

Certificate of Analysis

Kaycha Labs

White Runtz White Runtz Matrix: Flower

Type: Flower - Cured

Sample: AL30505005-001 Harvest/Lot ID: 0036

> Batch#: 0036 Seed to Sale# na

Sample Size Received: 8 units

Total Amount: 1055 units Retail Product Size: 3.5 gram Sampled: 05/03/23

Sampling Start: 08:00 AM Sampling End: 08:00 AM Revision Date: 05/18/23

PASSED

Pages 1 of 4

May 18, 2023 | ReliefLeaf, LLC

Hopewell Junction, NY, 12533, US

PRODUCT IMAGE

SAFETY RESULTS

Heavy Metals

Microbials

Mycotoxins

Residuals Solvents

Filth

Water Activity

Moisture PASSED

MISC.

NOT TESTED

PASSED

Cannabinoid

Total THC 19.6586% Total THC/Container : 688.051 mg

Total CBD Total CBD/Container: 0 mg

Total Cannabinoids

Total Cannabinoids/Container: 803.6035 mg

	(6AR,9R)	(6AR,9S)				- 		V	/	<u> </u>	\		
	D10-THC	D10-THC	CBC	CBD	CBDA	CBDV	CBG	CBGA	CBN	D8-THC	D9-THC	THCA	THCV
%	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0.7719</td><td><loq< td=""><td><loq< td=""><td>1.6229</td><td>20.5653</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0.7719</td><td><loq< td=""><td><loq< td=""><td>1.6229</td><td>20.5653</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0.7719</td><td><loq< td=""><td><loq< td=""><td>1.6229</td><td>20.5653</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0.7719</td><td><loq< td=""><td><loq< td=""><td>1.6229</td><td>20.5653</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.7719</td><td><loq< td=""><td><loq< td=""><td>1.6229</td><td>20.5653</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.7719</td><td><loq< td=""><td><loq< td=""><td>1.6229</td><td>20.5653</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.7719</td><td><loq< td=""><td><loq< td=""><td>1.6229</td><td>20.5653</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	0.7719	<loq< td=""><td><loq< td=""><td>1.6229</td><td>20.5653</td><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td>1.6229</td><td>20.5653</td><td><loq< td=""></loq<></td></loq<>	1.6229	20.5653	<loq< td=""></loq<>
mg/unit	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>27.0165</td><td><loq< td=""><td><loq< td=""><td>56.8015</td><td>719.7855</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>27.0165</td><td><loq< td=""><td><loq< td=""><td>56.8015</td><td>719.7855</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>27.0165</td><td><loq< td=""><td><loq< td=""><td>56.8015</td><td>719.7855</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>27.0165</td><td><loq< td=""><td><loq< td=""><td>56.8015</td><td>719.7855</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>27.0165</td><td><loq< td=""><td><loq< td=""><td>56.8015</td><td>719.7855</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>27.0165</td><td><loq< td=""><td><loq< td=""><td>56.8015</td><td>719.7855</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>27.0165</td><td><loq< td=""><td><loq< td=""><td>56.8015</td><td>719.7855</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	27.0165	<loq< td=""><td><loq< td=""><td>56.8015</td><td>719.7855</td><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td>56.8015</td><td>719.7855</td><td><loq< td=""></loq<></td></loq<>	56.8015	719.7855	<loq< td=""></loq<>
LOQ	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	%	%	%	%	%	%	%	%	%	%	%	%	%

Analysis Method: SOP.T.30.031.NY, SOP.T.40.031.NY Analyzed Date: 05/08/23 14:51:57

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Signature 05/17/23

Revision: #1 - Revised to correct units

Kaycha Labs

White Runtz White Runtz Matrix : Flower

Type: Flower - Cured

Certificate of Analysis

Hopewell Junction , NY, 12533, US Telephone: (860) 874-2872 Email: nick@headvtree.com

Sample : AL30505005-001 Harvest/Lot ID: 0036

Batch#: 0036 Sampled: 05/03/23 Sample Size Received: 8 units Total Amount: 1055 units Sample Method : SOP Client Method **PASSED**

