WLKATA ROBOTICS

WLKATA Product Selection Guidebook

Robotics Training Solution For AI and IoT Education

Professional · Safe · Desktop

Copyright © WLKATA Robotics 2022

Contents

D Main Product

Curriculum Resources	08
Robotics Planning, Control and Innovation	09
Developing Robot With ROS	10
Learning Robots with WLKATA Mirobot	11

......

.....

Fundamentals of WLKATA Mirobot Robot Arm		13
Control and Programming		
Additional Set		14
Al Vision Set		15
Deep Learning Vision Set		17
Robot Arm Vehicle		19
WLkata Mirobot IOA Virtual Factory Set		21
Comprehensive Teaching And Training P	latform	24
Fruit Picking Line		25
Logistic Warehousing Sorting Line		26
AI Static Garbage Sorting Production Line		28

Al Automatic Sorting Production Line

Automobile Assembly Line

Deep Learning Moving Garbage Sorting Line

Robotics Integrated Training Station

Chess Manufacturing Line

Automotive Manufacturing Simulation Line

30
31
32
35
36

03

04

29

.....

DMain Product

Mirobot 6-Axis Robotic Arm

03

04

Mirobot 6-Axis Robot Arm

Desktop 6-Axis Engineering Educational Robot Arm

Product Description

Mirobot Robot Arm is a safe and easy-to-use desktop 6-axis educational robot, using the industrial six-axis robot arm as the design prototype. It is also an open-source AI robot comprehensive teaching platform.

Mirobot has functions such as writing and drawing, laser engraving, handling palletizing, etc. It supports Bluetooth, Wi-Fi, serial port, RS485, and other communication modes. It can be combined with hardware for smart factory education and application scenarios.

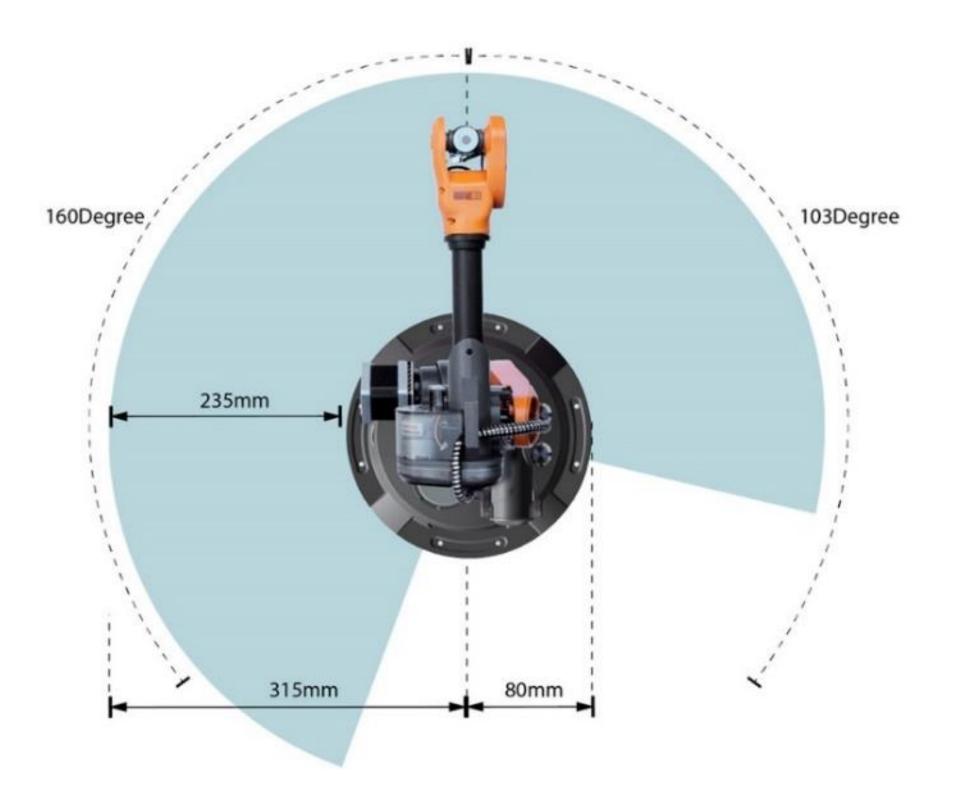
It is flexible to plan the movement and free to add any end tools to meet the learning needs of different ages. It

4

also supports Python, C, C++, ROS, V-REP, MATLAB, and other software for secondary development.

EtherCAT ARDUINO **RS485** ROS Matlab V-REP

Product Features


- Professional and Easy-to-use: Mirobot references the industrial six-axis robot arm as the design prototype; has a variety of control methods such as PC, mobile APP, Bluetooth Teach Pendant, etc. meets the needs of practical training and research in multiple scenarios.
- Lightweight and Safer: net weight of 1.5Kg, chassis diameter of 160mm. Integrated design to meet the needs of "classroom-research-practice" integration.
- Open-source and Extensibility: Mirobot provides open-source for robot learning and scientific research kinematics,
 vision and other algorithms, supports Bluetooth, Wi-Fi, RS485, and other communication methods, provides students
 with a new and innovative learning platform.

• Selection Guide

Product Name	Model	Highlights	
Mirobot Education Kit WL-MiroEDU-6R200-02MM Accessories include micro servo gripper, pen holder, pneumatic set (single/doub suction cups, three-finger soft gripper)		Accessories include micro servo gripper, pen holder, pneumatic set (single/double-finger suction cups, three-finger soft gripper)	
Mirobot Professional Kit	WL-MiroPRO-6R200-02MM	Accessories include micro servo gripper, pen holder, pneumatic set (single/double-finger suction cups, three-finger soft gripper), Bluetooth teach pendant	
Sliding Rail Set	WL-AC-SR500-01MM	Features automatic reset function	
Conveyor Belt Set	WL-AC-CB600-01MM	Accessory includes photoelectric sensor which enables the detection and action response of objects	

6

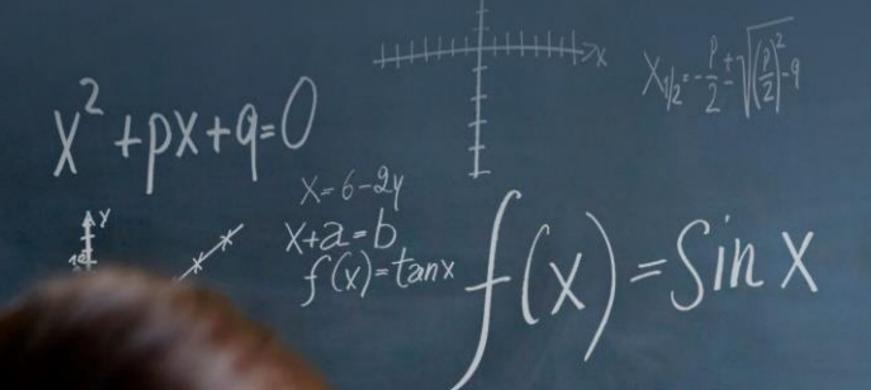
No.	Experiment Content
1	Understanding of Robotic Arm Structure
2	Understanding of Electrical Principles of Robotic Arm
3	Understanding of Robotic Arm D-H Parameters
4	Understanding of Robotic Arm Coordinate Mode
5	Understanding of Robotic Arm End Effector
6	Understanding of Electrical Parameters of Robotic Arm
7	Understanding of Robotic Arm Basic Control Command
8	Understanding of Robotic Arm Movement
9	Robot Arm Programming Control Logic
10	Robotic Arm Application Development

Product Name		Detailed Parameters
	Number of Axes	6+1
	Limit Loads	600g
	Workspace	315mm
	Net Weight	1.5Kg
	Communication Interface	USB/Wi-Fi/Bluetooth/RS485
	Base Dimensions	Diameter 160mm
		1 axis: -110° ~ +160° maximum speed 85°/s 2-axis: -35° ~ +70° maximum speed 60°/s
	Axis Motion	3-axis: $-120^{\circ} \sim +60^{\circ}$ maximum speed 65°/s
	Parameters (Load 160g)	4-axis: -180° ~ +180° maximum speed 200°/s
Mirobot		5-axis: -200° ~ +30° maximum speed 200°/s
Education Kit		6-axis: -360° ~ +360° maximum speed 450°/s
	Pen Holder	Range: 7~10mm
	Servo Gripper	Range: 0~30mm
		Torque: 0.6 Kg/cm
	Pneumatic Suction Cups Three-finger Soft Gripper	Suction Cup Diameter: 12mm
		Pressure: -60Kpa
		Range: 5~40mm
		Pressure: -60/120Kpa
		Chip: Xtensa [®] 32-bit LX6 Single-Core Processor 168MHz
	Multifunctional Extender Box	Operating Temperature: 5°C~45°C
		Screen Size: 1.3 inch OLED
	Application	WLKATA Studio, Grblcontroller3.6, Blockly Graphical Programming
	Limit Load	10Kg
	Distance	500mm
Sliding Rail Set (Optional)	Maximum Speed	6000mm/min
(Optional)	Size	860mm×285mm×111mm
	Weight	4.6kg
	Repeatability	0.5mm
	Equipped with photoel	ectric sensors
	Limit Load	5Kg
Conveyor Belt Set	Distance	530mm
(Optional)	Maximum Speed	2400mm/min
	Size	
	Weight	

7

Ocurriculum Resources

Robotics Planning, Control and Innovation – Manual of Experiments Based on Mirobot

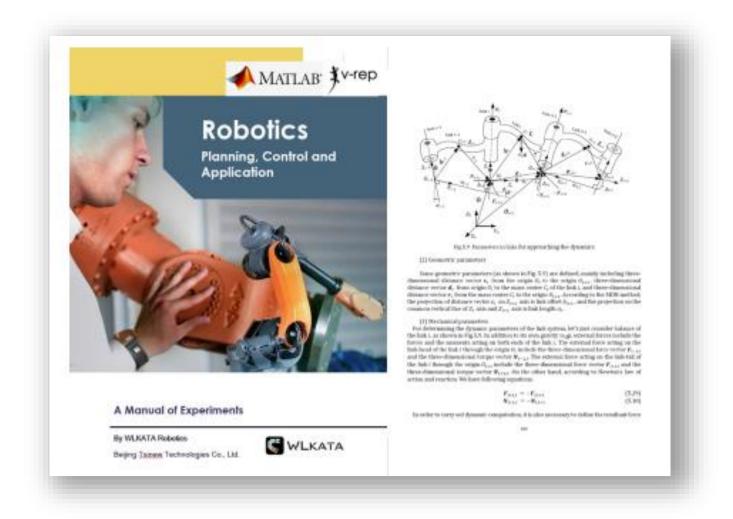

09

08

13

Developing Robot With ROS	10
Learning Robots with WLKATA Mirobot	11

WLKATA Mirobot Robotic Arm Programming And Control



Robotics Planning, Control and Application – Manual of Experiments Based on Mirobot

Content Description

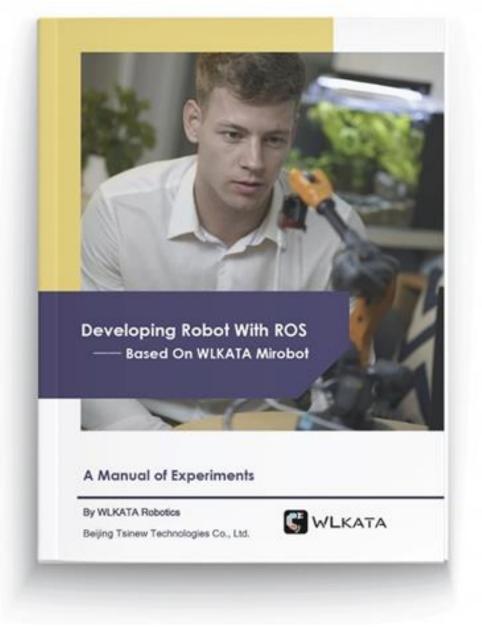
"Robotics Planning, Control and Application – Manual of Experiments **Based on Mirobot**" combines with the Mirobot robotic arm, includes the principle of robotics in the development process of the six-axis robot. It covers experimental projects such as the mathematical basis of robots, the forward kinematic analysis of robots, the calculation and control of robot inverse kinematics, and robot dynamics and control.

