

Certificate of Analysis

FOR COMPLIANCE

Kaycha Labs

Platinum Velvet Cake Platinum Velvet Cake Matrix: Flower

Type: Flower - Cured

Sample:AL30905001-002 Harvest/Lot ID: 0064

Batch#: 0064

Sample Size Received: 20 units Total Amount: 4500 units Retail Product Size: 3.5 gram **Sampled:** 09/04/23 04:15 PM Sampling Start: 04:15 PM

Sampling End: 04:15 PM

Sampling Method: SOP.T.20.010.NY

PASSED

Pages 1 of 4

ReliefLeaf, LLC

License #: OCM-AUCC-000022

2612 RT 52

Hopewell Junction, NY, 12533, US

PRODUCT IMAGE

SAFETY RESULTS

Terpenes NOT TESTED

MISC.

Pesticides PASSED

PASSED

PASSED

PASSED

Residuals Solvents

PASSED

PASSED

PASSED

PASSED

Cannabinoid

Total THC

19.5744%

Total CBD Total CBD/Container : 0.000 mg

Total Cannabinoids

												п	
	(6AR,9R) D10-THC	(6AR,9S) D10-THC	СВС	CBD	CBDA	CBDV	CBG	CBGA	CBN	D8-THC	D9-THC	THCA	тнсч
%	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.6257</th><th><l0q< th=""><th><loq< th=""><th>1.1349</th><th>21.0257</th><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.6257</th><th><l0q< th=""><th><loq< th=""><th>1.1349</th><th>21.0257</th><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.6257</th><th><l0q< th=""><th><loq< th=""><th>1.1349</th><th>21.0257</th><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.6257</th><th><l0q< th=""><th><loq< th=""><th>1.1349</th><th>21.0257</th><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.6257</th><th><l0q< th=""><th><loq< th=""><th>1.1349</th><th>21.0257</th><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.6257</th><th><l0q< th=""><th><loq< th=""><th>1.1349</th><th>21.0257</th><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<></th></loq<>	<loq< th=""><th>0.6257</th><th><l0q< th=""><th><loq< th=""><th>1.1349</th><th>21.0257</th><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<>	0.6257	<l0q< th=""><th><loq< th=""><th>1.1349</th><th>21.0257</th><th><loq< th=""></loq<></th></loq<></th></l0q<>	<loq< th=""><th>1.1349</th><th>21.0257</th><th><loq< th=""></loq<></th></loq<>	1.1349	21.0257	<loq< th=""></loq<>
mg/unit	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>21.900</th><th><loq< th=""><th><loq< th=""><th>39.722</th><th>735.900</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>21.900</th><th><loq< th=""><th><loq< th=""><th>39.722</th><th>735.900</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>21.900</th><th><loq< th=""><th><loq< th=""><th>39.722</th><th>735.900</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>21.900</th><th><loq< th=""><th><loq< th=""><th>39.722</th><th>735.900</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>21.900</th><th><loq< th=""><th><loq< th=""><th>39.722</th><th>735.900</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>21.900</th><th><loq< th=""><th><loq< th=""><th>39.722</th><th>735.900</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>21.900</th><th><loq< th=""><th><loq< th=""><th>39.722</th><th>735.900</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	21.900	<loq< th=""><th><loq< th=""><th>39.722</th><th>735.900</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>39.722</th><th>735.900</th><th><loq< th=""></loq<></th></loq<>	39.722	735.900	<loq< th=""></loq<>
LOQ	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
	%	%	%	%	%	%	%	%	%	%	%	%	%

Analysis Method: SOP.T.30.031.NY, SOP.T.40.031.NY Analyzed Date: 09/06/23 14:15:38

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Kaycha Labs

Platinum Velvet Cake Platinum Velvet Cake Matrix : Flower

Type: Flower - Cured

Certificate of Analysis

PASSED

Hopewell Junction , NY, 12533, US Telephone: (860) 874-2872 Email: nick@headvtree.com License # : OCM-AUCC-000022

Sample : AL30905001-002 Harvest/Lot ID: 0064 Batch#: 0064 Sampled: 09/04/23

Sample Size Received: 20 units Total Amount : 4500 units Sampling Method: SOP.T.20.010.NY

