoid cells of innate immunity form a subset of a large
family of lymphoid cells. They contribute to overall immune reactions by secreting regu-
latory factors, for example, the cytokines, which affect the other cell types. ILCs are pri-
marily resident and abundant in lymphoid and non-lymphoid tissues, such as at the mu-
cosal barriers of respiratory and gastrointestinal tracks, where they are exposed to the
immunogens, namely foreign antigens, PAMPs and DAMPs of pathogenic microorgan-
isms, viruses, nutritional components, and substances evoking allergic reactions [44].
They are also minimally present in the peripheral blood [45]. NK cells and lymphoid tis-
sue inducer cells are considered to be ILCs because they express common features and
activities and produce interferons [46]. ILCs share common progenitors with other lym-
phoid cell populations but they do not express the RAG-dependent antigen receptors
(BCR, TCR), even if they can produce an array of cytokines similar to other T helper cell
subsets. ILCs function in lymphoid organogenesis, tissue remodeling, antimicrobial im-
munity, and inflammation and are critical in the first line of immune defense. They are
classified into three major subclasses: ILC1s, ILC2s, and ILC3s. The ILCs are involved in
lymphoid tissue formation, mucosal immunity, and inflammation and are important for
immunity against helminth parasites. The main cell subpopulation among ILCs are the
NK cells which, upon activation, not only exert cytotoxic activity but also produce inter-
feron gamma (IFNy) [47]. ILCs were thought to lack immune memory, but growing evi-
dence suggests otherwise [48].

2.5. NK Cells

Primed NK cells differentiate into some form of “memory cells”, infiltrating various
tissues, and after a secondary meeting with the same antigens, produce protective cyto-
kines. It has been reported that NK cells display a type of memory and, secondarily, prime
bone marrow myeloid cells, representing the effectors of trained immunity [49-52].

In comparison to the cells of adaptive immunity, in which their antigenic specificity
lies in the rearrangement of relevant genes and consequent predetermined differentiation
and proliferation of lymphoid cell lines, the increased responsiveness of effector cells of
trained immunity is not antigen-specific. This is realized by means of epigenetic repro-
gramming signals affecting transcription factors, which control cell functions, especially
metabolism, and further production of effector molecules. Induced trained memory of
functionally altered cells of innate immunity may be long lasting, i.e., it may persist for a
long time after the initial stimulus and when the pathogen, from which the stimulus
evoked, is no longer present.

Genome-wide epigenetic changes resulting in the elevation of the antimicrobial func-
tions on involved cells are detectable for a prolonged time and, in some cases, up to one
year [53]. However, most of the abovementioned cellular populations are short lived with
the average half time of several days [37,54], so it is not known what mechanism is re-
sponsible for maintaining the immune memory of trained immunity over long periods.
This type of memory may be stored within bone marrow progenitor cells as indicated by
vaccination studies with Bacillus Calmette-Guérin (BCG) and especially with (3-glucan.

Metabolomic and shotgun lipidomic evaluation of bone marrow progenitor cells
from p-glucan-stimulated mice reported lower levels of metabolites involved in arachi-
donic and linoleic acid metabolism [37]. Similarly, glucan stimulated significant altera-
tions in other metabolic pathways, mainly in cholesterol mechanism and glycolysis. Some



Int. ]. Mol. Sci. 2021, 22, 10684

5 of 13

studies found an elevation of key enzymes in the tricarboxylic acid cycle and glycolytic
pathway [55]. Based on the findings that H3 histone lysin 4 monomethylation is important
for trained immunity, the role of Set7 methyltransferase was evaluated in glucan-induced
trained immunity. The study found Set7-dependent changes in gene expression upon glu-
can treatment, suggesting that Set7 is a key regulator of trained immunity, at least in cases
of glucan-mediated trained immunity [56]. This could be a result of Set7 lysine methyl-
transferase regulating plasticity in oxidative phosphorylation. There is an excellent review
by Quintin 2019 [57] for readers seeking a detailed summary of specific genes involved in
the induction of trained immunity.