Course Catalog

Content	Chapter	
Chapter 1	1.1 Initial Knowledge on Industrial Robots	
Introduction		

1.2 Robot Simulation System	
2.1 Transformation in Virtual Laboratory	
Chapter 2 2.2 Transformation Matrix into Euler Angles	
Transformation 2.3 Painting Demonstration and Frame Transformation in 2-Dimensional Space	
2.4 Frame Transformation by Changing the Frame of the End-effector	
3.1 Forward Kinematics	
3.2 Co-simulation of Forward Kinematics with MATLAB and V-REP	
Chapter 3 Kinematics 3.3 Establishment and Computation of Forward Kinematics	
3.4 Inverse Kinematics Modeling	
3.5 Inverse Kinematics Computation and Co-simulation in MATLAB	
3.6 Inverse Kinematics Solution and Co-simulation	ne supporting content include
Chapter 4 4.1 Static Computation Frame in 3D Deduction	perimental purpose, experin rinciple, experimental steps, a
Static	experimental summary
Chapter 5 5.1 Dynamics Computation Frame 3D Deduction	
Dynamics 5.2 Dynamics Computation of the Manipulator	
Chapter 6 6.1 Design of Driving Joint of Manipulator	
Motion Control 6.2 Stepper Motor	
7.1 Motion Planning for Given Initial and Final Point	
Chapter 7 7.2 Motion Planning Given Initial Point, Final point and Intermediate Point	
Motion Planning 7.3 Example on Motion Planning of the Manipulator	
7.4 Continuous Trajectory Motion Planning	
8.1 Grasping Object Experiment Base on Inverse Kinematics Chapter 8	
Application of 8.2 Desktop Robotic Arm Painting Using Motion Trajectory Planning control algorithm	
for 6-axis desktop 8.3 Laser Engraving via Robotic Arm manipulator	
8.4 Grasp Objects Based on Color Recognition	

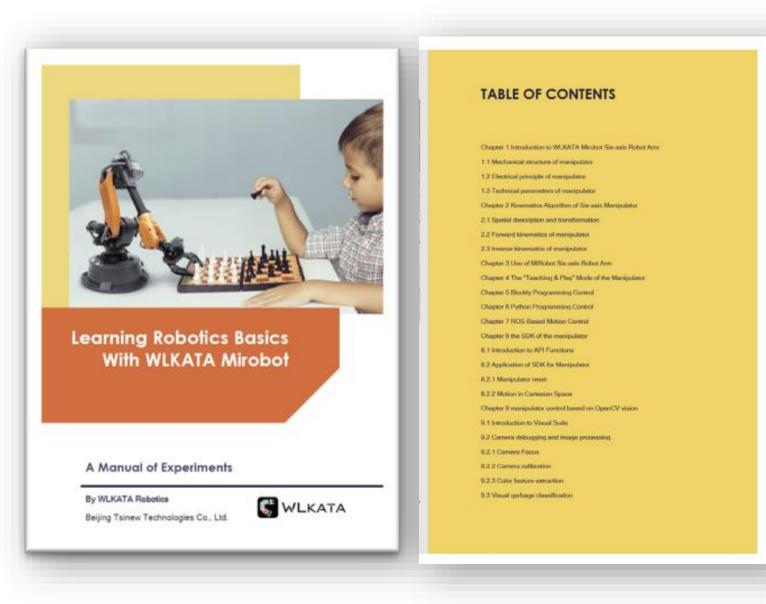
des the imental and



Developing Robot With ROS

Content Description

"Developing Robot With ROS – Based On WLKATA Mirobot" covers the basics of ROS tutorial, software framework, and basic functions of ROS, together with the development process of Mirobot robotic arm in ROS by introducing the function cases of robot arm motion control, machine voice, machine vision, etc., and is equipped with ROS charts, codes, etc.


Content	Chapter	Features
Chapter 1 Getting to Know ROS	The Origin Of ROS, The Design Goals Of ROS, The Characteristics Of ROS	
Chapter 2 Installation of ROS	Install Ubuntu in Virtual Machine and Install ROS In Ubuntu	
	3.1 ROS Architecture	
	3.2 Create A ROS Feature Package	
	3.3 ROS Node	
Chaptor 2	3.4 Learn about ROS Topics, ROS Services and Parameters	
Chapter 3 The Fundamentals	3.5 Use roslaunch	
of ROS	3.6 Create ROS Msg and Srv	
	3.7 Write A Simple Publisher and Subscriber in C++	
	3.8 Run Publishers and Subscribers	
	3.9 Write A Simple Service and Client In C++	
	4.1 Introduction to URDF Models	Source code, 3D
Chapter 4 ROS Robotic Arm	4.2 3D Model Export URDF	models, courses PPT for educators, and
Modeling	4.3 Processing of URDF Files Exported by Mirobot Robotic Arm in Solidworks	supporting files of the experiments in
Chapter 5 Mirobot Robotic	5.1 Mirobot Communication Protocols	the book are all include.
Arm Controls in ROS	5.2 ROS and Mirobot Communication Implementation	
	6.1 Introduction to Moveit	
	6.2 Moveit Configuration - Setup Assistant	
Chapter 6 Controlling	6.3 Import Mirobot Model into Gazebo Simulation Environment	
Mirobot with Moveit	6.4 Use Moveit to Control Robotic Arm	
	6.5 Simulating Motion Using The Moveit Control Model (Python)	
	6.6 Controlling Really Robotic Arm Movements With Moveit (C++)	
	7.1 Recording and Playback of Robotic Arm Motion Data	
Chapter 7	7.2 Add an End Effector to Model	
	7.3 Add A Camera to Model to Get Image Information	
Mirobot Feature Expansion	7.4 Add Kinect to Model to Get Point Cloud Information	
	7.5 Add A Force Transducer to The Model to Collect Simulation Data	
	7.6 Add Speech Recognition for Robotic Arms	10

Learning Robots with WLKATA Mirobot

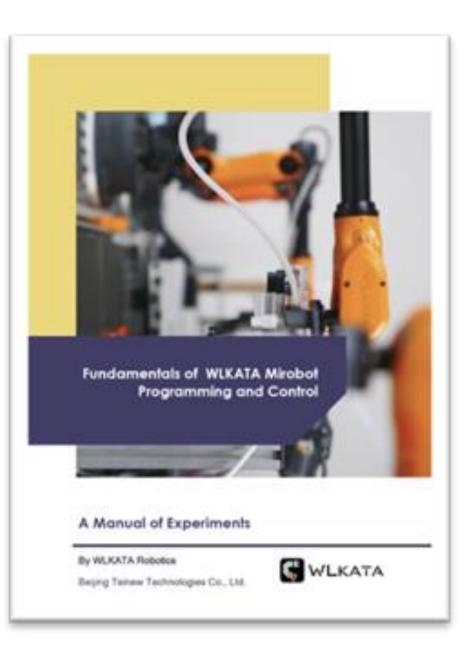
Content Description

"Learning Robots with WLKATA Mirobot" focuses on K-12 STEM Education. It mainly covers fundamentals knowledge of robotics and practical experiment using Mirobot.

11

Content	Chapter
Chapter 1	1.1 Introduction of WLKATA Mirobot
Introduction of Mirobot robot arm	1.2 The Use of WLKATA Studio
Chapter 2 What is Robot?	2.1 The Development History of Robots
	2.2 Definition of Robot
	3.1 Classification by Application Field of Robot
Chapter 3 Robots of All Kinds	3.2 Classification by Degree of Development of Robot
	3.3 Classification by Robot Motion Form
	4.1 The Structure of Mirobot
Chapter 4 Move, Mirobot!	4.2 Degree of Freedom
	4.3 Move, Mirobot!
Chapter 5	5.1 Cartesian Coordinate System
The Position of the "Hand"	5.2 Coordinate Control Mode
Chapter 6	6.1 Locate The Drawing Plane
Signature of Mirobot	6.2 Signature of Mirobot
	7.1 Drawing Interface
Chapter 7	7.2 Menu Bar
Chapter 7 Creative Painting	7.3 Canvas
	7.4 Toolbar
Chapter 8	8.1 Blockly
Chapter 8 Drawing Rectangles	8.2 Draw A Rectangle
Chapter 9 Drawing Magic Star	9.1 Task Overview
Chapter 10	10.1 Program Structure
Draw A Chessboard	10.2 Draw Chessboard
	11.1 Teaching Mode
Chapter 11 Forklift Driver	11.2 Coordinate System of The Tool
	11.3 Forklift Driver

Content	Chapter	
Chapter 12	12.1 Working Principle of Excavator	
Excavator	12.2 Excavation, Loading and Unloading	
Chapter 13	13.1 Gripper	
Palletizer	13.2 Palletizing	
Chapter 14	14.1 Variables	
Dominoes	14.2 Placing Dominoes	
Chapter 15	15.1 Pneumatic Kit	
Bricklayer	15.2 Brickwork	



WLKATA Mirobot Robotic Arm Programming And Control

Content Description

"WLKATA Mirobot Robotic Arm Programming And Control" mainly covers the Kinematics Algorithm of 6-axis Manipulator with various control method including Blockly, Python Programming, ROS-Based Motion Control. The book also covers the SDK of the robot arm and develops robotic visual sorting in OpenCV.

