

Certificate of Analysis

FOR COMPLIANCE

ReliefLeaf, LLC

License #: OCM-AUCC-000022

2612 RT 52

Hopewell Junction, NY, 12533, US

PRODUCT IMAGE

SAFETY RESULTS

Pesticides PASSED

PASSED

PASSED

PASSED

Pages 1 of 4

PASSED

Sampling Method: Laboratory Dropoff

Kaycha Labs

Super Boof Pre Roll Super Boof Matrix: Flower

Type: Flower - Cured

Sample:AL30630010-008

Sample Size Received: 13 units Total Amount: 1813 units Retail Product Size: 1 gram Sampled: 06/29/23 03:30 PM Sampling Start: 03:30 PM Sampling End: 03:30 PM

Harvest/Lot ID: 0057

Batch#: 0057 Seed to Sale# NA

Terpenes NOT TESTED

PASSED

MISC.

PASSED

Cannabinoid

Total THC

Total CBD

Total Cannabinoids

						-							
	(6AR,9R) D10-THC	(6AR,9S) D10-THC	СВС	CBD	CBDA	CBDV	CBG	CBGA	CBN	D8-THC	D9-THC	THCA	THCV
%	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0.2080</td><td>2.7279</td><td><loq< td=""><td><loq< td=""><td>0.1380</td><td>21.2861</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0.2080</td><td>2.7279</td><td><loq< td=""><td><loq< td=""><td>0.1380</td><td>21.2861</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0.2080</td><td>2.7279</td><td><loq< td=""><td><loq< td=""><td>0.1380</td><td>21.2861</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.2080</td><td>2.7279</td><td><loq< td=""><td><loq< td=""><td>0.1380</td><td>21.2861</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.2080</td><td>2.7279</td><td><loq< td=""><td><loq< td=""><td>0.1380</td><td>21.2861</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.2080</td><td>2.7279</td><td><loq< td=""><td><loq< td=""><td>0.1380</td><td>21.2861</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	0.2080	2.7279	<loq< td=""><td><loq< td=""><td>0.1380</td><td>21.2861</td><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.1380</td><td>21.2861</td><td><loq< td=""></loq<></td></loq<>	0.1380	21.2861	<loq< td=""></loq<>
mg/unit	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>2.080</td><td>27.279</td><td><loq< td=""><td><loq< td=""><td>1.380</td><td>212.861</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>2.080</td><td>27.279</td><td><loq< td=""><td><loq< td=""><td>1.380</td><td>212.861</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>2.080</td><td>27.279</td><td><loq< td=""><td><loq< td=""><td>1.380</td><td>212.861</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>2.080</td><td>27.279</td><td><loq< td=""><td><loq< td=""><td>1.380</td><td>212.861</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>2.080</td><td>27.279</td><td><loq< td=""><td><loq< td=""><td>1.380</td><td>212.861</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>2.080</td><td>27.279</td><td><loq< td=""><td><loq< td=""><td>1.380</td><td>212.861</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	2.080	27.279	<loq< td=""><td><loq< td=""><td>1.380</td><td>212.861</td><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td>1.380</td><td>212.861</td><td><loq< td=""></loq<></td></loq<>	1.380	212.861	<loq< td=""></loq<>
LOQ	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
	%	%	%	%	%	%	%	%	%	%	%	%	%

Analysis Method : SOP.T.30.031.NY, SOP.T.40.031.NY Analyzed Date : 07/05/23 13:45:27

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Kaycha Labs

Super Boof Pre Roll Super Boof Matrix : Flower

Type: Flower - Cured

Page 2 of 4

PASSED

Certificate of Analysis

Hopewell Junction , NY, 12533, US Telephone: (860) 874-2872 Email: nick@headvtree.com License # : OCM-AUCC-000022

Sample : AL30630010-008 Harvest/Lot ID: 0057

Batch#: 0057 Sampled: 06/29/23 Sample Size Received: 13 units Total Amount: 1813 units Sample Method : SOP Client Method

