Alkyl PEG Ether

CIR EXPERT PANEL MEETING DECEMBER 13-14, 2010

ADMINISTRATIVE

Cosmetic Ingredient Review

Commitment . . . Credibility
Since 1976

Memorandum

To: CIR Expert Panel Members and Liaisons
From: \quad Monice M. Fiume MMF
Senior Scientific Analyst/Writer
Bart A. Heldreth, Ph.D., Chemist BAH

Date: \quad November 18, 2010
Subject: Final Report (Draft) on Alkyl PEG Ethers
At the June 2010 meeting, the CIR Expert Panel issued a tentative report that encompassed the entire family of Alkyl PEG Ethers used in cosmetics. Additional concentration of use data were received and incorporated into the report. Technical comments from the Council were received and addressed. Additional data were considered as described below. And a draft final report has been prepared for your review.

As you recall, this report was originally brought forward as a possible re-review of laureth-4 and laureth-23. In preparing that re-review document, it was realized that there is a large number of ingredients that are very similar to one another. Therefore, a grouping of ingredients based on structural and functional similarities was created, and the Panel agreed to re-review laureth- 4 in order to include these ingredients. Many of the ingredients included in this family have been reviewed previously, as have many of the components of these ingredients, and the information included in those original reports is used to support the safety of the entire Alkyl PEG Ether family. While not a new approach, this was the first time an ingredient family of this size was created.

In the draft report presented to the Panel in June, summaries from the original reports on previously reviewed ingredients, as well as from reports on components, were included in text and in a table. Per the request of the Panel, all that information is now contained in table format only. (See Table 2b.)

A Scientific Committee on Consumer Products (SCCP) opinion paper exists for laureth-9. The information summarized in the SCCP paper is on alcohol ethoxylates analogous to laureth-9. This information has been added to the report. The information is summarized under the subheading 'Laureth-9', but the test product will be given as described in the SCCP paper - i.e., by the average alkyl chain length (C) and by the average alcohol ethoxylate number (AE), e.g. $\mathrm{C}_{12-15} \mathrm{AE}_{7}$. The new information that has been added (as well as any other new information) is designated by vertical lines on both sides of text.

Information from a SIDS document on PEG-3 Methyl Ether has also been added to the review.

At the June meeting, the Panel stated that the botanical boiler plate should be included in the Discussion, since some ingredients have plant sources. While plants are the source of some components in the ingredients of this report, it appears that alkyl PEG ethers are produced as a result of significant processing, and as such are not expected to contain residual pesticides or heavy metals. We made the judgment that the boilerplate was not needed.

You will note that the boiler plates for animal- and tallow-derived ingredients have been updated to reflect current guidelines.

The Panel should vote to issue the Final Report on the Alkyl PEG Ethers.
The following information is being provided:

1. additional concentration of use data
2. Council comments on the June draft report
3. Council comments on the Tentative Report
4. Data profile for the Alkyl PEG Ethers

[^0]
History - Alkyl PEG Ethers

June 28-29, 2010
Laureth-4 and laureth-23 were brought forward to the Panel for a decision as to whether or not to rereview this report. In preparing that re-review document, it was realized that there is a large number of ingredients (369) that are very similar to one another. Therefore, a grouping of ingredients based on structural and functional similarities was created, and the Panel agreed to re-review laureth-4 in order to include these ingredients. Many of the ingredients included in this family were previously reviewed, as were many of the components of these ingredients. The information included in those original reports is used to support the safety of the entire Alkyl PEG Ether family.

The Panel agreed to rereview laureth-4 and laureth-23. Additionally, a Tentative Report was issued with the conclusion that the alkyl PEG ethers safe in the present practices of use and concentration described in this safety assessment when formulated to be non-irritating. Were ingredients in this group not in current use to be used in the future, the expectation is that they would be used in product categories and at concentrations comparable to others in this group. This assessment is also intended to address future alkyl PEG ether cosmetic ingredients that vary from those ingredients recited herein only by the number of ethylene glycol repeat units

The Panel did state that available data regarding biohandling and biotransformation of branched chains would be useful.

December 13-14, 2010
Information on compounds analogous to laureth-9 were added to the report.

Alkyl PEG Ethers Data Profile* - Dec 2010 - Writers, Monice Fiume and Bart Heldreth (includes data in original assessments)															
	$\begin{aligned} & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$											$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{2} \\ & \stackrel{0}{\sim} \end{aligned}$	$\begin{aligned} & \text { * } \\ & 0.0 \\ & 0.0 \\ & 0 \end{aligned}$	نٌ	\%
PEGs (component)		X	X	X		X	X		X	X	X	X	X	X	X
Arachideth-20															
Beheneth-2															
Beheneth-5															
Beheneth-10	X														
Beheneth-15															
Beheneth-20	X														
Beheneth-25	X														
Beheneth-30	X														
Behenyl Alcohol			X							X					
C9-11 Pareth-3									X	X					
C9-11 Pareth-4															
C9-11 Pareth-6	X		X	X			X		X	X	X		X		
C9-11-Pareth-8	X								X	X					
C9-15 Pareth-8															
C10-16 Pareth-1															
C10-16 Pareth-2															
C11-13 Pareth-6															
C11-13 Pareth-9															
C11-13 Pareth-10															
C11-15 Pareth-3	X														
C11-15 Pareth-5	X														
C11-15 Pareth-7	X														
C11-15 Pareth-9	X														
C11-15 Pareth-12															
C11-15 Pareth-15															
C11-15 Pareth-20															
C11-15 Pareth-30															
C11-15 Pareth-40	X														
C11-21-Pareth-3															
C11-21-Pareth-10															
C12-13 Pareth-1															
C12-13 Pareth-2			X	X					X	X					
C12-13 Pareth-3	X								X	X					
C12-13 Pareth-4															
C12-13 Pareth-5															
C12-13 Pareth-6															
C12-13 Pareth-7	X								X	X					X
C12-13 Pareth-9															
C12-13 Pareth-10															
C12-13 Pareth-15															
C12-13 Pareth-23	X														
C12-13 Pareth - chain length not specified			X	X					X	X					
C12-14 Pareth-3	X														
C12-14 Pareth-5															
C12-14 Pareth-7															
C12-14 Pareth-9															
C12-14 Pareth-12	X														
C12-15 Pareth-2															
C12-15 Pareth-3	X								X	X					
C12-15 Pareth-4															
C12-15 Pareth-5															
C12-15 Pareth-7	X								X	X					X
C12-15 Pareth-9	X								X	X					
C12-15 Pareth-10															
C12-15 Pareth-11															
C12-15 Pareth-12	X									X					
C12-16 Pareth-5															
C12-16 Pareth-7	X														
C12-16 Pareth-9	X														
C13-15 Pareth-21															
C14-15 Pareth-4															
C14-15 Pareth-7						X			X	X					
C14-15 Pareth-8															
C14-15 Pareth-11									X	X					

Alkyl PEG Ethers Data Profile* - Dec 2010 - Writers, Monice Fiume and Bart Heldreth (includes data in original assessments)															
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$											$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \text { O} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 㐅} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$	שٍ	\%
C14-15 Pareth-12															
C14-15 Pareth-13									X	X					
C20-22 Pareth-30															
C20-40 Pareth-3	X														
C20-40 Pareth-10	X														
C20-40 Pareth-24															
C20-40 Pareth-40	X														
C20-40 Pareth-95	X														
C22-24 Pareth-33															
C30-50 Pareth-3															
C30-50 Pareth-10															
C30-50 Pareth-40															
C40-60 Pareth-3															
C40-60 Pareth-10															
C11-15 Sec-Pareth-12															
C12-14 Sec-Pareth-3															
C12-14 Sec-Pareth-5	X														
C12-14 Sec-Pareth-7	X														
C12-14 Sec-Pareth-8															
C12-14 Sec-Pareth-9															
C12-14 Sec-Pareth-12															
C12-14 Sec-Pareth-15															
C12-14 Sec-Pareth-20															
C12-14 Sec-Pareth-30															
C12-14 Sec-Pareth-40															
C12-14 Sec-Pareth-50															
Capryleth-4															
Capryleth-5															
Ceteareth-2	X														
Ceteareth-3	X														
Ceteareth-4	X														
Ceteareth-5	X														
Ceteareth-6	X														
Ceteareth-7	X														
Ceteareth-8															
Ceteareth-9															
Ceteareth-10	X														
Ceteareth-11															
Ceteareth-12	X														
Ceteareth-13															
Ceteareth-14															
Ceteareth-15	X								X	X					X
Ceteareth-16	X														
Ceteareth-17															
Ceteareth-18															
Ceteareth-20	X	X													
Ceteareth-22	X														
Ceteareth-23															
Ceteareth-24															
Ceteareth-25	X														
Ceteareth-27															
Ceteareth-28															
Ceteareth-29															
Ceteareth-30	X														
Ceteareth-33	X														
Ceteareth-34															
Ceteareth-40															
Ceteareth-50															
Ceteareth-55	X														
Ceteareth-60	X														
Ceteareth-80															
Ceteareth-100	X														
cetyl, stearyl, and./or cetearyl alcohol (component)		X	X	X	X	X	X		X	X			X	X	X
Ceteth-1	X														
Ceteth-2	X		X				X		X	X					

Alkyl PEG Ethers Data Profile* - Dec 2010 - Writers, Monice Fiume and Bart Heldreth (includes data in original assessments)															
	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$								$\begin{aligned} & \tilde{N} \\ & \stackrel{y}{0} \\ & \stackrel{y}{E} \\ & \dot{E} \end{aligned}$				¢ O 0 0 0	U゙	坒
Ceteth-3	X														
Ceteth-4															
Ceteth-5															
Ceteth-6	X														
Ceteth-7															
Ceteth-10	X		X				X		X						
Ceteth-12	X														
Ceteth-13															
Ceteth-14															
Ceteth-15	X														
Ceteth-16	X														
Ceteth-17															
Ceteth-18															
Ceteth-20	X		X										X		
Ceteth-23															
Ceteth-24	X														
Ceteth-25	X														
Ceteth-30	X														
Ceteth-40															
Ceteth-45															
Ceteth-150															
Ceteth - unspecified chain length			X												
cetyl alcohol (component)			X	X	X		X		X	X			X		X
Cetoleth-2															
Cetoleth-4															
Cetoleth-5															
Cetoleth-6															
Cetoleth-10															
Cetoleth-11															
Cetoleth-15															
Cetoleth-18															
Cetoleth-20															
Cetoleth-22															
Cetoleth-24															
Cetoleth-25	X														
Cetoleth-30															
oleyl alcohol (component)		X		X					X				X		X
Coceth-3															
Coceth-5															
Coceth-6															
Coceth-7	X														
Coceth-8	X														
Coceth-10	X														
Coceth-20															
Coceth-25															
coconut alcohol (component)															
Deceth-3	X														
Deceth-4															
Deceth-5	X														
Deceth-6															
Deceth-7	X														
Deceth-8	X														
Deceth-9	X														
Deceth-10															
Decyltetradeceth-5															
Decyltetradeceth-10															
Decyltetradeceth-15															
Decyltetradeceth-20															
Decyltetradeceth-25															
Decyltetradeceth-30															
Hexyldeceth-2															
Hexyldeceth-20															
Hydrogenated Dimer Dilinoleth-20															
Hydrogenated Dimer Dilinoleth-30															
Hydrogenated Dimer Dilinoleth-40															

Alkyl PEG Ethers Data Profile* - Dec 2010 - Writers, Monice Fiume and Bart Heldreth (includes data in original assessments)															
													$\begin{aligned} & \text { 㐅} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$	نٍ	\%
Hydrogenated Dimer Dilinoleth															
Hydrogenated Dimer Dilinoleth															
Hydrogenated Laneth-5															
Hydrogenated Laneth-20															
Hydrogenated Laneth-25															
Hydrogenated Talloweth-12															
Hydrogenated Talloweth-25															
Isoceteth-5															
Isoceteth-7															
Isoceteth-10	X														
Isoceteth-12															
Isoceteth-15															
Isoceteth-20	X														
Isoceteth-25	X														
Isoceteth-30															
Isodeceth-4															
Isodeceth-5															
Isodeceth-6	X														
Isolaureth-3															
Isolaureth-6	X														
Isolaureth-10															
Isomyreth-3															
Isomyreth-9															
Isosteareth-2	X														
Isosteareth-3															
Isosteareth-5	X														
Isosteareth-8															
Isosteareth-10	X														
Isosteareth-12															
Isosteareth-15															
Isosteareth-16															
Isosteareth-20	X														
Isosteareth-22															
Isosteareth-25															
Isosteareth-50															
isostearyl alcohol (component)			X						X	X					X
Laneth-5	X		X						X	X					X
Laneth-10															
Laneth-15	X														
Laneth-16	X		X						X	X					X
Laneth-20	X														
Laneth-25	X		X						X	X					X
Laneth-40	X														
Laneth-50															
Laneth-60															
Laneth-75															
cholesterol (component)		X				X			X			X	X	X	X
alcohol ethoxylates		X	X		X	X		X	X		X		X		X
Laureth-1	X	X													
Laureth-2	X														
Laureth-3	X	X													
Laureth-4	X		X	X			X		X	X	X				X
Laureth-5	X								X						
Laureth-6	X	X													
Laureth-7	X														
Laureth-8	X														
Laureth-9	X	X	X	X		X	X		X	X		X	X	X	X
Laureth-10	X	X													
Laureth-11	X														
Laureth-12	X														
Laureth-13															
Laureth-14	X														
Laureth-15															
Laureth-16	X														
Laureth-20	X														

Alkyl PEG Ethers Data Profile* - Dec 2010 - Writers, Monice Fiume and Bart Heldreth (includes data in original assessments)															
	$\begin{aligned} & 0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$								$\begin{aligned} & \stackrel{n}{\tilde{u}} \\ & \stackrel{n}{n} \\ & \text { E } \\ & \text { E } \end{aligned}$	$\begin{aligned} & \text { 良 } \\ & \frac{3}{3} \\ & 0 \end{aligned}$		$$		U゙0	¢
Laureth-21	X														
Laureth-23	X		X	X					X	X					X
Laureth-25	X														
Laureth-30	X														
Laureth-38															
Laureth-40															
Laureth-50															
Laureth - chain length not specified									X				X		
Methoxy PEG-7															
Methoxy PEG-10															
Methoxy PEG-16	X														
Methoxy PEG-25															
Methoxy PEG-40															
Methoxy PEG-100															
methyl alcohol		X	X	X	X			X		X	X	X			X
Myreth-2															
Myreth-3	X														
Myreth-4	X														
Myreth-5															
Myreth-10	X														
myristyl alcohol (component)			X	X	X				X	X					X
Noneth-8															
Octyldodeceth-2															
Octyldodeceth-5															
Octyldodeceth-10															
Octyldodeceth-16	X														
Octyldodeceth-20	X														
Octyldodeceth-25	X														
Octyldodeceth-30															
octyl dodecanol (component)			X	X					X	X					X
Oleth-2															
Oleth-3															
Oleth-4															
Oleth-5															
Oleth-6															
Oleth-7															
Oleth-8	X														
Oleth-9															
Oleth-10	X		X						X	X					
Oleth-11															
Oleth-12	X														
Oleth-15	X														
Oleth-16	X														
Oleth-20	X					X			X	X					
Oleth-23															
Oleth-24															
Oleth-25	X														
Oleth-30	X														
Oleth-35															
Oleth-40															
Oleth-44															
Oleth-45															
Oleth-50	X														
Oleth-82	X														
Oleth-100															
Oleth-106	X														
Oleth - chain length not specified						X									
oleyl alcohol (component)		X		X					X				X		X
Palmeth-2															
PEG-16 Cetyl/Oleyl/Stearyl/Lanolin Alcohol Ether															
lanolin alcohol (component)			X						X	X					X
cholesterol (component)		X				X			X			X	X	X	X
PEG-Cetyl Stearyl Diether															
PEG-4 Distearyl Ether	X														
stearyl alcohol (component)		X	X				X		X	X			X	X	X

