

Apr 28, 2023 | ReliefLeaf, LLC

1 Winners Circle Albany, NY, 12205, US (833) 465-8378

Certificate of Analysis

Kaycha Labs 🔳 🔊

..... Tangie Colada Shorty's Tangie Colada Matrix: Flower Type: Flower - Cured

PASSED

Sample:AL30421006-005 Harvest/Lot ID: 0033 Batch#: 0033 Seed to Sale# NA Sample Size Received: 8 units Total Amount: 508 units Retail Product Size: 3.5 gram Sampled : 04/21/23

2612 RT 5													33E
lopewell	Junction ,	NY, 12533,	US							Page	es 1 of	4	
RODUCT IM	AGE	SAFETY RESU	LTS									5	MISC.
		Pesticides	Heav	Ig y Metals SSED	Microbials PASSED	Mycotoxin PASSEI	ns Residua	LS Solvents TESTED	Filth PASSED	Water Acti PASSE		Moisture	Terpenes NOT TESTE
Ä	Canna	binoid	\nearrow	-	7	A	4	H	11	111		P	ASSE
		otal THC 26.10	008%	6			al CBD 168	2%	E.			cannabinoid 5829	
%	(6AR,9R) D10-THC <loq< td=""><td>(6АЯ,95) D10-тнс <loq< td=""><td>CBC <loq< td=""><td>CBD <loq< td=""><td>CBDA 0.1919</td><td>CBDV <loq< td=""><td>сва 0.1967</td><td>CBGA 1.5651</td><td>CBN <loq< td=""><td>D8-тнс 0.1594</td><td>рэ-тнс 0.784</td><td>тнса 28.6858</td><td>THCV <loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	(6АЯ,95) D10-тнс <loq< td=""><td>CBC <loq< td=""><td>CBD <loq< td=""><td>CBDA 0.1919</td><td>CBDV <loq< td=""><td>сва 0.1967</td><td>CBGA 1.5651</td><td>CBN <loq< td=""><td>D8-тнс 0.1594</td><td>рэ-тнс 0.784</td><td>тнса 28.6858</td><td>THCV <loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	CBC <loq< td=""><td>CBD <loq< td=""><td>CBDA 0.1919</td><td>CBDV <loq< td=""><td>сва 0.1967</td><td>CBGA 1.5651</td><td>CBN <loq< td=""><td>D8-тнс 0.1594</td><td>рэ-тнс 0.784</td><td>тнса 28.6858</td><td>THCV <loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	CBD <loq< td=""><td>CBDA 0.1919</td><td>CBDV <loq< td=""><td>сва 0.1967</td><td>CBGA 1.5651</td><td>CBN <loq< td=""><td>D8-тнс 0.1594</td><td>рэ-тнс 0.784</td><td>тнса 28.6858</td><td>THCV <loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	CBDA 0.1919	CBDV <loq< td=""><td>сва 0.1967</td><td>CBGA 1.5651</td><td>CBN <loq< td=""><td>D8-тнс 0.1594</td><td>рэ-тнс 0.784</td><td>тнса 28.6858</td><td>THCV <loq< td=""></loq<></td></loq<></td></loq<>	сва 0.1967	CBGA 1.5651	CBN <loq< td=""><td>D8-тнс 0.1594</td><td>рэ-тнс 0.784</td><td>тнса 28.6858</td><td>THCV <loq< td=""></loq<></td></loq<>	D8-тнс 0.1594	рэ-тнс 0.784	тнса 28.6858	THCV <loq< td=""></loq<>
mg/unit LOQ	<loq 0.1</loq 	<loq 0.1</loq 	<loq 0.1</loq 	<loq 0.1</loq 	6.7165 0.1	<loq 0.1</loq 	6.8845 0.1	54.7785 0.1	<loq 0.1</loq 	5.579 0.1	27.44 0.1	1004.003 0.1	<loq 0.1</loq
	%	%	%	%	%	%	%	%	%	%	%	%	%
/eight: .2116g			/			1		X	∇		\wedge		V
	d:SOP.T.30.031	.NY, SOP.T.40.03	1.NY							XX	X	X	
							7						(-)

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Ent

Signature 04/28/23

1 Winners Circle Albany, NY, 12205, US (833) 465-8378

Certificate of Analysis

ReliefLeaf, LLC

<u>ج</u>

0

2612 RT 52 Hopewell Junction, NY, 12533, US Telephone: (860) 874-2872 Email: nick@headytree.com Sample : AL30421006-005 Harvest/Lot ID: 0033 Batch# : 0033 Sampled : 04/21/23

Sample Size Received : 8 units Total Amount : 508 units Sample Method : SOP Client Method