The possibility that these metabolic changes are involved in the reaction to diverse
stimuli is often discussed [58,59] but, so far, these discussions are more speculative than
confirmed. Despite numerous observations of metabolic changes in trained immunity,
there is no clear explanation of how described alterations in glucose or fatty acid metabo-
lism improves immune reactions.

3. Induction of Trained Immunity

Originally, evidence for the existence of trained immunity in vertebrates was ob-
tained from experiments with mice, which were protected against lethal bacterial infection
with Staphylococcus aureus by nonspecific substances, such as (3-glucan [60,61]. Other sub-
stances, such as muramyl dipeptide peptidoglycan components and oligodeoxynucleo-
tides containing CpG motifs and flagellins, are protected against infection with Toxoplasma
gondii and Escherichia coli meningitis. The basic idea behind these findings was that certain
challenges promoted heightened response of myeloid cells upon subsequent infection
with the same (and, in some cases, different) pathogens. However, many authors consider
the experiments with Candida albicans as the first description of trained immunity [62].

Furthermore, flagellin can induce protection against Streptococcus pneumoniae and ro-
tavirus [63-66]. In addition, some proinflammatory cytokines may induce trained immun-
ity [67]. In experimental studies in which the mice were immunized with the BCG vaccine,
the protection against secondary infection with C. albicans and Schistosoma mansoni was
observed [68,69]. When athymic and recombination-activation-gene (RAGI)-deficient
mice (that cannot rearrange their antigen receptors) were infected by a lowly virulent C.
albicans, the same type of protection was reached. This provides further evidence that
trained immunity was not dependent on the mechanisms of adaptive immunity [42,62],
but the animals were protected against reinfection by macrophage activation and cytokine
production [70,71]. The protective effects, which are not mediated by mechanisms of
adaptive immunity but are realized mainly by macrophages, may also be induced by var-
ious pathogenic organisms, such as herpes virus-induced resistance against Yersinia and
Listeria [72], bacteria [71], and the helminth parasite, Nippostrongylus brasiliensis [39].

BCG vaccination in humans equally activated trained immunity mechanisms, such
as higher activity of monocyte-macrophage cell lineage, which led to higher protection
against some infections such as yellow fever [73] and malaria [74]. In both adults [53,75]
and infants [76,77], these effects lasted for several months. BCG vaccination also is re-
ported to have induced an antitumor type of trained immunity, mainly in cells of the mon-
ocyte-macrophage lineage, which could be effective during therapy of some malignan-
cies, including bladder cancer [78], melanoma [79], leukemia [80], and lymphoma [81].

Most studies have focused on changes in cells upon primary activation via numerous
modulators, such as glucan, BCG, or monosodium urate crystals. Few tried to determine
if clinical infection induced trained immunity in humans. Using a Plasmodium falciparum
infection model, monocyte response showed biphasic pattern—low levels of inflamma-
tory cytokines followed by a strong increase of interleukin 6 (IL-6) and tumor necrosis
factor alpha (TNF-a) secretion 36 days after the original stimulus [82]. Epigenomic and
transcriptomic changes were observed at both timepoints.

To date, trained immunity has been studied mostly in rodents and humans. Teleost
fish are the first vertebrates with a fully developed defense system, so the possible
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presence of trained immunity cannot be overlooked. Using a carp model of head kidney-
derived macrophages, clear evidence of metabolic reprogramming and higher phagocy-
tosis and cytokine and reactive oxygen and nitrogen species release have been observed
[83]. An interesting hypothesis was raised by Quintin [57], who suggested that there are
two immunologically opposite parts of the innate immunity memory—tolerance and
trained immunity —and these parts might be epigenetically or mechanistically mirrored.

Although most experimental models of trained immunity have utilized pathogens, it
is plausible that life-long exposure to inflammation also affects trained immunity. It is
possible that cumulative exposure of an individual provides the main establishment of
immune training and/or immunotolerance. The final results might be based on the balance
between the duration of the dose and an order of exposure. In addition, trained immunity
might be involved in altering inflammatory disease development [84]. Major mechanisms
affecting systemic chronic inflammation (such as diet, infections, and pollution) can be
found also in induction of trained immunity, suggesting possible connections [85].