Alkyl PEG Ethers Data Profile* - Dec 2010 - Writers, Monice Fiume and Bart Heldreth (includes data in original assessments)															
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$								$\begin{aligned} & \stackrel{\sim}{U} \\ & \stackrel{N}{U} \\ & E \\ & E \\ & \dot{E} \end{aligned}$	$\begin{aligned} & \text { By } \\ & \text { 荡 } \end{aligned}$			$\begin{aligned} & \text {. } \\ & 0.0 \\ & 0.0 \\ & 0 \end{aligned}$	Uٌ	
PEG-4 Ditallow Ether															
PEG-15 Jojoba Alcohol															
PEG-26 Jojoba Alcohol															
PEG-40 Jojoba Alcohol															
Jojoba Alcohol (component)			X				X		X				X		X
PEG-3 Methyl Ether		X	X	X	X	X	X		X	X		X	X		X
PEG-4 Methyl Ether															
PEG-6 Methyl Ether															
PEG-7 Methyl Ether				X			X						X		
PEG-7 Propylheptyl Ether	X														
PEG-8 Propylheptyl Ether	X														
Steareth-1															
Steareth-2	X		X						X	X					X
Steareth-3															
Steareth-4	X		X												
Steareth-5															
Steareth-6	X														
Steareth-7	X														
Steareth-8															
Steareth-10	X		X						X	X					X
Steareth-11															
Steareth-13															
Steareth-14															
Steareth-15	X														
Steareth-16	X														
Steareth-20	X		X				X		X	X					
Steareth-21	X														X
Steareth-25	X														
Steareth-27															
Steareth-30	X														
Steareth-40															
Steareth-50	X														
Steareth-80															
Steareth-100	X														
Steareth-200	X														
stearyl alcohol (component)		X	X				X		X	X			X	X	X
alcohol ethoxylates													X	X	
Steareth-60 Cetyl Ether															
Talloweth-4	X														
Talloweth-5	X														
Talloweth-6	X														
Talloweth-7															
Talloweth-18															
Talloweth - chain length not specified							X								
Trideceth-2															
Trideceth-3	X														
Trideceth-4															
Trideceth-5	X														
Trideceth-6	X														
Trideceth-7	X														
Trideceth-8	X														
Trideceth-9	X														
Trideceth-10	X														
Trideceth-11	X														
Trideceth-12	X														
Trideceth-15															
Trideceth-18															
Trideceth-20															
Trideceth-21															
Trideceth-50															
Undeceth-3	X														
Undeceth-5	X														
Undeceth-7															
Undeceth-8															

Alkyl PEG Ethers Data Profile* - Dec 2010 - Writers, Monice Fiume and Bart Heldreth (includes data in original assessments)															
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$								$\begin{aligned} & \frac{n}{v} \\ & \stackrel{n}{v} \\ & \text { E } \\ & \frac{1}{4} \end{aligned}$				$\begin{aligned} & \text { ․․ } \\ & 0.0 \\ & 0.0 \\ & 0 \end{aligned}$	نٍ	篤
Undeceth-9															
Undeceth-11	X														
Undeceth-40															
Undecyleneth-6															

*" X " indicates that data were available in a category for the ingredient; it is not an indication of positive or negative findings Alternate shading indicates a related set of ingredients

$$
\text { Updated Search - 09-21-10 - last } 12 \text { mos entries only }
$$

Sebacic 09-21-10 10 hits/0 useful
111-20-6 OR 184706-97-6 OR 109-43-3 OR 110-40-7 OR 122-62-3 OR 359073-59-9 OR 10340-41-7 OR 7491-023 OR 69275-01-0 OR 17265-14-4 OR 478273-24-4 OR (DICAPRYL AND CAPRYL AND SEBACATE) OR (DIISOSTEARYL AND SEBACATE)

Malonic-Succinic-Glutaric 09-21-10 74 hits/0 useful
141-82-2 OR 105-53-3 OR 110-15-6 OR 2922-54-5 OR 150-90-3 OR 106-65-0 OR 123-25-1 OR 2915-57-3 OR 2530-33-8 OR 14491-66-8 OR 93280-98-9 OR 925-06-4 OR 110-94-1 OR 1119-40-0 OR 71195-64-7 OR (DIISOSTEARYL AND GLUTARATE)

Adipic 09-21-10 23 hits/0 useful
124-04-9 OR 627-93-0 OR 141-28-6 OR 103-23-1 OR 106-19-4 OR 105-99-7 OR 105-97-5 OR 26720-21-8 OR $155613-91-5$ OR $110-33-8$ OR 141-04-8 OR 57533-90-1 OR 58262-41-2 OR 59686-69-0 OR 27178-16-1 OR 33703-08-1 OR 108-63-4 OR 6938-94-9 OR 62479-36-1 OR 155613-91-5 OR 85117-94-8 OR 16958-92-2 OR (ALKYL AND ADIPATE) OR (DIHEXYLDECYL AND ADIPATE)

```
Azelaic-Dodecanedioic 09-21-10 10 hits/3 possibly useful
123-99-9 OR 9619-43-3 OR 52457-54-2 OR 17265-13-3 OR 27825-99-6 OR 132499-85-5 OR 693-23-2 OR
131252-83-0 OR 129423-55-8
```

October 26, 2010 - identified a SIDS document on PEG-3 Methyl Ether (now included in text)

TRANSCRIPTS/MINUTES

Clinical observations? So we just need to clarify
what that ... what you mean by different activity
measurements.
DR. HELDRETH: Okay -
DR. BELSITO: Any other comments? Okay.
So we're going safe as used. And again, anything
that Bart needs to put into the discussion that
ion't curxently there? No? We're happy with it?
Okay. Good.
Okay. It's 10:30. Why don't we take a
10-minute break and regroup at 10:40.
(Recess)
DR. BELSITO: Have we reassembled?
SPEAKER: Yes.
DR. BELSITO: Okay. So now we're ready
and we've been refortified to take on the gorilla, alkyl PEG ethers. And this is a list of about 367 ingredients that we're being asked to look at. So before we even start I guess my question is to Dan and the other members of my team, is the grouping okay? Any comments on that, Dan?

DR. LIEBLER: I didn't have any
concerns. I'm paging through my notes here to refresh my memory. But I don't -- I don't think so.

DR. KLAASSEN: I thought it was great.
DR. LIEBLER: Yeah, my first note is
reaction schemes in the text. I love it.
DR. BRESLAWEC: Just want to point out for the record we don't see --

SPEAKER: Oh, sorry.
DR. BRESLAWEC: I would like to point out for the record that you don't see one writer analyst reviewer here, you see three. There's a reason for that. Monice coordinated and was the head person on the report, but it involved a lot of other staff.

DR. BELSITO: Okay. Okay, so at least our team says keep the seatbelts on. We're going to keep all 367 chemicals in this report.

So if we're okay with the family and
since we've done so many of these reports before, and if you looked at all of the data, we really certainly have lots of data, then is it a little
bit presumptuous of me to say that these are safe as used when formulated not to be irritating and move on?

DR. LIEBLER: It's not presumptuous.
DR. BELSITO: I mean, if you're
comfortable with the chemical grouping, I'm comfortable with the conclusion. I mean, because we've already looked at a number of these that are included in here. Otherwise, in the discussion there are animal sources for lanolin so we need the animal boilerplate. I didn't make a note if there are any plant sources. I didn't see any, but it's a huge document. I may have missed them. If there are any plant sources we need that. And then there's notes about penetration enhancements so we need that usual boilerplate in our discussion. That's the only comments I had.

DR. LIEBLER: First of all, I'd like to say from a chemistry perspective the organization was excellent. Very nice. And the explanation at the beginning of the report explaining the chemistry and incorporating those reaction schemes
into the text was very nice for readability. So that was very good, and my compliments to you guys. You may want to number the schemes though so you can refer to them, just like you would, you know, in a manuscript, scheme 1A or scheme 1, 2 , 3, 4 .

DR. BELSITO: Page 17, under
octyldodecanol, the second line, 330 percent A.
Solution." Is that supposed to be aqueous solution?

MS. FIUME: Yes.
DR. BELSITO: And then some minor
comments, but I guess this is the point now when we need to look at how the use information is given. So I will open that up for discussion for our group. I think for me I definitely like it. I mean, literally, in this report it probably would save me five hours of going through and tallying what's a dermal leave-on and what's the range for that and what's a rinse-off and what's the range for that. And what's a lipstick and is there an aerosol use in having to go through each
one in looking for hairspray and foot spray. I
mean, I think it's wonderful. I would agree with comments that Dan and Curt made that electronically the old format I think should still be available. So it will involve making the old tables and take a little bit of time for the reader. And then that should be available for us to look at -- or the writer, rather. It should be available for us to look at, but not be in the published documents. This is so much easier. And then agree with the comments from the Council that you need to split off rinse-offs into something like diluted prior to application or not diluted. And so that would be like shampoos and things versus a vaginal douche.

DR. BERGFELD: Do you have a comment? DR. ANSELL: No. DR. BELSITO: So I like those comments. And then Dave had a very interesting point about, you know, when we get to things that are used as pH adjusters would be very different than used as a hair straightener. I don't know how we'll deal
with that, but I guess we'll deal with that when we have to deal with it.

The only issue is, I guess, in terms of how do you explain to the public that you have the total number for leave-on and rinse-offs is the total number, but the total number that will appear in the paragraph for the different types of uses may be greater than N because a lipstick would be counted twice, both as a dermal and as a possible absorption. And maybe what you could do there is do a leave-on and a rinse-off. And then I do like the idea of putting a heading below, you know, so you have types of use broken down into leave-on, rinse-off, rinse-off without dilution, or however you wanted to do that. And then number and concentration of use. And then what you probably could do would be to do that as, you know, dermal yadda, yadda, yadda so the N is the same. But then below it put Special Categories of Use. And sort out, you know, the I, the possible ingestion, the possible inhalation in the baby so that, you know, it makes a little bit more sense
to someone that that is not going to be the total N, but you're captured the N in terms of types of use and then number and concentration of uses. Those will be the Ns and then below a third category, you know, which are the specials.

Yes, Wilma.
DR. BERGFELD: I was thinking just asterisk them and put down that you can -- under the asterisk you could state that uses may be shared between product lines or something, rather than to do all that detail. That would account for the difference in number.

DR. BELSITO: So what you're suggesting is an asterisk that would say that the total number here may be greater because a single product would be included under two different categories such as a baby lotion would be under both dermal and baby lipstick would be under both possible ingestion and dermal?

DR. BERGFELD: Something like that. I think we can work on that to make it as brief as possible.

DR. BRESLAWEC: Something along the
lines of ingredients may be used in more than one category?

DR. BERGFELD: Yeah.
MS. FIUME: Dr. Belsito, can I ask -because I just need to get clarification on the other way we used to do it. AS I pulled this in, I have an Excel spreadsheet that lists by ingredient everything that came from FDA. Would that be satisfactory to show you what the exact categories are rather than putting them in a table?

DR. BELSITO: Yeah. I mean, I'm fine with that. I think that it would be nice for the panel to look at that. But in terms of -- and see so that we're comfortable that we're getting representative data for each of the individual ingredients we're looking at. I think that was Ron and Paul's concern that when it's condensed like this we don't really have information on, you know, in the dermal category the different categories or products that might be being used
and where we're getting report. And that's the kind of information we would like to see before we're comfortable signing off on it. In terms of the types of information that eventually we want in assessing the safety, these tables address it. You know, I want to know am I looking at something that's used 27 percent in lipstick? You know, what are the leave-on concentration ranges for sensitization, irritation that I'm worried about that I want to see good data? So, you know, I think these tables are wonderful. But, yeah, I mean, an Excel spreadsheet is fine.

DR. BRESLAWEC: We may want to play with something in that, maybe provide you with both formats or both for a while and see if there's anything that you feel is missing from the new use tables. Maybe be able to draw that in. Because I just don't think you have any real familiarity with using this. And if you find yourself going back to the spreadsheet or the raw data routinely for the same type of information then we need to do something to put that in. So we may be playing
with both formats for a while if that's all right with you.

DR. BELSITO: I think that's great, and I think that, you know, Monice answered Rachel's criticism before. And if you look on page 102 in Table 5 you see that for steareth-2 that in the original report there are 107 uses. There are now 593. In the original report it was used in leave-ons less than or equal to 10 percent and rinse-offs at less than or equal to 5 percent. So we are capturing in generality the type of data that we got from the individual reports at least for, you know, is it significantly increased in usage? We got that. Has it significantly changed in concentrations? We have that. So, I mean, again I think that, you know, the way these tables are organized is great. The only information we're not getting is broken down in a dermal category how many areas are blank. And are we getting it just all of this range for a face cream or are we getting it for body lotions, et cetera, et cetera. And that's what the detailed map I
think would assure us. Just scanning down and seeing that we're getting numbers in all the general categories, I almost don't need to look at the numbers. Just get a sense that they're there, you know, and then use your tables because that's what I did before on my own.

MS. FIUME: And then, just so we know as we progress with these tables, in Table 6, just because it was easier, we do list the total number of uses per category. Is that information you would still like to see in the report so you have an idea?

DR. BERGFELD: Yes.
DR. KLAASSEN: Yes.
DR. BERGFELD: (inaudible) impact.
DR. BELSITO: Yeah. I mean, I think
that's good. But now that you're on to Table 6, the concentration of uses for all the laureths are blank there, so.

DR. BRESLAWEC: The same situation as with the other report. This was a huge number. It overwhelmed the system and they're responding
as rapidly as they possibly can.
DR. BELSITO: Okay. And then the only comment that I have is in the report we had data on laureth-4 and there were some neurotoxicity issues that I don't think are real issues given absorption and that. But laureth-4 is not listed here so I'm assuming there are no uses for it. It's page 106 of the document.

MS. FIUME: Lauret-4 is actually on page 101 because it was previously reviewed. Table 5 is all the previously reviewed reports.

DR. BELSITO: Oh.
MS. FIUME: And Table 6 is the newly added reports.

DR. BELSITO: Okay. Didn't catch that.
DR. ANSELL: Before we leave Table 6,
the total 36,000 , is that formulations reported using any one of these ingredients or is that the total number of leave-on products in the entire database representing all possible ingredients? DR. BRESLAWEC: It's the total number of all possible ingredients, leave-on and rinse-off.

DR. ANSELL: Irrespective of whether they contain this ingredient or not?

DR. BRESLAWEC: Correct. That is a
total -- that's the -- what you're comparing to.
So a total of 36,808 reported product uses for ingredients. Laureth-1 is used in one of those reports. So that's the overall

DR. BELSITO: So the FDA has in their databank for the VCRP system has a total of 23,788 leave-on cosmetics?