0

Pesticides

	A	-			
_	/\	-	-		
	—			ъ.	ш

Pesticide	LOQ	Units	Action Level	Pass/Fail	Resu
PYRETHRINS, TOTAL	0.1	ppm	1	PASS	<loq< td=""></loq<>
AZADIRACHTIN	0.1	ppm	1	PASS	<l0q< td=""></l0q<>
INDOLE-3-BUTYRIC ACID	0.1	ppm	1	PASS	<loq< td=""></loq<>
MYCLOBUTANIL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
PIPERONYL BUTOXIDE	0.1	ppm	2	PASS	<loq< td=""></loq<>
ABAMECTIN B1A	0.1	ppm	0.5	PASS	<loq< td=""></loq<>
ACEPHATE	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
ACEQUINOCYL	0.1	ppm	2	PASS	<l0q< td=""></l0q<>
ACETAMIPRID	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
ALDICARB	0.1	ppm	0.4	PASS	<l0q< td=""></l0q<>
AZOXYSTROBIN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CHLORMEQUAT CHLORIDE	0.1	ppm	1	PASS	<l0q< td=""></l0q<>
BIFENAZATE	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
BIFENTHRIN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CARBARYL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
COUMAPHOS	0.1	ppm	1	PASS	<l00< td=""></l00<>
CHLORPYRIFOS	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DAMINOZIDE	0.1	ppm	1	PASS	<l0q< td=""></l0q<>
BOSCALID	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
CARBOFURAN	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
CHLORANTRANILIPROLE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CLOFENTEZINE	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
DIAZINON	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
DICHLORVOS	0.1	ppm	1	PASS	<loq< td=""></loq<>
DIMETHOATE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DIMETHOMORPH	0.1	ppm	1	PASS	<l00< td=""></l00<>
ETHOPROPHOS	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
ETOFENPROX	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
ETOXAZOLE	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
FENHEXAMID	0.1	ppm	1	PASS	<l00< td=""></l00<>
FENOXYCARB	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
FENPYROXIMATE	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
FIPRONIL	0.1	ppm	0.4	PASS	<l00< td=""></l00<>
FLONICAMID	0.1	ppm	1	PASS	<l00< td=""></l00<>
FLUDIOXONIL	0.1	ppm	0.4	PASS	<l0q< td=""></l0q<>
HEXYTHIAZOX	0.1	ppm	1	PASS	<loq< td=""></loq<>
IMAZALIL	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
IMIDACLOPRID	0.1	ppm	0.4	PASS	<l0q< td=""></l0q<>
KRESOXIM METHYL	0.1	ppm	0.4	PASS	<l0q< td=""></l0q<>
MALATHION	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
METALAXYL	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
METHIOCARB	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
METHIOCARB	0.1	ppm	0.4	PASS	<l0q< td=""></l0q<>
MEVINPHOS	0.1	ppm	1	PASS	<loq< td=""></loq<>
	0.1	ppm	0.5	PASS	<l0q< td=""></l0q<>
NALED	0.1		1	PASS	
OXAMYL	0.1	ppm	1	PASS	<loq< td=""></loq<>

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result
PACLOBUTRAZOL	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
PERMETHRIN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
PHOSMET	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
PRALLETHRIN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
PROPICONAZOLE	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
PROPOXUR	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
PYRIDABEN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
SPINETORAM, TOTAL	0.1	ppm	1	PASS	<loq< td=""></loq<>
SPINOSAD, TOTAL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
SPIROMESIFEN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
SPIROTETRAMAT	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
SPIROXAMINE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
TEBUCONAZOLE	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
THIACLOPRID	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
THIAMETHOXAM	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
TRIFLOXYSTROBIN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CAPTAN *	0.1	ppm	1	PASS	<loq< td=""></loq<>
CHLORDANE *	0.1	ppm	1	PASS	<loq< td=""></loq<>
CHLORFENAPYR *	0.1	ppm	1	PASS	<loq< td=""></loq<>
CYFLUTHRIN *	0.1	ppm	1	PASS	<loq< td=""></loq<>
CYPERMETHRIN *	0.1	ppm	1	PASS	<loq< td=""></loq<>
METHYL PARATHION *	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
MGK-264 *	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
PENTACHLORONITROBENZENE *	0.1	ppm	1	PASS	<loq< td=""></loq<>

Analysis Method :SOP.T.40.104.NY, SOP.T30.104.NY and SOP.T.40.154.NY Analyzed Date :07/10/23 17:27:36

Analysis Method: SOP.T.40.154.NY Analyzed Date: 07/10/23 17:27:23

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Kaycha Labs

Super Boof Pre Roll Super Boof Matrix : Flower

Type: Flower - Cured

Certificate of Analysis

Hopewell Junction , NY, 12533, US Telephone: (860) 874-2872 Email: nick@headvtree.com License # : OCM-AUCC-000022

Sample : AL30630010-008 Harvest/Lot ID: 0057

Batch#: 0057 Sampled: 06/29/23 Sample Size Received: 13 units Total Amount: 1813 units Sample Method : SOP Client Method **PASSED**

