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Abstract: In recent years, microalgae have become a source of molecules for a healthy life. Their
composition of carbohydrates, peptides, lipids, vitamins and carotenoids makes them a promising
new source of antioxidant molecules. Skeletal muscle is a tissue that requires constant remodeling via
protein turnover, and its regular functioning consumes energy in the form of adenosine triphosphate
(ATP), which is produced by mitochondria. Under conditions of traumatic exercise or muscular
diseases, a high production of reactive oxygen species (ROS) at the origin of oxidative stress (OS) will
lead to inflammation and muscle atrophy, with life-long consequences. In this review, we describe
the potential antioxidant effects of microalgae and their biomolecules on mitochondrial functions and
skeletal muscular oxidative stress during exercises or in musculoskeletal diseases, as in sarcopenia,
chronic obstructive pulmonary disease (COPD) and Duchenne muscular dystrophy (DMD), through
the increase in and regulation of antioxidant pathways and protein synthesis.

Keywords: microalgae; antioxidant molecules; redox homeostasis; oxidative stress; mitochondrial
function; musculoskeletal diseases; exercise

1. Introduction

The development of new food supplements has aimed to prevent age-related disor-
ders, cardiovascular disease and improve muscle performance or well-being [1–3]. Seafood,
and particularly oily fish, is an important source of long-chain polyunsaturated fatty acids
(LC-PUFAs), with beneficial effects on human health [4]. LC-PUFAs present in fish are
provided by microalgae, a vast group that belongs to the phytoplankton. Microalgae are the
most important part of aquatic ecosystems [5]. These photosynthetic microorganisms are a
promising source of many bioactive molecules, such as fatty acids, steroids, carotenoids,
polysaccharides, lectins, mycosporine-like amino acids, halogenated compounds, polyke-
tides, toxins, agar–agar, alginic acid and carrageenan [6]. Microalgae contain various
compounds with demonstrated potential for human health and medicine. The therapeutic
properties of microalgae exhibit a large range of applications, such as in cardiovascular
health, anticancer, anti-inflammatory, anticoagulant, antiviral, antibacterial or antifungal
human medicinal products. Many bioactive compounds from microalgae have strong
beneficial properties that effectively reduce the production of inflammatory compounds
against muscle breakdown [7].

Muscle is a dynamic tissue that is rich in mitochondria, the primary function of which
is to maintain the supply of ATP through oxidative phosphorylation, I order to facilitate
movement. It is an important consumer and producer of essential metabolites, when chal-
lenged by aerobic or resistance exercise. This is essential for a healthy life and to prevent
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diseases such as Alzheimer’s disease, cancer or ageing [8,9]. However, during muscle dis-
eases or traumatic exercises, mitochondria produce metabolites generating oxidative stress
(OS) [10]. OS is defined as a chronic imbalance in the pro-oxidant species derived from oxy-
gen and nitrogen (RONS) and antioxidant systems, resulting in increased oxidative damage
to various cell components, as well as an alteration of numerous signaling pathways.

The aim of this review is to identify potential source of antioxidant biomolecules
from microalgae (biomass and extracted molecules). In parallel, mitochondrial function
and oxidative stress associated with exercise or muscle diseases are developed. Then, the
preventive effects of microalgal biomass and its bioactive molecules against mitochondrial
dysfunction and oxidative stress in muscle are presented.

2. Microalgae as Sources of Molecules with Antioxidant Effects

Although the classification of algae and microalgae may change according to the
evolution of analytical tools, these photosynthetic organisms can be broadly classified
into red (Rhodophyta), brown (Phaeophyta) and green algae (Chlorophyta) based on their
characteristics [11]. Indeed, microalgae are divided into different categories according to
their pigment content, morphological distinctions (spherical, elliptic, rod-like, and fusiform
cells) and the existence of thorns, cilia and flagella, among other characteristics. Further,
they are also grouped based on their size: picoplankton (0.2–2 µm), nanoplankton (2–20 µm)
and microplankton (20–200 µm) [12].

Microalgae are unicellular organisms found in aquatic environments. They play a
key role in marine ecosystems, forming the basis of the food web as primary produc-
ers. These photosynthetic micro-organisms are regarded as one of the best renewable
resources for numerous medicinal compounds due to their richness in primary and sec-
ondary bioactive metabolites, such as carbohydrates, proteins, lipids, vitamins, pigments,
LC-PUFA, polyphenols and other chemicals (Figure 1). Among the various microalgal
genera, Spirulina, Chlorella, Haematococcus, Dunaliella, Nannochloris, Botryococcus, Phaeodacty-
lum, Porphyridium, Chaetoceros and Skeletonema are the more widely used microalgae, with
commercial value due to their diverse content of therapeutic bioactive compounds [13].

Among molecules produced by microalgae, many are known to have antioxidant
activities. These molecules include vitamins, such as vitamins A, C and E, polyphenols,
carotenoids and bioflavonoids. Antioxidants are well known to provide health benefits and
play an essential role in cell protection from the effects of free radicals. In the context of an
increasing demand for these high-value-added products, microalgae are undoubtedly an
interesting solution. The antioxidant power of microalgae is equal to or higher than the
antioxidant activity of higher plants or fruits. Indeed, in Chlorophyta and Eustigmatophyceae,
the antioxidant potential can reach 260 Trolox equivalents µmol·g−1 dry matter (DM), while
in raspberry, the antioxidant activity reaches 224 Trolox equivalents µmol·g−1 DM [14].
Thus, for some years now, marine microalgae have been considered a potential source of
high-value-added biomolecules, such as antioxidant compounds.
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2.1. Pigments

Microalgae produce a wide variety of pigments, such as chlorophylls, carotenoids and
flavonoids. Among the microalgae, Botryococcus braunii, Chlorella sps. Chlorococcum sp.,
Coelastrella striolata, Haematococcus pluvialis, Dunaliella salina, Nanochloropsis sps., Scenedesmus
sps., Spirulina platensis and some diatoms are known to produce β-carotene (β-Car), lutein,
canthaxanthin, astaxanthin (Asx) and fucoxanthin (Fcx) [17].

