User Manual

FavorFilter™ Plasmid Extraction Midi Kit

Cat. No.: FAFTE 002-1G-10 (10 Preps)

FAFTE 002-1G (50 Preps)

Kit Contents:

Kii Comenis.	FAFTE 002 (10 preps)	FAFTE 002-1 (50 preps)
PEQ Buffer	53ml	270 ml
PM1 Buffer	85 ml	215 ml × 2
PM2 Buffer	85 ml	215 ml × 2
PM3 Buffer	85 ml	215 ml × 2
PW Buffer	130 ml	270 ml × 2 + 120 ml
PEL Buffer	85 ml	215 ml × 2
RNase A Solution	190 µl	480 µl × 2
FavorFilter Midi Cartridge	10 pcs	50 pcs
PM Midi Column	10 pcs	50 pcs

* Preparation of PM1 Buffer for the first use:		
Cat. No:	FAFTE 002 (10 preps)	FAFTE 002-1 (50 preps)
Volume of RNase A Solution for PM1 Buffer	85 μΙ	430 µl

Specification:

Technology: Anion-exchange chromatography (gravity-flow column)

Lysate clarification: Filtration

Sample Size: 60~120 ml of bacteria for high-copy number or low

-copy number plasmid

Plasmid or constructs range: 3 kbp~150 kbp Binding Capacity: 650 µg/Midi Column

Important Notes:

- 1. Store RNase A solution at -20°C upon receipt of kit.
- 2. Add indicated volume of RNase A Solution into PM1 buffer, mix well and store the PM1 buffer at 4°C.
- If precipitates have formed in PM2 Buffer, warm the buffer in 37°C water bath to dissolve precipitates.
- 4. Pre-chill PM3 Buffer at 4°C before starting.

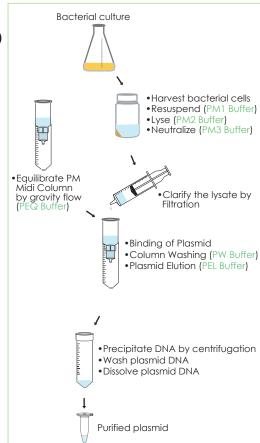
Additional Requirements:

- 1. 50 ml tubes
- Refrigerated centrifuge capable of ≥5,000 xg and the centrifuge tube suitable for the centrifuge rotor
- 3. Isopropanol
- 4. 70% ethanol
- 5. TE buffer or ddH2O

General Protocol:

Please Read Important Notes Before Starting Following Steps.

Harvest bacterial cells


1. Harvest the cells by centrifugation at 4,500~6,000 xg at 4°C for 10 mins and discard the supernatant.

Equilibrate PM Midi Column

- 2. Place a PM Midi Column onto a 50 ml tube.
- 3. Equilibtate the PM Midi column by applying 5 ml of PEQ Buffer. Allow the column to empty by gravity flow and discard the filtrate.

Cell lysis and lysate neutralization

- 4. Add 8 ml of PM1 Buffer (RNase A added) to resuspend the cell pellet by vortexing or pipetting.
- 5. Add 8 ml of PM2 Buffer and mix gently by inverting the tube 5 times.
 - -Do not vortex to avoid shearing genomic DNA.
- 6. Incubate the sample mixture for 5 minutes at room temperature until lysate clears.

- 7. Add 8 ml of chilled PM3 Buffer and mix immediately by inverting the tube 10~15 times to neutralize the lysate. (Do not vortex!)
 - -Note: •Make sure the density of cultured cell is optimal, the buffers volume (PM1, PM2, PM3) should be increased proportionally to the culture volume.
 - (ex. culture volume, 60~120 ml: PM1, 8 ml; PM2, 8 ml; PM3, 8 ml culture volume, 120~240 ml: PM1, 16 ml; PM2, 16 ml; PM3, 16 ml)
 - Make sure cell pellet be suspended completely within Buffer PM1.
 - •Mix the sample mixture completely after adding Buffer PM2 and Buffer PM3

Clarify lysate by filtration and binding of plasmid

- 8. Pour the lysate into a cartridge barrel. Incubate the lysate for 10 mins at room temperature to make the precipitate float up.
 - -Note! To ensure filtration without clogging, 10 mins incubation is essential to make the precipitate float up.
- 9. Remove the cap from cartridge tip. Gently insert the plunger into cartridge to filter the lysate and load the filtrate into the equilibrated PM Midi column. Allow the PM Midi Column to empty by gravity flow and discard the flow-through.

Wash PM Midi Column

10. Wash the PM Midi column by applying 12.5 ml of PW Buffer. Allow PW Buffer to flow through the PM Midi Column by gravity flow and discard the filtrate.

Elution

11. Place the PM Midi column onto a clean 50 ml centrifuge tube (not provided). Add 8 ml of PEL Buffer to the PM Midi Column to elute the plasmid by gravity flow.

Precipitate plasmid DNA

- 12. Transfer the eluate from step 11 to a centrifuge tube. Add 0.75X volume of room temperature isopropanol to the eluate and mix well by inverting the tube 10 times. (ex: add 6 ml isopropanol to 8 ml eluate)

 -Note! Make sure that isopropanol be mixed thoroughly with eluate before centrifugation.
- 13. Centrifuge the tube at ≥5,000 xg at 4°C for 30 mins. (Preferably centrifuge the tube at 15,000~20,000 xg at 4°C for 20 mins.)

Wash and dissolve plasmid DNA

- 14. Carefully remove the supernatant and wash the plasmid pellet with 5 ml of room temperature 70% ethanol.
- 15. Centrifuge the tube at ≥5,000 xg at 4°C for 10 mins.
- 16. Carefully remove the supernatant and invert the tube on paper towel for 3 mins to remove residual ethanol. Air-dry the plasmid pellet until the tube is completely dry. (Or incubate the plasmid pellet at 70°C for 10 mins.)
- 17. Dissolve the plasmid pellet in a suitable volume (≥300 µl) of TE or ddH2O.
 - -Note! Do not lose the DNA pellet when discard the supernatant.
 - Make sure the DNA pellet adhesive lightly on the centrifuge tube.
 - If the DNA pellet loose from tube, repeat the precipitation step again.
 - Make sure the DNA is dissolved completely before measure the concentration.

Troubleshooting

Low yield

Bacterial cells were not lysed completely

- •Too many bacterial cells were used.
- After PM3 Buffer addition, break up the precipitate by inverting.
- DNA failed to precipitate or DNA pellet was lost after precipitation.
- •DNA pellet was insufficiently redissolved.

Purified DNA dose not perform well in downstream applications

RNA contamination

- Make sure that RNase A had been added in PM1 Buffer at the first use.
- RNase A is not properly preserved.
- •Too many bacterial cells were used, reduce the sample volume.

Genomic DNA contamination

- •Do not use overgrown bacterial culture.
- During PM2 and PM3 Buffer addition, mix gently to prevent genomic DNA shearing.
- •Lysis time was too long (over 5 mins).

Too much salt residual in DNA pellet

•Wash the DNA pellet twice with 70% ethanol.

For Research Use Only