Content	Chapter		
Chapter 1 Introduction to WLKATA Mirobot Six-axis Robot Arm	1.1 Mechanical Structure of Manipulator		
	1.2 Electrical Principle of Manipulator		
	1.3 Technical Parameters of Manipulator		

Chapter 2	2.1 Spatial Description and Transformation		
Kinematics Algorithm of Six-axis Manipulator	2.2 Forward Kinematics of Robot Arm		
	2.3 Inverse Kinematics of Robot Arm		
	3.1 Introduction of WLKATA Studio		
	3.2 Installation of WLKATA Studio		
Chapter 3	3.3 Robotic Arm Connection		
Use of Mirobot 6-Axis Robot Arm	3.4 Debugging of Robotic Arm		
	3.5 Robot Firmware Upgrade		
	3.6 Basic Control of The Robotic Arm		
	4.1 The Introduction of Motion Modes		
Chapter 4 "Teaching & Replay" Mode Of	4.2 Use of "Teaching & Replay" Mode		
Robotic Arm	4.3 Robotic Arm Move Blocks		
Chapter 5 Blockly Programming Control Of	5.1 Introduction To WLKATA Studio Blockly Programming Instructions		
Blockly Programming Control Of Robotic Arm	5.2 Blockly Programming Application		
Chapter 6	6.1 The Origin of Python		
Python Programming Control Of	6.2 WLKATA Studio Python Programming Guide		
Robotic Arm	6.3 Python Controlled Robotic Arm Palletizing		
Chapter 7	7.1 ROS Introduction		
Mirobot Motion Control Based On	7.2 The Principle of Communication Between Mirobot and ROS		
ROS	7.3 Move End Effector via ROS(C++)		
Chaptor & SDK of Pobot Arm	8.1 Introduction of API Functions		
Chapter 8 SDK of Robot Arm	8.2 Application of Mirobot SDK		
	9.1 Introduction to Visual Set		
Chapter 9 Robotic Arm Control Based on OpenCV	9.2 Camera Debugging and Image Processing		
	9.3 Visual Garbage Classification		

DAdditional Set

WLkata Al Vision Set		15
Deep Learning Vision Set		17
Robot Arm Vehicle		19
WLkata Mirobot IOA Virtual Factory	Set	21

14

AI Vision Set

Al Vision Set is a Python-based programming machine vision suite. Compared to the more complex Ubuntu-based machine vision, the Al vision suite is an entry-level machine vision product.

DE

Al vision Set can achieve color recognition, contour recognition, picture recognition, digital recognition, QR code recognition, face recognition, etc. It can be combined with the Mirobot robotic arm to realize the automatic identification and grasping.

Product Name	Model	What Is Included
Al Vision Set	WL-AC-ViMV-Re300	Al Vision Set*1
Al Vision Set Cell	WL-EAS-AIViMV-Re300	AI Vision Set*1; Mirobot Education Kit*1; WLkata Production Line Smart Base - S*1

No.	Experiment Content		
1	Understanding of Robotic Arm Structure		
2	Understanding of Electrical Principles of Robotic Arm		
3	Understanding of Robotic Arm D-H Parameters		
4	Understanding of Robotic Arm Coordinate Mode		
5	Understanding of Robotic Arm End Effector		
6	Understanding of Electrical Parameters of Robotic Arm		
7	Understanding of Robotic Arm Basic Control Command		
8	Understanding of Robotic Arm Movement		
9	Robot Arm Programming Control Logic		
10	Robotic Arm Application Development		
11	Fundamentals of Python Programming		
12	Fundamentals of Robotics and Visual Communication		
13	Camera Calibration: Master Calibration Method of Visual Camera, Calculation Methods of Robot Coordinate System, and Visual Coordinate System		

Product Name	Detailed Parameters				
	Number of Axes	6+1			
	Limit Loads	600g			
	Workspace	315mm			
	Net Weight	1.5Kg			
	Communication Interface	USB/Wi-Fi/Bluetooth/RS485			
	Base Dimensions	Diameter 160mm			
		1 axis: -110° ~ +160° maximum speed 85°/s			
		2-axis: -35° ~ +70° maximum speed 60°/s			
	Axis Motion Parameters	3-axis: -120° ~ +60° maximum speed 65°/s			
	(Load 160g)	4-axis: -180° ~ +180° maximum speed 200°/s			
		5-axis: -200° ~ +30° maximum speed 200°/s			
Mirobot Education Kit		6-axis: -360° ~ +360° maximum speed 450°/s			
	Pen Holder	Range: 7~10mm			
		Range: 0~30mm			
	Servo Gripper	Torque: 0.6 Kg/cm			
	Pneumatic Suction	Suction Cup Diameter: 12mm			
	Cups	Pressure: -60Kpa			
	Three-finger Soft	Range: 5~40mm			
	Gripper	Pressure: -60/120Kpa			
		Chip: Xtensa [®] 32-bit LX6 Single-Core Processor 168MHz			
	Multifunctional Extender Box	Operating Temperature: 5°C~45°C			
		Screen Size: 1.3 inch OLED			
	Application	WLKATA Studio, Grblcontroller3.6, Blockly Graphical Programming			
		Color: Colour			
		Pixels: 640×480			
	Camera Module	Processor: ARM 32-bit Cortex-M7 CPU			
		Operating Temperature: -20°C ~ +70°C			
		Focal length: 1.2mm/3.6mm			
Al Vision Set	Lens	Aperture: F2.0			
		Installation Dimensions: M12*0.5			
		Screen Type: 1.8" TFT LCD			
	Display Screen	Resolution: 160×128			
		Color: 64k RGB565			

Deep Learning Vision Set

ς,

Product Description

Deep Learning Vision Set is a Jetson Nano based machine learning vision set; using open-source deep learning framework PyTorch, and with cross platform computer vision library OpenCV.

It can be combined with Mirobot to realize AI functions such as target detection and image recognition.

17

Selection Guide

Product Name	Model	What Is Included
Deep Learning Vision Set	WL-AC-MeCV-Re1080	Deep Learning Vision Set *1
Deep Learning Static Objects Sorting Set	WL-PL-AiGS-CV	Deep Learning Vision Set *1; Mirobot Education Kit*1
Deep Learning Static Objects Sorting Set Cell	WL-EAS-MeCV-Re1080	Deep Learning Vision Set *1; Mirobot Education Kit*1; WLkata Production Line Smart Base - S*1

No.	Experiment Content			
1	Understanding of Robotic Arm Structure			
2	Understanding of Electrical Principles of Robotic Arm			
3	Understanding of Robotic Arm D-H Parameters			
4	Understanding of Robotic Arm Coordinate Mode			
5	Understanding of Robotic Arm End Effector			
6	Understanding of Electrical Parameters of Robotic Arm			
7	Understanding of Robotic Arm Basic Control Command			
8	Understanding of Robotic Arm Movement			
9	Robot Arm Programming Control Logic			
10	Robotic Arm Application Development			
11	Fundamentals of Python Programming			
12	Fundamentals of Robotics and Visual Communication			
13	Camera Calibration: Master Calibration Method of Visual Camera, Calculation Methods of Robot Coordinate System, and Visual Coordinate System			
14	Image Annotation and Dataset Creation			
15	YoloV5 Model Training and Deployment			

Product Name	Detailed Parameters			
	Number of Axes	6+1		
	Limit Loads	600g		
	Workspace	315mm		
	Net Weight	1.5Kg		
	Communication Interface	USB/Wi-Fi/Bluetooth/RS485		
	Base Dimensions	Diameter 160mm		
		1 axis: -110° ~ +160° maximum speed 85°/s		
	Axis Motion	2-axis: -35° ~ +70° maximum speed 60°/s		
	Parameters	3-axis: -120° ~ +60° maximum speed 65°/s		
	(Load 160g)	4-axis: -180° ~ +180° maximum speed 200°/s		
Mirobot		5-axis: -200° ~ +30° maximum speed 200°/s		
Education Kit		6-axis: -360° ~ +360° maximum speed 450°/s		
	Pen Holder	Range: 7~10mm		
	Servo Gripper	Range: 0~30mm		
	Servo Gripper	Torque: 0.6 Kg/cm		
	Pneumatic Suction	Suction Cup Diameter: 12mm		
	Cups	Pressure: -60Kpa		
	Three-finger Soft	Range: 5~40mm		
	Gripper	Pressure: -60/120Kpa		
		Chip: Xtensa [®] 32-bit LX6 Single-Core Processor 168MHz		
	Multifunctional Extender Box	Operating Temperature: 5°C~45°C		
		Screen Size: 1.3 inch OLED		
	Application	WLKATA Studio, Grblcontroller3.6, Blockly Graphical Programming		
	Camera Module	Color: Colour		
		Resolution: 2952×1944		
		Supply voltage: 3.6V~5V		
		Operating Temperature: -20°C ~ +70°C		
		Adjustable Parameters: brightness, contrast, hue, saturation, sharpness, white balance, exposure value		
Deep Learning Vision Set	Controller	CPU: Quad-core ARM -A57@1.43GHz GPU: 128-core Maxwell		
		Video Encoder: 4K @ 30 4 x 1080p @ 30		
		Interfaces: 4*USB3.0, USB 2.0 Micro-B, HDMI, DP		
		Resolution: 1024*600		
	IPS Display	Interfaces: HDMI, AV, VGA		
		Size: B701-GM 7 inch		

Robot Arm Vehicle

Product Description

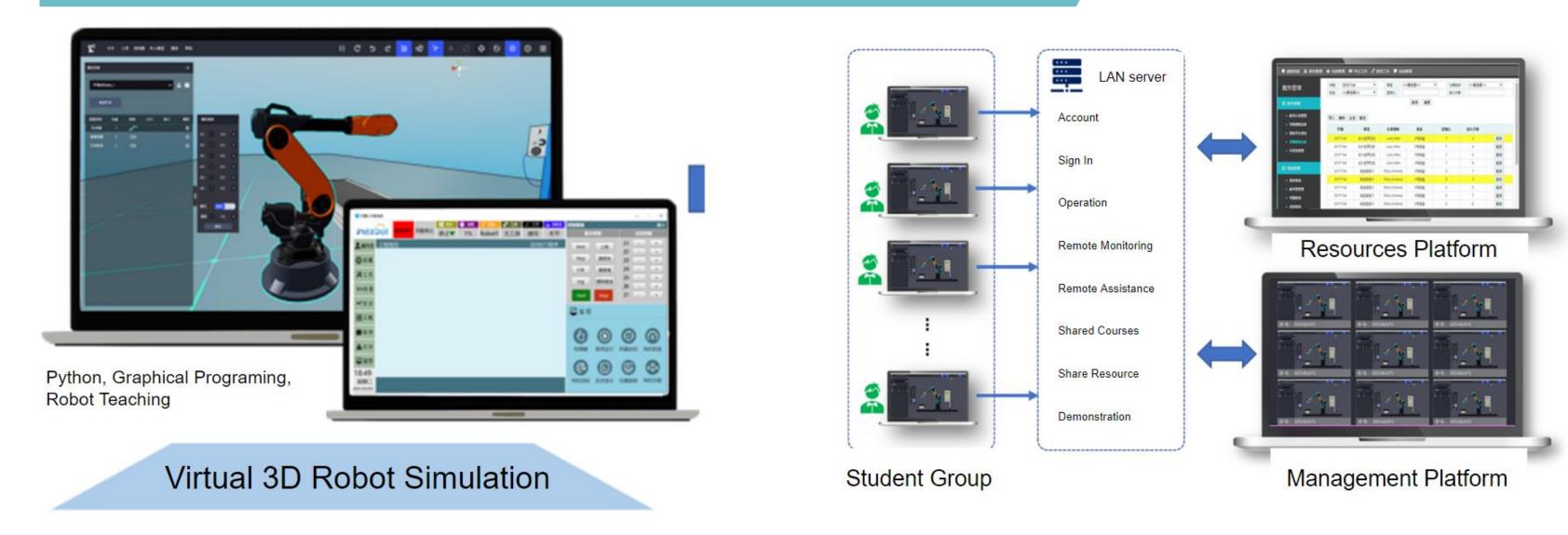
WLkata Robot Arm Vehicle - The AGV Mecanum mobile base, which can be equipped with a robotic arm, expands the application scenarios of the robotic arm. AGV Mecanum omnidirectional mobile vehicle is compatible with maker creations and has rich sensing features. It support Bluetooth, Wi-Fi connection mode and secondary development.

