#### **BT NOW® Insecticide**

Water-Based, Liquid Bioinsecticide

#### Lepidoptera specific bioinsecticide

#### Key Features & Benefits

- ✓ Priced and Certified for Conventional and Organic Crops
- ✓ Four-hour REI; zero-day PHI
- ✓ No residue; MRL exempt
- ✓ Not harmful to beneficial/pollinators
- ✓ Easy to use water-based liquid formulation
- ✓ Stabilized w/ UV inhibitors for better persistence
- $\checkmark$  Formulated with natural organic ingredient to improve adherence to plant
- ✓ Formulated with phago-stimulants to increase insect uptake of BT NOW
- Tank-mix compatible w/ many commonly used pesticides, fertilizers, and adjuvants

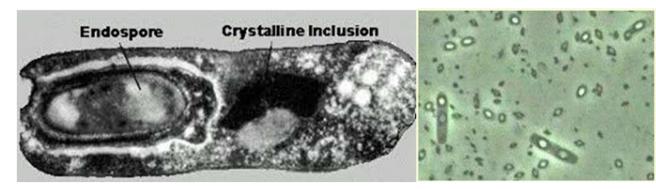


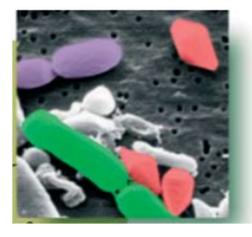


Valued for its target insect specificity and its environmental and beneficial insect safety profile.

#### ACTIVE INGREDIENT:

| Bacillus thuringiensis ssp. kurstaki strain |         |  |  |  |  |
|---------------------------------------------|---------|--|--|--|--|
| EVB-113-19 fermentation solids, spores,     |         |  |  |  |  |
| and insecticidal toxins                     | 14.49%  |  |  |  |  |
| OTHER INGREDIENTS:                          | 85.51%  |  |  |  |  |
| TOTAL:                                      | 100.00% |  |  |  |  |




# What is Btk?

- Microbial or biological insecticide.
- Contains <u>cry</u>stal-shaped proteins ('<u>cry</u> toxins') and living spores
- Crystal protein is inactive until consumed by a caterpillar = 'protoxin'

# BT NOW contains FIVE cry toxins





Scanning electron microscope image of Bt showing whole bacteria (green), endospores (violet), and crystal protein toxins (red). [Colors added for emphasis.]