DR. BRESLAWEC: Correct DR. BELSITO: Okay. So that's our universe.

DR. BRESLAWEC: That would be your universe of what we have. It may not be the spectrum of the totality of the universe, but it's just what's available to the FDA at a given point in time.

DR. BELSITO: Right. Somehow that needs to be explained because I had the same question as Jay, whether it was for all products in the table or for the universe of VCRP, so

DR. BRESLAWEC: This is the same number that you used to see in parenthesis in the old table. You'd say see category of use and then you'd see a number in parenthesis.

DR. BELSITO: Yeah. I don't know how you make that clear to a reader, but somehow it almost needs to be broken out of the table and always be a separate table, like 6A, 6B or something, you know, where 6 A is total number of you know, cosmetic ingredients in the VCRP by category. And then 6B is total number for the specific chemicals under review. Because otherwise it's very -- I mean, I didn't know what the heck it meant either.

DR. ANSELL: Yeah. Although I don't
object to its presence, I'm curious as to what we can interpret from that. You know, certainly if that number were of these ingredients we could tell that the laureth-4 is, you know, the big one, but how it compares to everything in the databases is far from clear what we can interpret from that. DR. BRESLAWEC: We have the same
concern. And that's why we presented it with that piece of information when Christina did the presentation and without because we weren't sure whether you were getting anything out of that number. And if you're not then maybe get rid of it, you know

DR. BELSITO: Any other comments about how we're going to be reporting frequency and concentration of use?

DR. SNYDER: My only comment is that
it's a work in progress and we just have to see how it works. You just have to see a report and see how the new data works. And I think we've accomplished a lot of that today to make it more useful to us as reviewers.

DR. BRESLAWEC: As Christina said, we really are very much seeking your input and guidance on this. It's not going to work unless it works for you and gives you the kind of information that you need.

DR. BELSITO: I think it's great. Okay, so we're happy with the groupings and we're going
to -- we're happy with the tables. We're expecting that PCPC will fill in some of the concentrations of use. And we'll check to make sure in the discussion that there are no botanical sources. If there are I'll put that boilerplate in. There are animal sources for lanolin so that boilerplate needs to go in. And Table 6, we're getting rid of the universe listings and we're going with the safe as used when formulated not to be irritating.

DR. BRESLAWEC: Okay. Because this is a re- review, you have an option to reopen or you can accept this as a draft report.

DR. BELSITO: We're reopening, accepting it as a draft, and going safe as used. Moving it to a final.

DR. BERGFELD: Don, do you think in your discussion, because this is a new way of dealing with so many ingredients, that we ought to have some kind of small statement?

DR. BELSITO: Give me an example of a small statement that you want

DR. BERGFELD: Well, that there were 300
-- what was it -- 364 ingredients that related chemically that fell into the alkyl PEG ethers many of which had been reviewed before and were found to be safe. And then we could possibly say that these were, I'm going to say, were condensed, but these were grouped together in one large report or one review report.

DR. BELSITO: Sure. I mean, I think for all of these re-reviews where we've opened them to add other ingredients, I mean, I think there should be sort of maybe a standard boilerplate first paragraph as to what was originally reviewed, what's being added in, and the rationale for the inclusion of the new ingredients. And that's going to largely be crafted by I presume Bart and Dan and Ron, the chemists, because that's what's driving the additions is the chemical structural similarities. So, you know, you three get together and draft those -- that first paragraph for us. I mean, but I think that should be standard for all re-reviews that are open to
add things on as to the rationale as to why we did it. Sure.

DR. BERGFELD: Thank you. And it's better said than I said it. But I think it should occur in the discussion. I'm not sure it should occur in the introductory portion, but it could occur there, also.

DR. BELSITO: Yeah. I mean --
DR. BRESLAWEC: Monice. No, I'm sorry
DR. BELSITO: Go ahead.
DR. BRESLAWEC: Monice and Bart, do you want to mention methyl?

DR. LIEBLER: We're really talking about a new sort of inclusion boilerplate, if you will that we'll use common language to describe rationale for including larger groups, additional groups of chemical substances in these reports. And I think it would be pretty easy for us to come up with something. Because we'll almost always have the same reasons for including.

MS. FIUME: In Council's comments, they were wondering whether or not the PEG methyl
ethers, methoxy PEG ethers belong in this report because they have a different function. I'll actually just read what they said. It will probably be easiest.
"Please consider removing the PEG methyl ethers and methoxy these ingredients are all defined as having an average number of ethylene oxide units that have the potential of containing methoxyethanol and methoxydiglycol, both in the dictionary. Both methoxyethanol and methoxydiglycol are not permitted for use in Europe and both are developmental toxicants. As indicated on page 6, the functions reported for the methyl ingredients, which is solvents and humectants, are different than the functions reported for the majority of the other ingredients included in this report."

And then they wanted to know if the methyl group ingredients are removed from the report, the CIR Expert Panel should be asked if a statement that extends the report conclusion to other alkyl PEG ethers in the same families as in
this report added to the dictionary in the future should be added to this report, similar to what was done in the propylene glycol report. So I guess it's actually two --

DR. BRESLAWEC: Two separate issues.
MS. FIUME: Two separate issues
DR. BELSITO: Okay. Well, I think that,
yeah, it would be great that we do that and should
there be in the future PEG X that falls above whatever that it's automatically to be concluded as safe. So I would say that, you know, it's probably a no-brainer to say, yeah, definitely to the second part. For the first part of your question I guess I'll see to Dan and ask him. DR. LIEBLER: I'd like to hear that one more time, just the first suggestion.

MS. FIUME: As these ingredients are all defined as having an average number of ethylene oxide units that have the potential of containing methoxyethanol and methoxydiglycol, both are in the dictionary, both methoxyethanol and methoxydiglycol are not permitted for use in
cosmetics in Europe. And both are developmental toxicants. As indicated on page 6, the functions reported for the methyl ingredients, which are solvents and humectants, are different than the functions reported for the majority of the other ingredients included in this report.

DR. LIEBLER: Right. And the compound
class we're talking about here -- I'm just trying to find myself.

DR. BRESLAWEC: They're PEG-3 methyl
ether.
DR. LIEBLER: PEG methyl ethers.
DR. BRESLAWEC: PEG-4 methyl ethers.
PEG-7.
DR. ANSELL: The concern was raised that
the --
SPEAKER: Microphone, please. DR. ANSELL: The concern which was
raised was that the PEG ethers may have present methoxyethanol or potentially methoxydiglycol and that one suggestion was that to address the potential impurities that they simply be
eliminated from the report. Alternatively, since it's well known that they may be present and industry is well aware of their presence that a statement be added simply noting the concern if these materials were to be present. And I think that's more consistent with what our recommendation would be today.

DR. BERGFELD: So what you said is you'd like to keep this ingredient group that's been requested to be removed and just clarify it in the discussion?

DR. ANSELL: That's what we think today. DR. KLAASSEN: Okay. I just -- I think the issue here is that ethylene glycol ethers, the very, very small ones, can be developmental toxicants and testicular toxicants. And I think what's being said here is that there could be some of that contaminant when they make some of these chemicals. And so the bottom line is that we should, you know, maybe just put in there in regard to purities or impurities that it does not contain these. That's basically what you're
saying, Jay, right?
DR. ANSELL: Right.
MS. FIUME: Then for a point of
clarification on the bottom of page 5 of the report, the last paragraph, and then also on page 22, which is the first summary paragraph under Reproductive and Developmental Toxicity, is that enough to cover the concern?

DR. KLAASSEN: (inaudible)
DR. BELSITO: So it says --
SPEAKER: Microphone, please.
DR. BELSITO: Page 5 or page 6 with the
PEG methyl ethers. First of all --
DR. KLAASSEN: On page 5, what she had
referenced to is the presence of 1,4-dioxane and the unreacted ethylene oxide. And that's kind of a different issue. But, you know, that is an important point and should go into the discussion. It turns out that, you know, 1,4- dioxane and ethylene oxide are carcinogens, but, you know, there's just tiny amounts here. And as long as that's in the discussion

Then if you go to page 22.
DR. BELSITO: Well, page 6, though --
DR. KLAASSEN: Okay.
DR. BELSITO: -- is component
ingredients. You have the PEG methyl ethers on
page 6. Is that not where you should put the issue of the small glycols?

DR. LIEBLER: That seems like a logical place to put that.

DR. BELSITO: Right here?
DR. KLAASSEN: Yeah.
DR. BELSITO: So we could put that
restriction there and then your next one was on reproductive toxicity?

DR. KLAASSEN: Correct. Page 22. Which says -- the summary there at the top in italics says, "Overall it was found that metabolites of ethylene glycol monoalkyl ethers are reproductive and developmental toxicants -- toxins. In general, however, the metabolites of concern are not expected to be formed in cosmetic formulation that contain polymers of ethylene glycol." I
think that's fine. I think it could be maybe made a little bit more -- I think it's only the very, very short esters that are reproductive toxicants.

Also as a general point for the writers, while we say the word "toxins," most toxicologists use the word "toxins" only for "god-made chemicals." That is a snake venom-type things. A synthetic chemical we usually do not call toxins. We call them toxicants or just chemicals. Developmental toxicants, not toxins. But that's kind of minutia, maybe.

DR. LIEBLER: So I would just like to return to Don's suggest. Is that on, I guess it's page, hang on, yeah, page 6, under PEG methyl ethers we add a line. There's one line there right now. But we add a line indicating that these may be contaminated with these compounds, the methoxyethanol, the methoxydiglycol. Maybe that's not the place to put it, but I think we could deal with Council's objection by noting the presence of these compounds, just as we note the possible presence of the dioxane in the ethylene
oxide.
DR. BELSITO: I guess, I don't know,
where are you getting the information? Because it's not in any of the reports that we have that these compounds will be there. In fact --

DR. ANSELL: Well, and that really is the issue. Is that there was simply an interest in adding it as a note.

DR. BELSITO: But do you have
information that they're there and industry specifically goes and removes them? Or is your concern that they could be there and industry should monitor for them?

DR. ANSELL: They should be aware that these materials have a potential toxicity and assure that the products are --

DR. BELSITO: So your concern is that they have be absolutely certain that industry know this and make sure that none of that is in their product?

DR. ANSELL: That's right. We're
suggesting something exactly along the lines of
ethylene oxide and dioxane
DR. BELSITO: Right. Not that it's in their products and they need to remove it; just that it --

DR. ANSELL: No.
DR. BELSITO: Okay. So then actually
I'm not sure where that would go. Maybe just you could put under PEG methyl ethers that -- I guess in the discussion. It doesn't really make sense to put it under page 6 there simply because it doesn't -- it's not known to be in that product.

DR. SNYDER: It's not new data.
DR. BELSITO: It's just a hypothetical
thing. So I guess in the discussion put that hypothetical that the panel was --

DR. SNYDER: The potential for these
impurities --
DR. BELSITO: -- was concerned about the
potential for the impurities to exist in
formulation and Industry should be aware that they shouldn't exist or something.

DR. SNYDER: Yeah. I think Discussion

DR. BELSITO: Just in the discussion,
yeah.
DR. BERGFELD: So you're not going with the removal of the methyl group?

DR. BELSITO: No. No. We're not going with the removal of the PEG ethers. We are going with insertion into the discussion that we're concerned about a theoretical possibility that these could be present in the manufacturing -- as a result of the manufacturing process and Industry should be aware of this and assure that it's not in their formulations. And I guess in terms of wordsmithing, however you want to do it, but I think that the theoretical potential is very important because we have no information that they're actually in product.

DR. LIEBLER: I think you could simply, in the discussion you could refer to those compounds as well as the dioxane and ethylene oxide all together because this is basically the same issue. These compounds should not or these
impurities should not be present in the -- in
products formulated with these ingredients.
DR. BELSITO: So those are dioxane and small chain ethylene oxide?

DR. LIEBLER: They were captured
throughout the report.
DR. BELSITO: Okay.
DR. LIEBLER: Right. They appear in
different places in the report. Since the discussion isn't written yet.

DR. BELSITO: Right.
DR. LIEBLER: When the discussion is written it would be good to have a sentence or two that captures that information.

DR. BELSITO: And capturing it, why
don't we create a list of exactly what chemicals we want to capture. Dioxane, ethylene glycol.

DR. LIEBLER: Dioxane, ethylene oxide,
and then the two compounds we've just been referring it.

DR. BELSITO: And just give us -- give
me the precise name of those compounds again.

DR. LIEBLER: Well, there's actually five impurities that we're concerned about. The 1,4-dioxane, ethylene oxide, butylated hydroxyanisol (BHA), formaldehyde, and peroxide that we've discussed in the document. So we probably should have a paragraph that addresses all of those in the discussion.

DR. BELSITO: And then the last two are the dimethyl --

DR. LIEBLER: Methoxyethanol and methoxy
-- was it methoxyglycol?
DR. BRESLAWEC: Methoxydiglycol.
DR. LIEBLER: Diglycol.
DR. ANSELL: PEG 1 and PEG 2.
DR. BELSITO: Methoxy --
DR. BRESLAWEC: Ethanol.
DR. BELSITO: Ethanol.
DR. BRESLAWEC: And methoxy --
DR. BELSITO: Diglycol.
DR. HELDRETH: And then those 2
impurities are only of concern for the PEG
methylene, not the rest of the PEG (inaudible).

	DR. LIEBLER: Correct.
this?	DR. BELSITO: Okay. Anything else on
	DR. SNYDER: Yes. The carcinogenicity

Additionally, on the ceteth report in the back also on page 166 , we refer to the PEG-8 report in this document saying that -- making the statement that PEG-8 was non-carcinogenic when administered orally, intraperitoneally and
subcutaneously in various test animals. But actually, if you go and read that summary of the carcinogenicity data, all of the carcinogenicity data in the PEG-8 report was only when it was used as a solvent control. So those were not studies designed to evaluate carcinogenicity of PEG-8.

And so we're kind of misrepresenting that data. So we have to be very, very careful about that because once we kind of start propagating that misinformation, we need to put it in the correct accurate context of what the study design was. It wasn't a study designed to look at carcinogenicity. Those were just the solvent controls. And so we make sure that we do that. And it's the same thing in the other report in the Oleth report. On page 22 and 23 there's data also that we haven't really brought in to this report. And so if we're using all of those previous reports to substantiate this report, we have to be careful that we're capturing data, particularly when there's data gaps. And I consider the carcinogenicity section here to be
rather limited data that we need to capture all that we have and capture it accurately.

It was kind of quick. Did you capture all of that?

DR. BRESLAWEC: I assume you have
comments in your document that expands on that.
DR. SNYDER: Yeah.

DR. BRESLAWEC: Thank you.
DR. BELSITO: Other comments? Okay.
Propylene glycol and polypropylene glycols. We'xe
going to Blue 2, that's a final. Oh, and Monice,
on the last one, you got that ... the if new
ingredients come into the dictionary, that
boilexplate we're adding, okay?
DR. BERGFELD: Can we discuss if new
ingredients come into the dictionary with the
emphasis being put onto a couple of these reports?
DR. BELSITO: Sure.
DR. BERGFELD: You really want to put an
X where it's unlimited?