Selection Guide

Product Name	Model	What Is Included
Wlkata Vehicle Base	WL-AC-Mac-55MM	Wlkata Mecanum Vehicle Base*1

Wlkata Robot Vehicle In One	WL-EA-Mac-55ReMM	Wlkata Mecanum Vehicle Base*1; Mirobot Vehicle Version*1

No.	Experiment Content		
1	Understanding of Robotic Arm Structure		
2	Understanding of Electrical Principles of Robotic Arm		
3	Understanding of Robotic Arm D-H Parameters		
4	Understanding of Robotic Arm Coordinate Mode		
5	Understanding of Robotic Arm End Effector		
6	Understanding of Electrical Parameters of Robotic Arm		
7	Understanding of Robotic Arm Basic Control Command		
8	Understanding of Robotic Arm Movement		
9	Robot Arm Programming Control Logic		
10	Robotic Arm Application Development		
11	Omnidirectional Mobile Car Line Follower Algorithm		
12	Omnidirectional Mobile Car Movement Principle		
13	Robotic Arm Communicates With Base		
14	Fundamentals of Arduino Microcontroller Programming		
15	Mobile Robotic Arm Automatic Grasping		



Product Name	ct Name Detailed Parameters		
	Number of Axes	6+1	
	Limit Loads	600g	
	Workspace	315mm	
	Net Weight	1.5Kg	
	Communication Interface	USB/Wi-Fi/Bluetooth/RS485	
	Base Dimensions	Diameter 160mm	
		1 axis: -110° ~ +160° maximum speed 85°/s	
	Axis Motion	2-axis: -35° ~ +70° maximum speed 60°/s	
	Parameters	3-axis: -120° ~ +60° maximum speed 65°/s	
	(Load 160g)	4-axis: -180° ~ +180° maximum speed 200°/s	
		5-axis: -200° ~ +30° maximum speed 200°/s	
		6-axis: -360° ~ +360° maximum speed 450°/s	
Mirobot Vehicle	Pen Holder	Range: 7~10mm	
Version	Servo Gripper	Range: 0~30mm	
		Torque: 0.6 Kg/cm	
	Pneumatic Suction Cups Three-finger Soft Gripper	Suction Cup Diameter: 12mm	
		Pressure: -60Kpa	
		Range: 5~40mm	
		Pressure: -60/120Kpa	
		Chip: Xtensa [®] 32-bit LX6 Single-Core Processor 168MHz	
	Multifunctional Extender Box	Operating Temperature: 5°C~45°C	
		Screen Size: 1.3 inch OLED	
	Camera Module	Image Sensor: OV2640 (2.0 Megapixel Camera)	
		Processor: Kendryte K210	
		Display: 2.0-inch IPS screen with 320*240 resolution	
		Supply Voltage: 3.3~5.0V	
	Application	WLKATA Studio, Grblcontroller3.6, Blockly Graphical Programming	
	Controller	ATMega 2560	
	Product Size	290mmx220mmx90mm	
	Net Weight	3.5Kg	
	Limit Load	10Kg	
WLkata Robot Arm Vehicle	Battery Capacity	8000mAh	
	Operating Voltage	12V	
	Control Method	APP, PS2 Controller	
	Wheel Diameter	3 inch	
	Rated Speed	105rpm	
	<u>i</u>	20	

IOA Virtual Factory

Product Description

Mirobot IOA Virtual Factory Set —IOA Virtual Factory Software combined with Mirobot can achieve 1:1 virtualization simulation, provides custom drag-and-drop for robot workstation production line design; 1:1 digital twin control simulation;

includes physical workstation to realize real life simulation application of smart factory.

IOA Virtual Factory Software supports the establishment of student learning management systems to facilitate learning progress tracking and grading.

• Selection Guide

Product Name	Model	What Is Included
IOA Virtual Factory Software	WL-AC-IOA-3D	IOA Virtual Factory Software*1
Mirobot IOA Virtual Factory Set	WL-MirolOA-6R200-3D	IOA Virtual Factory Software*1; Mirobot Professional Kit*1

No.	Experiment Content	
1	Understanding of Robotic Arm Structure	
2	Understanding of Electrical Principles of Robotic Arm	
3	Understanding of Robotic Arm D-H Parameters	
4	Understanding of Robotic Arm Coordinate Mode	
5	Understanding of Robotic Arm End Effector	
6	Understanding of Electrical Parameters of Robotic Arm	
7	Understanding of Robotic Arm Basic Control Command	
8	Understanding of Robotic Arm Movement	
9	Robot Arm Programming Control Logic	
10	Robotic Arm Application Development	
11	Smart Factory Structure Design and Construction	
12	IOA Virtual Electrical Wiring	
13	Industrial Robot Integration and Programming Simulation	
14	IOA Intelligent Control Integration and Simulation	

Product Name		Detailed Parameters		
	Number of Axes	6+1		
	Limit Loads	600g		
	Workspace	315mm		
	Net Weight	1.5Kg		
	Communication Interface	USB/Wi-Fi/Bluetooth/RS485		
	Base Dimensions	Diameter 160mm		
		1 axis: -110° ~ +160° maximum speed 85°/s		
		2-axis: -35° ~ +70° maximum speed 60°/s		
	Axis Motion Parameters	3-axis: -120° ~ +60° maximum speed 65°/s		
	(Load 160g)	4-axis: -180° ~ +180° maximum speed 200°/s		
		5-axis: -200° ~ +30° maximum speed 200°/s		
		6-axis: -360° ~ +360° maximum speed 450°/s		
Mirobot Professional Kit	Pen Holder	Range: 7~10mm		
		Range: 0~30mm		
	Servo Gripper	Torque: 0.6 Kg/cm		
	Pneumatic Suction	Suction Cup Diameter: 12mm		
	Cups	Pressure: -60Kpa		
	Three-finger Soft Gripper	Range: 5~40mm		
		Pressure: -60/120Kpa		
		Chip: Xtensa [®] 32-bit LX6 Single-Core Processor 168MHz		
	Multifunctional Extender Box	Operating Temperature: 5°C~45°C		
		Screen Size: 1.3 inch OLED		
	Bluetooth Teach	Connection: Bluetooth		
	Pendant	Function: Angle/Coordinate control of the robotic arm, supports point teaching control		
	Application	WLKATA Studio, Grblcontroller3.6, Blockly Graphical Programming		

Product Name	Detailed Parameters	
	Digital Twin System	Include robot model library, logistics model library, sensor library, electromechanical control library, and mechanical library
	Virtual Electrical Wiring	Support robot controller virtual electrical IO wiring, support Excel electrical wiring table exporting
	Virtual Teaching Programming	Realize virtual teach-in programming of robots and support a variety of virtual teach-in programming of industrial robots, including NRT motion control system, Eft Robox teach pendant, AUBO robot teach pendant, etc.
IOA Virtual Factory Software	Virtual Controller	A variety of virtual controllers, including Siemens S7-1200, S7-1500 series PLC, Mitsubishi PLC, ZMC308 motion controller, VPLC machine vision controller, Python virtual controller, etc.
	XR Virtual Simulation	Support multi-user collaborative software for mobile APP, VR, and AR virtual simulation
	Virtual Simulation	Include Virtual robot controller and 3D robot body, implement virtual teaching programming and integrated control
	Virtual Control	Support 1:1 access of real robots to realize twin control simulation of virtual 3D and real robots

Integrated Control	Support the combination of PLC motion controller to achieve multi-robot system
Simulation	integration control simulation

Comprehensive Teaching And Training Platform

Fruit Picking Line		25
Logistic Warehousing Sorting Line		26
Al Static Garbage Sorting Production Lir	ne	28
Al Automatic Sorting Production Line		29
Automobile Assembly Line		30

24

........................

Deep Learning Moving Garbage Sorting Line31Robotics Integrated Training Station32Chess Manufacturing Line35Automotive Manufacturing Simulation Line36

Fruit Picking Line

Product Description

At present, many national research institutes and universities are conducting research on agricultural harvesting. The

fruit picking production line mainly combines the small industrial prototype 6-axis desktop robot arm and color recognition module and realizes the fruit picking and sorting process through the mechanical arm picking and sensor recognition.

This set of production lines mainly cultivates the application thinking of robot and sensor technology in the field of agriculture and provides support for learning and research in the field of smart agriculture.