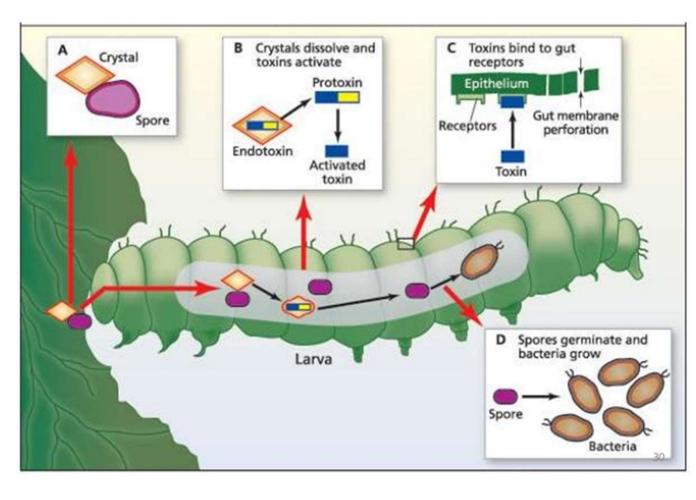
ullet

# 



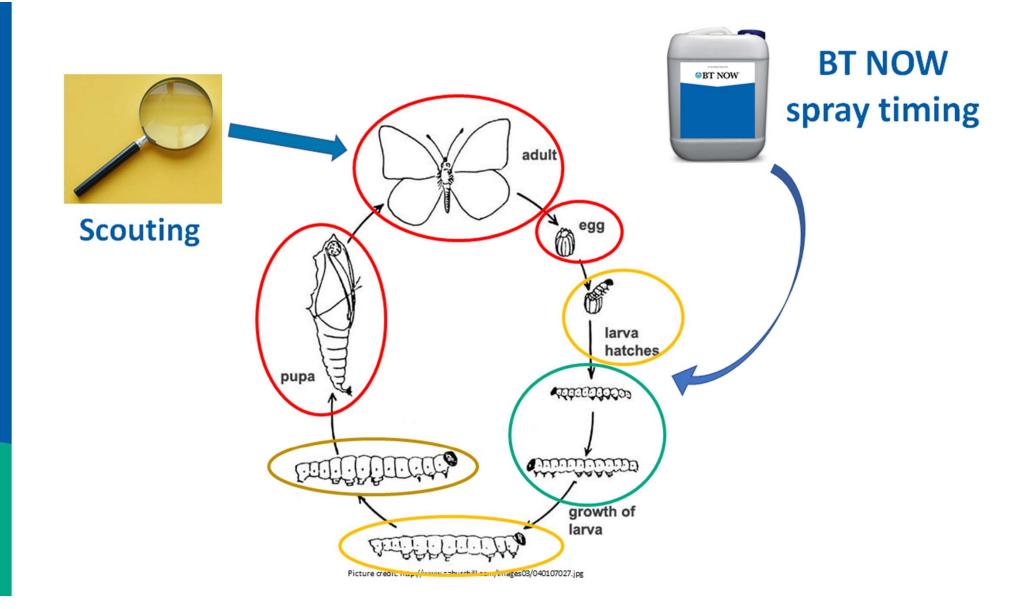
#### **Cry toxin comparison**

| subspecies            | kurstaki   | kurstaki | kurstaki | aizawai         | aizawai   |
|-----------------------|------------|----------|----------|-----------------|-----------|
| strain                | EVB-113-19 | ABTS-351 | SA-11    | GC-91           | ABTS-1857 |
| product/<br>cry toxin | Bt NOW     | Dipel    | Javelin  | Agree           | XenTari   |
| 1Aa                   | +          | +        | +        | +/-*            | +         |
| 1Ab                   | +          | +        | +        | -               | +         |
|                       |            |          |          | +               |           |
| 1Ac                   | +          | +        | +        | (primary toxin) | -         |
| 1C                    | -          | -        | -        | +               | +         |
| 1D                    | -          | -        | -        | +               | +         |
| 2A                    | +          | +        | +        | -               | -         |
| 2B                    | +          | -        | -        | -               | -         |


#### **Superior formulation**

- Easy to use water-based liquid formulation
- Stabilized w/ UV inhibitors for better persistence
- Natural, organic ingredient to improve leaf adherence
- Feeding stimulants to increase insect uptake

#### **Efficacy of individual cry toxins**


|                                    |     |     |     |    | — — — |    |    |  |
|------------------------------------|-----|-----|-----|----|-------|----|----|--|
|                                    | 1Aa | 1Ab | 1Ac | 1C | 1D    | 2A | 2B |  |
| Armyworm species (Spodoptera spp.) | +   | +   | -   | ++ | +     | +  | -  |  |
| Diamondback moth (Plutella spp.)   | ++  | ++  | ++  | ++ | ++    | -  | -  |  |
| Cotton bollworm (Helicoverpa zea)  | -   | +   | ++  | -  | -     | +  | -  |  |
| Cabbage Looper (Trichoplusia ni )  | +   | +   | ++  | +  | +     | ++ | -  |  |

## How does BT NOW work?





- BT NOW is sprayed on foliage. Ensuring good coverage.
- Caterpillar consumes BT NOW.
- Crystal protein dissolves in alkaline gut. Cry toxin is activated.
- Toxins bind to gut. Insect stops feeding within minutes to hours.
- Gut membrane breaks down. Caterpillar dies 2-5 days later.



# **Best use practices with BT NOW**



**Timing** of spray application to target early larval instars **Rate** adjustment under heavy pressure.

• Use higher recommended rates

Interval between sprays determined by

- Plant growth rate
- Insect development rate or overlapping instars
- Generally 3-10 days

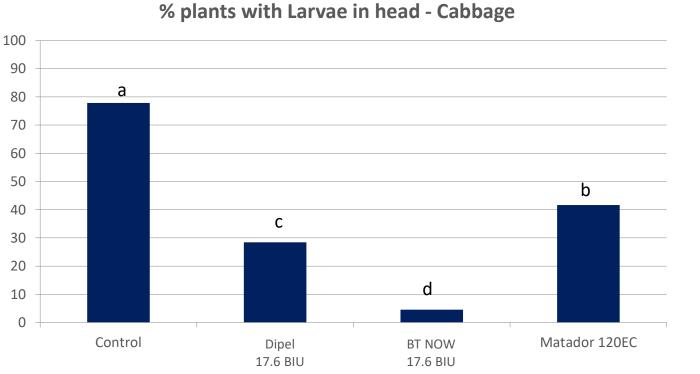
**Coverage** needs to be uniform for best results