DR. BELSITO: Yeah, because by and laxge
the toxicity is the lower molecular weights. I

```
    DR. MARKS: Or reaffirmed. (Laughter)
At any rate, it's minor. I think the intent is
obvious.
    DR. MARKS: Alkyl PEG ethers, Buff 3.
This is a fun one. Maybe.
    So, in 1983, the CIR published a
    conclusion that laureths 4 and 23 are safe. This
    is beginning a re-review. And when we re-review
    this, the issue is do we expand it to this large
    group of alkyl PEG ethers, which number 368
ingredients.
    And, in addition to that, we have the
new formatted "Use and Concentration" tables, too.
So we should comment about that. That begins on
page 101.
            So let's first make a decision whether
or not we want to reopen this with the intent of
making a marked expansion in a number of
ingredients.
                                    And if we use the criteria before, when
we do these re-reviews, it should be --
quote-unquote -- "no-brainers," in terms of adding
Anderson Court Reporting -- 703-519-7180 -- www.andersonreporting.net
```

	are sterols.
2	So there's -- Bart was having fun with
3	this, I bet, looking at all the chemistry.
4	So I'm looking at, let me see -
5	MS. WEINTRAUB: Dr. Marks, I just had
6	one (inaudible) comment here. My understanding is
7	that we've reviewed some of these things before.
8	So what are we doing? You know, I understand, you
9	know -- I know -- I do understand what we're
10	doing. I do understand the desire to be more
	efficient, do more work when the ingredients are
12	related. But when we've already done that?
13	DR. BRESLAWEC: Well, Monice can tell
	you exactly what number of the ones that we're
15	looking at we've actually already reviewed. And I
	don't know the number offhand.
17	DR. SHANK: 82.
18	DR. BRESLAWEC: 82. And the total
19	number is --
20	DR. SHANK: 369.
21	DR. BRESLAWEC: 369. So we've
22	essentially evaluated the safety of parts of each

of these groups, which are very similar, but
(inaudible) that probably don't matter that much,
they're named differently. The dictionary has
given them different names. And yet they're all
the same chemical structures.
We're trying to step back a little bit
and look at all the ingredients in our purview.
And when we approach their review, try to approach
them in a chemically and toxicologically and
scientifically justifiable way. And this is one
such attempt.
mean that that, sort of, in our office wouldn't
for these different sort of sub-parts in this
whole group that we have reviewed again, does that
fery similar. They're sub-groups, but they're all
of critical ingredients in each of these groups.
And now we'd like to just step back and try to
fery similar. They've had different names.

Anderson Court Reporting -- 703-519-7180 -- www.andersonreporting.net
happen again? If they are part of --
DR. BRESLAWEC: Well, I think that it was determined that they're a part of this whole group. So I think that -- in doing that, that's when the Panel needs to make that determination.

So, are these groups similar enough that they can be grouped together? And are the data in each of the groups supportive enough of their safety?

That's what -- we think that the structure, the logical structure is in place. We think that there are data in place. But it's the Panel's decision to let us know if they think that approach makes sense, and if these ingredients are safe for use in cosmetics.

We're trying to develop, and put forth, a number of new approaches. And until we get some feedback from the Panel, we don't know which ways we're going. So this is really a very open question.

We think what we've proposed is
justifiable. But it's not our decision to make.
Anderson Court Reporting -- 703-519-7180 -- www.andersonreporting.net

	1500 and above you probably have no worries as
2	long as there's no means of ingesting much.
3	But, again, there needs to be some
4	similarity from a biological point of view to
5	define "similar."
6	So I'm troubled by the use of
7	"structurally similar" wherever it occurs, because
8	I'm looking at, say -- "Okay. In what way?" And
9	I'm not sure that question is being always asked
10	in a way that makes scientific sense.
11	And, on that score, it's well and good
12	that the Panel can provide input. But when we
13	have a book that has 300-and-some ingredients, and
	we have two weeks to look at it, or three weeks to
15	look at it, or less time to look at it, I'm not
	sure we had adequate time to -- and then the
17	process dictates that something moves forward.
18	So the best was at least when we're
19	looking at the ingredient lists today, and we're
20	seeing what might be put into that group, we at
21	least have the opportunity then to have some input
22	into "this makes sense to group this," and this

Anderson Court Reporting -- 703-519-7180 -- www.andersonreporting.net

1	DR. HILL: Because at a level we don't
2	chemically similar -- it (inaudible) we don't,
3	really. What we care about is are there fragments
4	in the molecule that have some biological meaning.
5	That's what we care about.
6	And so, again, that's -- that's
7	molecular toxicological similarity, which is what
8	we really need to be concerned about. What's the
9	biohandling like? What are the likely substrates
10	biologically for sensitization? Or tumor growth
11	promotion, or transformation of cells? Or any
12	teratogenic effects -- like that.
13	And I don't always see that logic
14	captured. And, again, "chemical similarity" has
15	no meaning if we're talking about safety
16	evaluation from where I sit -- other than the
17	vapor pressure is the same and we could inhale it
18	or we couldn't. That's pretty much, chemically --
19	and \log P. I mean, if you talk about physical
20	chemical properties.
21	DR. BRESLAWEC: From the perspective
22	Dr. Marks, I'll stop if you -- from the

	endpoint here. But this is a logical way,
2	chemically, to look at it.
3	DR. SHANK: I think if you have polymers
4	of ethylene oxide, and if the number of moles of
5	ethylene oxide is 12 or 13 or 14-- I understand
6	what Dr. Hill is saying, but that kind of
7	similarity, I think, is very easy to accept.
8	And most of these are just that, where
9	-- and there's a variation on the number of moles
10	of ethylene oxide.
11	DR. HILL: Let me just say, in follow-up
12	to my -- maybe you could call it a diatribe -- is
13	that I thought all the molecules in this report
14	belong in this group.
15	So then the question is simply how do we
16	capture the data in such a way that we -- what I
17	lose, when the groups get this large, is to what
18	extent are we -- not only to what extent are we
19	relying on read-across data, but basically, what
20	I'm going to need to do is make a table with 360
	molecules in it and look at dermal sensitization,
22	carcinogenicity, chronic oral tox -- for all of

PCPC Meeting day 1 Breakout Session -- June 28 th
1

1	these.
2	And, ideally, it would be one of these
3	nice PDF tables with the mini-structures in there.
4	But when you click on it or drift over it, you can
5	open it up and actually see the full-size
6	structure.
7	But I guess what I'm looking for is a
8	monster spreadsheet or a monster table that allows
9	one to determine what is actually the nature of
10	the read-across that we're looking at.
11	Are there any branched-chains that have
12	been considered? If so, what?
13	And then, from a toxicological
14	standpoint, we're back down to what I talked about
15	earlier, which is when somebody did a tox
16	evaluation on a particular endpoint, what was the
17	material that was actually studied. Because if
18	the mixture was studied, then you can at least
19	presume that if there was going to be any hit, it
20	would show up.
21	On the other hand, if somebody's got a
22	toxicology study where they've studied a purer

1	DR. HILL: Right. Right. And I like
2	that table. And I guess that's -- and I did think
3	it was excellent, myself, as well. That kind of
4	thing is very helpful, because you can see what
5	compounds were evaluated, what kinds of studies
6	were done. So, yeah.
7	But now we're looking at 360-some of
8	them. So actually --
9	DR. SHANK: Well, this is for the
10	80-some -- 82.
11	DR. MARKS: Right.
12	DR. HILL: Right.
13	DR. SHANK: And that's the read-across
14	base.
15	DR. MARKS: Right.
16	DR. SHANK: To incorporate the other.
17	DR. HILL: Right.
18	DR. MARKS: Other --
19	DR. SHANK: I haven't (inaudible) 241
20	(inaudible).
21	DR. MARKS: Okay. So getting back. So
22	we have a lot of safety data, since about -- what?

```
that table. And I guess that's -- and I did think
t was excellent, myself, as well. That kind of
thing is very helpful, because you can see what
compounds were evaluated, what kinds of studies
were done. So, yeah.
    But now we're looking at 360-some of
    DR. SHANK: Well, this is for the
    DR. MARKS: Right.
    R. HILL: Right.
    DR. SHANK: And that's the read-across
    DR. MARKS: Right.
    DR. SHANK: To incorporate the other.
    DR. HILL: Right
    R. MARKS: Other -
    SR. SHANK. I haven't (inaudible) 241
    DR. MARKS: Okay. So getting back. So
    Anderson Court Reporting -- 703-519-7180 -- www.andersonreporting.net
```



```
-- (inaudible), something like that, that we've
already reviewed.
    Is there anything -- again, going back
to -- I'm now on page 73 -- we talked about the
branched alcohol. That's, I think, the last one.
            How about the sterol and the dialkyl
ethers? Is there any concern there about that
group?
    We're almost -- and that's the last --
and they're small numbers of ingredients in those.
But, again, can we use cross, read-across data for
sterol-containing PEG ethers? And the same with
the dialkyl PEG ethers?
                                    DR. SHANK: Are you saying "sterol" or
"stearyl."
            DR. MARKS: Sterol, S-T-E-R-O-L. That's
on page 74, Ron. Still on Table --
            DR. SHANK: Sterol.
            DR. MARKS: Yes.
            DR. HILL: Okay, I was looking at page
98.
            DR. MARKS: I'm on page 74, Table 1,
Anderson Court Reporting -- 703-519-7180 -- www.andersonreporting.net
```

1	data on those.
2	DR. MARKS: Right. So all these -- so
3	we can reopen and include all these ingredients.
4	And where we don't have prior reports we can use
5	safety assessments, we can just do read-across.
6	DR. SHANK: That's where I am.
7	DR. HILL: Yes, with the caveat that the
8	only branched one I see in the summary of the
9	previous reports is isostearyl -- which presumably
10	is a mixture. I'm just pointing that out.
11	DR. EISENMANN: So what type of data
12	would you like to see? Anything on branched.
13	I mean, before, you were discussing
14	dermal.
15	DR. HILL: Well, let me see --
16	DR. EISENMANN: Your focus was dermal.
17	Is that still your focus?
18	DR. HILL: I'm guessing we will find
19	that the vast majority is that's the only route of
20	exposure. I mean, I suppose we'll see them -- and
	these are really widely used. So, I mean, I
22	suppose we could see them in mouthwashes or

Anderson Court Reporting -- 703-519-7180 -- www.andersonreporting.net
toothpastes or - but still, I'm guessing mostly
dermal or mucous membrane exposures, right.
So, I'm still looking to see what else
was there before. Because I don't see
hexyldeseths, for example. Maybe they're there
and I missed them. Not there.
DR. MARKS: So, Ron Hill, would you just
want to continue with all these ingredients, but
the branched alkyl PEG ethers? You raise a little
red flag on that?
DR. HILL: Yeah, but, I mean, I'm of the
general mindset that if they're out there on the
market, then we should -- because this is -- we're
anderson court Reporting -- 7o3-519-718o -- www.andersonreporting.net
at l983 was the original report, if I'm not
mistaken.
toothpastes or -- but still, I'm guessing mostly
dermal or mucous membrane exposures, right.
So, I'm still looking to see what else
was there before. Because I don't see
hexyldeseths, for example. Maybe they're there
em

```
don't need any of this italicized material.
    You can read it much -- in the tabular
form, you can read it much faster. Just a
suggestion for consideration.
    The discussion should have the caveat
that some of these can increase skin penetration
of other ingredients, and that the ingredients
shouldn't contain 1,4-dioxane or ethylene oxide.
    And then --
    DR. SLAGA: That will be in the
discussion.
    DR. SHANK: In the discussion. And then
the standard aerosol boilerplate.
    DR. HILL: One thing I noted --
    DR. MARKS: Monice, I'll let you
continue writing. I'll put, Ron, just your
comments there.
    DR. SHANK: Okay.
    DR. MARKS: They're quite appropriate in
    the discussion. You'll have that, Monice. I'm
    going to Put Ron Shank's discussion points.
    MS. FIUME: Dr. Marks, tomorrow would
    Anderson Court Reporting -- 703-519-7180 -- www.andersonreporting.net
```

1	liquid, and maybe this is neat.
2	MS. FIUME: I will check it.
3	DR. HILL: And also, if there's any
4	information as to -- and this I encountered a lot
5	of places in reports we've seen on dermal
6	penetration, is the size of the area of skin that
7	is actually dosed matters, when you consider the
8	equations for flux -- passive diffusion flux, or
9	even not passive. The size of the exposed skin
10	matters. And if that can be indicated -- I think
11	we started doing that in some cases.
12	It may not always be available. In
13	fact, I'm sure it's not always available.
14	DR. MARKS: Any other comments?
15	DR. HILL: There's a place where -- I'll
16	just make note of this -- "animal toxicology data
17	were not available on cetearyl alcohol." But
18	that's just actually a mixture of two other
19	alcohols that there was data on.
20	So, unless would be proposing some
21	positive or negative synergy, that could at least
22	be mentioned so you don't have that red-flag

you mind mentioning -- I don't -- I'm more than happy to take the italics out, but I would just not like to do it without its being discussed (inaudible) panel (inaudible).

DR. MARKS: Right. So we can bring that
up tomorrow.
DR. HILL: What I was going to say -this is coming out of some -- what? -- 1983 report, and there was one place I noticed it, but think there are others.

If you look at page 12 of the report, which is book page 47. And I know we had this whole "we don't convert units" discussion, but it says, "The percutaneous LD50 of laureth-9 was. 93 ml/kg." But laureth-9 is probably not a liquid. So that probably means that they made a solution of some particular percent, and then that number traces to that solution, I'm guessing.

And so that's totally uninformative, as to what the actual dose was. And so I don't if, parenthetically -- in some other places it is in milligrams per kilogram, and maybe this is a
Anderson Court Reporting -- 703-519-7180 -- www.andersonreporting.net

PCPC Meeting day 1 Breakout Session -- June 28th Page: 171
statement. This is page 10 of the report, on cetearyl alcohol. That's a mixture of two that are actually listed on -- ones on that page, right below, cetyl. And stearyl's on the next page.

And that might apply to cetear -- it probably does apply to ceteareths, too. So -- you have a red flag where we really don't need it, if you just make the comment that these are -- it's a mixture of these other two ingredients, and those have been tested.

DR. MARKS: Okay. Any other comments? So, tomorrow I will make a motion that we reopen this 1983 report on laureths-4 and -7 , with the express purpose of expanding it into the alkyl PEG ethers, of which there are 368 ingredients. A number of them, 82 to be exact, were reviewed already. And we would proceed forward to having a draft toward the expectation that we're going to have a "safe" --

DR. HILL: Kevin Fries is not in here, is he? But, Bart, you might take note of this.

These come at a cost, but in the drug
creation process, there are multiple vendors that
have these software packages where you have a molecule, and then, basically, annotation. So data from everything from -- well, say, metabolism in cells expressing certain P450s, to what's been learned about toxicology, to what's been learned in preclinical pharmacology assessments in a variety of species, et cetera. So it provides a way of making these monster tables that I'm talking about, where you have multiple molecules and multiple characteristics that are basically annotated in.

And I don't know -- I'm not talking about this month, or even maybe this year, but somewhere down the line people could begin to think about using the software that's already out there to provide a way to create these monster tables in a way that we could actually access and use. Probably it demands having laptops in her -to discuss, and easily see where we're relying on read-across, and what read- across data we're relying on.