• Selection Guide

Product Name	Model	What Is Included
WLkata Mirobot Fruit Picking Line	WL-PL-FP-RGB3	Mirobot Education Kit*1; Accessory Package of Wlkata Mirobot Fruit Picking Line*1
WLkata Mirobot Fruit Picking Line Cell	WL-PL-EAS-FP-RGB3	Mirobot Education Kit*1; Accessory Package of Wlkata Mirobot Fruit Picking Line*1; WLkata Production Line Smart Base - S*1

No.	Experiment Content	
1	Understanding of Robotic Arm Structure	
2	Understanding of Electrical Principles of Robotic Arm	
3	Understanding of Robotic Arm D-H Parameters	
4	Understanding of Robotic Arm Coordinate Mode	
5	Understanding of Robotic Arm End Effector	

6	Understanding of Electrical Parameters of Robotic Arm
7	Understanding of Robotic Arm Basic Control Command
8	Understanding of Robotic Arm Movement
9	Robot Arm Programming Control Logic
10	Robotic Arm Application Development
11	Principles of Color Sensor Technology
12	Robot Communication with Microcontroller

Logistic Warehousing Sorting Line

2

Product Description

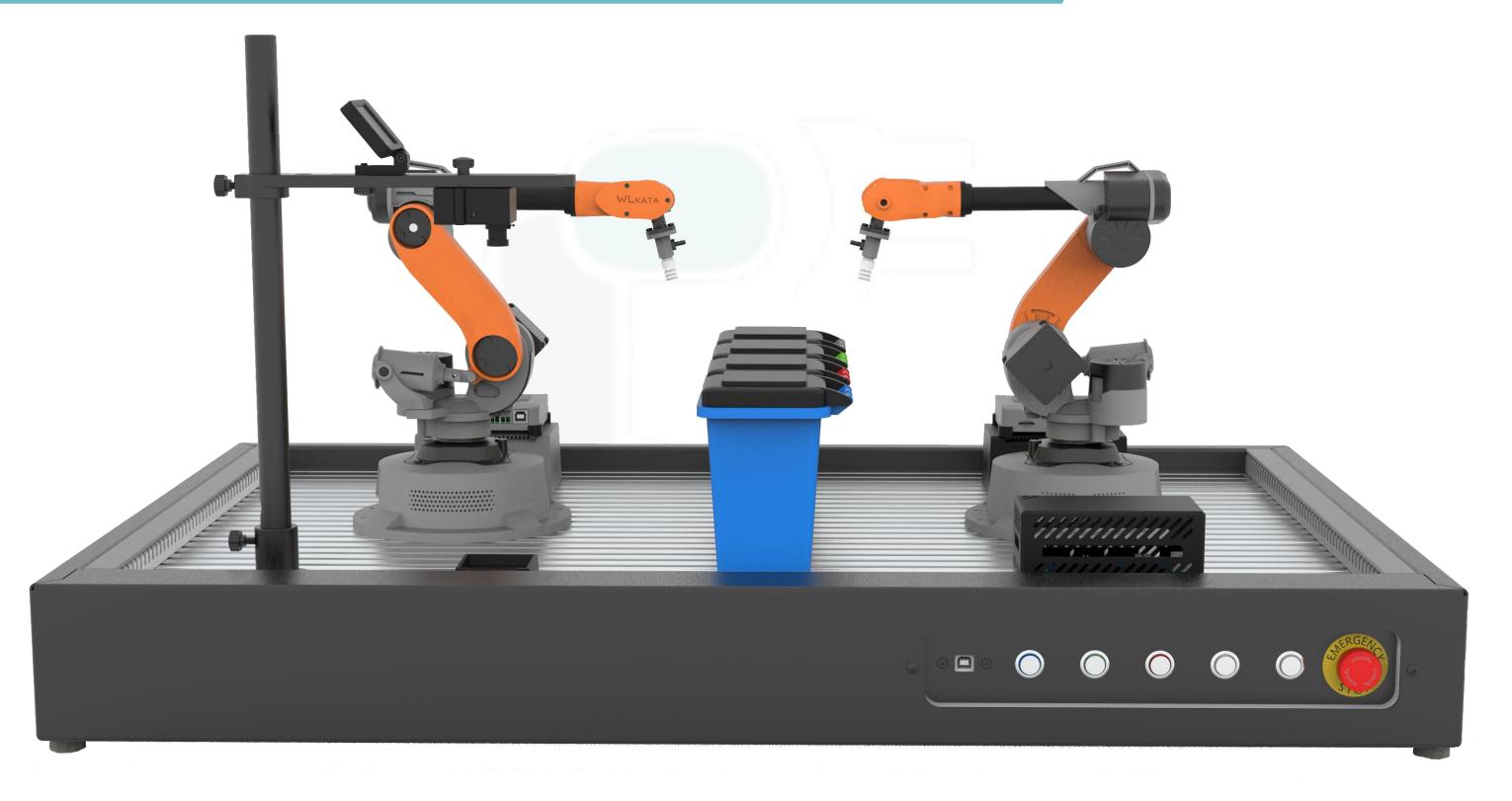
Logistic Warehousing Sorting Line simulates the intelligent logistics scenario of the whole process of warehouse including loading, palletizing, loading, etc. This scenario teaches the programming control of the Mirobot robotic arm and multi-device collaboration. The palletizing robotic arm places the goods on the shelves on the pallet, and then the conveyor belt transports the goods to the workstation of the 3-axis handling robotic arm. After that, the handling robotic arm transports the goods to the front of the shelf, and the palletizing robotic arm places the goods back on the shelves.

The production line simulates the intelligent logistics warehousing system of the demonstration industry through the cycle of the above steps.

• Selection Guide

Product Name	Model	What Is Included
WLkata Mirobot Logistic Warehousing Sorting Line	WL-PL-LW-Miro1	Mirobot Education Kit*1; 3-Axis Robotic Arm*1; Conveyor Belt Set*1; Accessory Package of Wlkata Mirobot Logistic Warehousing Sorting Line*1
Wlkata Mirobot Logistic Warehousing Sorting Line Cell	WL-PL-EAM-LW-Miro1	Mirobot Education Kit*1; 3-Axis Robotic Arm*1; Conveyor Belt Set*1; Accessory Package of Wlkata Mirobot Logistic Warehousing Sorting Line*1; WLkata Production Line Smart Base - M*1

No.	Experiment Content		
1	Understanding of Robotic Arm Structure		
2	Understanding of Robotic Arm D-H Parameters		
3	Understanding of Robotic Arm Coordinate Mode		
4	Understanding of Robotic Arm End Effector		
5	Understanding of Electrical Parameters of Robotic Arm		
6	Understanding of Robotic Arm Basic Control Command		
7	Understanding of Robotic Arm Movement		
8	Robot Arm Programming Control Logic		
9	Robotic Arm Application Development		
10	3-axis Robotic Arm Programming and Control		
11	Conveyor Belt Programming and Control		
12	Principles of Photoelectric Sensor Technology		
13	Fundamentals of Multi-device Collaborative Communication		

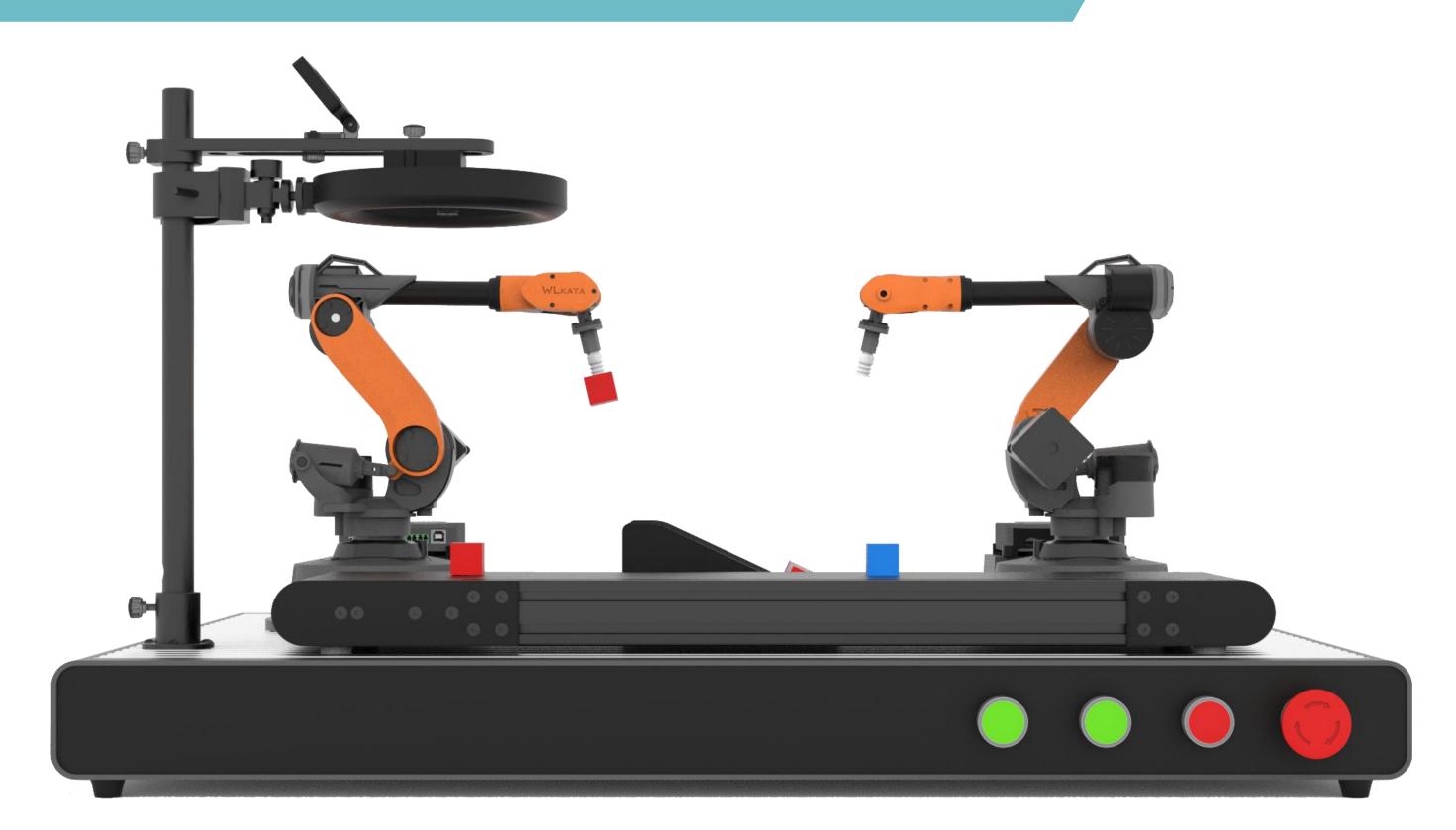

Product Name	Detailed Parameters			
	Number of Axes	6+1		
	Limit Loads	600g		
	Workspace	315mm		
	Net Weight	1.5Kg		
	Communication Interface	USB/Wi-Fi/Bluetooth/RS485		
	Base Dimensions	Diameter 160mm		
		1 axis: -110° ~ +160° maximum speed 85°/s		
		2-axis: -35° ~ +70° maximum speed 60°/s		
	Axis Motion Parameters	3-axis: -120° ~ +60° maximum speed 65°/s		
	(Load 160g)	4-axis: -180° ~ +180° maximum speed 200°/s		
Mirobot		5-axis: -200° ~ +30° maximum speed 200°/s		
Education Kit		6-axis: -360° ~ +360° maximum speed 450°/s		
	Pen Holder	Range: 7~10mm		
	Servo Grinner	Range: 0~30mm		
	Servo Gripper	Torque: 0.6 Kg/cm		
	Pneumatic Suction Cups	Suction Cup Diameter: 12mm		
		Pressure: -60Kpa		
	Three-finger Soft Gripper	Range: 5~40mm		
		Pressure: -60/120Kpa		
	Multifunctional Extender Box	Chip: Xtensa [®] 32-bit LX6 Single-Core Processor 168MHz		
		Operating Temperature: 5°C~45°C		
		Screen Size: 1.3 inch OLED		
	Application	WLKATA Studio, Grblcontroller3.6, Blockly Graphical Programming		
	Controller	Desktop-grade robotic arm based on the ATMega 2560 open-source hardware chip		
	Number of Axes	3		
	Limit Loads	500g		
	Workspace	320mm		
WLkata 3-Axis Robotic Arm	Net Weight	2.85Kg		
	Interface	USB\WiFi\Bluetooth\RS485		
	Base Dimensions	158mm x 158mm		
	Axis Parameters	1 Axis: -195° ~ +135°		
		2 Axis: -20° ~ +90° Maximum speed 60°/s		
		3 Axis: 0° ~ +90° Maximum speed 65°/s		
	Application	Studio, Grblcontroller 3.6, Blockly graphical interface programming		

Mirobot
Education Kit

AI Static Garbage Sorting Production Line

Product Description

WLkata AI Static Garbage Sorting Production Line combines Mirobot robotic arm and AI vision suite to realize different types of garbage identification and robotic arm sorting tasks. Students can improve Python programming, robotic arm programming and collaborative work by completing the entire workflow of the production line. The AI Vision Set can also realize more visual recognition functions such as shape or code scanning to build more complex logistics and automation scenarios by adding conveyor belt and sliding rail sets.