- Use spreader/sticker for hard-to-wet foliage
- Water volumes sufficient to cover surfaces of crop

#### Tank mix compatible

- pH between 4.5 to 8
- Do not tank mix with copper

# Integrated ag approach




- Can combine with synthetic pesticides to take advantage of the many benefits of BT NOW...
  - Resistance management
  - Residue management
  - Pest spectrum/gaps
  - Beneficial insect preservation
  - Worker/environmental concerns
  - Can be applied during flowering
  - Registered for hundreds of crops and most lepidoptera

#### **BT NOW®** Insecticide

Trial conducted by AAFC St-Jean. 1999, Québec, Cabbage, DBM, CL, ICW Within-column means sharing a same letter are not significantly different according to Tukey test with  $\alpha$ =0.05

Larvae of: Imported cabbageworm **Diamondback moth Cabbage looper** 







4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

#### **BT NOW®** Insecticide on cabbage

% Defoliation Lepidoptera Larvae Primary Imported Cabbage Worm (*Pieris rapae* L)

Worm (*Pieris rapae* L)

Untreated Dipel (36 CLU) Dipel (18 CLU) BT NOW (36 CLU) BT NOW (27 CLU) BT NOW (18 CLU)

"Megaton" Cabbage Trial - Phelps, NY 2016 – Chris Becker BAAR Scientific, LLC







Larvae of: Imported cabbageworm Diamondback moth Cabbage looper

#### **BT NOW<sup>®</sup> Insecticide on broccoli**

% plants with Larvae in head (Broccoli) а 100 90 80 70 60 50 40 30 b 20 С 10 c 0 Dipel BT NOW Matador 120EC Control 17.6 BIU 17.6 BIU

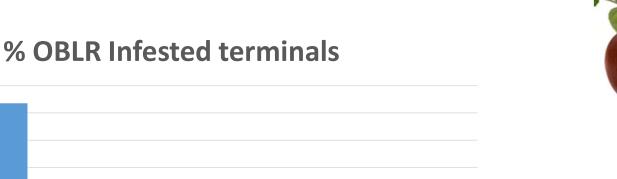
Trial conducted by AAFC Qc. 1999, Québec, Broccoli, DBM Within-column means sharing a same letter are not significantly different according to Tukey test with  $\alpha$ =0.05

18%

а

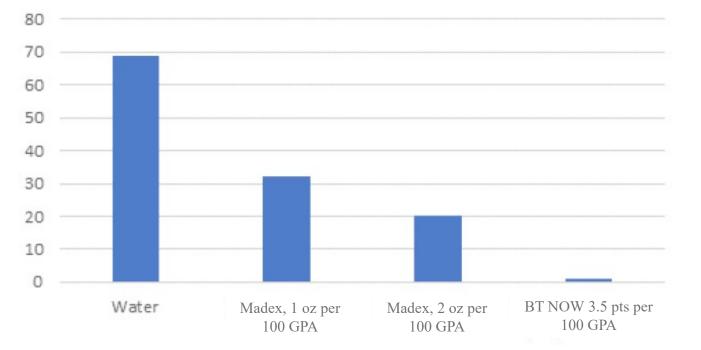
# BT NOW<sup>®</sup> Insecticide on apples

16% 14% 12% 10% No statistical difference 8% (36 BIU) 6% 4% b 2% b 0% Dipel 1lbs/acre Control BT NOW 1.5 pt/acre


Trial conducted by Agr.Assistance. 2017, NY State, Comparative treatments: July 2th, July 9th and July 17 Within-column means sharing a same letter are not significantly different according to Tukey test with  $\alpha$ =0.05