Anderson Court Reporting -- 703-519-7180 -- www.andersonreporting.net

	issue a tentative amended safety report on this if
2	they wish to.
3	DR. SLAGA: I think I have the same
4	issue. We're reopening a report called
5	"laureth-4," and changing the title -- is that
6	correct? Isn't that a new procedure for us?
7	DR. BRESLAWEC: We have done this in the
8	past.
9	DR. SLAGA: We have?
10	DR. BRESLAWEC: We've done it with
11	trimoniums, where we reopened the cetrimonium.
12	DR. SLAGA: (inaudible)
13	DR. BRESLAWEC: Yes. It was called
14	"cetrimonium, steartrimonium, " and we renamed it
15	"trimonium." So that's not unusual.
16	DR. SLAGA: That's also this
17	(inaudible)
18	DR. BRESLAWEC: But this would be the
19	case here, too.
20	DR. SLAGA: Before June 2010, we hadn't
21	done that.
22	DR. BRESLAWEC: I think we did that the

1	DR. HELDRETH: That is something that
2	we're already considering.
3	DR. HILL: Okay.
4	DR. HELDRETH: And working on down the
5	road. I mean, it's going to take awhile. But
6	eventually it will be a beautiful map of the
7	structures, and you can just hover over it, and
8	you'll have all the details you want. But we're
9	just not there yet in development.
10	DR. HILL: And, again, I was just
11	pointing it out, because I figured you were
12	already thinking about it. It's just to note that
13	other people have grappled with similar issues,
14	and the technology's probably there to grapple.
15	I'm sure at a cost, but I think that cost has come
16	down a lot from what it was 15 years ago.
17	DR. BRESLAWEC: Dr. Marks?
18	DR. MARKS: Yes.
19	DR. BRESLAWEC: I want to point out
20	this is certainly for the Panel's discretion --
21	that the Panel could consider this a draft report,
22	and evaluate it as such, and choose to propose to

1	last time, with the trimoniums.
2	DR. SLAGA: And that's still an active
3	document.
4	DR. BRESLAWEC: It's still an active
5	document.
6	DR. SLAGA: Have we concluded a document
7	where we've actually rereviewed something and
8	changed the name at the top of it?
9	SPEAKER: (inaudible)
10	DR. BRESLAWEC: I don't know the answer
11	to that.
12	MS. BECKER: The myristates we changed
13	-- reopened to add and change the name.
14	DR. SLAGA: Okay. Thank you.
15	DR. MARKS: Do you like the new name?
16	Yes.
17	DR. HILL: We might have done that with
18	the hydrotropes. Is that one completed?
19	DR. BRESLAWEC: That one? Yes. Well,
20	we've been, I think, doing it more than before.
21	DR. HILL: Okay.
22	DR. BRESLAWEC: But that's based on my

```
level of knowledge historically.
    DR. HILL: In that regard, do you think
you've captured most of the data that's out there
to be captured?
    MS. FIUME: For this report? I did an
extensive search on all of the ingredients.
    DR. HILL: That's what I got.
    MS. FIUME: I did note that there is one
    item, steareth-3, that I did not bring in on
    carcinogenicity which I will add.
    But otherwise, as far as I could find --
    I did put my search strategy. I've searched all
    the data bases. And as far as I can find, this is
    the information available. When I did my search,
    I did start at whatever the old report was. I
    might go back a year or two to make sure I
    captured anything that may have been missing from
    that report. So the in-depth information was from
    whenever the original report was issued -- on the
    ingredients that were reviewed.
    If it was new laureth, then I did a
    complete search. It's generally pretty much
    Anderson Court Reporting -- 703-519-7180 -- www.andersonreporting.net
Anderson Court Reporting -- 703-519-7180 -- www.andersonreporting.net
```

	is something for discussion, to talk about.
2	Because I have to leave my book, but I won't see
3	it again until it gets sent back. I can pull up
4	online and go through, which is fine.
5	MS. FIUME: From my aspect, I made my
6	comments. I take care of all comments as soon as
7	the Panel meeting is over. So, I'm done with it.
8	DR. HILL: And I'm not proposing to give
9	FedEx more money. It can go in snail mail.
10	DR. MARKS: Did you have another
11	comment?
12	MS. FIUME: I did. We received counsel
13	comments last week, and there are two issues that
	I want to make sure you're aware of. The first --
15	I'll just read it as they have it. "Please
16	consider removing PEG-3 methyl ether, PEG-4 methyl
17	ether, the PEG methyl ethers and methoxy PEG from
18	this report. As these ingredients are all defined
	as having an average number of ethylene oxide
20	units, they have the potential of containing
21	methoxyethanol, and methoxydiglycol, both of which
22	are in the dictionary.


```
(inaudible).
    DR. HILL: Okay, so let me be blunt --
    MS. FIUME: Did I miss something?
    DR. HILL: -- and say -- no. I have
    this book in my possession, maybe a little over
    three weeks, maybe it's as much as four, but a
    little over three weeks. And this is again, it's
    a situation where a lot of information to get
    one's head around to reach a conclusion.
    And the usual procedure is -- I mean, I
    can go out and get the book online, but I lose
    whatever I've written in the book until I get the
    book back -- which, in this case, would probably
    be about five weeks. And then I have another
    compressed timeframe to look.
    So, I don't know, I was going to write a
    note in the cover of this one, "Please send the
    book back to me just as soon as you're finished
    looking through my comments," or something like
    that.
    MS. FIUME: And --
    DR. HILL: I don't know. I mean, this
    Anderson Court Reporting -- 703-519-7180 -- www.andersonreporting.net
```

1	"Both methoxyethanol and methoxydiglycol
2	are not permitted for use in cosmetics in Europe,
	and both are developmental toxicants.
4	"As indicated on page 6, the functions
5	reported for the methyl ingredients which are
6	solids and humectants are different than the
7	functions reported for the majority of the other
8	ingredients included in this report."
9	So that was one item brought up by the
10	counsel for the Panel's input.
11	DR. EISENMANN: I mean, the -3 has been
12	tested. So if we know -- and so I don't know if
	we've had a chance and see the purity of what the
14	-3 is, you know, and the tests that were done.
15	That information is available.
16	So I have gone back to the companies who
17	list a supplier and tried to get -- they're in
18	Japan, and I haven't heard anything.
19	You know, if the definition could be
20	changed, equal -3, you're all right. You know,
	because it's an average. We're most concerned
22	about the -3 and the -4.

PCPC Meeting day 1 Breakout Session - June 28 th
1 \quad MS. FIUME: The purity of that 180

1	leaves it open to having the smaller ones in.
2	Actually, you know, I would love to get in touch
3	with the company and find out. Maybe we need to
4	change the definition.
5	DR. SHANK: We've already considered
6	that in the original documents.
7	DR. EISENMANN: Those, we didn't have a
8	report originally on those compounds.
9	DR. BRESLAWEC: You have considered
10	something very similar, with --
11	DR. SHANK: We've considered these
12	impurities in other ingredients before, as
13	impurities. But the compounds were tested for
14	reproductive toxicity, developmental toxicity, and
15	the results were negative, indicating that the
16	impurity was at an acceptable level, it was not
17	DR. EISENMANN: I don't think you've
18	done the methyl. I have no concern with the
19	larger ones. It's only the methyls.
20	DR. SHANK: Methoxyethanol?
21	DR. EISENMANN: Yes.
22	DR. SHANK: We considered that.

	have methoxy ethyl.
2	DR. BAILEY: So you're proposing that
3	(inaudible) stated in the (inaudible)?
4	MS. FIUME: Into the discussion.
5	DR. MARKS: So do we have that captured,
6	between those? So the ethylene oxide, the
7	dioxane. And then you would include also, in
8	that, Ron, the methoxy?
9	DR. SHANK: Well, that note there says
10	methoxyethanol has an impurity.
11	DR. MARKS: Mm-hmm.
12	MS. FIUME: And then I just wanted to
13	point out the other comment. It says, "If the
14	methyl group ingredients are removed from the
15	report."
16	"Regardless, the CIR Expert Panel should
17	be asked if a statement that extends the report
18	conclusions to other alkyl PEG ethers in the same
19	family that's in this report, according to the
20	dictionary, in the future should be added to this
21	report?"
22	Let me re-read that. That didn't sound

```
right. Basically, they're asking you to do
something like we did in the propylene glycol
report, that is, make a statement that if
additional ingredients of the same families are
added, with just a different chain length, just a
different length, would they also be covered by
the conclusion?
    DR. MARKS: Are you talking about the
    sum?
        DR. EISENMANN: What you've done for
        PEGs and PPGs. So if you add another stearic-N
        that's not currently in the dictionary, that it
        would be covered. But it would have to be in the
        same group.
        So it's a little more complicated in
        that, you know, it wouldn't say another chain
        length that you hadn't reviewed.
        DR. HILL: Yes, because what we just did
        was actually the number of monomer units in a long
        polymer.
            DR. EISENMANN: Right.
            DR. HILL: And that didn't have anything
```

 Anderson Court Reporting -- 703-519-7180 -- www.andersonreporting.net
 PCPC Meeting day 1 Breakout Session -- June 28th
know, within the scope of the groups considered in
this report, you know, the addition of other
substances where n varies, or something like that.
I don't know. We'd have to play with the words.
DR. MARKS: Do you want to give me that
for tomorrow?
DR. BAILEY: Yes --
DR. MARKS: Or do you want me to just --
you want to give me that tomorrow, and I'll go
ahead and.
DR. BAILEY: Well, maybe Monice and I
can work on it.
DR. MARKS: Okay, so we want to extend
it --
DR. BAILEY: (inaudible) just makes
sense.
DR. MARKS: -- future alkyl PEG ethers,
essentially.
And, really, the only difference
basically is the alcohol gets larger or whatever.
That n would be any alcohol.
DR. BAILEY: Right.
to do with what might have been there on the end.
DR. EISENMANN: Right. So the ends would have to be the same as what you've already reviewed.

DR. HILL: Right.
DR. BAILEY: So, basically, you could
say that the conclusion would be any additions to the groups in this report, where you have blah, blah, blah-X, would be --

DR. HILL: Additional (inaudible) repeating units, basically.

DR. BAILEY: (inaudible) that's important. Something that would link it back to those groups. That shouldn't be difficult.

DR. HILL: I would be good with that.
DR. MARKS: So do you want to -- how do you specifically want to do that, John? It's in that letter. So that's an important discussion point tomorrow, I think, when we reopen it.

DR. BAILEY: Right. It would be an addition to the conclusion, you know, just like we've done for the others (inaudible). But, you
Anderson Court Reporting -- 703-519-7180 -- www.andersonreporting.net

1	DR. HILL: Well, I think what we were
2	talking about was additional monomer units to the
3	polymeric portion. So, in other words, if the
4	number of glycol units was expanded, that would be
5	okay.
6	But it shouldn't be construed that you
7	could now add some exotic new, highly-branched and
8	unusual alkyl terminal group.
9	DR. MARKS: How did you say that? You
10	said "monomers."
11	DR. HILL: Yes.
12	DR. MARKS: But simple.
13	DR. HILL: Link them by added monomer
14	units in the polymeric portion, is what I was
15	trying to capture.
16	DR. MARKS: Okay. Well, I'll -- if you
17	could get me, Monice, John, how you would phrase
18	that, at least that will be a beginning point.
19	And we won't be surprised to see it.
20	Now, we need to go back to your
21	suggestion as to whether we go to a draft amended
22	report, or we issue a tentative amended report.

Anderson Court Reporting -- 703-519-7180 -- www.andersonreporting.net

Anderson Court Reporting -- 703-519-7180 -- www.andersonreporting.net

1	you the option, until December, to go one or go
2	the other way -- which I think would be a better
3	place to be. See which way it goes.
4	DR. MARKS: So, which way? Do you think
5	it should be a draft amended report? Or a
6	tentative amended report?
7	DR. BAILEY: Tentative. I think
8	tentative. Because then you have the option in
9	December to make it a -- what? -- a tentative
10	final?
11	DR. BRESLAWEC: Not a tentative final.
12	DR. MARKS: That would be a final. So
13	what we see in -- although we could do a lot of
14	discussion, in point of fact, it wouldn't make any
15	significant -- anything other than editorial
16	changes, that's the final.
17	DR. BRESLAWEC: But, again, the point is
18	that you would have ample time. I mean, we would
19	not wait until 30 days before the meeting to mail
20	this one. That's not the intent.
21	DR. HILL: The only downside I could see
22	to that is -- okay, so the next -- this one we

1	DR. SHANK: Given that option, needing
2	the 60 days.
3	DR. BRESLAWEC: The next meeting, you
4	will not see this again, no matter what you do.
5	(Laughter) It's not going to
6	happen.
7	DR. HILL: We're salivating over having
8	360 --
9	DR. MARKS: So, how do you want me to
10	propose this? In our flow sheet, this would be
11	the draft amended report. Yes.
12	DR. HILL: That's fine.
13	DR. BRESLAWEC: But you'd want to issue
14	a draft report. Because what you would say is,
15	this is, in fact, the draft report.
16	DR. MARKS: Well, that's what I'm
17	asking.
18	DR. BRESLAWEC: That's what you're
19	asking, right.
20	DR. BAILEY: But if this isn't going to
	be on the table until December, it gives everybody
22	lots of time to do what we need to do. It gives

1	would consider as a tentative?
2	DR. BRESLAWEC: You'd be issuing a
3	tentative.
4	DR. MARKS: No, this is a draft.
5	DR. BRESLAWEC: This is a draft. You'd
6	be issuing a tentative. It would be published.
7	It would have 60 days for public comment.
8	DR. HILL: Okay.
9	DR. BRESLAWEC: We take the comments
10	that have come in. We incorporate them into a
11	draft final report. That's what would be sent to
12	you.
13	You would discuss in December. If you
14	like it, fine. If you don't, it shows up again in
15	March. I mean, that's --
16	DR. HILL: Well, okay, so what I'm
17	trying to clarify is simply with what level of
18	certainty does the conclusion have to be --
19	DR. MARKS: So here's the step we're
20	taking now, if we do that. We're right here, to
	where this would be the draft report. And the
22	next report we see is basically would be the draft

1	final report, and there would not -- you know,
2	obviously, we could change it any way we want.
3	But what Halyna is suggesting, as I understand, is
4	just skip this, the revisions of this, to the
5	draft.
6	DR. BRESLAWEC: I think you have to, in
7	making that decision, I would suggest that you
8	look at the information. And if you feel it is
9	adequate to constitute a draft report, proceeding
10	with the strategy.
11	If you think there is additional
12	information out there that you want to reconsider
13	in a draft report, then you ask us to issue a
14	draft report.
15	If you think that the information in
16	here is probably what exists, then, based on the
17	search strategy, and your discussion and your
18	concern for the safety, then you certainly can
19	issue a tentative report.
20	DR. HILL: We just had the discussion a
21	few -- a short while ago as to what I would like
22	to see additional, that I doubt is public domain

```
so it wouldn't have shown up in the search
strategy.
    So, I mean, if I had to write a
conclusion right now, in my mind "insufficient
data," would include some of these ingredients.
And it may land that way. In which case you --
    And that's the trouble with grouping. I
mean, it's a fundamental trouble with grouping in
that if there's some of them that are
insufficient, and others that are quite
sufficient, abundantly sufficient, then you're
stuck -- you know what I'm saying? You can't say,
"These are good, these are not."
            DR. BRESLAWEC: Actually, we've issued
            DR. HILL: Or can we?
            DR. BRESLAWEC: Yes.
            DR. HILL: Okay.
            DR. MARKS: So you want the next
rendition? This is going to be a draft tentative
amended report?
                                    DR. EISENMANN: But you need a
Anderson Court Reporting -- 703-519-7180 -- www.andersonreporting.net
```