Selection Guide

Product Name	Model	What Is Included
WLkata Mirobot AI Static Garbage Sorting Production Line	WL-PL-GS-RGB3	Mirobot Education Kit*2; AI Vision Set*1; Accessory Package of WIkata Mirobot AI Static Garbage Sorting Production Line*1
WLkata Mirobot AI Static Garbage Sorting Production Line Cell	WL-PL-EAM-GS-RGB3	Mirobot Education Kit*2; AI Vision Set*1; Accessory Package of Wlkata Mirobot AI Static Garbage Sorting Production Line*1; WLkata Production Line Smart Base - M*1

No.	Experiment Content		
1	Understanding of Robotic Arm Structure		
2	Understanding of Electrical Principles of Robotic Arm		
3	Understanding of Robotic Arm D-H Parameters		
4	Understanding of Robotic Arm Coordinate Mode		
5	Understanding of Robotic Arm End Effector		
6	Understanding of Electrical Parameters of Robotic Arm		
7	Understanding of Robotic Arm Basic Control Command		
8	Understanding of Robotic Arm Movement		
9	Robot Arm Programming Control Logic		
10	Robotic Arm Application Development		

Al Automatic Sorting Production Line

5,

Product Description

Al Automatic Sorting Production Line is composed of Al vision Set, robotic arm, transmission unit, and sensor unit. The target object is dynamically identified. The vision set performs sorting tasks with the robotic arm, enabling the robotic arm intelligent sorting. The production line improves students' practical ability to build systems during experiments. The identification type can be changed to create more complex application scenarios and improve the ability of innovation and development.

• Selection Guide

Product Name	Model	What Is Included
WLkata Mirobot AI Automatic Sorting Production Line	WL-PL-AiGS-RGB3	Mirobot Education Kit*2; AI Vision Set*1; Conveyor Belt Set*1; Accessory Package of Wlkata Mirobot AI Automatic Sorting Production Line*1
WLkata Mirobot Al Automatic Sorting Production Line Cell	WL-PL-EAM-AiGS-RGB3	Mirobot Education Kit*2; AI Vision Set*1; Conveyor Belt Set*1; Accessory Package of Wlkata Mirobot AI Automatic Sorting Production Line*1; WLkata Production Line Smart Base - M*1

No.	Experiment Content		
1	Understanding of Robotic Arm Structure		
2	Understanding of Robotic Arm D-H Parameters		
3	Understanding of Robotic Arm Coordinate Mode		
4	Understanding of Robotic Arm End Effector		
5	Understanding of Electrical Parameters of Robotic Arm		
6	Understanding of Robotic Arm Basic Control Command		
7	Understanding of Robotic Arm Movement		
8	Robot Arm Programming Control Logic		
9	Robotic Arm Application Development		
10	Fundamentals of Multi-device Collaborative Communication		
11	Fundamentals of Python Programming		
12	Fundamentals of Robotics and Visual Communication		
13	Camera Calibration: Master Calibration Method of Visual Camera, Calculation Methods of Robot Coordinate System, and Visual Coordinate System		

Automobile Assembly Line

ζ,

Product Description

Industrial robots are most widely used in the automotive manufacturing industry. The smart factory for automobile production integrates a variety of artificial intelligence technologies such as intelligent control and sensors. The production line based on the real car production scene, vividly showing the car assembly, welding, assembly, and other processes.

Automobile Assembly Line is an effective combination of man and machine, and fully reflects the flexibility of the equipment. It combines conveyor systems, accompanying end-effectors, and measuring equipment to meet the assembly requirements of auto parts.

• Selection Guide

Product Name	Model	What Is Included
Wlkata Mirobot Automobile Assembly Line	WL-PL-Aa-Tec3	Mirobot Education Kit*3; Sliding Rail Accessory Set*1; Accessory Package of Wlkata Mirobot Automobile Assembly Line*1
Wlkata Mirobot Automobile Assembly Line Cell	WL-PL-EAM-Aa-Tec3	Mirobot Education Kit*3; Sliding Rail Accessory Set*1; Accessory Package of Wlkata Mirobot Automobile Assembly Line*1; WLkata Production Line Smart Base - M*1

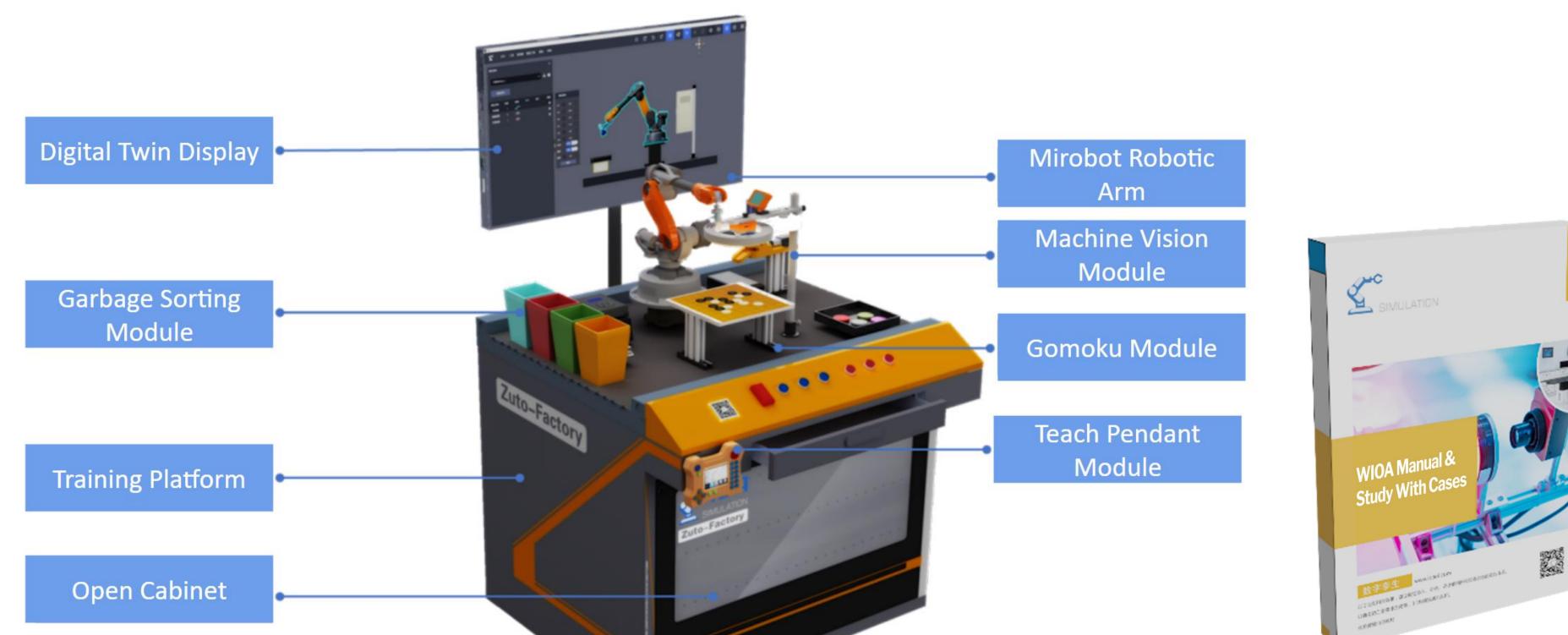
No.	Experiment Content		
1	Understanding of Robotic Arm Structure		
2	Understanding of Electrical Principles of Robotic Arm		
3	Understanding of Robotic Arm D-H Parameters		
4	Understanding of Robotic Arm Coordinate Mode		
5	Understanding of Robotic Arm End Effector		
6	Understanding of Electrical Parameters of Robotic Arm		
7	Understanding of Robotic Arm Basic Control Command		
8	Understanding of Robotic Arm Movement		
9	Robot Arm Programming Control Logic		
10	Robotic Arm Application Development		
11	Linear Guide Program Control		
12	Automobile Assembly and Welding Process Simulation		
13	Multi-device Collaborative Programming Control		

Deep Learning Moving Garbage Sorting Line

Product Description

WLkata Deep Learning Moving Garbage Sorting Line is a sorting system based on Jetson Nano's multifunctional AI chip and 6-axis intelligent robotic arm. It adopts the open-source deep learning framework PyTorch with the cross-border platform computer vision library OpenCV. It also has AI functions such as object detection and image recognition and can be combined with conveyor belts to achieve intelligent garbage classification.