Microalgae are the most promising sources of natural carotenoids. Carotenoids are fat-
soluble molecules that constitute a class of terpenoid pigments, derived from a 40-carbon
polyene chain, which can be considered their molecular backbone. Carotenoids are divided
into carotenes and xanthophylls. They are mainly present in the pigment–protein complexes
within the membrane of thylakoids, but some microalgal species can also accumulate
carotenoids (β-Car and Asx) in lipid globules located in the stroma of the chloroplast or
in the cytoplasm [18]. Among different microalgae, the total carotenoid content ranges
from 3.04 mg·g−1 dry weight (DW) for Scenedesmus almeriemis, to 35 mg·g−1 DW for the
hypersaline species Dunaliella salina [19]. The carotenoids of Dunaliella salina are mainly
represented by β-Car (98.58% of total carotenoids) [19]. Under optimized culture conditions,
the green microalga, Asterarcys quadricellulare, was shown to produce 47.0, 28.7, 15.5 and
14.0 µg of β-Car, lutein, Asx and canthaxanthin mg−1 of dry biomass, respectively [20].

In diatoms, Fcx is one of the main pigments present in chloroplasts. Its production
varies from 0.82 mg·g−1 DW for Phaedactylum tricornutum to 26.6 mg·g−1 DW for the
microalga Mallomonas sp. [21]. The Fcx content depends on microalgal species, the culture
conditions and the extraction process. In the review by Khaw, the Fcx content is described
to vary between species and within species. Indeed, in the microalga Isochrysis galbana, the
Fcx content varies between 0.22 and 1.82% of the DW [22]. Conversely, some microalgal
species produce very low amounts of Fcx, such as Phaeodactylum tricornutum (0.01% DW)
and Skeletonema costatum (0.04% DW). In the different species studied, the highest Fcx
content after optimization of the culture conditions was found in Tisochrysis lutea, with a
percentage of 7.94% DW [22].

In the literature, Asx is described as the pigment with the highest antioxidant activity.
Haematococcus lacustris (Chlorophyceae) is the main source of Asx, accumulating up to 7%
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of its DW [23]. Although H. lacustris is able to accumulate a significant amount of Asx,
it has been shown that in the green alga, Chlorella zofingiensis, the Asx content can reach
6.8 mg·g−1 DW under stress conditions (high light, nitrogen deprivation and salinity
stress) [24].

2.2. Vitamins

Microalgae are also a source of vitamins, such as vitamins C and E.
In microalgae, ascorbic acid, or vitamin C, is mainly present in the cytosol and chloro-

plasts. The vitamin C content varies from 0.06 mg·g−1 DW for the genus Skeletonema, to
18.79 mg·g−1 DW for the genus Chaetoceros. For the same genus, there is a great variability
in the vitamin content. For example, for the microalga Chaetoceros, the ascorbic acid content
varies from 0.12 to 18.79 mg·g−1 DW [25].

In the literature, few publications report the tocopherol (TOC) composition of mi-
croalgae. TOC or vitamin E is a liposoluble antioxidant only synthesized by photosyn-
thetic organisms and is located in the membrane lipid bilayers, mainly in those of chloro-
plasts. Vitamin E is present in microalgae such as Dunaliella tertiolecta, Tetraselmis suecica,
Nannochloropsis oculata, Chaetoceros calcitrans and Porphyridium cruentum. The total TOC
content varies greatly between species, with the highest amount found in Tetraselmis sp.
(6320 µg·g−1 DW) and the lowest in Phaeodactylum tricornutum (13.12 µg·g−1 DW) [26].

2.3. Polysaccharides

Polysaccharides are polymers made up of osidic units linked by glycosidic bonds. Mi-
croalgae are shown to contain several polysaccharides with antioxidant activity. However,
this activity remains rather weak.

Beta-1,3-glucans, also named laminarin, chrysolaminarin or mycolaminarin, depend-
ing on the algal species, are one of the most abundant polysaccharides in microalgae [27].
They are involved in carbon storage and constitute the structural components of the cell
walls of these organisms. The flagellate alga, Poterioochromonas malhamensis, is a potential
source of β-1,3 glucan. This polysaccharide content makes up to 55% of its biomass [28]. In
2016, Schultze et al. studied the composition of metabolites, and in particular β-glucans,
in 47 microalgae [29]. Under standard culture conditions, the β-glucan content varies
from 1.7% to 24.8% of DW. Phaeodactylum tricornutum and Mesotaenium caldariorum have a
very low content (1.7% DW), while Scenedesmus ovalternus has the highest accumulation of
β-glucans, with 24.8% of the DW.

In diatoms, chrysolaminarin, composed of β-1,3-glucan with β-1,6-branched chains, is
the main form of polysaccharide storage. This polysaccharide is present at high levels in
diatoms such as Odontella aurita (up to 63% DW), Phaeodactylum tricornutum and Thalassiosira
pseudonana (up to 23% DW) [30].

2.4. Phenolic Compounds

Phenolic compounds constitute a large family of antioxidant molecules present in
higher plants, macroalgae, and more recently studied in microalgae. Approximately
8000 structures of phenolic compounds have been identified. All contain one or more
aromatic rings with one or more hydroxyl substituents. Various studies have been carried
out on the total phenol content of different microalgal strains and in different geographical
locations. A recent study by Almendinger et al. (2021) showed that two microalgal species,
Neochloris oleobundans and Wilmottia murravi, contain high levels of phenolic compounds
(>20 mg gallic acid eq·g−1), out of the 13 microalgae studied [31]. In a study of Leon-Vaz
et al. (2023), 19 species of nordic microalgae were cultivated in standard conditions and
under high light and cold stress conditions to explore their ability to produce bioactive
compounds such as polyphenols [32]. The strains Chlorococcum sp. and Scenedesmus sp.
produced higher concentrations of phenolic compounds during stress. The green alga,
Chlamydomonas reinhardtii, was able to increase the production of polyphenols during a
high light exposure [33]. Anwer et al. (2022) determined the total phenol content from
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several microalgal species using different types of extraction. They found that Spirulina
sp. contained more total phenolic compounds than the other species [34]. Trentin et al.
(2022) showed that two microalgae, a naviculoid diatom and a green microalga (Tetraselmis
marina), are rich in polyphenolic compounds. Thus, all these microalgae can be considered
good candidates to serve as sources of these high-value compounds [35].

2.5. Omega-3 Polyunsaturated Fatty Acids

Microalgal lipids are characterized by a large diversity of fatty acid profiles. Several
studies on the microalgal fatty acid composition of lipids have revealed the presence of
large amounts of LC-PUFAs. LC-PUFAs belong to the omega-3 series (ω3-PUFA). This is
the case for docosahexaenoic acid (C22:6ω3, DHA) and eicosapentaenoic acid (C20:5ω3,
EPA), of which the beneficial effects on health are now widely recognized.

