

Certificate of Analysis

May 01, 2023 | ReliefLeaf, LLC

Hopewell Junction, NY, 12533, US

Kaycha Labs

Tangie Colada 3.5 Tangie Colada

Matrix: Flower Type: Flower - Cured

> Sample:AL30421006-003 Harvest/Lot ID: 0031

> > Batch#: 0031 Seed to Sale# na

Sample Size Received: 17.5 gram

Total Amount: 1522.5 gram Retail Product Size: 3.5 gram

Sampled: 04/21/23

PASSED

Pages 1 of 4

PRODUCT IMAGE

SAFETY RESULTS

Pesticides

26.4873%

Heavy Metals

Microbials

Residuals Solvents

Filth

Water Activity

Moisture PASSED

NOT TESTED

PASSED

Cannabinoid

0.1167%

Total Cannabinoids

02/10/

Ä	. 3	44	70
	ì		
	Ы		

	(6AR,9R) D10-THC	(6AR,9S) D10-THC	СВС	CBD	CBDA	CBDV	СВБ	CBGA	CBN	D8-THC	D9-THC	THCA	тнсу
%	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.1331</th><th><loq< th=""><th>0.2006</th><th>1.5193</th><th><loq< th=""><th>0.1445</th><th>0.7912</th><th>29.1353</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.1331</th><th><loq< th=""><th>0.2006</th><th>1.5193</th><th><loq< th=""><th>0.1445</th><th>0.7912</th><th>29.1353</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.1331</th><th><loq< th=""><th>0.2006</th><th>1.5193</th><th><loq< th=""><th>0.1445</th><th>0.7912</th><th>29.1353</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.1331</th><th><loq< th=""><th>0.2006</th><th>1.5193</th><th><loq< th=""><th>0.1445</th><th>0.7912</th><th>29.1353</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.1331	<loq< th=""><th>0.2006</th><th>1.5193</th><th><loq< th=""><th>0.1445</th><th>0.7912</th><th>29.1353</th><th><loq< th=""></loq<></th></loq<></th></loq<>	0.2006	1.5193	<loq< th=""><th>0.1445</th><th>0.7912</th><th>29.1353</th><th><loq< th=""></loq<></th></loq<>	0.1445	0.7912	29.1353	<loq< th=""></loq<>
mg/g	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>1.331</th><th><loq< th=""><th>2.006</th><th>15.193</th><th><l0q< th=""><th>1.445</th><th>7.912</th><th>291.353</th><th><loq< th=""></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>1.331</th><th><loq< th=""><th>2.006</th><th>15.193</th><th><l0q< th=""><th>1.445</th><th>7.912</th><th>291.353</th><th><loq< th=""></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>1.331</th><th><loq< th=""><th>2.006</th><th>15.193</th><th><l0q< th=""><th>1.445</th><th>7.912</th><th>291.353</th><th><loq< th=""></loq<></th></l0q<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>1.331</th><th><loq< th=""><th>2.006</th><th>15.193</th><th><l0q< th=""><th>1.445</th><th>7.912</th><th>291.353</th><th><loq< th=""></loq<></th></l0q<></th></loq<></th></loq<>	1.331	<loq< th=""><th>2.006</th><th>15.193</th><th><l0q< th=""><th>1.445</th><th>7.912</th><th>291.353</th><th><loq< th=""></loq<></th></l0q<></th></loq<>	2.006	15.193	<l0q< th=""><th>1.445</th><th>7.912</th><th>291.353</th><th><loq< th=""></loq<></th></l0q<>	1.445	7.912	291.353	<loq< th=""></loq<>
LOQ	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	%	%	%	%	%	%	%	%	%	%	%	%	%

Analysis Method : SOP.T.30.031.NY, SOP.T.40.031.NY Analyzed Date : 04/24/23 13:20:52

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Kaycha Labs

Tangie Colada 3.5 Tangie Colada Matrix : Flower

Type: Flower - Cured

PASSED

Page 2 of 4

Certificate of Analysis

ReliefLeaf, LLC

2612 RT 52 Hopewell Junction , NY, 12533, US Telephone: (860) 874-2872 Email: nick@headytree.com Sample : AL30421006-003 Harvest/Lot ID: 0031 Batch# : 0031

Sampled: 04/21/23

Sample Size Received: 17.5 gram
Total Amount: 1522.5 gram
Sample Method: SOP Client Method