Page 2 of 4

Pesticides

)	Á	S	Ś	E	D
		_	_		

Pesticide	LOQ	Units	Action Level	Pass/Fail	Resu
PYRETHRINS, TOTAL	0.1	ppm	1	PASS	<l0q< td=""></l0q<>
AZADIRACHTIN	0.1	ppm	1	PASS	<loq< td=""></loq<>
INDOLE-3-BUTYRIC ACID	0.1	ppm	1	PASS	<l00< td=""></l00<>
MYCLOBUTANIL	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
PIPERONYL BUTOXIDE	0.1	ppm	2	PASS	<l0q< td=""></l0q<>
ABAMECTIN B1A	0.1	ppm	0.5	PASS	<loq< td=""></loq<>
ACEPHATE	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
ACEQUINOCYL	0.1	ppm	2	PASS	<l0q< td=""></l0q<>
ACETAMIPRID	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
ALDICARB	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
AZOXYSTROBIN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CHLORMEQUAT CHLORIDE	0.1	ppm	1	PASS	<l00< td=""></l00<>
BIFENAZATE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
BIFENTHRIN	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
CARBARYL	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
COUMAPHOS	0.1	ppm	1	PASS	<l00< td=""></l00<>
CHLORPYRIFOS	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
DAMINOZIDE	0.1	ppm	1	PASS	<l00< td=""></l00<>
BOSCALID	0.1	ppm	0.4	PASS	<l00< td=""></l00<>
CARBOFURAN	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
CHLORANTRANILIPROLE	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
CLOFENTEZINE	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
DIAZINON	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
DICHLORVOS	0.1	ppm	1	PASS	<l00< td=""></l00<>
DIMETHOATE	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
DIMETHOMORPH	0.1	ppm	1	PASS	<l00< td=""></l00<>
ETHOPROPHOS	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
ETOFENPROX	0.1	ppm	0.4	PASS	<l0q< td=""></l0q<>
ETOXAZOLE	0.1	ppm	0.4	PASS	<l00< td=""></l00<>
FENHEXAMID	0.1	ppm	1	PASS	<l00< td=""></l00<>
FENOXYCARB	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
FENDYROXIMATE	0.1	ppm	0.4	PASS	<l00< td=""></l00<>
FIPRONIL	0.1	ppm	0.4	PASS	<l00< td=""></l00<>
	0.1	ppm	1	PASS	<l0q< td=""></l0q<>
FLONICAMID FLUDIOXONIL	0.1	ppm	0.4	PASS	<l00< td=""></l00<>
	0.1	ppm	1	PASS	<l00< td=""></l00<>
HEXYTHIAZOX	0.1		0.2	PASS	<l0q< td=""></l0q<>
IMAZALIL	0.1	ppm		PASS	
IMIDACLOPRID		ppm	0.4		<l00< td=""></l00<>
KRESOXIM METHYL	0.1	ppm	0.4	PASS	<l00< td=""></l00<>
MALATHION	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
METALAXYL	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
METHIOCARB	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
METHOMYL	0.1	ppm	0.4	PASS	<l00< td=""></l00<>
MEVINPHOS	0.1	ppm	1	PASS	<loq< td=""></loq<>
NALED	0.1	ppm	0.5	PASS	<l0q< td=""></l0q<>
OXAMYL	0.1	ppm	1	PASS	<loq< td=""></loq<>

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result
PACLOBUTRAZOL	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
PERMETHRIN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
PHOSMET	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
PRALLETHRIN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
PROPICONAZOLE	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
PROPOXUR	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
PYRIDABEN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
SPINETORAM, TOTAL	0.1	ppm	1	PASS	<loq< td=""></loq<>
SPINOSAD, TOTAL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
SPIROMESIFEN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
SPIROTETRAMAT	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
SPIROXAMINE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
TEBUCONAZOLE	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
THIACLOPRID	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
THIAMETHOXAM	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
TRIFLOXYSTROBIN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CAPTAN *	0.1	ppm	1	PASS	<loq< td=""></loq<>
CHLORDANE *	0.1	ppm	1	PASS	<loq< td=""></loq<>
CHLORFENAPYR *	0.1	ppm	1	PASS	<loq< td=""></loq<>
CYFLUTHRIN *	0.1	ppm	1	PASS	<loq< td=""></loq<>
CYPERMETHRIN *	0.1	ppm	1	PASS	<loq< td=""></loq<>
METHYL PARATHION *	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
MGK-264 *	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
PENTACHLORONITROBENZENE *	0.1	ppm	1	PASS	<loq< td=""></loq<>

Weight: 1.0378g

Analysis Method: SOP.T.40.104.NY, SOP.T30.104.NY and SOP.T.40.154.NY Analyzed Date: 05/17/23 08:49:39

Analysis Method: SOP.T.40.154.NY

Analyzed Date: N/A

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Revision: #1 - Revised to correct units

Signature 05/17/23

Kaycha Labs

White Runtz White Runtz Matrix : Flower

Type: Flower - Cured

Certificate of Analysis

Hopewell Junction , NY, 12533, US Telephone: (860) 874-2872 Email: nick@headvtree.com

Sample : AL30505005-001 Harvest/Lot ID: 0036

Batch#: 0036 Sampled: 05/03/23 Sample Size Received: 8 units Total Amount: 1055 units Sample Method : SOP Client Method **PASSED**