Among the microalgae producingω3-PUFAs, a distinction can be made between those
synthesizing only EPA or DHA, and those synthesizing EPA and DHA, in proportions that
vary according to the species and the culture conditions (culture regimen, temperature,
salinity, light, pH and nutrients). The lipids of bacillariophytes (or diatoms) are charac-
terized by high levels of EPA and low or even zero levels of DHA [36]. A recent study
carried out a screening of new strains of microalgae producing bioactive substances, and
highlighted the particular interest of diatoms as EPA-producing organisms. Of the nine
selected species, Thalassiosira weissflogi had the highest proportion of EPA (21.4% of total
fatty acids) and an absence of DHA [37]. DHA is specific to dinoflagellate and haptophyte
lipids. Dinophytes can produce large amounts of DHA, with up to 40% of total fatty acids
in some taxa. In haptophytes, DHA production can reach 30% of total fatty acids [36].
Specifically, Crypthecodinium cohnii, a heterotrophic dinoflagellate, is able to produce DHA
at high levels (up to 50% of DW), while EPA is totally absent [38].

3. Muscular Mitochondrial Function and Oxidative Stress during Exercise
3.1. Muscular Protein Balance

Muscle quality and mass are mainly regulated by a balance between protein synthesis
and degradation. The protein pool is maintained by a fine balance between muscle protein
synthesis (MPS) and muscle protein breakdown (MPB). These processes respond to nutri-
ents and contractile activity actions affecting physical performance, injury prevalence and
disease [39–41].

3.1.1. Muscle Protein Synthesis

One of the characterized regulators of muscle protein translation is the mammalian tar-
get of rapamycin (mTOR) [42]. There are two complexes of mTOR: mTORC1 and mTORC2,
but only the former is involved in MPS [43]. MPS is regulated by IGF1 (insulin-like growth
factor 1)/PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B)/mTOR pathways, with
mTORC1 being able to control protein translation [44,45]. The target of mTORC1 results
in the regulation of the level of phosphorylation of eukaryotic translation initiation factor
4E-binding protein 1 (4E-BP1) protein. This factor is a repressor of eukaryotic translation
initiation factor 4E (EIF4E). The target of mTORC1 also results in the phosphorylation
of ribosomal protein S6 kinase beta-1 (p70S6K), which in turn leads to the activation of
eukaryotic translation initiation factor 4B (EIF4B). Moreover, p70S6K activates the ribosome
biogenesis and an over-time translation through eukaryotic elongation factor-2 kinase
(EEF2K), which also contributes to the activation of MPS [46,47]. In healthy people, MPS
is constant, negatively regulated by AMP-activated protein kinase (AMPK) during exer-
cise and positively after exercise [48]. In contrast, during muscle disease associated with
mitochondrial dysfunction, AMPK suppresses the MPS via an inhibition of mTORC1 [49].

3.1.2. Muscle Protein Breakdown

In opposition to MPS, MPB is activated during exercise. There are two major types of
MPB: autophagy and the ubiquitin proteasome system (UPS).
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Autophagy is a breakdown system of proteins, energy substrates, mitochondria and
other organelles [50,51]. It plays an important role in muscle homeostasis when mitochon-
dria or misfolded proteins are not eliminated. This process leads to a disorganization of
the sarcomere and induces muscle atrophy [52]. Autophagy follows four steps: induction,
nucleation, elongation and substrate isolation, and fusion with lysosomes [53]. Its activa-
tion is associated with a variety of stress factors such as OS, hypoxia or protein aggregation.
The pre-autophagosome formation is controlled by the protein complexes ULK-ATG13 and
101-Fip200 [53,54]. Moreover, mTORC1 is a key regulator of autophagy through the direct
phosphorylation of ULK [55]. Then, the fusion of lysosomes with autophagosome degrades
its content and releases amino acids [56].

The UPS targets the proteins contained in the mitochondria, cytosol, nucleus and
endoplasmic reticulum [57]. The UPS is an ATP-dependent non-lysosomal protein degra-
dation mechanism in cells [53]. There are three types of ubiquitin enzymes: E1 (ubiquitin
activating enzyme), E2 (ubiquitin conjugating enzyme) and E3 (ubiquitin ligase), that
transfers the protein to the autophagosome [58].

3.2. Mitochondrial Function and RONS Production

Mitochondria are cell organelles known to be involved in muscle physiology, their activ-
ity being modified during muscle damages due to pathologies or physiological modifications.

Besides the role of muscle mitochondria in ATP synthesis and oxidation of numerous
substrates, mitochondria are involved in other mechanisms, such as apoptosis induc-
tion [59–61], free radical production [62,63], calcium homeostasis [64] or thermogenesis
regulation [65]. According to muscle physiology, the production of ATP can be provided
through two mechanisms: the anaerobic glycolysis and the oxidative phosphorylation. The
oxidation of substrates by the oxidative phosphorylation pathway is a key factor for mus-
cles during endurance training [66–68], with an increase in superoxide anion (O2

·−) content
in contracting muscle fibers [67,69]. The RONS are composed of the reactive oxygen species
(ROS), among which O2

·− is produced by oxidase xanthine [70], nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase and mitochondria [71], or the hydrogen perox-
ide (H2O2) that is produced by reaction between O2

·− and the mitochondrial superoxide
dismutase 2 (Mn-SOD) [72,73]. H2O2 is able to cross membranes and act on cell proteins. In
response to the increased RONS level in cells, an enzymatic cascade involving peroxidase
glutathione (GPx), catalase (CAT) and peroxidase thioredoxin (TPx) will convert H2O2 into
H2O or a hydroxyl group (OH−) that is able to oxidize DNA, lipids and proteins [72,73]
(Figure 2). Among the RONS, there are also reactive nitric species (RNS). In physiological
conditions, they have an important role in skeletal muscle signaling [74]. Nitric oxide (NO)
is mainly produced via the oxidation of the amino acid L-arginine, in a highly controlled
process requiring oxygen, NADPH and other cofactors. This reaction is catalyzed by spe-
cialized nitric oxide synthases (NOSs), of which the activities depend on the intracellular
calcium level [75]. The role of NO is to maintain glucose uptake, vascular perfusion during
contraction, mitochondrial function and the excitation–contraction coupling. Thus, muscle
diseases associated with mitochondrial dysfunction generate proinflammatory conditions
resulting in inducible NOS (iNOS) activation and an overproduction of NO. Then, NO and
O2
·− produce peroxynitrite (ONOO−) and nitrogen species [75].
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anion O2

·−, which is transformed into H2O2 due to the antioxidant enzymes Mn-SOD, CAT and
GPx. Muscular damage, oxidation of L-arginine (L-Arg) and increased calcium level (↑) activates
iNOS and the production of NO. An overproduction of H2O2 or the action of O2

·− with NO will
induce OS through OH− and ONOO−, respectively, resulting in DNA, lipid and protein damage.
Contrarily, a controlled H2O2 level will be in favor of muscle health. Non-enzymatic antioxidants
such as vitamins C and E inhibit the production of O2

·−, and thus also limit the oxidant stress.
Created using Biorender.com (accessed on 28 April 2023).