1	Okay, we'll see how the discussion goes
2	tomorrow. Since I'm the one that makes the
3	motion, after I move to reopen it, then we will
4	see how it goes.
5	Any other comments? Okay. I kind of
6	like the idea. I want to see the table. Okay,
7	next one is Methyl Acetate, Simple Acetate Esters
8	and Relevant Metabolites, Pink 2. A draft
9	tentative report of this was issued at the April
10	meeting of this year, with an Insufficient Data
11	Announcement for cetyl acetate at the highest
12	concentration use in lipstick.
13	We got more data, and now I think that's
14	safe. And so we could issue a tentative report,
15	these ingredients as "safe as used."
16	DR. SLAGA: Good.
17	DR. MARKS: Any comments?
18	DR. SLAGA: Not here.
19	DR. EISENMANN: Just, my material -- you
20	know, the butoxyethanol has a different
21	conclusion. If you want to write a separate
22	conclusion for the acetate to make it reflect that

Anderson Court Reporting -- 703-519-7180 -- www.andersonreporting.net

1	Belsito?
2	QR. BELSITO: This is a review of
3	stearyl heptanonoate and related stearyl
4	alkynoates. In April we reaffirmed the conclusion
5	for stearyl heptanonoate as safe as used but
6	agreed to proceed with opening the document to add
7	five additional stearyl alkanoates, stearyl
8	eaprylate, stearyl palmitate, stearyl stearate,
9	stearyl behenate and stearyl olivate. We have
10	included all of those, looked at the data and felt
11	that the data was sufficient for the stearyl
12	heptanoate and the add-ons safe as used, and
13	that's a motion.
14	DR. BERGFPLD: Is there a second?
15	DR. MAPKS: Second.
16	DR. BPRGPPLD: Is there any discussion
17	about this document and these ingredients? Seeing
18	none I'll call for those in vote. All those in
19	favor of approval? Thank you. Unanimous.
20	Re-Reviews. Alkyl PEG ethers. Dr. Marks?
21	DR. MARKS: In 1983 the CIR published a
22	report on laureth-4 and -23 finding that they were

1	safe. This is a re-review of that report and what
2	we received was a large draft including expansion
3	to the alkyl PEG ethers. There were over 300,
4	about 368 of these ethers, that this draft report
5	included, and a large number of those had been
6	previously reviewed and had conclusions of safe,
7	82 to be exact. So our team felt that we should
8	reopen and I'll move that we reopen this report
9	with the purpose of issuing a draft amended report
10	that included the original laureth-4 and -23 but
11	expanded to include this large number of alkyl PEG
12	ethers. Within this document we saw the new use
13	table format and we've commented about that before
14	and we like that as long as we have the backup
15	more detailed tables which we will have access to.
16	We also felt that perhaps as we've done
17	with the PEGs and the polyethylene glycols, that
18	we could expand the conclusion in the future to
19	extend to alkyl PEG ethers, the monomers that were
20	not mentioned in this 368, and it could be
21	something to the effect that this assessment is
22	intended to address future alkyl PEG ether

1	irritating.
2	In Table 6 we liked the new approach to
3	presenting how these ingredients were used. We
4	were all a little confused about the first table
5	which was the totality of all cosmetic
6	ingredients, not the totality of cosmetic products
7	containing these ingredients and we had
8	recommended that that be deleted from tables.
9	We're not really interested in how many cosmetics
10	that exist that are hair sprays, we're interested
11	in how many hair sprays would contain these
12	ingredients, so that as just minor tweak.
13	Then we thought in the discussion in
	these PEGs there had been discussions about
15	various contaminants in all the documents that
16	preceded them. The specific ones that came up
17	were 1, 4-dioxane, ethylene oxide, BHA,
18	formaldehyde, peroxides, methoxyethanol and
19	methoxy diglycol, and those just needed to be
20	brought in to the documents, particularly the
21	discussions, and we agree with the expansion of
22	PEG-X going into the future.

safe. This is a re-review of that report and what we received was a large draft including expansion to the alkyl PEG ethers. There were over 300, about 368 of these ethers, that this draft report included, and a large number of those had been previously reviewed and had conclusions of safe, 82 to be exact. So our team felt that we should reopen and I'll move that we reopen this report with the purpose of issuing a draft amended report that included the original laureth-4 and -23 but expanded to include this large number of alkyl PEG ethers. Within this document we saw the new use table format and we've commented about that before and we like that as long as we have the backup more detailed tables which we will have access to.

We also felt that perhaps as we've done with the PEGs and the polyethylene glycols, that we could expand the conclusion in the future to extend to alkyl PEG ethers, the monomers that were not mentioned in this 368, and it could be something to the effect that this assessment is Anderson Court Reporting -- 703-519-7180 -- www.andersonreporting.net

1	DR. SNYDER: Second.
2	DR. BERGFELD: You're seconding it? We
3	have one motion and then we have another motion.
4	There was no second on yours so this is a second
5	to move forward as safe. I'd like to ask you if
6	that's agreeable?
7	DR. MARKS: Yes. It was safe to be
8	nonirritating. The only other editorial comment
9	we had was that in the text there was a lot of
10	duplication of Table 11 on page 119. We really
11	like Table 11 so we would suggest saving print and
12	text by just referring to Table 11. It's a great
13	table. That's the one where previously reviewed
14	ingredients are summarized quite nicely.
15	DR. BERGFELD: Since this is a pivotal
16	document, I would like to go around the room and
17	ask all the panel members if they have any
18	specific comments. I'll start with Curt.
19	DR. KLAASSEN: I loved reading this
20	document. It was very nice. Overall it's very
21	good, so no problem.
22	DR. SNYDER: I concur with other

	previous comments and I think that it is a good
2	example of how we can handle a large number of
3	ingredients very thoroughly.
4	DR. LIEBLER: I could try and come up
5	with a different way of saying that, but it's
6	terrific work by the staff and it really helps us
7	deal with complex families of compounds.
8	DR. HILL: I think most of my concerns
9	and issues were expressed yesterday to the
10	writers. The only thing that I noted in
11	particular at the risk of sounding like a broken
12	record is the only laureth with a branch chain
13	that's specifically cited in terms of toxicology
14	in this table is isostearyl which is probably the
15	omega-1 group, but there are others that we're
16	considering here. So if we don't have any data, I
17	have to carefully consider what we can infer
18	lacking any information on the ADME and I need to
19	go and look in great detail at what's here on the
20	biotransformation because there are molecular
21	weights in the lower end where we could expect
22	systemic exposure and definitely penetration

PCPC Meeting day 2 of 2 -- June 29th
1

"On the basis of the available-information, the Panel coneludes that Isostearic Acid is safe as a cosmetic ingredient in the present practices of use and concentration."

There was a general diseussion on the adequacy of comedogente testing and the-significance of this effect on users of cosmetic products. The panel agreed to include a paragraph in the-report's Discussion Section to highlight this problem,

Subject to minor revisions and the addition of a Discussion Section, the document will be-announced as a Tentative-Report for a 90 -day comment perfod
3. Laureths -4 and -23

The following conclusion of the report was unanimously approved:
"On the basis of the available information presented in this report, the Panel concludes that Laureth -4 and Laureth -23 are safe as cosmetic ingredients in the present practices of use and concentration."

Subject to minor revisions, the document will be announced as a
Tentative Report for a 90 -day coment period.
4. Potassium- Coeo-Hydrolyzed-Anfmat Peotein (PCHAP) and TEA-CHAP

Or. Bergfeld requested that this report be-referred back-to her Feam for review at the October meeting. They will then evaluate the newly-submitted cinical data and fnciude them- in the text of the report: (The-elinfical data were submitted in response to the Insufficient Data Report of March 24, 1981) Or. Bergfeid-complimented the data presentation subnitted by CTFA.

is-refers used in cosmetic formulations.

Dr. Belsite proposed revising the last sentence of the report discussion to read as follows: Noting that Bisabolel is used in baby- products, the Panel cautioned formulators to the possibility of increased absorption of other ingredients, especially those whose safety was based on their lack of dermal absorption, also contained in the formulation: This revision (in bold print) was approwed by the Panel

Ceteareths $-2,-3,-4,-5,-6,-7,-8,-9,-10,-11,-12$, $\frac{-13,-14,-15,-16,-17,-18,-20,-22,-23,-24,-25,-27}{-28,-29,-30,-33,-34,-40,-50,-55,-60,-80 \text { and }-100}$

Dr. Andersen recalled that a Final Report with a safe as used conclusion on this group of ingredients was issued at the December 1996 Panel meeting. He also noted that because two other Ceteareths (-9 and -14) listed in the International Cosmetic Ingredient Dictionary were, inadvertently, not included in this safety assessment, an executive decision to add these ingredients to this review was made.

The Panel agreed that Dr . Andersen had acted appropriately and formally approved the addition of Ceteareths-9 and -14 to the Final Report on Ceteareths.

Dr. Andersen also brought to the Panel's attention that the report conclusion contains the following two caveats: (1) Ceteareths should not be used on damaged skin and (2) Ceteareths should not be used under conditions under which N -nitroso compounds can form. He acknowledged that the basis for the first caveat is established in the report discussion. However, after further evaluation of the available data, there does not appear to be a need for concern about the formation of

$$
\text { - } 10 \text { - }
$$

nitrosamines or nitrosamides relative to the use of these polymers in cosmetics
The Panel unanimoulsy agreed that the caveat relating to nitrosamine formation should be deleted from the Final Report conclusion, and voted in favor of issuing a Tentative Amended Final Report on Ceteareths for public comment. At the end of the 90 -day comment period, the Panel will issue an Amended Final Report.

REPORTS ADVANCING TO THE NEXT LEVEL

Acid Violet-43

Dr. Belsito noted that additional data on this ingredient, largely derived from
FDA's files on External D\&C Vielet No. 2 (FDA's certified form of Acid Violet 43) were received. However, he stressed that the Panel is not reviewing the safety of Ext. D\&-C Vielet No. 2, but, the safety of Acid Violet 43, as it is used in hair dyes.

Dr. Belsite also said that his Team determined that the available data remain insufficient for evaluating the safety of Acid Violet - 43 in cosmeties, and that the fellewing data are needed: (1)1097 cencentration of use data and (2) abserption under conditions of use; if absorption oceurs, then a 28-day dermal toxieity-study as well as a reproductive toxieity study will be needed.

Dr. Schroeter noted that his Team determined that a 28 -day dermal toxicity study would not be needed, after considering the negative short-term dermal toxicity study (guinea pigs) on a hydrophilie ointment containing 0.1 or 1.0% Acid Vielet 43 Applications were made over a three-week period in this study. Dr. Schroeter's Team also requested reproductive and developmental toxicity data (i.e., if absorption occurs),

Sodium Sulfate

Drs. Belsito and Schreeter noted that there had been no response to the informal
data request that was issued at the December 11-12, 1995 Panel meeting,
The Panel voted unanimously in faver of issuing an Insufficient Data
Announcement on Sodium Sulfate with the following data requests:
(1) Human skin irritation study at concentration of use
(2) Concentrations of use

Ceteareths $-2,-3,-4,-5,-6,-7,-8,-10,-11,-12$
$-13,-15,-16,-17,-18,-20,-22,-23,-24,-25,-27$.

$-28,-29,-30,-33,-34,-40,-50,-55,-60$, and -100

Dr. Belsito noted that at the March 4-5, 1996 Panel meeting, his Team informally requested a human dermal irritation and sensitization study and that the Schroeter Team also had several data requests. It was also requested that studies from the CIR Final Reports on Cetyl and Stearyl Alcohol be added to the current Draft Report on Ceteareths. In that no response to the informal data request was received, Dr. Belsito's Team determined that the present report is insufficient and that concentration of use data and dermal irritation and sensitization data (at use concentrations) are needed for completion of this safety assessment.

Dr. Shank proposed a safe as used conclusion for the Ceteareths, based on the data included in the CIR Final Report on Steareths published in 1988. The Expert Panel concluded that Steareths-2, -4, $-6,-7,-10,-11,-13,-15$, and -20 are safe in the present practices of use and concentration. Present practices of use meant that

Steareths were used at concentrations up to 25%. Hówever, Dr. Shank noted that the Steareths were tested for irritancy at concentrations up to 60.0% in this report.

Dr. Schroeter agreed that the data on Steareths could be used to declare the Ceteareths safe as used, with the following caveats included in the report discussion: (1) Ceteareths increase dermal absorption; (2) there should be elimination of the production of nitrosating agents; (3) it is a mild irritant at higher concentrations of use; and (4) the standard boilerplate on ethylene glycol developmental and reproductive toxicity.

Dr. Bergfeld noted that the data on Steareths referred to by Dr. Schroeter are not included in the present report on Ceteareths.

Dr. Schroeter said that the data on Steareths will have to be incorporated into the report discussion as justification for the proposed safe as used conclusion on the Ceteareths.

Dr. Belsito said that it should also be noted in the report discussion that the Ceteareths have skin penetration enhancement properties. He also recalled that Ceteareth-20 is used in baby lotions and wanted to know how this observation should be handled in the present report.

Dr. Schroeter noted that the skin penetration enhancement properties of the Ceteareths are probably more noteworthy in terms of infant exposure, in that infants have a higher surface area to body mass ratio. He said that this area of concern with respect to adults and children should also be addressed in the report discussion as a cautionary item.

CETETHS

> Taken from the December 1896
concludes that Propylene Glycol Dicaprylate, Propylene Glycol Dicaprylate/Dicaprate, Propylene-Glycol-Dicocoate,-Propylene-Glycel-Dipelargonate, Propylene-Glycel Isostearate, Propylene Glycol Laurate, Propylene Glycol Myristate, Propylene Glycol Oleate, Propylene Glycol Oleate SE, Propylene Glycol Dioleate, Propylene Glycol Dicaprate, Propylene Glycol Diisostearate, and Propylene Glycol Dilaurate are safe as cosmetic ingredients in the present practices of use.

Ceteth $-1,-2,-3,-4,-5,-6,-10,-12,-14$.

$-15,-16,-20,-24,-25,-30$, and -45
The Panel voted unanimously in favor of issuing a Final Report with the following conclusion: Based on the available data, the CIR Expert Panel concludes that Ceteths -$1,-2,-3,-4,-5,-6,-10,-12,-14,-15,-16,-20,-24,-25,-30$, and -45 are safe in the

Oleth $-2,-3,-4,-5,-6,-7,-8,-9,-10,-11,-12$ $-15,-16,-20,-23,-25,-30,-40,-44$, and -50

Dr. Belsito noted that Oleth-11 was added to the review of this-group of
ingredients after issuance of the Tentative Report at the March 4-5, 1996-Panel
meeting. He also said that the report discussion should contain a statement to the
effect that the Oleths may enhanee the permeability of other ingredients through the stratum corneum.