Page 3 of 4

JOE.
Y

Microbial

Mycotoxins

PASSED

Analyte		LOQ	Units	Result	Pass / Fail	
TOTAL AERO	DBIC BACTERIA	10	CFU/g	45000	TESTED	
TOTAL YEAS	T AND MOLD	10	CFU/g	56000	TESTED	
ESCHERICHI SPP	A COLI SHIGELLA			Not Present	PASS	
SALMONELL	A SPECIES			Not Present	PASS	
ASPERGILLU	IS TERREUS			Not Present	PASS	
ASPERGILLU	IS NIGER			Not Present	PASS	
ASPERGILLU	IS FLAVUS			Not Present	PASS	
ASPERGILLU	IS FUMIGATUS			Not Present	PASS	

Weight: 0.9778g

Analysis Method : SOP.T.40.058A.NY, SOP.T.40.058B.NY, SOP.T.40.208.NY Analyzed Date : 05/08/23 15:26:33

Action Level	Analyte	LOQ	Units	Result	Pass / Fail	Action Level
	AFLATOXIN G2	0.0025	ppm	<loq< td=""><td>PASS</td><td>0.02</td></loq<>	PASS	0.02
	AFLATOXIN G1	0.0025	ppm	<loq< td=""><td>PASS</td><td>0.02</td></loq<>	PASS	0.02
	AFLATOXIN B2	0.0025	ppm	<loq< td=""><td>PASS</td><td>0.02</td></loq<>	PASS	0.02
	AFLATOXIN B1	0.0025	ppm	<loq< td=""><td>PASS</td><td>0.02</td></loq<>	PASS	0.02
	OCHRATOXIN A+	0.01	ppm	<loq< td=""><td>PASS</td><td>0.02</td></loq<>	PASS	0.02
	TOTAL AFLATOXINS (B1, B2, G1, G2)	0.0025	ppm	<loq< td=""><td>PASS</td><td>0.02</td></loq<>	PASS	0.02
	Weight:					

Weight: 1.0378g

Analysis Method: SOP.T.30.104.NY, SOP.T.40.104.NY

Hg

Heavy Metals

PASSED

Metal	LOQ	Units	Result	Pass / Fail	Action Level	
ANTIMONY	1	ug/g	<loq< td=""><td>PASS</td><td>2</td><td></td></loq<>	PASS	2	
ARSENIC	1	ug/g	<loq< td=""><td>PASS</td><td>0.2</td><td></td></loq<>	PASS	0.2	
CADMIUM	1	ug/g	<loq< td=""><td>PASS</td><td>0.3</td><td></td></loq<>	PASS	0.3	
CHROMIUM	10	ug/g	<loq< td=""><td>PASS</td><td>110</td><td></td></loq<>	PASS	110	
COPPER	10	ug/g	14.5749	PASS	30	
LEAD	1	ug/g	<loq< td=""><td>PASS</td><td>0.5</td><td></td></loq<>	PASS	0.5	
MERCURY	0.1	ug/g	<loq< td=""><td>PASS</td><td>0.1</td><td></td></loq<>	PASS	0.1	
NICKEL	// 1	ug/g	1.0262	PASS	2	
						t

Analysis Method : SOP.T.30.084.NY, SOP.T.40.084.NY Analyzed Date : 05/08/23 14:50:17

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRN) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Signature 05/17/23

Revision: #1 - Revised to correct units

Kaycha Labs

White Runtz White Runtz Matrix : Flower

Type: Flower - Cured

Certificate of Analysis

ReliefLeaf, LLC

2612 RT 52 Hopewell Junction , NY, 12533, US Telephone: (860) 874-2872 Email: nick@headvtree.com Sample : AL30505005-001 Harvest/Lot ID: 0036

Batch#: 0036 Sampled: 05/03/23 Sample Size Received: 8 units
Total Amount: 1055 units
Sample Method: SOP Client Method

PASSED

Page 4 of 4

Filth/Foreign Material

PASSED

Moisture

PASSED

Analyte	LOQ	Units	Result	P/F	Action Level	Analyte	LOO	Units	Result	P/F	Action Level
Stems (>3mm)	1	%	ND	PASS	5	Moisture Content	5	%	10.8	PASS	15
Foreign Matter	0.1	%	ND	PASS	2	Weight:	,	70	10.0		
Mammalian excreta	0.1	mg	ND	PASS	1	0.509g					
Weight: 23 1797a						Analysis Method : SOP.T.40.021 Analyzed Date : 05/08/23 14:03:37					

Analysis Method : SOP.T.40.090 Analyzed Date : 05/08/23 10:18:22

Water Activity

PASSED

Analyte	LOQ	Units	Result	P/F	Action Level
Water Activity	0.1	aw	0.35	PASS	0.65

Weight: 0.2367

 $\begin{array}{l} \textbf{Analysis Method:} \ \mathsf{SOP.T.40.019} \\ \textbf{Analyzed Date:} \ \mathsf{N/A} \end{array}$

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy

Lab Directo

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Signature 05/17/23 **Revision: #1** - Revised to correct units on total batch size.