• Selection Guide


Product Name	Model	What Is Included
Wlkata Mirobot Deep Learning Moving Garbage Sorting Line	WL-PL-AiGSM-CV	Mirobot Education Kit*2; Deep Learning Vision Set *1; Conveyor Belt Set*1; Accessory Package of Wlkata Mirobot Deep Learning Moving Garbage Sorting Line*1
WLkata Mirobot Deep Learning Moving Garbage Sorting Line Cell	WL-PL-EAM-AiGSM-CV	Mirobot Education Kit*2; Deep Learning Vision Set *1; Conveyor Belt Set*1; Accessory Package of Wlkata Mirobot Deep Learning Moving Garbage Sorting Line*1; WLkata Production Line Smart Base - M*1

No.	Experiment Content		
1	Understanding of Robotic Arm Structure		
2	Understanding of Robotic Arm D-H Parameters		
3	Understanding of Robotic Arm Coordinate Mode		
4	Understanding of Robotic Arm End Effector		
5	Understanding of Robotic Arm Basic Control Command		
6	Robot Arm Programming Control Logic		
7	Robotic Arm Application Development		
8	Fundamentals of Python Programming		
9	Fundamentals of Robotics and Visual Communication		
10	Camera Calibration: Master Calibration Method of Visual Camera, Calculation Methods of Robot Coordinate System, and Visual Coordinate System		
11	Image Annotation and Dataset Creation		
12	YoloV5 Model Training and Deployment		

Robotics Integrated Training Station

5,

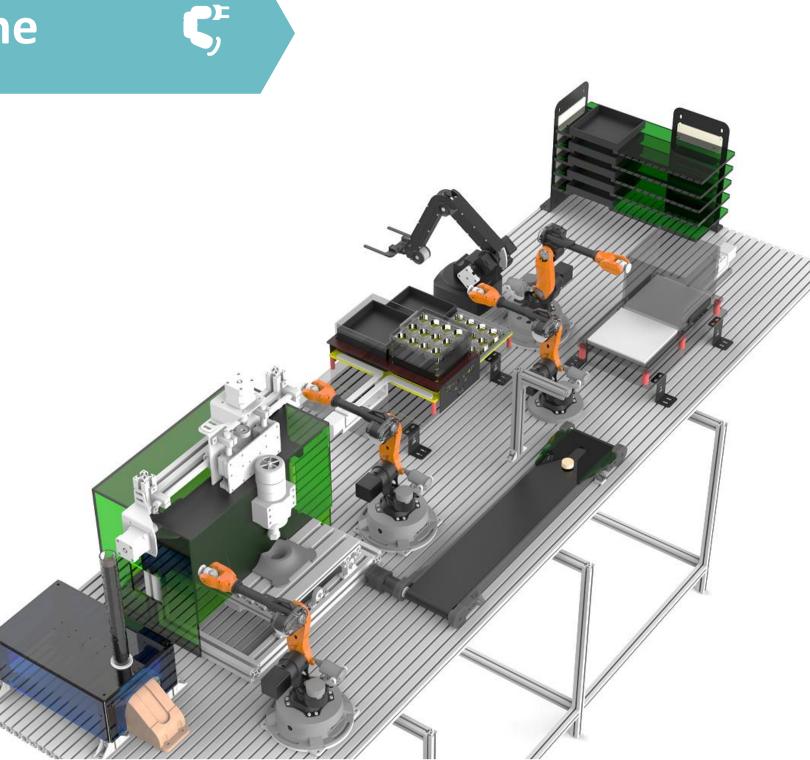
Product Description

WIOA Robotics Integrated Training Station includes machine vision control system, machine vision simulation system, sixaxis robot, industrial computer system and 3D digital twin system. The platform is composed of modular methods and is supported by digital display boards and training platforms which forms a practical training simulation platform for advanced integration and comprehensive application of robots.

• Selection Guide

Product Name	Model	What Is Included
WLkata WIOA Robotics 3-in-1 Training Station	WL-PL-Mevision-3D	Mirobot Education Kit*1; WIOA Machine Vision Set*1; Training Station System *1; IOA Virtual Factory Software*1; Training Station Accessory Package*1; User Manual and Study With Cases*1

No.	Experiment Content		
1	Understanding of Robotic Arm Structure and Electrical Principles		
2	Understanding of Robotic Arm D-H Parameters		
3	Understanding of Robotic Arm Coordinate Mode		
4	Understanding of Robotic Arm End Effector		
5	Understanding of Electrical Parameters of Robotic Arm		
6	Robot Arm Programming Control Logic		
7	Basic Applications for Machine Vision and Automatic Control		
8	Visual Simulation and Automation Integration		
9	Position Recognition and Grasping Automation Based WLKATA 6-axis Robotic Arm		
10	Integration of Vision Applications for Mirobot 6-axis Robotic Arm		
14	Extended Applications for Machine Vision and Industrial Intelligence		


Product Name		Detailed Parameters		
	Number of Axes	6+1		
	Limit Loads	600g		
	Workspace	315mm		
	Net Weight	1.5Kg		
	Communication Interface	USB/Wi-Fi/Bluetooth/RS485		
	Base Dimensions	Diameter 160mm		
		1 axis: -110° ~ +160° maximum speed 85°/s		
		2-axis: -35° ~ +70° maximum speed 60°/s		
	Axis Motion Parameters	3-axis: -120° ~ +60° maximum speed 65°/s		
	(Load 160g)	4-axis: -180° ~ +180° maximum speed 200°/s		
		5-axis: -200° ~ +30° maximum speed 200°/s		
Mirobot Education Kit		6-axis: -360° ~ +360° maximum speed 450°/s		
	Pen Holder	Range: 7~10mm		
		Range: 0~30mm		
	Servo Gripper	Torque: 0.6 Kg/cm		
	Pneumatic Suction	Suction Cup Diameter: 12mm		
	Cups	Pressure: -60Kpa		
	Three-finger Soft	Range: 5~40mm		
	Gripper	Pressure: -60/120Kpa		
		Chip: Xtensa [®] 32-bit LX6 Single-Core Processor 168MHz		
	Multifunctional Extender Box	Operating Temperature: 5°C~45°C		
		Screen Size: 1.3 inch OLED		
	Application	WLKATA Studio, Grblcontroller3.6, Blockly Graphical Programming		
	Digital Twin System	Include robot model library, logistics model library, sensor library, electromechanical control library, and mechanical library		
	Virtual Electrical Wiring	Support robot controller virtual electrical IO wiring, support Excel electrical wiring table exporting		
	Virtual Teaching Programming	Realize virtual teach-in programming of robots and support a variety of virtual teach-in programming of industrial robots, including NRT motion control system, Eft Robox teach pendant, AUBO robot teach pendant, etc.		
IOA Virtual Factory Software	Virtual Controller	A variety of virtual controllers, including Siemens S7-1200, S7-1500 series PLC, Mitsubishi PLC, ZMC308 motion controller, VPLC machine vision controller, Python virtual controller, etc.		
	XR Virtual Simulation	Support multi-user collaborative software for mobile APP, VR, and AR virtual simulation		
	Virtual Simulation	Include Virtual robot controller and 3D robot body, implement virtual teaching programming and integrated control		
	Virtual Control	Support 1:1 access of real robots to realize twin control simulation of virtual 3D and real robots		
	Integrated Control Simulation	Support the combination of PLC motion controller to achieve multi-robot system integration control simulation		

Product Name		Detailed Parameters	
WIOA Machine Vision Set	camera	Color camera, 300 color CMOS image pixels, configurable focus lens	
	Visual light source	Equipped with a visual ring light source, adjustable light source power adapter	
	Stand	Adjustable aluminum alloy bracket, height 450mm, angle, adjustable height	
	Accessory	Configure manual fixing brackets, light source fixing brackets, and manual adjustment nut accessories	
	system	Pre-installed with the Linux operating system and embedded deep learning framework Tengine, supports Andriod 8.1	
	interface	Equipped with USB, HDMI, RJ45, Wi-Fi, BT, MIPI, eDP and other conventional interfaces, supports rich embedded expansion interfaces as GPIO, I2C, SPI, and TT	
	Deep learning framework	Supports direct deployment of training framework models such as Caffe/TensorFlow/Pytorch/MxNet/ONNX/Darknet Supports network performance optimization strategies such as layer fusion and quantization, provides a unified API (C/Python/JNI) interface Provides custom operators for extended interfaces	
Training Station System	CPU parameters	RK3399, 2xA72@1.8GHz+4xA53@1.4GHz	
	GPU parameters	Mali-T860MP4, supports OpenGL ES1.1/2.0/3.0/3.1, OpenVG1.1, OpenCL, DX11, AFBC (Frame Buffer Compression)	
	memory	LPDDR3 4GB	
	power supply	Input 100VAC~240VAC, 50Hz; Output 12VDC, 2A	
	LCD touchscreen	5.5-inch touchscreen, MIPI interface, resolution 1280 * 720	
	Driver installation package	Machine vision control case drive package includes virtual simulation machine vision API and machine vision training API development package	
	Machine vision complet	te development manual, including IO driver, image import, contour extraction, QR code	
User Manual and Study	recognition, image training and other videos together with training case development packages;		
With Cases	3D Virtual Simulation Development Kit, can links with the vision controller through virtual 3D robot system to		
	achieve digital twin simulation resource packs including garbage sorting, logistics sorting, shape matching, etc.		

Chess Manufacturing Line

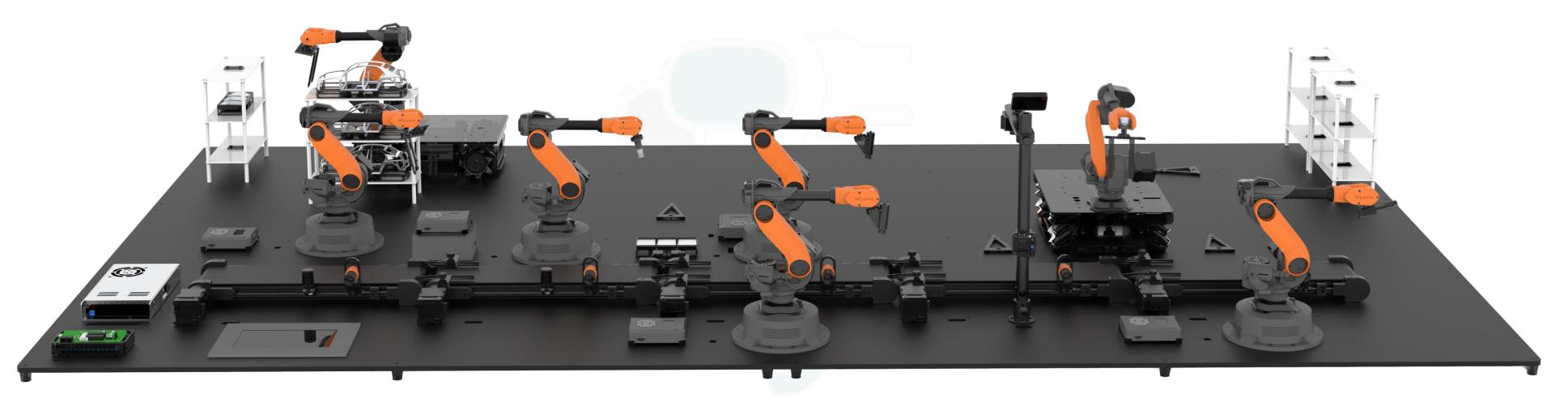
Product Description

Chess Manufacturing Line completely present the application of robots in intelligent manufacturing. The complete production line includes a chess raw material unit, a laser engraving production unit, a Mirobot robotic arm handling unit, a

conveyor belt handling unit, and an assembly and storage unit. In actual intelligent manufacturing, the whole set of solutions adopts integrated control and the form of project functional unitization. The integrated control ensures that the production scheme is smooth and functional unitization facilitates production commissioning.

Extended Application: Industrial customization of as bookmarks and business cards production can be realized by changing the production process.