Pesticides

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result
PYRETHRINS, TOTAL	0.1	ppm	1	PASS	<loq< td=""></loq<>
AZADIRACHTIN	0.1	ppm	1	PASS	<loq< td=""></loq<>
INDOLE-3-BUTYRIC ACID	0.1	ppm	1	PASS	<loq< td=""></loq<>
MYCLOBUTANIL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
PIPERONYL BUTOXIDE	0.1	ppm	2	PASS	<loq< td=""></loq<>
ABAMECTIN B1A	0.1	ppm	0.5	PASS	<loq< td=""></loq<>
ACEPHATE	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
ACEQUINOCYL	0.1	ppm	2	PASS	<loq< td=""></loq<>
ACETAMIPRID	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
ALDICARB	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
AZOXYSTROBIN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CHLORMEQUAT CHLORIDE	0.1	ppm	1	PASS	<loq< td=""></loq<>
BIFENAZATE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
BIFENTHRIN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CARBARYL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
COUMAPHOS	0.1	ppm	1	PASS	<l00< td=""></l00<>
CHLORPYRIFOS	0.1	ppm	0.2	PASS	<100
DAMINOZIDE	0.1	ppm	1	PASS	<loq< td=""></loq<>
BOSCALID	0.1	ppm	0.4	PASS	<l00< td=""></l00<>
CARBOFURAN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CHLORANTRANILIPROLE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CLOFENTEZINE	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
DIAZINON	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DICHLORVOS	0.1	ppm	1	PASS	<loq< td=""></loq<>
DIMETHOATE	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
DIMETHOMORPH	0.1	ppm	1	PASS	<l00< td=""></l00<>
ETHOPROPHOS	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
ETOFENPROX	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
ETOXAZOLE	0.1	ppm	0.4	PASS	<l00< td=""></l00<>
	0.1		1	PASS	<l00< td=""></l00<>
FENHEXAMID		ppm	0.2	PASS	
FENOXYCARB	0.1	ppm			<loq< td=""></loq<>
FENPYROXIMATE	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
FIPRONIL	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
FLONICAMID	0.1	ppm	1	PASS	<loq< td=""></loq<>
FLUDIOXONIL	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
HEXYTHIAZOX	0.1	ppm	1	PASS	<loq< td=""></loq<>
IMAZALIL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
IMIDACLOPRID	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
KRESOXIM METHYL	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
MALATHION	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
METALAXYL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
METHIOCARB	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
METHOMYL	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
MEVINPHOS	0.1	ppm	1	PASS	<loq< td=""></loq<>
NALED	0.1	ppm	0.5	PASS	<loq< td=""></loq<>
OXAMYL	0.1	ppm	1	PASS	<loq< td=""></loq<>

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result
PACLOBUTRAZOL	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
PHOSMET	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
PRALLETHRIN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
PROPICONAZOLE	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
PROPOXUR	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
PYRIDABEN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
SPINETORAM, TOTAL	0.1	ppm	1	PASS	<loq< td=""></loq<>
SPINOSAD, TOTAL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
SPIROMESIFEN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
SPIROTETRAMAT	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
SPIROXAMINE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
TEBUCONAZOLE	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
THIACLOPRID	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
THIAMETHOXAM	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
TRIFLOXYSTROBIN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CAPTAN *	0.1	ppm	1	PASS	<loq< td=""></loq<>
CHLORDANE *	0.1	ppm	1	PASS	<loq< td=""></loq<>
CHLORFENAPYR *	0.1	ppm	1	PASS	<loq< td=""></loq<>
CYFLUTHRIN *	0.1	ppm	1	PASS	<loq< td=""></loq<>
CYPERMETHRIN *	0.1	ppm	1	PASS	<loq< td=""></loq<>
METHYL PARATHION *	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
MGK-264 *	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
PENTACHLORONITROBENZENE *	0.1	ppm	1	PASS	<loq< td=""></loq<>
Weight: 0.9819a					

Analysis Method :SOP.T.40.104.NY, SOP.T30.104.NY and SOP.T.40.154.NY Analyzed Date :04/25/23 11:43:52

Weight:

0.9819g

Analysis Method : SOP.T.40.154.NY Analyzed Date : 04/25/23 11:44:00

Testing for agricultural agents is performed utilizing Liquid Chromatography Triple-Quadrupole Mass Spectrometry and Gas Chromatography Triple-Quadrupole Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

M

PASSED

PASSED

YYYY

Page 2 of 4

Signature 04/28/23

Kaycha Labs

Tangie Colada Shorty's Tangie Colada Matrix : Flower Type: Flower - Cured

1 Winners Circle Albany, NY, 12205, US (833) 465-8378

Certificate of Analysis

ReliefLeaf, LLC

2612 RT 52 Hopewell Junction , NY, 12533, US Telephone: (860) 874-2872 Email: nick@headytree.com Sample : AL30421006-005 Harvest/Lot ID: 0033 Batch# : 0033

Batch# : 0033 Sampled : 04/21/23 Sample Size Received : 8 units Total Amount : 508 units Sample Method : SOP Client Method