Oblique banded leafroller












Number of Live Larvae – Oriental Fruit Moth

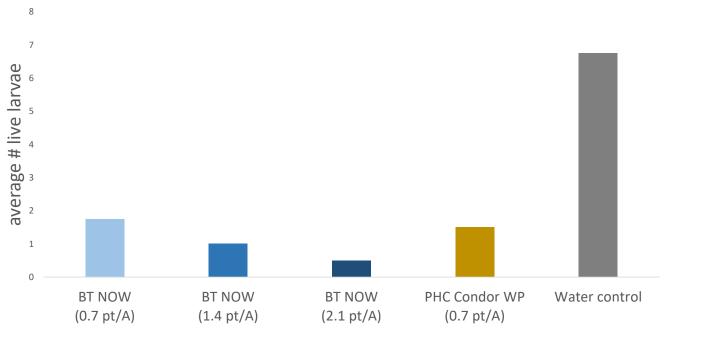


Bioassay conducted by the USDA, ARS, in 2018. N = 80 neonate larvae





Oriental fruit moth




#### **BT NOW®** Insecticide on tomato

Beet armyworm (*Spodoptera exigua*) on tomato





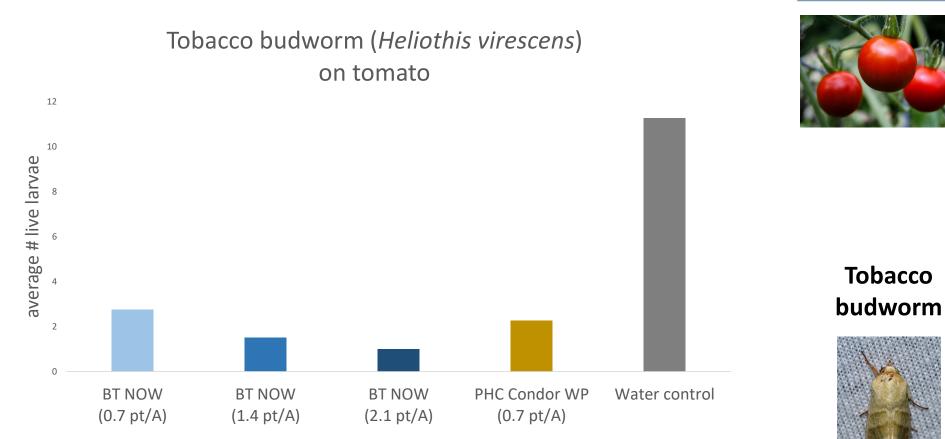






Study conducted in Copandaro de Galeana, Michoacan, Summer 2020 on tomato for Spodoptera exigua (beet armyworm) and Heliothis virescens (tobacco budworm). Treatments applied 4 times at 100 GPA.

#### **BT NOW<sup>®</sup> Insecticide on tomato**


% efficacy vs. beet armyworm on tomato 100 90 80 % efficacy vs. control 70 60 50 40 30 **Beet** 20 armyworm 10 0 **BT NOW** PHC Condor WP **BT NOW BT NOW** (0.7 pt/A) (1.4 pt/A) (2.1 pt/A) (0.7 pt/A)

Study conducted in Copandaro de Galeana, Michoacan, Summer 2020 on tomato for Spodoptera exigua (beet armyworm) and Heliothis virescens (tobacco budworm). Treatments applied 4 times at 100 GPA.









BioSafe Systems

Study conducted in Copandaro de Galeana, Michoacan, Summer 2020 on tomato for Spodoptera exigua (beet armyworm) and Heliothis virescens (tobacco budworm). Treatments applied 4 times at 100 GPA.

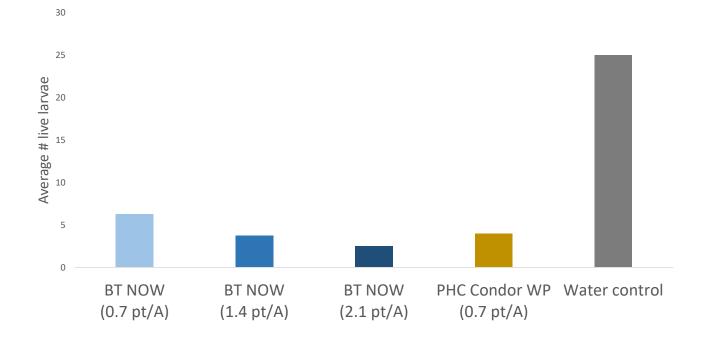
#### **BT NOW® Insecticide on tomato**

% efficacy vs. tobacco budworm on tomato 100 90 80 % efficacy vs. control 70 60 50 40 30 20 10 0 **BT NOW BT NOW BT NOW** PHC Condor WP (0.7 pt/A) (1.4 pt/A)(2.1 pt/A) (0.7 pt/A)

Study conducted in Copandaro de Galeana, Michoacan, Summer 2020 on tomato for Spodoptera exigua (beet armyworm) and Heliothis virescens (tobacco budworm). Treatments applied 4 times at 7-day intervals at 100 GPA.