3.3. Inflammation Pathways Due to the RONS

Exhaustive exercise produces proinflammatory cytokines involved in the transcrip-
tional regulation of redox signaling, through the activation of nuclear factor (erythroid-
derived 2)-like 2 (Nrf2) and nuclear factor-kappa B (NF-κB) signaling pathways [76]. Ex-
ercises increase the release of muscle interleukin (IL)-6, which can negatively regulate
the tumor necrosis factor alpha (TNF-α) and stimulate IL-10 secretion, two mechanisms
resulting in macrophage M2 activity improvement, that increases the anti-inflammatory
response [77]. During low systemic conditions, it has been shown that exercise exerts an
anti-inflammatory effect and prevents chronic disease associated with OS, mitochondria
dysfunction and protein imbalance [78,79].

In inflammation-associated muscle diseases, it is reported that NF-κB/TNF-α/IL-6
pathways induce an increase in the proinflammatory macrophage M1, which results in mus-
cle atrophy [80,81]. The RONS production is autoregulated by NF-κB and TNF-α [81,82].
The factor Nrf2 is a negative regulator of NF-κB, which can reduce inflammation during
exercise, and for which a stimulation occurs following RONS production [83].

3.4. Antioxidant Responses to RONS Production

During physical activities, the overproduction of ROS induces damage to skeletal
muscle, but this production can be regulated by the antioxidant defense system. The use

Biorender.com
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of antioxidant supplements, such as vitamins E and C, can also be used to prevent ROS
damage. The use of these vitamins and other compounds, such as resveratrol and coenzyme
Q10, has been reported to have several effects on skeletal muscle during adaptations to
training, inflammation or muscle damage [84].

To optimize RONS production, two possibilities have been reported in the scientific
literature: the identification of an antioxidant mix with defined concentrations [85,86] and
the use of a new form of antioxidant, also named secondary antioxidant, which interact with
antioxidant response elements (AREs) of genes rather than activating RONS scavengers.
Among them, resveratrol showed a positive role in AREs during physical activity [87,88],
and ergothioneine, a sulfated derivate of histidine, was shown to stimulate the gene Nrf2, an
important regulator of the ARE [89]. Ergothioneine is the only sulfur-derivate of histidine
to be reported to have any effect on muscle, but it can be noticed that ovothiols, other
derivates of histidine produced by microalgae [90,91] have also been reported to regulate
Nrf2 into keratinocytes, inducing a dermo-protective effect [92].

The antioxidant activity can be carried out by non-enzymatic molecules, such as
vitamins C and E, or by enzymes [93]. When considering enzymes, the SOD family is
able to neutralize O2

·−. The cytosolic SOD activity is around 65–85% of the total cell SOD
activity, while in mitochondria, it is around 15–35% [70]. Moreover, the SOD activity is
higher in type 1 fiber (slow twitch) than in type 2 (fast twitch) [94]. This mechanism cannot
be completed without a synergy with CAT and GPx that converts reduced glutathione
(GSH) into oxidized glutathione (GSSG). The levels of GSH are higher in type 1 fiber
than in type 2 [95]. The GSH–GSSG ratio is a marker of OS, in relation to the increase in
H2O2 [96,97] (Figure 2).

Vitamin C is an important antioxidant compound because it rapidly gives its electron
and prevents the overproduction of RONS [98]. Vitamin E or TOC, including α-TOC, is the
second most consumed vitamin. Its metabolism is regulated by the liver and this vitamin
has a strong antioxidant activity [99]. However, studies report that long-term vitamin E
supplementation may increase the risk of heart failure in patients with vascular disease or
diabetes mellitus [100].

3.5. Muscular Redox Balance and Mitochondrial Adaptation

High intensity exercise causes damage in muscles, which is repaired by protein
turnover. However, exercise also generates OS and inflammation that have to be man-
aged [10]. Numerous athletes use antioxidant supplementation to counteract the overpro-
duction of RONS and inflammation during exercise [101]. However, antioxidant supple-
mentation must be carefully used due to the role of RONS in muscle adaptation [85]. During
aerobic exercise, RONS is able to stimulate peroxisome proliferator-activated receptor-γ
coactivator (PGC1-α) with, as a consequence, an improvement in mitochondrial biogenesis
and muscle adaptation [102]. In the Merry and Ristow review, it is explained that high
levels of vitamins C and E prevented the activation of PGC1-α, limiting muscle adaptation
and maximal oxygen consumption during aerobic exercise [103]. The same observations
have been made during resistance exercise. Indeed, after 10-week strength training protocol
in women, the gains in peak torque and total work were lower in the group with vitamin C
and E supplementation than in the control group [104].

4. Muscular Diseases and Overproduction of RONS

Without being exhaustive, the most important pathologies reported in the literature
and correlated with an important RONS production are sarcopenia, chronic obstructive
pulmonary disease (COPD) and Duchenne muscular dystrophy (DMD). The OS conducts
muscle atrophy with drastic consequences to human life. The aim of this section is to
describe the mechanisms that result from OS and the need for antioxidants to prevent or
improve the wellness of affected persons.
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4.1. Sarcopenia

During ageing, a general muscle deconditioning, named sarcopenia, occurs. This
syndrome is characterized by a progressive and general loss of skeletal muscle mass and
strength, with a risk of adverse outcomes such as physical disability, poor quality of life
and death [105]. Inactivity is the most common cause. In fact, from 50 years of age onward,
muscle mass decreases by 1–2%/year and strength by 1.5–5%/year [106]. Moreover, ageing
decreases the amount of type 2 muscle fibers, resulting in a dominance of type 1 muscle
fiber and a higher mitochondrial activity [107].