4. B-Glucan

-Glucans represent biological response modifiers. They exert a variety of biological
and immunopharmacological properties [86-88]. It should be taken into account that glu-
cans are structurally variable molecules and may contain an array of impure compounds.
It is not known to what extent this structural variation and the quantity of contaminating
substances modify the (3-glucan immune effects. However, it is certain that some struc-
tures of B-glucan act as a PAMPs and, similarly to BCG, enhance innate immunity (Figure
2), particularly the trained immunity by induction of epigenetic reprogramming bone
marrow hematopoietic cells, and their myelopoietic differentiation into effector cell pop-
ulations, mainly monocytes and macrophages [36,89,90] (for review, see Sima et al., 2020
[91]). In addition, in vitro experiments have shown that the stimulation of monocytes by
either BCG or 3-glucan resulted in elevated levels of the same cytokines, mainly IL-6, in-
terleukin 10 (IL-10), and TNF [92]. This capacity to change the cytokine production was
found to be identical in cells isolated from neonates or adults. Detailed analysis of mono-
cyte-macrophage differentiation upon (3-glucan addition found a new population of long-
lived monocyte-derived macrophages, but no clear differences in their function, only
some elevated activities [89].

Glucan
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Figure 2. Basic concept of trained immunity. Dotted line shows classical concept, full line shows
trained immunity.

The expansion of cells starts with progenitors and is subsequently followed by ele-
vated signaling by innate modulators, such as granulocyte-macrophage colony-stimulat-
ing factor (GM-CSF) and interleukin 1 beta (IL-1f3), or changes in cholesterol synthesis and
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glucose metabolism. Based on their role in trained immunity, B-glucans are sometimes
called “prototypical trained immunity—inducing agonists” [37]. A detailed study revealed
that 3-glucan can induce significant protective trained immunity against Mycobacterium
tuberculosis by histone modification at a gene promoter level. This subsequently resulted
in an elevated secretion of IL-1. This finding was confirmed in IL-1R-lacking mice [93].
Molecular analysis of the 3-glucan role in the induction of trained immunity showed that
[-glucan used as a primary stimulus (and lipopolysaccharide (LPS) as secondary) induced
a gene expression signature involving a PI3K/AKT signaling pathway, resulting in the
elevated secretion of GM-CSF, upregulation of 4.5 LIM-only protein 2 and upregulation
of Dectin-1 expression [94]. Most of these studies used yeast-derived 3-glucan for the in-
duction of trained immunity. However, the use of oat-derived [-glucans offered similar
results, with changes in mRNA expression and secretion of IL-6 and TNF-a [55].

One of the most interesting studies focused on a theory that 3-glucan-induced trained
immunity can start antitumor activity [95]. Prophylactic treatment with glucan caused
lower tumor growth (which has been observed repeatedly in other studies), but adaptive
transfer of trained neutrophils into naive animals suppressed cancer growth again. De-
tailed evaluation found that transcriptomic and epigenetic rewiring of neutrophils and
entire granulopoiesis toward an anticancer phenotype [83]. If confirmed, these findings
might open a new window into cancer treatment, as 3-glucan is already being used as a
supplement or anticancer drug [96]. Kalafati’s research might result in recommending use
of glucan as a prophylactic. Numerous studies have confirmed the anticancer effects of
glucans as an immune stimulant (for review see Wu et al., 2021 [97]), but as a confirmed
inducer of trained immunity, B-glucan supplementation has gained another meaning [98].

Some studies have offered results which are difficult to interpret. In vitro experi-
ments found a significant role of Toll-like receptor 10 in the modulation of 3-glucan-in-
duced trained immunity but also reported no role for this receptor in in vivo induction of
trained immunity [99]. These findings might result from differences between direct inter-
action of glucan on monocytes in vitro and situation in situ, or from differences between
in vitro and in vivo doses of B-glucan. Similarly, the findings of B-glucan efficacy against
leptospirosis with improved survival, enhanced expressions of TLRs, and secretion of IL-
1 and iNOS [100] seem to be more in agreement with the previously published effects of
[-glucan on a parasite [101] than with proof of trained immunity. Using a model of Leish-
mania braziliensis infection, glucan-induced trained immunity protected the animals by
augmented release of IL-32 [102]. One of the rare human studies found long-term func-
tional changes in malaria infections, resulting in an increased IL-6 and TNF-a response
[82].