• Selection Guide


Product Name	Model	What Is Included
Wlkata Chess Manufacturing Line	WL-PL-CM-CD24	Mirobot Education Kit*4; 3-Axis Robotic Arm*1; AI Vision Set*1; Conveyor Belt Set*1; Engraving Machine*1; Accessory Package*1; Chess Manufacturing Line Base*1

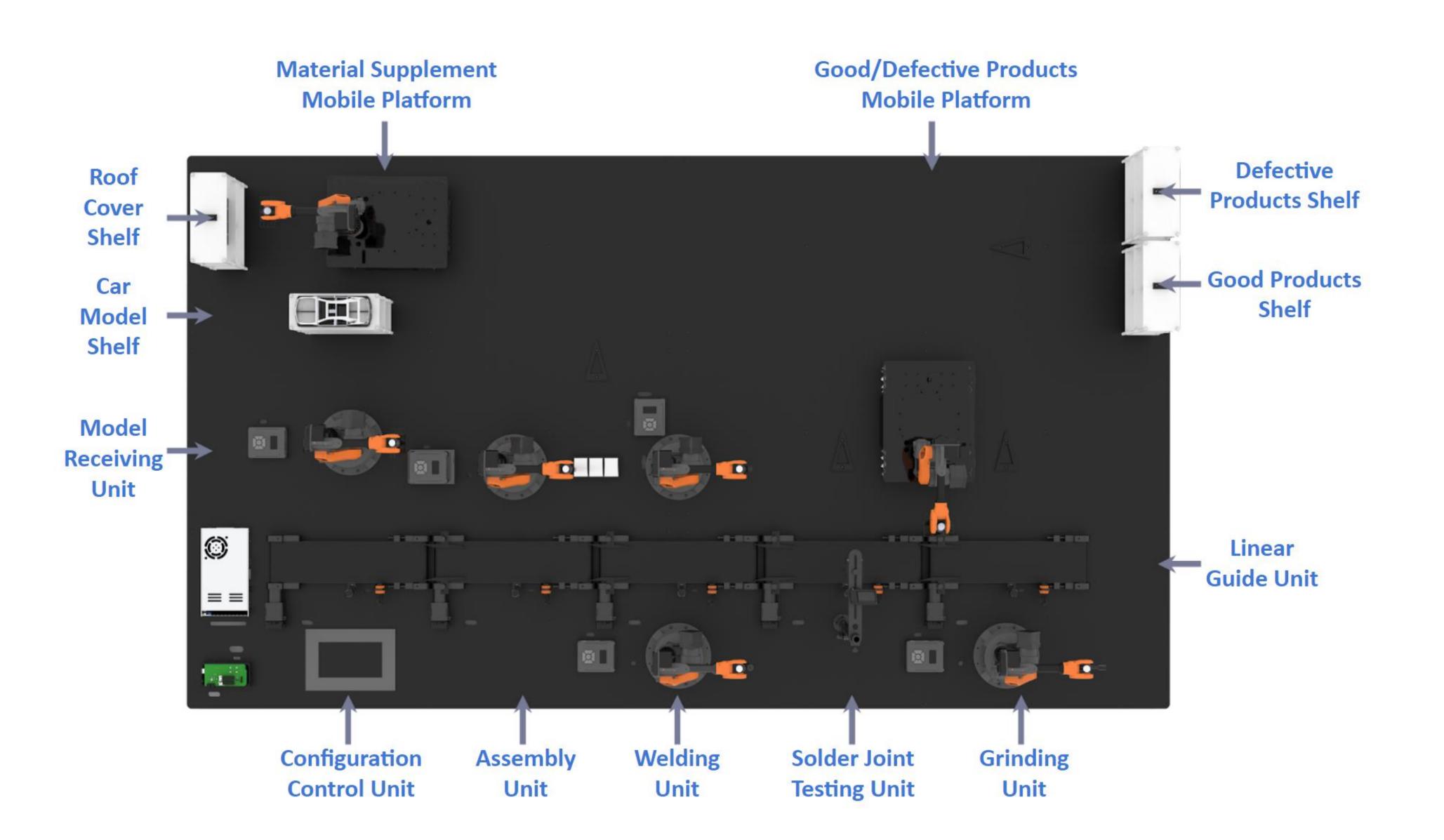
No.	Experiment Content		
1	Understanding of Intelligent Manufacturing System		
2	Understanding of Robot System		
3	Understanding of Robotic Arm D-H Parameters		
4	Understanding of Robotic Arm Movement		
5	Understanding of Robotic Arm End Effector		
6	Understanding of Robotic Arm Coordinate Mode		
7	Understanding of Mobile Robots		
8	Sensor Connection		
9	Fundamentals of Configuration Software Custom Programming		
10	Fundamentals of Python Programming		
11	Camera Calibration: Master Calibration Method of Visual Camera, Calculation Methods of Robot Coordinate System, and Visual Coordinate System		
12	Understanding of Automotive Automated Production System		
13	CNC Machining Process		
14	Automated Packaging Process		

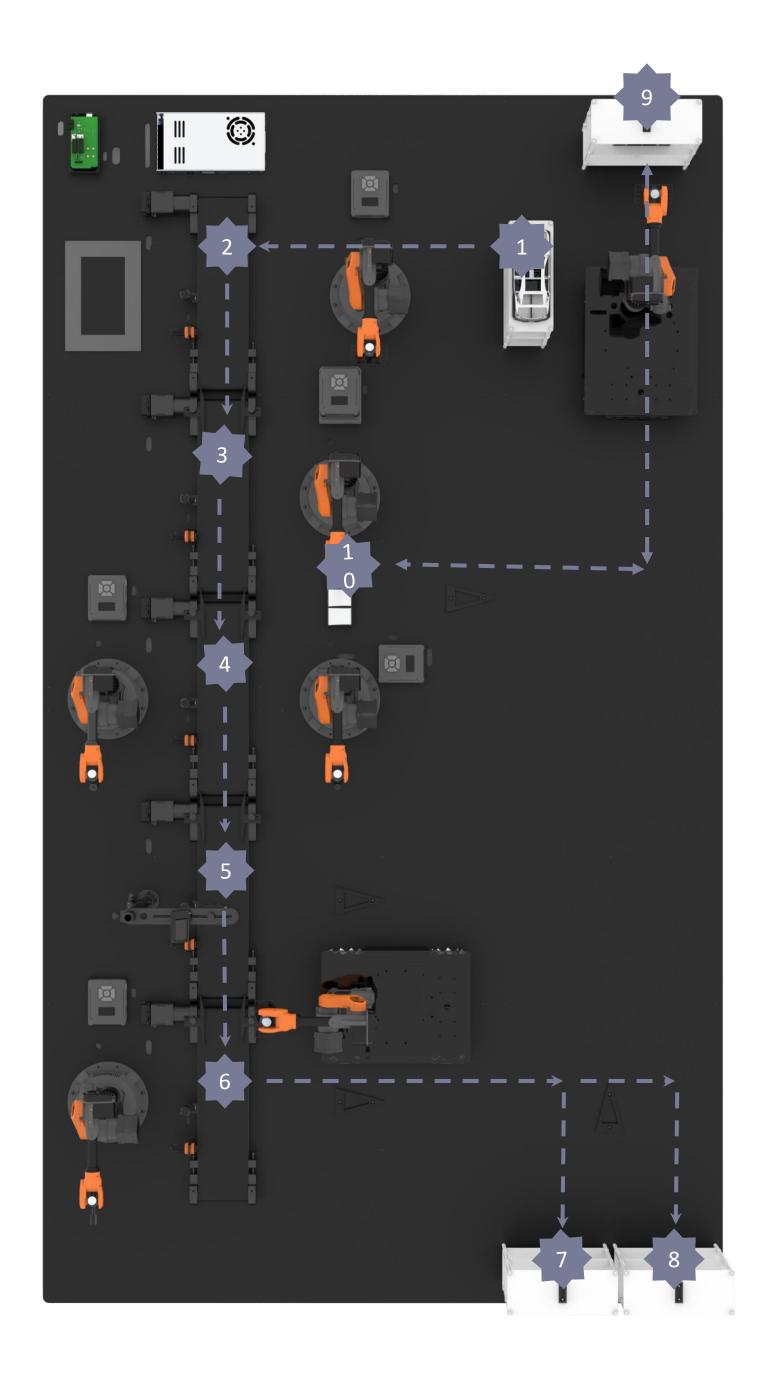
Automotive Manufacturing Simulation Line

Product Description

In order to better realize industrial flexible production and restore the automatic production process flow of "assembly, welding, solder joint detection, grinding" in the automobile production process and form a complete set of automobile production line production program, the production line is based on unit equipment. At the same time, real-time integrated control, visual inspection, data collection and processing are carried out, and feedback is obtained through visual inspection

and data backhaul of the node. It is dispatched by the master and assigned to AGVs for retrieval or repair. The code can be stored in the multi-function control box through WLKATA Studio, which is convenient for students to modify according to the scene, and provides a safe, open and friendly platform for students to learn robot programming and control and intelligent manufacturing system engineering.


Selection Guide


Product Name	Model	What Is Included
WLKATA Mirobot Automotive Manufacturing Simulation Production Line	WL-PL-AS-Tec5	Mirobot Education Kit*5; Wlkata Robot Vehicle In One*2; Short Conveyor Belt*5; Al Vision Set*1; Display Screen*1; Accessory Package*1

No.	Experiment Content
1	Understanding of Intelligent Manufacturing System
2	Understanding of Robot System
3	Understanding of Robotic Arm D-H Parameters
4	Understanding of Robotic Arm Movement
5	Understanding of Robotic Arm End Effector
6	Understanding of Robotic Arm Coordinate Mode
7	Understanding of Mobile Robots
8	Sensor Connection
9	Fundamentals of Configuration Software Custom Programming
10	Fundamentals of Python Programming
11	Camera Calibration: Master Calibration Method of Visual Camera, Calculation Methods of Robot Coordinate System, and Visual Coordinate System
12	Understanding of Automotive Automated Production System
13	Mobile Car Movement and Control Principle
14	Mobile Robotic Arm Automatic Grasping
15	Integration of Robotics, Vision, Sensor Technology Applications

Production Process

Process Description:

The robotic arm sends the car model from the supply shelf (1) to the conveyor unit and enters the production line;
 Car model goes through the conveyor unit (2), (3), (4), (5), (6)

to complete the assembly, welding, solder joint testing, grinding and other processes;

3. AGV mobile robots transport the good/defective products from (6) to (7) and (8) shelf;

4. Roof material is removed and replenished from (9) by AGV mobile robots to (10).

Scenario Description:

1. Each process can be tested independently as an experimental project;

2. There is a three-color indicator light indication in the operation of the process;

3. The production line supports WIFI, 5G, edge computing

research and development.

Robotics Training Solution For AI and IoT Education

Professional · Safe · Desktop

WLKATA ®

A Global Provider of Al and IoT Education Solution www.wlkata.com

WLKATA Robotics

USA Office:

China Office:

Wristline Inc. 140 Route 17 North Suite 313,Paramus, NJ USA 07652 Phone: +1 201 682 9753 WhatsApp: +1 201 682 9753 hello@wristline.com

Room 1603, Zhongguancun Energy & Security Science Park,Building 3, Qinghua East Road 16, Haidian District, Beijing, China. Landline: +86-10-82363060 Phone: +86-186 1150 3201 wlkata_service@tsinew.com