Two stages of sarcopenia are identified: due to age or ageing and when associated
with disease or disability. In both stages, the cross-sectional area of each fiber decreases as
a consequence of a imbalance in protein turnover [108] and an exacerbation of myonuclear
apoptosis [109]. These two phenomena can result from increased ROS production [110]
and decreased antioxidant systems in skeletal muscle mitochondria [111]. Indeed, RONS
can damage the protein structure [112]. Moreover, clinical and animal studies have shown
an increase in protein carbonylation and lipid peroxidation [111,113]. In response to
RONS production during sarcopenia, mitochondrial Mn-SOD and GPx activities increase
to regulate H2O2 and O2

·− productions [114–116]. In the study of Shenton et al. (2006), the
low levels of H2O2 appear to stimulate protein synthesis, but when in excess, they altered
the protein synthesis by mRNA blocking at the ribosome level [117]. In aortic smooth
muscle cultured cells, it has been reported that H2O2 impaired the mTOR complex and
blocked the phosphorylation of 4E-BP1 and p70S6K [118]. In aging rats, it has been reported
that the decrease in IGF-1 and Akt phosphorylation can reduce mTOR [119]. Finally, an
altered redox status improves inflammation and protein degradation, with an increase in
TNF-α, muscle ring finger-1 (MuRF-1), muscle atrophy F-box (atrogin-1) and proteasome
activity [119,120].

4.2. Chronic Obstructive Pulmonary Disease

Smoking has been shown to be the first cause of COPD. Respiratory obstruction results
in a decrease in oxygen transport in peripheral muscles [121]. It appears that the lower
limb muscles are more affected by this oxygen depletion [122]. Moreover, previous studies
have shown a decrease in strength and endurance, and severe muscle fatigue [123,124]. All
these findings are partly responsible for a muscular atrophy [125], with a decrease in type 1
fibers and an increase in type 2 fibers [126].

From a bioenergetic point of view, mitochondrial density is decreased and glycolytic
metabolism seems to be more stimulated in quadriceps muscle [127,128]. Concerning
MPB, an increased level of atrogin-1 has been reported, but the literature is controversial
about the increase in the expression of MuRF-1 and LC3B (microtubule associated protein
1 light chain 3 beta) levels [125,129]. In the IGF1/PI3K/Akt/mTOR pathways, the increase
in IGF-1 and Akt associated with an increased expression of 4E-BP1, a target of mTOR,
resulted in an inhibition of MPS [130,131]. Finally, in COPD, H2O2 and O2

·− levels are
increased in blood circulation, but also in skeletal muscle. Moreover, as mitochondria
are considered the first source of H2O2 production in COPD patients by comparison with
healthy persons, exercise has been reported to improve OS, particularly in the Complex III
of respiratory chain [132,133].

Several studies have demonstrated an increase in antioxidant enzymes such as SOD,
to compensate for the redox imbalance [134]. Here, as in sarcopenia, the relation between
ROS and muscle atrophy is well established [135]. Indeed, an increased ROS level is known
to stimulate proteolysis through the UPS, autophagy or calpain/caspase pathways [136].

4.3. Duchenne Muscular Dystrophy

DMD is a genetic disorder characterized by progressive muscle degeneration and
weakness due to dystrophin alterations. Opposingly to other muscle pathologies, DMD
is diagnosed during childhood, usually between 4 and 5 years of age [137,138]. This
disease mostly affects boys (1 in 3500–6000 boys), but in rare cases, it can also affect girls.
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Indeed, X-chromosome-linked muscle disease is caused by dystrophin gene mutations [139].
Dystrophin binds the cell membrane to the actin filament. The lack of dystrophin leads to
mechanical fragility and damage during muscle contraction [140].

To improve the therapy approach, several studies are conducted to develop natural
antioxidant and anti-inflammatory molecule treatments. Indeed, DMD reflects the primary
feature of myonecrosis associated with inflammation and OS [141]. During DMD, OS has
a particular effect on protein damage and thiol oxidation, as demonstrated in mice [142].
The production of ROS occurs during myonecrosis after membrane disruption, or during
activities of NAD(P)H oxidase, xanthine oxidase and the decoupling of NOSs [143]. DMD
patients suffer from ischemia, impaired vasodilatation and a loss of NOS sarcolemma
associated with an increase in ROS, which trigger calcium entry into mitochondria [144].

The pathologies described in this section are characterized by OS, leading to muscle
atrophy and damage, the main mechanisms and signaling pathways which are reported in
Figure 3.
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Figure 3. The roles of RONSs during skeletal muscle pathologies. Redox pathways in COPD, DMD
and sarcopenia, mitochondria dysfunction and sarcomere NO leakage produce OS, which causes
muscle damage leading to muscle atrophy. Protein balance pathways: the IGF1/PI3K/Akt/mTOR
protein synthesis pathway is impacted by OS. Mitochondrial dysfunction due to the RONS active,
AMPK, inhibiting mTOR and leading to rapid atrophy. Inflammatory pathways: inflammation
is increased by OS via (+) NF-κB and TNF-α, activating UPS and resulting in muscle atrophy. In
addition, OS triggers the release of antioxidant enzymes via Nrf2; however, SOD, CAT and GPx
are insufficient to compensate for the overproduction of OH− and ONOO−. According to the roles
played by RONSs and their consequences, the described pathologies support OS-induced muscle
atrophy and damage. Created using Biorender.com (accessed on 28 April 2023).

5. Preventive Effects of Microalgal Biomasses and Their Bioactive Molecules in
Muscle Oxidative Stress and Mitochondrial Functions
5.1. Microalgal Biomass

Two main animal models, rodents and fishes, have been studied to test the use of
microalgal biomasses in muscle OS and mitochondrial functions.
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The use of Chlorella vulgaris as a food supplement (150 and 300 mg·kg−1 for three
months) in young and old rats has been shown to improve muscle mass, strength and
function, which is explained by its potency to improve the OS management in skeletal mus-
cles [145]. Another study investigating oxidative damage and metabolic changes induced
by acute exercise in rats (6 h swimming) showed that a ten-day dietary supplementation
with Galdieria sulphuraria (10 g·kg−1) reduced exercise-linked oxidative damage and mito-
chondrial dysfunction. Indeed, an increase in mitochondrial release rate of H2O2, and the
liver and heart antioxidant enzyme activities have been observed. Moreover, a reduction
in lipid oxidative damage was observed. These effects were proposed to be due to the
high content of C-phycocyanin and glutathione in Galdieria sulphuraria, which are able
to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism,
respectively [146]. In trained rats (high-intensity exercise for eight weeks), a dietary supple-
mentation with Spirulina platensis (500 mg·kg−1) improved the antioxidant capacity, as well
as reduced muscle damage and inflammation (C-reactive protein) [147]. Previously, these
authors also showed that supplementation with Spirulina platensis (500 mg·kg−1·day−1)
for eight weeks induced a significant improvement in exercise performance (time of exe-
cution), along with a significant decrease in muscle damage [147]. Using the seaweed of
Gracilaria asiatica for supplementation (250 mg·kg−1 during 10 weeks) in OS induced by
high-intensity resistance exercise, it has been reported that dietary fiber-rich algae could
be a potential nutritional supplement to boost performance and prevent exercise-induced
muscle damage through enhanced maximal carrying strength. The OS was reduced due
to an increase in antioxidant status (SOD activity and GSH content), associated with a
decrease in lipid peroxidation [148].