Page 3 of 4

Units

Microbial

Action Analyte

Mycotoxins

PASSED

Result Pass / Action

Analyte	LOQ	Units	Result	Pass / Fail
TOTAL AEROBIC BACTERIA	10	CFU/g	91000	TESTED
TOTAL YEAST AND MOLD	10	CFU/g	12000	TESTED
ESCHERICHIA COLI SHIGELLA SPP			Not Present	PASS
SALMONELLA SPECIES			Not Present	PASS
ASPERGILLUS TERREUS			Not Present	PASS
ASPERGILLUS NIGER			Not Present	PASS
ASPERGILLUS FLAVUS			Not Present	PASS
ASPERGILLUS FUMIGATUS			Not Present	PASS

Weight: 1.0602g

 $\begin{array}{l} \textbf{Analysis Method:} SOP.T.40.058A.NY, SOP.T.40.058B.NY, SOP.T.40.208.NY, \\ \textbf{Analyzed Date:} 07/03/23\ 14:29:34 \end{array}$

	•			Fail	Level
AFLATOXIN G2	0.003	ppm	<loq< td=""><td>PASS</td><td>0.02</td></loq<>	PASS	0.02
AFLATOXIN G1	0.003	ppm	<loq< th=""><th>PASS</th><th>0.02</th></loq<>	PASS	0.02
AFLATOXIN B2	0.003	ppm	<loq< th=""><th>PASS</th><th>0.02</th></loq<>	PASS	0.02
AFLATOXIN B1	0.003	ppm	<loq< th=""><th>PASS</th><th>0.02</th></loq<>	PASS	0.02
OCHRATOXIN A+	0.010	ppm	<loq< th=""><th>PASS</th><th>0.02</th></loq<>	PASS	0.02
TOTAL AFLATOXINS (B1, B2, G1, G2)	0.003	ppm	<loq< th=""><th>PASS</th><th>0.02</th></loq<>	PASS	0.02
Weight:	1440	0.0.0.0		11/	1

LOQ

Analysis Method: SOP.T.30.104.NY, SOP.T.40.104.NY

Analyzed Date: 07/10/23 17:28:40

Heavy Metals

Metal	LOQ	Units	Result	Pass / Fail	Action Level
ANTIMONY	0.1000	ug/g	<loq< td=""><td>PASS</td><td>2</td></loq<>	PASS	2
ARSENIC	0.1000	ug/g	<loq< td=""><td>PASS</td><td>0.2</td></loq<>	PASS	0.2
CADMIUM	0.1000	ug/g	<loq< td=""><td>PASS</td><td>0.3</td></loq<>	PASS	0.3
CHROMIUM	1.0000	ug/g	<loq< td=""><td>PASS</td><td>110</td></loq<>	PASS	110
COPPER	1.0000	ug/g	11.7363	PASS	30
LEAD	0.1000	ug/g	<loq< td=""><td>PASS</td><td>0.5</td></loq<>	PASS	0.5
MERCURY	0.0100	ug/g	<loq< td=""><td>PASS</td><td>0.1</td></loq<>	PASS	0.1
NICKEL	0.1000	ug/g	<loq< td=""><td>PASS</td><td>2</td></loq<>	PASS	2

Weight: 0.497g

Analysis Method: SOP.T.30.084.NY, SOP.T.40.084.NY

Analyzed Date: 07/05/23 17:12:39

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Kaycha Labs

Super Boof Pre Roll Super Boof Matrix : Flower

Type: Flower - Cured

PASSED

Certificate of Analysis

Hopewell Junction , NY, 12533, US Telephone: (860) 874-2872 Fmail: nick@headytree.com License # : OCM-AUCC-000022

Sample : AL30630010-008 Harvest/Lot ID: 0057

Batch#: 0057 Sampled: 06/29/23 Sample Size Received: 13 units Total Amount: 1813 units Sample Method : SOP Client Method

Page 4 of 4

Filth/Foreign **Material**

PASSED

Moisture

PASSED

Analyte	LOQ	Units	Result	P/F	Action Level	Analyte	LOQ	Units	Result	P/F	Action Level
Stems (>3mm)	1.00	%	ND	PASS	5	Moisture Content	5.0	%	9.5	PASS	15
Foreign Matter	0.10	%	ND	PASS	2	Weight:	777				TIL
Mammalian excreta	0.10	mg	ND	PASS	1	0.503g					

Analysis Method: SOP.T.40.021 Analyzed Date: 07/03/23 15:45:00 Weight: 9.2846g

Analysis Method : SOP.T.40.090

Water Activity

PASSED

Analyte	LOQ	Units	Result	P/F	Action Level
Water Activity	0.10	aw	0.60	PASS	0.65

rounding errors.

Analysis Method: SOP.T.40.019 Analyzed Date: 07/05/23 09:32:03

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