There was no opposition to Dr. Belsito's comments.
The Panel voted unanimously in faver of issuing a Final Report with the following

present practices of use.

Dr. Belsito agreed with the Schroeter Team's proposal that the Ceteareths be declared safe as used and that statements relating to the following be made in the report discussion: (1) As was noted for the Polyethylene Glycols previously reviewed by CIR, use of the Ceteareths (which are polyethylene glycol ethers of cetearyl alcohol) should be limited to normal skin; (2) CIR boilerplate on ethylene glycol teratogenicity; (3) skin penetration enhancement property of Ceteareths; and (4) Ceteareths should not be used in cosmetic products in which N -nitroso compounds may be formed.

The Expert Panel unanimously concluded that Ceteareths-2, $-3,-4,-5,-6,-7,-8$, $10,-11,-12,-13,-15,-16,-17,-18,-20,-22,-23,-24,-25,-27,-28,-29,-30,-33,-34,-$ $40,-50,-55,-60$, and -100 are safe as used, with the caveats delineated in the preceding paragraph for inclusion in the report discussion.

Dr. Bergfeld noted that upon completion of the report discussion and inclusion of data from the report on Steareths, the Tentative Report on this group of ingredients will be reviewed by the Panel (mail review) prior to public announcement,

Peppermint O il

Dr. Schroeter noted that an informal data request on Peppermint Oil was issued at the March 4-5, 1996 Panel meeting. With the exception of the RIFM (Research Institute For Fragrance Materials) menograph on Peppermint: Oil that was received, there was no respense to the informal data request that was issued. Thus, the Panel voted unanimously in faver of issuing an Insufficient Data Announcement on Peppermint Oil with the following data requests:

$$
-32
$$

cetoths
on December 13,1994. Concentration of use and chemical characterization data were received in response to this announcement, as well as a commitment to supply the remaining data requests, listed as follows: 28-day dermal toxicity study, skin

The Panel voted unanimously in favor of tabling the Tentative Report on PCA and Sodium PCA pending receipt of the studies that have been promised.

Ceteth $-1,-2,-3,-4,-5,-6,-10,-12,-14$,
 $-15,-16,-20,-24,-25,-30$, and -45

Dr. Bergfeld asked Dr. Belsito to incorporate the Panel's discussion on ethylene glycol into his comments on the Ceteths.

Dr. Belsito said that the Panel, in its discussion of a number of ingredients that were potentially contaminated by ethylene glycol during production, became concerned with the reproductive toxicity of ethylene glycol. Therefore, a separate document was compiled, in which the reproductive toxicity of ethylene glycol and its ethers (particularly 2-Methoxyethanol and 2-Ethoxyethanol) is evaluated. Based on the data in this document, it was felt that the reproductive toxicity for these chemicals was not of concern relative to use in cosmetic products. It was postulated that the level of contamination (with ethylene glycol and its ethers) of the various chemicals that the Panel will be studying would not be significant. Furthermore, Dr. Belsito said that the Panel determined that the CIR document on ethylene glycol and its ethers is of significance, and that it should be published as a separate document (special report). Thus, where applicable, this report could be referenced in the discussion section of

$$
\begin{aligned}
& \text { Le+kiths } \\
& \text { Talcen from June } 1996
\end{aligned}
$$ penetration data, and genotoxicity data.

other ingredient reports.
Dr. Bergfeld asked the Panel to vote on the proposal that the CIR document on the reproductive toxicity of Ethylene Glycol and its ethers be issued as a special report.

Dr. Andersen noted that if the issuance of this document as a special report is approved, the announcement of this report will be followed by a 90-day comment period.

Dr. Schroeter suggested that a summary of data in the special report be included in the documents that require such information for completion of the safety assessment.

Dr. Bergfeld indicated that the Panel is highly impressed with the organization and content of the special report on ethylene glycol (and its ethers) reproductive toxicity.

The Panel unanimously approved the issuance of this special report, with the understanding that a summary paragraph will be developed and incorporated into other ingredient reports for which information on the reproductive toxicity of ethylene glycol and its ethers is relevant.

Dr. Bergfeld asked Dr. Belsito to proceed with his comments on Ceteths.
Dr. Belsito noted that the lower molecular weight Ceteths triggered the Panel's concern about Ethylene Glycol toxicity in terms of reproductive and teratogenic toxicity. He said that the Panel's review of the data on Ethylene Glycol indicates that reproductive and teratogenic toxicity are not concerns relative to the safety assessment of the Ceteths.

Dr. Belsito also said that the following data were received in response to the Insufficient Data Announcement that was issued on May 23, 1995: (1) Concentration of

- 42 -

that a statement referring to this potential problem could be included in the report discussion.

Dr. Bailey said that one of the contaminant concerns relative to ethoxylated surfactants is the presence of 1,4-dioxane, which is a carcinogen. He noted that the level of this contaminant can be controlled, and that the Panel may want this to be stated in the report summary. He also said that based on ongoing research at FDA, 1,4-dioxane is found in some products at fairly high levels, indicating that the raw materials themselves are not treated to remove the contaminant.

Dr. Bergfeld said that Dr. Bailey's concerns should also be addressed in the report discussion.

Dr. Belsito recalled that Dr. Bailey's concern (contamination) is also raised in the report on PEGs, and that this information has been incorporated into the report on Ceteths. He also mentioned that the other caveat that was raised with respect to PEGs is the restriction relating to use only on normal, undamaged skin. This restriction is also included in the report on Ceteths.

Dr. Bergfeld confirmed that the two concerns, ethylene oxide and 1,4-dioxane contamination and use on damaged skin will be retained in the report discussion on Ceteths.

Dr. Belsito said that it should also be mentioned in the discussion that the Ceteths will not be sufficiently respirable to induce toxicity via this route of exposure. In other words, this factor was considered, but is not believed to be of concern.

The Panel unanimously concluded that Ceteths-1, $-2,-3,-4,-5,-6,-10,-12,-14,-$
use data, (2) Ocular irritation data, (3) Primary skin irritation data, and (4) Four-week subacute dermal toxicity data. Additionally, the Panel has been able to extract the data on PEGs and cetyl alcohol (from CIR Final Reports) for incorporation into this review, in that the Ceteths are ethers of cetyl alcohol and polyethylene glycol. Dr. Belsito said that this information has allowed his Team to arrive at a conclusion of safe as used.

Dr. Slaga agreed that the report on Ceteths now has data that are sufficient for determining that these ingredients are safe as used in cosmetics.

Dr. Shank said that he is still concerned that the Panel does not have good impurities data on the Ceteths. He said that there are a number of intermediates with genotoxic potential that are formed during the production of chemicals. Thus, genotoxicity data should not be deleted from the Panel's original list of data needs.

Dr. Bergfeld wanted to know whether Dr. Shank's concern could be addressed in the report discussion.

Dr. Shank said that a caveat to the effect that the finished product should contain a negligible concentration of potentially genotoxic intermediates could be added to the report discussion.

Dr. Belsito asked if the concern is that during the process of manufacturing the
Ceteths, there will be additional contaminants beyond those that are present in polyethylene glycol and cetyl alcohol.

Dr. Shank said that ethylene oxide, not PEGs, is used in the manufacture of the Ceteths. Cetyl alcohol is reacted with ethylene oxide, and a variety of oxidation products (as impurities) result, some of which have genotoxic potential. He reiterated
$15,-16,-20,-24,-25,-30$, and -45 are safe as used and also approved the additions to the report discussion that were discussed. A Tentative Report on this group of ingredients will be announced to the public.

Oleth $-2,-3,-4,-5,-6,-7,-8,-9,-10,-12,-15$ $-16,-20,-23,-25,-30,-40,-44$ and -50

Dr. Schroeter stated that his Team concluded that the data on Oleths are insufficient for arriving at a conclusion on the safety of this group of ingredients. He indicated that the following data are needed for completion of this safety assessment: (1) Dermal sensitization on Oleth-2 at concentration of use, (2) Chemical and physical properties (including stability and molecular weights), (3) 28-day dermal toxicity on Oleth-2, and (4) Two genotoxicity assays (one using a mammalian system) on Oleth-2; If results are positive, a dermal carcinogenesis study using NTP methods may be needed.

Dr. Belsito's Team recommended that, as was done in the evaluation of Ceteths, information could be extracted from the CIR reports on PEGs and Oleyl Alcohol. He also-said that the general caveats raised in the report discussion on the Ceteths (i.e-., use on normal skin only, and 1,4-dioxane and other potential impurities) are also applicable to the Oleths. With this in mind, Dr. Belsito's Team concluded that the Oleths are safe as used.

In consideration of Dr. Belsito's comments, Dr. Schroeter agreed that Oleths could be censidered safe as used.

The Panel unanimously concluded that Oleths $-2,-3,-4,-5,-6,-7,-8,-9,-10,-12$,

$$
\begin{aligned}
& \text { Ceteth } \\
& \text { Taken from March } 1996 \\
& \text { meet } 1919 .
\end{aligned}
$$

the distribution of Nonoxynols in Nonoxynol-9 is a fairly flat distribution, with no peak at Nonoxynel-9.

The Panel unanimously concluded that the Nonoxynols reviewed in the current report (Nonoxynols - 1 through -8) are safe as used in rinse-off products and safe fer use in leave-on cosmetic products at concentrations up to 5%, and veted unanimeusly in faver of issuing a Tentative Report with this conelusion. The 5\% limitation is based on human skin irfitation and sensitization data.

Dr. Bergfeld confirmed with Dr. Andersen that the Panel's discussion on
Nonoxynols and the new skin penetration data submitted by Clairol, Ine. will be
ineluded and reforeneed in the Tentative- Repert that will be issued.

Ceteth $-1,-2,-3,-4,-5,-6,-10,-12,-14$

$-15,-16,-20,-24,-30$, and -45

Dr. Belsito stated that his Team determined that once the concern over
teratogenicity has been resolved such that ethylene glycol teratogenicity is no longer a concern, the Team will be able to rule on the safety of Ceteths and will be able to conclude that they are safe at concentrations up to 3% in leave-on cosmetic products and safe as used in rinse-off products.

Dr. Belsito also said that his Team still wants to obtain the report on the teratogenicity of ethylene glycol and a number of other chemicals that are based on ethylene glycol or polyethylene glycol after it has been completed, such that this document can be reviewed before a conclusion on the safety of Ceteths is reached.

-21 -

(PEGs) needs to be qualified to state that cosmetic formulations containing PEGs should not be used on damaged skin. She also wanted to know if some type of qualification relating to use in baby products had also been made.

Dr. Belsito recalled that the issue of teratogenicity was raised during the Panel's discussion on Ceteths. Based on his recollection, Dr. Klaassen suggested that in addition to paying attention to reproductive toxicity, that the Panel also should pay attention to the fact that children have a larger body surface area, and, perhaps, the Panel should further consider this. Dr. Belsito expressed the view that there was no need to restrict the Ceteths in baby care products, but agreed to indicate that this is another area that the Panel should think about and be sensitive to.

Dr. Andersen said that the reference relating to Polyethylene Glycols (PEGs) that Ms. Fise was referring to is included in the report that the Panel issued on PEGs -6 through -20M in 1992. This report was published in the Journal of the American College of Toxicology in 1993. He also said that in the report discussion, concerns about sensitization and nephrotoxicity in burn patients treated with a PEG-based antimicrobial were raised, which represent data on adverse effects in a severely compromised population.

Dr. Bergfeld said that it should be recorded in the minutes that concerns regarding teratogenicity and potential effects in children (who have a larger body surface area) were raised in evaluating the safety of Ceteths

The Panel voted unanimously in favor of tabling the report on Ceteths
In summarizing the Panel's discussion, Dr. Bergfeld noted that mutagenicity data

With this in mind, Dr. Belsito proposed tabling the Draft Report on Ceteths
Dr. Schroeter noted that additional data on the genotoxicity and chemical characteristics of Ceteths are still needed, and also proposed tabling the Draft Report on Ceteths, pending review of the report on ethylene glycol teratogenicity.

Both Teams agreed to delete the following items that were received from the list of data requests in the Insufficient Data Announcement: (1) Concentration of use, (2) Dermal irritation and sensitization on Ceteth-2 at concentration of use, (3) 28-day dermal toxicity on Ceteth-2, and (4) Ocular toxicity, if available. The preceding data items have been incorporated into the Draft Report on Ceteths, and the following data on Ceteths are still needed: (1) Physical and chemical characteristics (including stability), (2) Two genotoxicity assays on Ceteth-2 (one using a mammalian system); if results are positive, a dermal carcinogenesis study using NTP methods is needed; and (3) A review of literature addressing the teratogenic potential of ethylene glycol and ethylene glycol ethers will be conducted and included in the report. Teratogenicity testing of this ingredient may be required.

Dr. Belsito asked if the mutagenicity data from the reports on Polyethylene
Glycols and Cetyl Alcohol would satisfy the Panel's request for mutagenicity data.
Dr. Schroeter indicated that these mutagenicity data would not satisfy the Panel's data request.

Ms. Fise said that, according to her notes from the previous Panel meeting, a portion of the Panel's discussion on Ceteths related to damaged skin. Specifically comments indicated that the Panel's conclusion on the safety of Polyethylene Glycols
-22 -
and data on physical and chemical properties of the Ceteths are still needed. There is also the need to further clarify CIR's ongoing review of ethylene glycol reproductive toxicity and include this review in the report on Ceteths

Oleth $-2,-3,-4,-5,-6,-7,-8,-9,-10,-12,-15$

$-16,-20,-23,-25,-30,-40,-44$, and -50
Dr. Schroeter noted that an Insufficient Data Announcement was issued at the August 1995 Panel Meeting. He said that his Team recognizes the concentration of use and ocular irritation data that were received, but still sees the need to issue an insufficient data conclusion. It was noted that the following data are still needed in order for the Panel to complete its safety assessment:
(1) Dermal irritation and sensitization on Oleth -2 at concentration of use
(2) Chemical and physical properties (including stability and molecular weights)
(3) 28 -day dermal toxicity on Oleth -2
(4) Two genotoxicity assays (one using a mammalian system) on Oleth -2; if results are positive, a dermal carcinogenesis study using NTP methods may be needed
(5) A review of literature addressing the teratogenic potential of ethylene glycol and ethylene glycol ether will be conducted and included in the report. Teratogenicity testing on this ingredient may be required

Dr. Bergfeld said that the Panel is reviewing five or six ingredient reperts that require an insert on ethylene glycol reproductive toxicity, including the report on Oleths She said that it is important as the Panel reviews these ingredients that it also be determined which data-are-still needed.

Dr. Andersen said that the CIR review on ethylene glycel will be a concerted effort on the part of the CIR staff, with Dr. Klaassen's assistance.

- 4 -
eliminated. The information will appear in full in the Laneth-10 report and will be cross-indexed in Laureth. With regard to the data that were needed- to reach a conclusion about the Laureth-23 Group, the Panel members agreed to request additional phototoxicity tests at higher concentrations. The publi statement of the need for such tests will be made immediately, and persons which to notify CIR of their intent.