Fish (common carp) fed with 5% or 10% (w/w) Chlorella vulgaris biomass (rich in
carotenoids as lutein) for 6 weeks, followed by daily treatment with chloramine-T (at
concentration of 10 mg·L–1 for 1 hr in three consecutive days), showed increased GPx and
CAT activities in muscles when compared to the control [149]. In another fish model, it was
shown that feeding Nile tilapia with a microalgal mix containing Nannochloropsis oculata,
Schizochytrium sp. and Spirulina sp. for 12 weeks was able to improve the oxidative status
in muscles, characterized by a significant reduction in ROS, H2O2 and malondialdehyde
(MDA) contents associated with the upregulation of GSH, GPx, CAT and SOD genes [150].
Supplementation with the microalgal strain, Ascochloris spp., in juvenile Clarias gariepi-
nus fish, for an experimental period of 100 days, showed significantly higher glutathione
S-transferase, CAT, SOD and lipid peroxidase activities in muscles [151]. Finally, catfish
(Rhamdia quelen) supplemented for 60 days with 3% residual algal biomasses from Acu-
todesmus obliquus, a microalga rich in carotenoids and chlorophylls, increased muscle SOD
activity, suggesting the potential antioxidant effect of pigments of Acutodesmus obliquus in
improving the organism health status [152].

According to the reported data, microalgal biomasses have shown positive effects on
the muscle redox status. This potential balance of the redox status produced by microalgae
could have a major impact on muscle waste due to ageing, but also in COPD patients.
Moreover, in DMD patients, the inflammation and NO leakage generated by muscle fiber
necrosis or important fibrosis could be reduced by microalgal molecules. Supplementation
with one of the microalgae could be interesting for recovery after a traumatic exercise
session, and to observe the potential effects on muscle remodeling.

5.2. Carotenoids

The two main carotenoids present in microalgae are Fcx and Asx. Fcx has been
reported to promote glucose uptake by skeletal muscle through the translocation of the
glucose transporter, GLUT4, to membranes [153], but with different effects, depending
on the muscle type [154,155]. In mice, the use of Fcx increased the weight of the tibialis
anterior and gastrocnemius muscles, and decreases the OS in the tibialis anterior muscle
through the phosphorylation of mTOR and suppression of the AMPK pathway [156,157].
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When considering Asx, another xanthophyll well known for its beneficial effects on
human health produced by the green alga, Haematococcus pluvialis, its potent antioxidant
activity acts in the phospholipid bilayer membranes.

These beneficial effects of Asx and Fcx are related to their specific chemical strutures.
Indeed, they are two oxycarotenoids, containing oxygen atoms and exhibiting a polyen
chain with a conjugated carbonyl, an epoxide and hydroxyl groups on each end-cycle
(Figure 1). This structure determines their potential biological functions and actions.
Indeed, the central chain, including a system of conjugated double bonds, may carry cyclic
end-groups, which can be substituted with oxygen-containing functional groups. This
specific structure confers an effective reactive oxygen quencher role to Asx and Fcx, forming
radical cations converted into stable compounds due to the electron transfer from vitamin
E [15,158].

Used as food supplements during exercise experiments, the effect of Asx on ROS-
targeted proteins has been shown in mouse skeletal muscles. Specifically, Asx was able to
reduce the modification of carnitine palmitoyltransferase 1 induced by OS [159]. During
exercise, Asx has been reported to increase mitochondria glutathione levels and limit OS
in rat soleus muscles [160]. During long-term immobilization, feeding rats with Asx for
2 weeks induced an attenuation in atrophy of soleus muscle and suppressed myonuclear
apoptosis [161]. Under these conditions, a decreased production of ROS and SOD-1, with
an increased expression of vascular endothelial growth factor, were observed [162]. In a
muscle-atrophied mouse model [163], Asx, used as a food supplement, has been reported
to prevent muscle weight loss, with a decrease in myofiber size. In the soleus muscle, the
authors observed a slight increase in H2O2. The upregulation of AMPK and peroxisome
proliferators (PPAR-γ) favored mitochondrial biogenesis. In myotubes obtained from the
soleus muscle, it has been shown that Asx was preferentially present in mitochondria and
its effect suppressed ROS production.

Studies conducted in humans have revealed that four weeks of treatment with Asx
were not enough to decrease the rate of lipid and carbohydrate oxidation during exer-
cise [164]. In another study, Asx, provided through a Haematococcus pluvialis extract, was
not reported to have any effect after 3 weeks of treatment on the markers of skeletal muscle
injury, such as muscle soreness, creatine kinase activity and muscle performance [165].

It can be concluded that Asx and Fcx have shown their strong antioxidant effect on
muscle, and specifically mitochondria. As in the cases of DMD, sarcopenic and COPD
patients, mitochondria dysfunction is responsible for a lack of energy, reducing physical
capacities, whereby microalgal carotenoids could improve energy production. Moreover,
these molecules could limit muscle atrophy through a direct effect on the phosphorylation
of mTOR or their antioxidant activity. Finally, as Asx increases the expression of AMPK
and PPAR-γ, it can promote muscle adaptations and mitochondrial biogenesis during
pathological or healthy conditions.

5.3. Omega-3 Polyunsaturated Fatty Acids

Although still elusive, the anabolic role ofω3-PUFAs on skeletal muscles is thought to
be due to a reduction in proinflammatory cytokines and myosteatosis, an improvement in
insulin sensitivity [166], MPS stimulation via the mTOR-p70S6K signaling pathway [167]
and a decrease in mitochondrial ROS emission [168]. Muscle supplementation with ω3-
PUFAs has been shown to increase their membrane phospholipid level related to the MPS
and muscle loss prevention [169], that is linked to the preservation of adenosine diphos-
phate (ADP) sensitivity [170]. This is an important point, as ADP-stimulated oxidative
phosphorylation reduces ROS production. Moreover, these preventive effects are also
related to muscle mitochondrial functions, suggesting a close relation between the MPS and
mitochondria bioenergetics [171] through the increased mRNA expression of transcription
factors, such as PCG1-α, mitochondrial transcription factor A (TFAM) and Nrf1 [172],
and the activation of AMPK [173]. As ω3-PUFAs are able to attenuate the generation of
oxidative stress, their supplementation would improve muscle performance [174].



