GB-Amp[™] 2 x PCR Master mix (without loading dye)

Catalog # P4001 / P4002 / P4003 / P4004

Introduction

GB-AmpTM 2 x PCR Master mix (without loading dye) contains Taq DNA Polymerase, dNTP, and an optimized buffer system. The amplification can start upon the addition of primer and template, thereby easing PCR setup and improving reproducibility. Cryo-protective agents in the 2× Taq Master Mix enable the resistance to damage from repeated freeze-thaw cycles. Taq DNA Polymerase is a thermostable DNA polymerase that possesses a 5 ' \rightarrow 3 ' polymerase activity and a 5 ' flap endonuclease activity. The 2 × Taq Master Mix is available in 5, 15 and 50 mL size. The PCR products contain A at the 3'-end and thus can be directly cloned into T - Vectors of TA cloning kits

Content

Components	P4001 1mL	P4002 5mL	P400310mL	P4004 50mL
 GB-Amp™ 2 x PCR Master mix (without loading dye)	1 mL	5 mL	10 mL	50 mL

Storage

Store at -20°C.

Quality Control

Exonuclease Activity: The product is tested in a reaction containing 10 U of enzyme and $0.6 \,\mu g$ of λ -Hind III. After incubation at 37°C for 16 hours, there is no visually discernible change to DNA bands determined by agarose gel electrophoresis.

Endonuclease Activity: The product is tested in a reaction containing 10 U of enzyme and 0.6 µg of Supercoiled pBR322. After incubation at 37°C for 4 hours, there is no visually discernible change to DNA band determined by agarose gel electrophoresis.

Functional Assay: The α -1-antitrypsin gene is amplified for 30 cycles in a 50µL system using 100ng human genomic DNA as template. A single DNA band of 360 bp is detected by agarose gel electrophoresis.

Protocol

1. Recommended general reaction mixture for PCR:

2× Taq Master Mix	25µL
Template DNA*	Variable
Primer 1 (10 μM)	2µL
Primer 2 (10 µM)	2µL
ddH ₂ O	to 50µL

The recommended amount of DNA template for a 50 µl reaction system is as follows:

Human Genomic DNA	0.1 - 1µg	
Bacterial Genomic DNA	10 - 100 ng	
λ DNA	0.5 - 5 ng	
Plasmid DNA	0.1 - 10 ng	

GeneBio Systems, Inc.™

2. Thermocycling conditions for a routine PCR:

94℃	5 min (Pre-denaturation)
94℃	30 sec
55℃*	30 sec 30 - 35 cycles
72℃	60 sec / kb
72℃	7 min (Final extension)
4℃	Hold

*The optimal annealing temperature should be 1-2°C lower than the T_m of the primers used.

Precaution

Taq DNA Polymerase has significant polymerase activity at room temperature. Therefore, it is recommended to set up PCR reactions on ice. Once set up, these reactions should be immediately subjected to thermal cycling for PCR amplification, in order to reduce nonspecific amplification and get optimal PCR results.

Primers Designing Notes

- 1. Choose G or C as the last base of the 3'-end of the primer;
- 2. Avoid continuous mismatching at the last 8 bases of the 3'-end of the primer;
- 3. Avoid hairpin structure at the 3'-end of the primer;
- 4. T_m of the primers should be within the range of 55°C 65°C;
- 5. Additional tag sequence that are not homologous to target should not be included when calculating Tm of the primers;
- 6. GC content of the primers should be within the range of 40% 60%;
- 7. T_m and GC content of forward and reverse primes should be as similar to each other as possible.