Tobacco budworm

BioSafe Systems

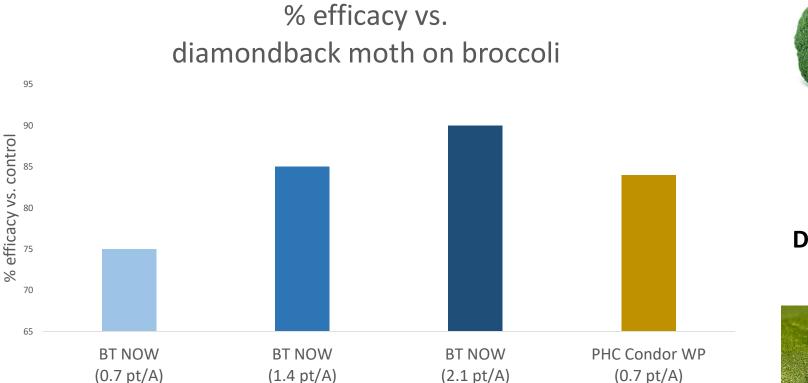



## **BT NOW®** Insecticide on broccoli

Diamondback moth (Plutella xylostella)

on broccoli






Diamondback moth



Study conducted inTepeaca, Puebla, Summer 2020, on broccoli for Diamondback moth (Plutella xylostella). Treatments applied 4 times at 65 GPA.

## **BT NOW<sup>®</sup> Insecticide on broccoli**



Study conducted inTepeaca, Puebla, Summer 2020, on broccoli for Diamondback moth (Plutella xylostella). Treatments applied 4 times at 65 GPA.





Diamondback moth



14

12

Average # live larvae

2

0

**BT NOW** 

(0.7 pt/A)

#### **BT NOW<sup>®</sup> Insecticide on corn**

**BT NOW** 

(1.4 pt/A)

#### Fall armyworm (Spodoptera frugiperda) on corn

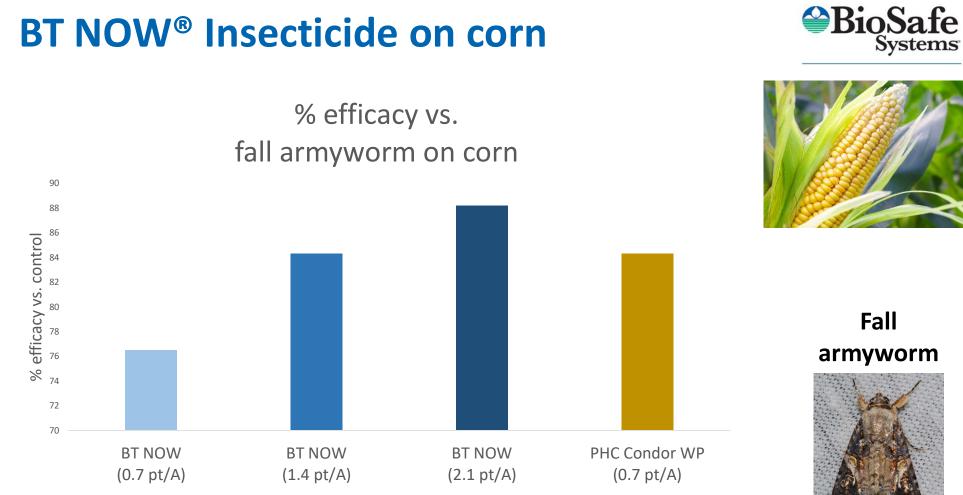
Water control

Study conducted in Jantetelco, Morelos, Summer 2020 on corn (Zea mays) for Fall armyworm (Spodoptera frugiperda). Treatments applied 4 times at 90 GPA.

**BT NOW** 

(2.1 pt/A)

PHC Condor WP


(0.7 pt/A)











Study conducted in Jantetelco, Morelos, Summer 2020 on corn (Zea mays) for Fall armyworm (Spodoptera frugiperda). Treatments applied 4 times at 90 GPA.

armyworm