Antioxidants 2023, 12, 1050 13 of 25

The effects of marine microalgae producing EPA and DHA, ω3-PUFAs well known to
have benefits for human health, on mitochondrial functions and muscle pathologies will be
described in the following section. Our review will focus on these molecules even through
otherω3-PUFAs, such as docosapentaenoic acid (DPA, C22:5ω3), which has been reported
to have effects similar to EPA [175].

Clinical studies conducted in older men and women [176] have shown that dietary
ω3-PUFA intake for 8 weeks (4 g/day) plays a role in muscle protein metabolism through
an increased rate of MPS, as well as the protein kinase C and mTOR/p70S6K pathway
activation. ω3-PUFA supplementation also increased muscle mass, strength and function in
older adults, which may be in part transcriptionally regulated by the increased expression
of the uncoupling protein 3 (UCP-3) and ubiquinol cytochrome-C reductase core protein
1 genes, involved in the regulation of mitochondrial functions. In opposition, pathways
related to calpain-3 and ubiquitin-mediated proteolysis, and inhibition of the key anabolic
regulator, mTOR, were reduced by ω3-PUFA supplementation [177]. Through reported
observational studies and randomized controlled trials [168], muscle mass and physical
activity have been associated withω3-PUFA supplementation [178]. In sarcopenia, it has
been recently proposed that ω3-PUFAs may be used for the prevention or treatment of
this musculoskeletal disease [179]. However, the beneficial effects of ω3-PUFAs would
depend on the dose used. Indeed, low daily doses ofω3-PUFAs (EPA and DHA, 0.225 g
and 0.8 g, respectively) are not enough to have any effect on muscle mass, muscle strength
and physical function in elderly people [180], in comparison with doses higher than 1 g
of EPA and DHA [181]. The duration of dietary supplementation withω3-PUFAs is also
important, given that EPA and DHA supplementation for three to six months was enough
to improve handgrip strength and muscle volume in the elderly population [181], while
no change in results was observed after only three months of treatment [182]. In DMD,
the intake ofω3-PUFAs as a dietary food supplement has been reported to increase MPS
and decrease the inflammation cascade [183,184]. An explanation for an increased MPS by
ω3-PUFAs is their role in the activation of the mTORC1/p70S6K1 signaling pathway and
the downregulation of proteasome expression, leading to MPB suppression [185].

In rodent models, fish oil has been shown to reduce the decrease in the soleus muscle
weight in the high fat (HF)-diet-fed group. During treatment, the expression of forkhead
box O3 (FOXO3) and atrogin-1 proteins was also improved. The authors concluded that
fish oil containingω3-PUFAs was able to improve not only lipid imbalance, with activa-
tion of AMPK phosphorylation and expression of PPAR-γ and PGC-1α, but also muscle
metabolism during HF diet [186].

In vitro studies conducted on C2C12 myotubes revealed that DHA was able to in-
crease superoxide production, with a suppression of SOD activity, while EPA induced CAT
activity [187]. In the same cell line, after stimulation with L-leucine, it has been shown
that after treatment with EPA, MPS was increased in parallel to a decreased MPB, and an
increased FOXO3a phosphorylation. In this study, the authors also reported that EPA and
DHA were able to increase the phosphorylation of p70S6K, a key role in skeletal muscle
atrophy [188]. After a treatment with palmitic acid (PAL, C16:0), a condition that induces
lipotoxicity in the C2C12 cell line, EPA, DHA and DPA were found to prevent the effect of
PAL, by promoting cell viability and differentiation of myoblasts into myotubes, that could
be explained by an inhibition of PAL-induced proinflammatory cytokine expression [189].
In this study, the specificity of DPA was highlighted. Indeed, DPA maintained cell via-
bility potentially via mitigating the loss of mitochondrial membrane integrity induced
by PAL [190]. Using lipopolysaccharides (LPS) as a pro-inflammatory agent on C2C12
myoblasts, the co-treatment with EPA and DHA blunted the expression of IL-6 and TNF-
α [189]. As proposed in clinical studies, these effects appear to be mediated by a restoration
of the Akt/mTOR/FOXO3 pathway involved in the muscle differentiation process, as well
as by an inhibition of the proinflammatory transcription factors activating protein-1 and
NF-κB [191,192].
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ω3-PUFAs, through DHA, EPA and DPA, have shown protective effects against energy
metabolism diseases, allowing for protection against the development of diabetes and
obesity in addition to sarcopenia, COPD and DMD. On the other hand, the action ofω3-
PUFAs improves muscle mass, strength and inflammation upkeeps, without having an
antioxidant effect against RONS. The ω3-PUFAs extracted from microalgae could have
an anti-inflammatory role and be protective against metabolic alterations, which, when
coupled with other microalgal molecules, could give synergetic effects.

5.4. Vitamins

Vitamin C, or ascorbic acid, is part of an exogenous, water-soluble, non-enzymatic
group of antioxidants. Its antioxidant properties depend on its presence in different cell
compartments [193]. Vitamin C is a molecule that can be used to prevent sarcopenia [194].
In humans, it has been reported that it was able to reduce age-related muscle loss [195] or
increase muscle mass. Inversely, deficiency leads to muscle atrophy and a decrease in phys-
ical performance [196]. However, the effects of vitamin C during exercise on mitochondrial
function are debatable. Indeed, in healthy men, vitamin C administration has been shown
to decrease the benefits of endurance training on PGC-1α, despite maintaining whole-body
adaptations and performance measures [197]. Moreover, it is unclear whether vitamin C
can act directly on superoxide anions due to its bioavailability after supplementation and
its subcellular location [67]. The use of vitamin C at high doses did not exert any effect on
several skeletal–muscle parameters, such as PGC-1α and TFAM of PGC-related factor [83],
or it may converted into a pro-oxidant molecule, specifically when combined with iron or
copper, resulting in a hydroxyl radical level increase [193].