B-Glucan-induced trained immunity has been studied mostly in mice (Figure 3).
However, experiments using additional species found that its action is probably more
general. In dogs, -glucan improved the action of an inactivated rabies vaccine by stimu-
lation of both B and T lymphocytes [103]. 3-Glucan was also found to induce significant
trained immunity in chicken monocytes, similarly to mammals [104]. So far, no epigenetic
changes have been found, but this is probably due to the limited number of studies using
avian models. A more detailed study found some training of innate immunity in chicken,
particularly in increased mRNA levels of IL-1 and hypoxia-inducible factor alpha (HIF-
1ar), but there were significant differences between monocytes isolated from layers and
broilers. In both cases, the effects on disease resistance were not tested, making these more
direct effects of 3-glucan on immune reactions than real trained immunity [105]. Similar
results were also found in a study of $-glucan-induced trained immunity in newborn
goats [106].
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Figure 3. Potential cell signal transduction pathways involved in the generation of trained immun-
ity. Functional reprogramming is associated with epigenetic changes.

The findings of trained immunity in teleosts were mentioned above. A detailed study
using turbot (Scophthalmus maximus) found that 3-glucan induced significant metabolic
changes, including in glucose, adenosine triphosphate (ATP), and lactate levels, as well as
fatty acid and glucose metabolism, leading to lowering of mortality in subsequent infec-
tion [107]. Other studies, however, did not describe any epigenetic changes [108]. Contra-
dictory results might be caused by several different receptors needing to be involved, es-
pecially Dectin-1 and TLR2/6. Not all glucans bind to all these receptors. In teleost, more
than 21 different Toll-like receptors have been identified [109], but only little is known
about their binding to (3-glucan.

5. Conclusions

As more studies have confirmed the existence of trained immunity, the classical bi-
nary classification of immune memory has become obsolete. Summarized together,
trained immunity effects induced by microbial products (such as BCG, -glucans, and
lipopolysaccharides) are accompanied by a more effective cytokine response, which could
lead to improved antiviral protection, even from the coronavirus disease, COVID-19 [110]
(for a review, see Netea et al. 2020 [111]). B-Glucan-induced trained immunity has been
suggested as an effective way to boost immune response against COVID-19 infection and
even to abrogate symptoms [112].

Trained innate immunity represents an evolutionary conserved phenomenon among
some plants, some invertebrates, and all tested vertebrate species. It is induced after a
primary meeting with a pathogen and confers protection against a secondary infection
independently on the mechanisms of adaptive immunity. Trained immunity is realized
by epigenetic reprogramming of non-immunocompetent cells, primarily macrophages
and NK cells, and is less specific than adaptive immunity, therefore offering cross-protec-
tion. We cannot overlook, however, the possibility that some of the observed changes are
simply caused by elevated levels of immune reactions caused by supplementation with
immunomodulators. In addition, the question of whether we can talk about trained im-
munity in cells with a life span of only a few days is still unsolved.

As some experimental designs are open to this interpretation, deeper and more de-
tailed studies on the relationship between epigenetic and metabolic changes and changes
in the levels of immune reactions are necessary. In addition, some studies have suggested
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the role of Dectin-1 [113], but the involvement of complement receptor type 3 (CR3) and
how the glucan effects are manifested in cells lacking Dectin-1 remain unknown.

The various actions of trained innate immunity on precursor cells have a strong po-
tential for therapeutic use, particularly in infected and myelosuppressed individuals. In
addition, the improvements of effects of some vaccines offer other potential use of 3-glu-
can as an inductor of trained immunity, suggesting novel uses of a traditional therapeutic.
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