Pesticides

	A	C			п
\mathbf{r}	Δ		3	ш.	ш

Pesticide	LOQ	Units	Action Level	Pass/Fail	Resu
PYRETHRINS, TOTAL	0.1	ppm	1	PASS	<l0q< td=""></l0q<>
AZADIRACHTIN	0.1	ppm	1	PASS	<loq< td=""></loq<>
INDOLE-3-BUTYRIC ACID	0.1	ppm	1	PASS	<l0q< td=""></l0q<>
MYCLOBUTANIL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
PIPERONYL BUTOXIDE	0.1	ppm	2	PASS	<loq< td=""></loq<>
ABAMECTIN B1A	0.1	ppm	0.5	PASS	<loq< td=""></loq<>
ACEPHATE	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
ACEQUINOCYL	0.1	ppm	2	PASS	<loq< td=""></loq<>
ACETAMIPRID	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
ALDICARB	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
AZOXYSTROBIN	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
CHLORMEQUAT CHLORIDE	0.1	ppm	1	PASS	<loq< td=""></loq<>
BIFENAZATE	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
BIFENTHRIN	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
CARBARYL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
COUMAPHOS	0.1	ppm	1	PASS	<loq< td=""></loq<>
CHLORPYRIFOS	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DAMINOZIDE	0.1	ppm	1	PASS	<loq< td=""></loq<>
BOSCALID	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
CARBOFURAN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CHLORANTRANILIPROLE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CLOFENTEZINE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DIAZINON	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DICHLORVOS	0.1	ppm	1	PASS	<loq< td=""></loq<>
DIMETHOATE	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
DIMETHOMORPH	0.1	ppm	1	PASS	<loq< td=""></loq<>
ETHOPROPHOS	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
ETOFENPROX	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
ETOXAZOLE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
FENHEXAMID	0.1	ppm	1	PASS	<l00< td=""></l00<>
FENOXYCARB	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
FENPYROXIMATE	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
FIPRONIL	0.1	ppm	0.4	PASS	<l00< td=""></l00<>
FLONICAMID	0.1	ppm	1	PASS	<loq< td=""></loq<>
FLUDIOXONIL	0.1	ppm	0.4	PASS	<l00< td=""></l00<>
HEXYTHIAZOX	0.1	ppm	1	PASS	<loq< td=""></loq<>
IMAZALIL	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
IMIDACLOPRID	0.1	ppm	0.4	PASS	<l00< td=""></l00<>
KRESOXIM METHYL	0.1	ppm	0.4	PASS	<l00< td=""></l00<>
MALATHION	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
METALAXYL	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
METHIOCARB	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
METHOMYL	0.1	ppm	0.4	PASS	<l00< td=""></l00<>
MEVINPHOS	0.1	ppm	1	PASS	<l0q< td=""></l0q<>
NALED	0.1	ppm	0.5	PASS	<l0q< td=""></l0q<>
OXAMYL	0.1	ppm	1	PASS	<loq< td=""></loq<>
OVALLIE	0.1	Phili	•	. 455	LUQ

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result	
PACLOBUTRAZOL	0.1	ppm	0.4	PASS	<loq< td=""><td></td></loq<>	
PHOSMET	0.1	ppm	0.2	PASS	<loq< td=""><td></td></loq<>	
PRALLETHRIN	0.1	ppm	0.2	PASS	<l0q< td=""><td></td></l0q<>	
PROPICONAZOLE	0.1	ppm	0.4	PASS	<l0q< td=""><td></td></l0q<>	
PROPOXUR	0.1	ppm	0.2	PASS	<loq< td=""><td></td></loq<>	
PYRIDABEN	0.1	ppm	0.2	PASS	<loq< td=""><td></td></loq<>	
SPINETORAM, TOTAL	0.1	ppm	1	PASS	<loq< td=""><td></td></loq<>	
SPINOSAD, TOTAL	0.1	ppm	0.2	PASS	<loq< td=""><td></td></loq<>	
SPIROMESIFEN	0.1	ppm	0.2	PASS	<loq< td=""><td></td></loq<>	
SPIROTETRAMAT	0.1	ppm	0.2	PASS	<loq< td=""><td></td></loq<>	
SPIROXAMINE	0.1	ppm	0.2	PASS	<loq< td=""><td></td></loq<>	
TEBUCONAZOLE	0.1	ppm	0.4	PASS	<l0q< td=""><td></td></l0q<>	
THIACLOPRID	0.1	ppm	0.2	PASS	<l0q< td=""><td></td></l0q<>	
THIAMETHOXAM	0.1	ppm	0.2	PASS	<loq< td=""><td></td></loq<>	
TRIFLOXYSTROBIN	0.1	ppm	0.2	PASS	<l0q< td=""><td></td></l0q<>	
CAPTAN *	0.1	ppm	1	PASS	<loq< td=""><td></td></loq<>	
CHLORDANE *	0.1	ppm	1	PASS	<l0q< td=""><td></td></l0q<>	
CHLORFENAPYR *	0.1	ppm	1	PASS	<loq< td=""><td></td></loq<>	
CYFLUTHRIN *	0.1	ppm	1	PASS	<loq< td=""><td></td></loq<>	
CYPERMETHRIN *	0.1	ppm	1	PASS	<loq< td=""><td></td></loq<>	
METHYL PARATHION *	0.1	ppm	0.2	PASS	<loq< td=""><td></td></loq<>	
MGK-264 *	0.1	ppm	0.2	PASS	<loq< td=""><td></td></loq<>	
PENTACHLORONITROBENZENE *	0.1	ppm	1	PASS	<loq< td=""><td></td></loq<>	

1.0055g

Analysis Method: SOP.T.40.104.NY, SOP.T30.104.NY and SOP.T.40.154.NY

Analyzed Date: 04/25/23 11:43:5

Weight:

Analysis Method: SOP.T.40.154.NY Analyzed Date: 04/25/23 11:44:00

Testing for agricultural agents is performed utilizing Liquid Chromatography Triple-Quadrupole Mass Spectrometry and Gas Chromatography Triple-Quadrupole Mass Spectrometry in accordance with F.S. Rule

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Kaycha Labs

Tangie Colada 3.5 Tangie Colada Matrix : Flower

Type: Flower - Cured

Certificate of Analysis

Hopewell Junction , NY, 12533, US Telephone: (860) 874-2872

Sample : AL30421006-003 Harvest/Lot ID: 0031

Batch#: 0031 Sampled: 04/21/23 Sample Size Received: 17.5 gram Total Amount: 1522.5 gram Sample Method : SOP Client Method **PASSED**

Page 3 of 4

Units

ppm

ppm

ppm

ppm

ppm

ppm

LOO

0.0025

0.0025

0.0025

0.0025

0.0025

0.01

Microbial

PASSED

Action

Level

AFLATOXIN G2

AFLATOXIN G1

AFLATOXIN B2

AFLATOXIN B1

OCHRATOXIN A+

TOTAL AFLATOXINS (B1, B2, G1, G2)

Analyte

Weight:

Mycotoxins

PASSED

Action

Level

0.02

0.02

0.02

0.02

0.02

0.02

Pass /

Fail

PASS

PASS

PASS

PASS

PASS

PASS

Result

<L00

<100

<L00

<LOQ

<LOQ

<LOQ

Analyte		LOQ	Units	Result	Pass / Fail
TOTAL AERO	BIC BACTERIA	10	CFU/g	17000	TESTED
TOTAL YEAS	T AND MOLD	10	CFU/g	52000	TESTED
ESCHERICHI/ SPP	A COLI SHIGELLA			Not Present	PASS
SALMONELLA	A SPECIES			Not Present	PASS
ASPERGILLU	S TERREUS			Not Present	PASS
ASPERGILLU	S NIGER			Not Present	PASS
ASPERGILLU	S FLAVUS			Not Present	PASS
ASPERGILLU	S FUMIGATUS			Not Present	PASS

Weight: 0.8597g

Analysis Method : SOP.T.40.058A.NY, SOP.T.40.
Analyzed Date : 04/25/23 09:14:35

058B.NY, SOP.T.40.208.NY	

	: SOP.T.30.104.NY	, SOP.T.40.104.NY
Analyzed Date :	04/25/23 11:43:57	
		7/1//

Heavy Metals

PASSED

Metal	LOQ	Units	Result	Pass / Fail	Action Level
ANTIMONY	0.01	ug/g	<loq< td=""><td>PASS</td><td>2</td></loq<>	PASS	2
ARSENIC	0.01	ug/g	<loq< th=""><th>PASS</th><th>0.2</th></loq<>	PASS	0.2
CADMIUM	0.01	ug/g	<loq< th=""><th>PASS</th><th>0.3</th></loq<>	PASS	0.3
CHROMIUM	0.01	ug/g	<loq< th=""><th>PASS</th><th>110</th></loq<>	PASS	110
COPPER	0.01	ug/g	11.672	PASS	30
LEAD	0.01	ug/g	<loq< td=""><td>PASS</td><td>0.5</td></loq<>	PASS	0.5
MERCURY	0.01	ug/g	<loq< td=""><td>PASS</td><td>0.1</td></loq<>	PASS	0.1
NICKEL	0.01	ug/g	<loq< td=""><td>PASS</td><td>2</td></loq<>	PASS	2

Analysis Method : SOP.T.30.084.NY, SOP.T.40.084.NY Analyzed Date : 04/24/23 16:11:10

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Kaycha Labs

Tangie Colada 3.5 Tangie Colada Matrix : Flower

Type: Flower - Cured

PASSED

Page 4 of 4

Hopewell Junction , NY, 12533, US Telephone: (860) 874-2872

Sample : AL30421006-003 Harvest/Lot ID: 0031

Batch#: 0031 Sampled: 04/21/23 Sample Size Received: 17.5 gram Total Amount: 1522.5 gram Sample Method : SOP Client Method

Filth/Foreign **Material**

PASSED

Moisture

PASSED

Analyte	LOQ	Units	Result	P/F	Action Level	Analyte	LOQ	Units	Result	P/F	Action Level
Stems (>3mm)	1	%	ND	PASS	5	Moisture Content	5	%	8.3	PASS	15
Foreign Matter	0.1	%	ND	PASS	2	Weight:					
Mammalian excreta	0.1	mg	ND	PASS	1	0.502g					
Weight: 11.2321g						Analysis Method : SOP.T.40.021 Analyzed Date : 04/24/23 14:11:12					

Analysis Method : SOP.T.40.090 Analyzed Date : 04/24/23 10:35:17

11.2321g

Water Activity

PASSED

Analyte	LOQ	Units	Result	P/F	Action Level
Water Activity	0.1	aw	0.39	PASS	0.65

Weight: 0.3128g

Analysis Method : SOP.T.40.019 **Analyzed Date :** 04/24/23 13:35:41

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