Vitamin E is a fat-soluble non-enzymatic antioxidant found in all cell membranes, the
most common form being α-TOC [198]. As a lipophilic antioxidant, it protects membranes
from damage, participating in cell immunity, and modulates signal transduction and
gene expression in a redox-dependent and redox-independent manner, regulating cell
functions relevant to its action and the prevention of diseases, such as cancer, atherosclerosis,
inflammation or neurodegenerative diseases [199]. As vitamin C and carotenoids, vitamin E
may attenuate sarcopenia, due to its ability to mitigate age-associated skeletal dysfunction
and enhance muscle regeneration by modulating MPS [200]. At high doses, vitamin
E may also inhibit signaling pathways triggered by the generated OS during exercise
training [201]. However, as reported in a previous review taking into account dietary
intakes and plasma nutrient levels, the effects of vitamin E are debatable relating the
preservation of muscle mass and physical performance in specific populations where
sarcopenia may be present [202]. Moreover, vitamin E does not seem to have any effect
on muscle strength production after chronic strength training. Thus, its supplementation
cannot potentiate muscle growth [104].

Vitamins E and A are recognized for their antioxidant properties in many diseases,
including sarcopenia. Regarding COPD and DMD, they should have similar effects to
counteract RONS. Thus, these vitamins being the compounds found in microalgae could
also support the potential beneficial effects of microalgae on muscle diseases. On the other
hand, one must be careful not to exceed these vitamins, as a contribution from microalgae
alone may be sufficient to obtain only the positive effects.

5.5. Other Antioxidant Molecules

• Polysaccharides

Laminarin, a β-1,3 glucan is extracted from seaweed and is known for its effects
on inflammation and oxidation [203]. It is also a dual regulator of apoptosis and cell
proliferation, with antioxidant activity occurring through three mechanisms, including ROS
scavenging, regulation of the antioxidant system and oxidative-stress-mediated signaling
pathways [204]. In rat L6 myotubes, it has been reported that laminarin was able to
activate the AMPK/p38MAPK (p38 mitogen-activated protein kinase) pathways in skeletal
muscles, resulting in a better production of ATP and glucose uptake [205]. In fish muscles,
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β-glucans have been shown to decrease protein oxidation, lipid peroxidation and ROS
levels. Specifically, β-glucans increased antioxidant enzyme activities, such as CAT, SOD
or GPx, and decreased the expression of p66shc, a gene involved in the regulation of
ROS levels [206]. In zebrafish, β-1,3 glucan from the alga Poterioochromonas malhamensis
enhanced antioxidant capacity by reducing ROS contents [28]. In mice, polysaccharides
(β-(1-3,4, and 6)-D-glucans) from the fungi Ganoderma lucidum [207] have been used to test
their potential effects on the regulation of OS in skeletal muscles during swimming exercise.
After 28 days of treatment, the polysaccharides increased the skeletal muscle activities of
SOD, CAT and GPx, with a decrease in MDA levels, providing the downregulation of OS
during exercise [208].

• Phenolic compounds

Very few studies have reported the effects of phenolic compounds on skeletal muscle
physiology and mitochondrial functions. Among those produced by microalgae, gallic acid
and ferulic acid can be mentioned.

Gallic acid is a benzoic acid that has been reported to prevent muscle decline due to
ageing-associated oxidative stress. Low concentrations of gallic acid intake could delay
skeletal muscle atrophy, as proposed in zebrafish embryos [209]. Studies conducted on
C2C12 myotubes showed that gallic acid was associated with a significant increase in mito-
chondrial DNA and enzymatic activities, as well as an increase in mitochondrial turnover
gene expression [210]. Gallic acid and gallate esters exert antioxidative properties with
different mechanisms, such as ROS decrease and antioxidant enzyme activity increase [211].
Epigallocatechin gallate has been reported to upregulate PGC1-α expression in skeletal
muscles, with an increased number of mitochondria. Moreover, it reduces the production
of free radicals during exercise and inhibits the synthesis of slow-twitch muscle fibers,
which prevent muscle damage [212].

Ferulic acid is a polyphenol widely known for its potential preventive effect on ageing
or inflammation. During endurance exercise, administration of ferulic acid to mice for
12 days showed protection against the depletion of muscle enzymatic antioxidants, such as
CAT, SOD and GPx [213]. In a cardiomyocyte OS cell model obtained after H2O2 treatment
in mouse, ferulic acid protects the cardiomyocytes from OS [214]. In isolated rat psoas
muscles, ferulic acid was able to increase GSH levels and SOD and CAT activities, in
association with a decrease in NO levels [215]. To our knowledge, only one study has
recently reported the effect of ferulic acid (trans, TFA) on skeletal muscle cells [216]. In this
study, during hyperglycemia, TFA increased the activation of AMPK, and also increased
the phosphorylation of acetyl-CoA carboxylase, suggesting that it could promote fatty
acid oxidation. Moreover, under these experimental conditions, TFA reduced ROS and
NO productions.

These other molecules extracted from microalgae show antioxidant effects via SOD,
CAT, GPx and GSH, which could promote the redox profile in sarcopenia, DMD and COPD.
Moreover, an increase of AMPK, PGC1-α and p38MAPK could improve mitochondrial
biogenesis and glucose utilization, which, associated with a good antioxidant capacity,
would limit defective mitochondria, allowing a compensated ATP supply.

In this review, the reported data have shown that microalgae and their bioactive
molecules were able to have potential effects on the mitochondrial function and OS on
skeletal muscle. The specific effects described in this review are synthesized in Figure 4.
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Figure 4. Microalgal effects described on skeletal muscle. Microalgal biomasses have been shown
to prevent muscle atrophy and damage through contraction strength. Moreover, they increase
antioxidant enzymatic activities, such as SOD, CAT and GPx. Microalgal compounds, such as gallic
acid, ferulic acid andω3-PUFAs, prevent muscle atrophy and damage, and activate mitochondrial
biogenesis via the activation of Nrf1, TFAM and PGC-1α. The ω3-PUFA, Asx and Fcx are able to
activate protein synthesis via the phosphorylation of mTOR. Then, these three molecules and β-1,3
glucan increase the activation of AMPK. All these reported microalgal molecules have an antioxidant
activity against ROS. Created using Biorender.com (accessed on 28 April 2023).

6. Conclusions

Despite the limited scientific evidence of the influence of microalgae on skeletal
muscles, to the authors’ knowledge, this paper is the first to provide a comprehensive
review with considerations of the previous and most recent literature regarding the im-
pact that supplementation with microalgal compounds could have on physical exercise
and muscle pathologies under conditions of oxidative stress. Their antioxidant compo-
sition in the form of polysaccharides, vitamins, carotenoids and phenolic compounds
associated with ω3-PUFA makes microalgae a cocktail that can bring synergistic effects on
pathological or healthy skeletal muscle through an antioxidant capacity that needs to be
further understood.
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