PASSED 🞇 Mycotoxins

 $\prod M$

PASSED

Ę	Microbia	al			PAS	SED
Analyte		LOQ	Units	Result	Pass / Fail	Action Level
TOTAL AERO	DBIC BACTERIA	10	CFU/g	91000	TESTED	
TOTAL YEAS	T AND MOLD	10	CFU/g	67000	TESTED	
ESCHERICHI SPP	A COLI SHIGELLA			Not Present	PASS	
SALMONELL	A SPECIES			Not Present	PASS	
ASPERGILLU	JS TERREUS			Not Present	PASS	
ASPERGILLU	JS NIGER			Not Present	PASS	
ASPERGILLU	JS FLAVUS			Not Present	PASS	
ASPERGILLU	IS FUMIGATUS			Not Present	PASS	
Weight: 0.8525g			7	_	/	1

Analysis Method : SOP.T.40.058A.NY, SOP.T.40.058B.NY, SOP.T.40.208.NY Analyzed Date : 04/25/23 09:14:35

020						
Analyte		LOQ	Units	Result	Pass / Fail	Action Level
AFLATOXIN G2		0.0025	ppm	<loq< td=""><td>PASS</td><td>0.02</td></loq<>	PASS	0.02
AFLATOXIN G1		0.0025	ppm	<loq< td=""><td>PASS</td><td>0.02</td></loq<>	PASS	0.02
AFLATOXIN B2		0.0025	ppm	<loq< td=""><td>PASS</td><td>0.02</td></loq<>	PASS	0.02
AFLATOXIN B1		0.0025	ppm	<loq< td=""><td>PASS</td><td>0.02</td></loq<>	PASS	0.02
OCHRATOXIN A	+	0.01	ppm	<loq< td=""><td>PASS</td><td>0.02</td></loq<>	PASS	0.02
TOTAL AFLATO	XINS (B1, B2, G1, G2)	0.0025	ppm	<loq< td=""><td>PASS</td><td>0.02</td></loq<>	PASS	0.02
Weight:						

0.9819g

Analysis Method : SOP.T.30.104.NY, SOP.T.40.104.NY Analyzed Date : 04/25/23 11:43:57

Hg Heav	y Metals		ДI	PAS	SED
Metal	LOQ	Units	Result	Pass / Fail	Action Level
ANTIMONY	0.01	ug/g	<loq< td=""><td>PASS</td><td>2</td></loq<>	PASS	2
ARSENIC	0.01	ug/g	<loq< td=""><td>PASS</td><td>0.2</td></loq<>	PASS	0.2
CADMIUM	0.01	ug/g	<loq< td=""><td>PASS</td><td>0.3</td></loq<>	PASS	0.3
CHROMIUM	0.01	ug/g	<loq< td=""><td>PASS</td><td>110</td></loq<>	PASS	110
COPPER	0.01	ug/g	11.8527	PASS	30
LEAD	0.01	ug/g	<loq< td=""><td>PASS</td><td>0.5</td></loq<>	PASS	0.5
MERCURY	0.01	ug/g	<loq< td=""><td>PASS</td><td>0.1</td></loq<>	PASS	0.1
NICKEL	0.01	ug/g	<loq< td=""><td>PASS</td><td>2</td></loq<>	PASS	2
Weight: 0.4996g	71717				

Analyzed Date : 04/24/23 16:11:10

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha
Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million,
ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ)
are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical
procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and
Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the
lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain
rounding errors.

Erica Troy Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Signature 04/28/23

Kaycha Labs

Tangie Colada Shorty's Tangie Colada Matrix : Flower Type: Flower - Cured

Page 3 of 4

PASSED

Filth/Foreign

Material

1 Winners Circle Albany, NY, 12205, US (833) 465-8378

Kaycha Labs

Tangie Colada Shorty's Tangie Colada Matrix : Flower Type: Flower - Cured

PASSED

Action Level 15

Certificate of Analysis

ReliefLeaf, LLC

200

2612 RT 52 Hopewell Junction , NY, 12533, US Telephone: (860) 874-2872 Email: nick@headvtree.com

Sample : AL30421006-005 Harvest/Lot ID: 0033 Batch# : 0033 Sampled : 04/21/23

Sample Size Received : 8 units Total Amount : 508 units Sample Method : SOP Client Method

Moisture

Page 4 of 4

PASSED

Analyte	LOQ	Units	Result	P/F	Action Level	Analyte	LOQ	Units	Result	P/F
Stems (>3mm)	1	%	ND	PASS	5	Moisture Content	5	%	9.8	PASS
Foreign Matter	0.1	%	ND	PASS	2	Weight:				
Mammalian excreta	0.1	mg	ND	PASS	1	0.516g				
Weight:		\sim				Analysis Method : SOP.T.40.021				
15 6938g						Analyzed Date : 04/24/23 14:11:12				

PASSED

15.6938g

Analysis Method : SOP.T.40.090 Analyzed Date : 04/24/23 10:35:17

Analyte		LOQ	Units	Result	P/F	Action Level
Water Activity		0.1	aw	0.36	PASS	0.65
Weight: 0.3062g						
Analysis Method : SOP Analyzed Date : 04/24						
Water Activity is perform	ed using a Rotr	onic Hygr	oPalm HP 2	B-AW in accor	dance with F	.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Signature 04/28/23