Page 2 of 4

Pesticides

PASSED

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result
PYRETHRINS, TOTAL	0.1	ppm	1	PASS	<loq< td=""></loq<>
AZADIRACHTIN	0.1	ppm	1	PASS	<loq< td=""></loq<>
INDOLE-3-BUTYRIC ACID	0.1	ppm	1	PASS	<loq< td=""></loq<>
MYCLOBUTANIL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
PIPERONYL BUTOXIDE	0.1	ppm	2	PASS	<loq< td=""></loq<>
ABAMECTIN B1A	0.1	ppm	0.5	PASS	<loq< td=""></loq<>
ACEPHATE	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
ACEQUINOCYL	0.1	ppm	2	PASS	<loq< td=""></loq<>
ACETAMIPRID	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
ALDICARB	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
AZOXYSTROBIN	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
CHLORMEQUAT CHLORIDE	0.1	ppm	1	PASS	<loq< td=""></loq<>
BIFENAZATE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
BIFENTHRIN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CARBARYL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
COUMAPHOS	0.1	ppm	1	PASS	<loq< td=""></loq<>
CHLORPYRIFOS	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DAMINOZIDE	0.1	ppm	1	PASS	<loq< td=""></loq<>
BOSCALID	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
CARBOFURAN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CHLORANTRANILIPROLE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CLOFENTEZINE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DIAZINON	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DICHLORVOS	0.1	ppm	1	PASS	<loq< td=""></loq<>
DIMETHOATE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DIMETHOMORPH	0.1	ppm	1	PASS	<loq< td=""></loq<>
ETHOPROPHOS	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
ETOFENPROX	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
ETOXAZOLE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
FENHEXAMID	0.1	ppm	1	PASS	<loq< td=""></loq<>
FENOXYCARB	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
FENPYROXIMATE	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
FIPRONIL	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
FLONICAMID	0.1	ppm	1	PASS	<loq< td=""></loq<>
FLUDIOXONIL	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
HEXYTHIAZOX	0.1	ppm	1	PASS	<loq< td=""></loq<>
IMAZALIL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
IMIDACLOPRID	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
KRESOXIM METHYL	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
MALATHION	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
METALAXYL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
METHIOCARB	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
METHOMYL	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
MEVINPHOS	0.1	ppm	1	PASS	<loq< td=""></loq<>
NALED	0.1	ppm	0.5	PASS	<loq< td=""></loq<>
OXAMYL	0.1	ppm	1	PASS	<loq< td=""></loq<>

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result
PACLOBUTRAZOL	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
PERMETHRIN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PHOSMET	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PRALLETHRIN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PROPICONAZOLE	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
PROPOXUR	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PYRIDABEN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPINETORAM, TOTAL	0.1	ppm	1	PASS	<loq< th=""></loq<>
SPINOSAD, TOTAL	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPIROMESIFEN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPIROTETRAMAT	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPIROXAMINE	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
TEBUCONAZOLE	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
THIACLOPRID	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
THIAMETHOXAM	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
TRIFLOXYSTROBIN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
CAPTAN *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CHLORDANE *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CHLORFENAPYR *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CYFLUTHRIN *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CYPERMETHRIN *	0.1	ppm	1	PASS	<loq< th=""></loq<>
METHYL PARATHION *	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
MGK-264 *	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PENTACHLORONITROBENZENE *	0.1	ppm	1	PASS	<loq< th=""></loq<>

Weight: 1.0248g

Analysis Method : SOP.T.40.104.NY, SOP.T30.104.NY and SOP.T.40.154.NY Analyzed Date : 09/06/23 15:37:29

Analysis Method: SOP.T.40.154.NY Analyzed Date: 09/06/23 15:37:58

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Signature 09/11/23

Kaycha Labs

Platinum Velvet Cake Platinum Velvet Cake Matrix : Flower

Type: Flower - Cured

Certificate of Analysis

PASSED

Hopewell Junction , NY, 12533, US Telephone: (860) 874-2872 Fmail: nick@headytree.com License # : OCM-AUCC-000022

Sample : AL30905001-002 Harvest/Lot ID: 0064 Batch#: 0064 Sampled: 09/04/23

Sample Size Received: 20 units Total Amount: 4500 units Sampling Method: SOP.T.20.010.NY

Page 3 of 4

Microbial

PASSED

Mycotoxins

PASSED

Analyte	LOQ	Units	Result	Pass / Fail	Action Level
TOTAL AEROBIC BACTERIA	100	CFU/g	1600	TESTED	
TOTAL YEAST AND MOLD	100	CFU/g	>490000	TESTED	
ESCHERICHIA COLI SHIGELLA SPP			Not Present	PASS	
SALMONELLA SPECIES			Not Present	PASS	
ASPERGILLUS TERREUS			Not Present	PASS	
ASPERGILLUS NIGER			Not Present	PASS	
ASPERGILLUS FLAVUS			Not Present	PASS	
ASPERGILLUS FUMIGATUS			Not Present	PASS	

Analysis Method: SOP.T.30.104.NY, SOP.T.40.104.NY Analyzed Date: 09/06/23 15:37:42

LOO Result Pass / Analyte Units Action Fail Level **AFLATOXIN G2** 0.003 <LOQ PASS 0.02 ppm AFLATOXIN G1 0.003 ppm <LOQ PASS 0.02 PASS AFLATOXIN B2 0.003 <LOQ 0.02 ppm AFLATOXIN B1 <LOQ PASS 0.003 mag 0.02 OCHRATOXIN A+ PASS 0.010 <L00 0.02 ppm <LOO PASS TOTAL AFLATOXINS (B1, B2, G1, G2) 0.003 mag 0.02

Weight: 1.059g

Analysis Method : SOP.T.40.058A.NY, SOP.T.40.058B.NY, SOP.T.40.208.NY **Analyzed Date :** $09/06/23\ 11:38:33$

Hg

Heavy Metals

PASSED

Metal	LOQ	Units	Result	Pass / Fail	Action Level
ANTIMONY	0.1000	ug/g	<loq< th=""><th>PASS</th><th>2</th></loq<>	PASS	2
ARSENIC	0.1000	ug/g	<loq< th=""><th>PASS</th><th>0.2</th></loq<>	PASS	0.2
CADMIUM	0.1000	ug/g	<loq< th=""><th>PASS</th><th>0.3</th></loq<>	PASS	0.3
CHROMIUM	1.0000	ug/g	<loq< th=""><th>PASS</th><th>110</th></loq<>	PASS	110
COPPER	1.0000	ug/g	18.2325	PASS	30
LEAD	0.1000	ug/g	<loq< th=""><th>PASS</th><th>0.5</th></loq<>	PASS	0.5
MERCURY	0.0100	ug/g	<loq< th=""><th>PASS</th><th>0.1</th></loq<>	PASS	0.1
NICKEL	0.1000	ug/g	<loq< th=""><th>PASS</th><th>2</th></loq<>	PASS	2

Weight: 0.4662g

Analysis Method: SOP.T.30.084.NY, SOP.T.40.084.NY

Analyzed Date: 09/06/23 14:24:29

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Signature 09/11/23

Kaycha Labs

Platinum Velvet Cake Platinum Velvet Cake Matrix : Flower

Type: Flower - Cured

Certificate of Analysis

PASSED

ReliefLeaf, LLC

2612 RT 52 Hopewell Junction , NY, 12533, US Telephone: (860) 874-2872 Email: nick@headytree.com License #: OCM-AUCC-000022 Sample : AL30905001-002 Harvest/Lot ID: 0064 Batch# : 0064 Sampled : 09/04/23

Sample Size Received: 20 units Total Amount: 4500 units Sampling Method: SOP.T.20.010.NY

Page 4 of 4

Filth/Foreign Material

PASSED

Moisture

PASSED

Analyte Stems (>3mm)	LOQ	Units %	Result ND	P/F PASS	Action Level	Analyte Moisture Content	LOQ 5.0	Units %	Result	P/F PASS	Action Level
Foreign Matter Mammalian excreta		% ma	ND ND	PASS PASS	2	Weight: 0.504q	3.0	70	11.1		
Weight: 17.2538q		illy	ND	1 733	1	Analysis Method: SOP.T.40.021 Analyzed Date: 09/06/23 12:10:38					

Analysis Method : SOP.T.40.090

Analysis Method : SOP.T.40.090 Analyzed Date : 09/06/23 09:29:48

Water Activity

PASSED

Analyte Water Activity	LOQ 0.10	Units aw	Result 0.44	P/F PASS	Action Level 0.65
Weight: 0.3548g					
Analysis Method: SOP T 40 019					

....,200 2010 .

 $\begin{array}{l} \textbf{Analysis Method:} \ \mathsf{SOP.T.40.019} \\ \textbf{Analyzed Date:} \ 09/06/23 \ 12:51:05 \\ \end{array}$

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Signature 09/11/23