2. IEA-Lauryl Sulfate. Drs. Bergfeld, Hoffmann, and Roudabush presented heir report on TEA-Laur-y I sulfate. This Team decided at its last meeting that the ingredient is most likely an irritant. It also causes problems with regard to percutaneous absorption. The -ream concluded that the data on FEA-Lauryl Sulfate are not sufficient for a determination of either safe or unsafe- Dr. Schroeter concurred that the ingredient is well-known in the dermatologic community as an irritant, Mr. Mellerney indicated that Ormulations in which TEA-Lauryl Sulfate is used take the irritancy of the potential for irritation. However. Dr. Bergfeld pointed out that according t the data which industry has submitted, formulations containing TEA-Lauryl sulfate have-still produced-irritaney. After diseussion, the Panel decided to request additional studies on the pure-ingredient, not on formulations. The need for testing and the types of studies required will be stated in a public announcement. Persons wishing to submit results will have 90 days to notify CIR of their intent and the time required to complete their studies.
3. P-Hydroxyanisole: Or. Bergield presented to the Panel a review of the previousty considered report on p-Hydroxyanisole, she began by not ing that come up in the Mareh 1980 meeting.

Or. Bergfeld stressed that p-Hydroxyanisole produces a condition in which melanocytes are destroyed resulting in depigmentation of the exposed skin. ar. Deryfeld then reffinded the Panel of her correspondenee with Dr. Pathak- and reiterated her earlier recommendation that p-Hydroxyanisole be judged unsafe. Or. Montagna agreed in prineiple, Dr. Sehroeter suggested that the Panel
 would be requested. These will be announced by CIR, and 90 -days will be allowed for a response to the request. Dr. Roudabush did not participate in the diseussion.

Notice of Insufficient Data-Report is attached and made part of these inutes.
4. Laneth-10 Acetate. Drs. Bergfeld, Hoffmann, and Roudabush presented their report on Laneth-10 Acetate to the Panel. The Team and part of the Panel had previously agreed that this ingredient was safe. Some problems had risen, however, over the clinical data that were reported. The animal studies on Laneth-10 were extensive. The human ones were 1 imited but did
support the laboratory results. Dr. Fine had previously mentioned some objections to the recording of clinical data in this report. His comments
Ceteth $-1,-2,-3,-4,-5,-6,-10,-12,-14$
$-15,-16,-20,-24,-25,-30$, and -45
The Panel voted unanimously in favor of issuing a Final Report with the following conclusion: Based on the available data, the CIR Expert Panel concludes that Ceteths -$4,-2,-3,-4,-5,-6,-10,-12,-14,-15,-16,-20,-24,-25,-30$, and -45 are safe in the

present practices of use:

Oleth $-2,-3,-4,-5,-6,-7,-8,-9,-10,-11,-12$, $-15,-16,-20,-23,-25,-30,-40,-44$, and -50
Dr. Belsito noted that Oleth-11 was added to the review of this group of
ingredients after issuance of the Tentative Report at the March 4-5, 1996 Panel
meeting. He also said that the report discussion should contain a statement to the effect that the Oleths may enhance the permeability of other ingredients through the stratum corneum.
There was no opposition to Dr. Belsito's comments.
The Panel voted unanimously in favor of issuing a Final Report with the following

concludes that Propylene Glycol Dicaprylate, Propylene Glycol Dicaprylate/Dicaprate,
Propylene-Glycol Dicocoate,-Propylene-Glycel-Dipelargonate, Propylene-Glycel
Isostearate, Propylene Glycol Laurate, Propylene Glycol Myristate, Propylene Glycol
Oleate, Propylene-Glycol Oleate SE, Propylene Glycol Dioleate, Propylene Glycol

Dicaprate, Propylene Glycol Diisostearate, and Propylene Glycol Dilaurate are safe as
cosmetic ingredients in the present practices of use

Isostearate, Propylene Glycol Laurate, Propylene Glycol Myristate, Propylene Glycol
Dicaprate, Propylene Glycol Diisostearate, and Propylene Glycol Dilaurate are safe as cosmetic ingredients in the present practices of use:
have since been incorporated into the present draft. When Dr. Beyer called for the vote on the draft Tentative Report on Laneth-10, all but one Panel nember expressed the opinion that the ingredient is safe. After a review by mail of the document which will incorporate suggestions made in the discussion, Laneth-10 Acetate will be issued as a Tentative Report-for 0-day public comment period 5. Cetearyl Octanoate. Dr. Montagna briefly reviewed the history of this
eport, Pefnting out that at the March Panel meeting it was deemed Incomiplete and that industry has since-submitted more datar. After the full Panel disfussed-same aspects of the new-data, the quest ion of sufficiency was taken up at a Team-session. Following a Team- meeting, the full Panel was advised that the Team considered the response from industry to be sufficient on all eounts. All but one Panel member concurred. The dissent was due to the lack Of at least one stbehronic (90 day) toxicity study. The newly-sumfitted date consider at its September meeting
6. Festifig Guidelines. Fo open the discussion, Dr. Elder summarized his iiemo on hew CIR could develop a procedure by which guidelines for testing nifight be established. The guidelines would ceme from the adequately documented tests (both published and unpublished) that are contained in the
 build up these guidelines from-industry's methedelegies. Industry has long been working at such testing, and a document including industry's methods weuld be useful.

Agreeing with Dr. Elder about the need for guidelines, Dr. Bergfeld proposed that each Panel member could revien the-old ones in his area of utillize the specific testing protocols which the North Ameriean Contact Bermatit is Group has already developed.

A general diseussion about industry's role in the review process ensued when Dr. Beyer mentioned the possibility of the Panel's collaborating with this group to develop a mutually useful cheeklist, According to Mr. McNerney,
 industry is interested in having the Team meetings opened to its representatives, who would make presentations regarding Technical Analysis. Br. Bergfeld objected to the notion of such involvement on the grounds that industry would wait for the opportunity to submit its data at the meetings, rather than earilier in written form. Or. Elder pointed out that the practice of industry's presenting information on a given ingredient at a panel meeting prior to the inftiation of a report was discontinued because of a lack of interest on the part of industry. The procedures do now allow an indus infredient.
conclusion: Based on the available data, the CIR Expert Panel concludes that Oleths -$2,-3,-4,-5,-6,-7,-8,-9,-10,-11,-12,-15,-16,-20,-23,-25,-30,-40,-44$, and -50 are

safe in the present practices of use.

Hydroxystearic Acid

The-Panel veted unanimously in favor-of issuing an-Amended Final Report with
the following conclusion: On the basis of the animal and clinical data included in this
repert, the-CIR Expert Panel coneludes that Hydroxystearic Acid is safe as a cosmetic ingredient in the present practices of use

AHA Update

Dr. Andersen said that he anticipates the review of AHAs and the issuance of a
Fentative Final Report on this group of ingredients at the December 16-17, 1996 Panel meeting. He noted that this plan is dependent on receiving the results of the tests that are being conducted by industry and FDA, respectively:

Dr. Bronaugh said that FDA's studies are on target. The necessary dosing prior to beginning the skin penetration study has begun, and the skin penetration data should be available in time for the December Panel meeting:

Dr. MeEwen said that the initial industry study requested by the Panel relates to
the effects of UV light after chrenic use of products centaining AHAs. The application-
and sample testing phases have been completed, slides are now-being evaluated, and
the data will be made available to the Panel in mid November:

15, $-16,-20,-24,-25,-30$, and -45 are safe as used and also approved the additions to
the report discussion that were discussed. A Tentative Report on this group of
ingredients will be announeed to the publie.

Oleth $-2,-3,-4,-5,-6,-7,-8,-9,-10,-12,-15$

 $-16,-20,-23,-25,-30,-40,-44$, and -50Dr. Schroeter stated that his Team concluded that the data on Oleths are insufficient for arriving at a conclusion on the safety of this group of ingredients. He indicated that the following data are needed for completion of this safety assessment: (1) Dermal sensitization on Oleth-2 at concentration of use, (2) Chemical and physical properties (including stability and molecular weights), (3) 28 -day dermal toxicity on Oleth-2, and (4) Two genotoxicity assays (one using a mammalian system) on Oleth-2 if results are positive, a dermal carcinogenesis study using NTP methods may be needed

Dr. Belsito's Team recommended that, as was done in the evaluation of Ceteths, information could be extracted from the CIR reports on PEGs and Oleyl Alcohol. He also said that the general caveats raised in the report discussion on the Ceteths (i.e., use on normal skin only, and 1,4-dioxane and other potential impurities) are also applicable to the Oleths. With this in mind, Dr. Belsito's Team concluded that the Oleths are safe as used.

In consideration of Dr. Belsito's comments, Dr. Schroeter agreed that Oleths could be considered safe as used.

The Panel unanimously concluded that Oleths-2, $-3,-4,-5,-6,-7,-8,-9,-10,-12$,
$-15,-16,-20,-23,-25,-30,-40,-44$, and -50 are safe as used. A Tentative Report on this group of ingredients will be announced to the public.

PEG-2, $-3,-5,-10,-15$, and -20 Cocamine

Dr. Belsito noted that, except for concentration of use data, there are a number of prior data requests for which no response has been received. He also said that though data from the CIR repert on PEGs have been incerperated into this safety assessment, there are still concerns relating to the cocamine moiety (i.e. the presence of amines). Such concerns led Dr. Belsito's Team to believe that the current document is somewhat insufficient for determining safety. Specifically, the physical and chemical purity and chemical characteristies (particularly, in terms of the partition coefficient in lipids, how much will penetrate the skin), and the genotoxicity of PEG-2 Cocamine in a mammalian system are of concern.

Dr. Schreeter concurred with the data needs that were expressed by Dr.Belsite's Feam and indicated that 28 -day dermal toxicity data on PEG-2 Cocamine and dermal ifritation and sensitization data on PEG-2 Cocamine, at the concentration of use, are also needed.

Dr. Belsite's Team determined that the two studies mentioned by Dr. Schroeter are net needed beeause a 28 -day dermal toxicity study on PEG 15 - Cecamine is ineluded in the present report. The Belsito Team determined that these data satisfy the Panel's prier requests for dermal toxicity and dermal sensitization data. Dr. Belsite reiterated that his Team's present concerns relate to the amine portion of the PEG

$$
\begin{aligned}
& \text { Oleth from March } 1996 \\
& \text { Taken from } \\
& \text { meeting. }
\end{aligned}
$$

and data- on physical and chemical properties of the Coteths are still needed. There is also the need to further clarify CIR's ongoing review of ethylene glyeol reproductive
toxicity and include this review in the report on Ceteths.

Oleth $-2,-3,-4,-5,-6,-7,-8,-9,-10,-12,-15$.

$-16,-20,-23,-25,-30,-40,-44$, and -50
Dr. Schroeter noted that an Insufficient Data Announcement was issued at the
August 1995 Panel Meeting. He said that his Team recognizes the concentration of use and ocular irritation data that were received, but still sees the need to issue an insufficient data conclusion. It was noted that the following data are still needed in order for the Panel to complete its safety assessment:
(1) Dermal irritation and sensitization on Oleth -2 at concentration of use
(2) Chemical and physical properties (including stability and molecular weights)
(3) 28-day dermal toxicity on Oleth -2
(4) Two genotoxicity assays (one using a mammalian system) on Oleth -2; if results are positive, a dermal carcinogenesis study using NTP methods may be needed
(5) A review of literature addressing the teratogenic potential of ethylene glycol and ethylene glycol ether will be conducted and included in the report. Teratogenicity testing on this ingredient may be required

Dr. Bergfeld said that the Panel is reviewing five or six ingredient reports that require an insert on ethylene glycol reproductive toxicity, including the report on Oleths. She said that it is important as the Panel reviews these ingredients that it also be determined which data are still needed.

Dr. Andersen said that the CIR review on ethylene glycol will be a concerted effort on the part of the CIR staff, with Dr. Klaassen's assistance.

Sorbic Acid

Or. Bergfeld reported that her team was recommendfing a-standard safe conclusion for Sorbic Acid and Potassium Sorbate with a discussion noting that these ingredients are mild dermal irritants but do not appear to be sensitizers. She noted that the discussion-also-ineluded a recomendation that Sorbic Acid-be buffered-when used in cosmetic formulations, although now it was uncertain if this was necessary.

Or. Sehroeter stated that his team-agreed with the-Bergfeld team's conclusion; however, he did-not concur with the discussion. He-considers Sorbic Actd a weak sensitizer and his team-agreed the diseussion could be deleted. His team also recommended deleting the carcinogenicity studies in which subeutaneous injection was the route-of administration; all coneurred.

The-Panel then-unanimously-agreed to-delete- the diseussion and-approved-standard- safe conclusion. It was noted that the papers referenced in the section-entitled "Reactions with Nitrite" were to be sent to Drs. Shank and Heffmann for their comments. The tentative final repert will shertly be announced for a 90 -day comment period.

Steareths

Dr. Schroeter reported that data available on Steareths $-2,-10$, and -20 were considered sufficient for a decision to be made on the entire Steareth group including Steareths $-4,-6,-11,-13$, and -15 (some data were available on Steareth-15) because of chemical similarity. He noted that an alcohol ethoxylate of unspecified chain length was found to be non-mutagenic in three separate studies and because of structural similarities, his team considered the data on this ethoxylate sufficient not to require mutagenic testing. These points were set forth in the discussion of the report. Dr. Schroeter then recomended a standard safe conclusion for the Steareth group.

Mr . Eiermann inquired as to the possibility of 1,4-dioxane as an impurity. Or. Elder noted that previous reports on ethoxylates had included a statement to that effect and that a similar statement would be added to the Steareth report. Dr. Hoffmann requested that the statement read "Information was not available as to the possible presence of trace quantities of 1,4-dioxane or other impurities in the Steareth compounds."

The Panel then unanimously approved Dr. Schroeter's recommendation of a standard safe conclusion for the Steareths. The tentative final report will shortly be announced for a 90 -day comment period.

Adjournment

The Expert Panel meeting adjourned at approximately 1:00 p-in.-June-23, 1987. The-next meeting of the Expert Panel- is scheduled-for November - $76-17,7987$.

Respectfully submitted

Sluzaset 7 . Saxter \qquad
Elizabeth M. Santes
Senfor Seientific Analyst

Meeting agenda- (June 22-23, 1987
-1.3-0ioxane" on the

Special Report on Ethylene Glycol

The Panel unanimously approved the Special Report on Ethylene Glycol and its ethers, with the editorial changes (e.g. section entitied Implications replaced with the fitle, Discussion) that were noted, the addition of a brief discussion of the Panel's findings, and a final conclusion, which reads as follows: Metabolites of ethylene glycol monoalkyl ethers are reproductive and developmental toxins. In general, the metabolites of concern are not expected to be formed in cosmetic formulations that contain polymers of ethylene glycol

Dr. Andersen noted that this report will be referenced in each case where the
presence of ethylene glycol and/or its monoalkyl ethers may be a safety issue.

PEG -2 -3, -5.-10. 15, and -20 Cocamine

The Panel veted unanimously in faver of issuing a Final Report with an insufficient
data conclusion. The data that are needed for completion of this safety assessment
are listed in the report discussion as follows:
(1) Physical properties and chemical impurities, especially nitrosamines (2) Genotoxicity in a mammalian system; if the results are positive, then a dermal carcinegenesis study using NTP methods may be needed a dermal carcinogenesis study using NTP methods may be needed
(3) 28-day dermal toxicity study using PEG-2 Cocamin
(4) Dermal sensitization data on PEG-2 Cocamine

Draft Amended Final Report

Alkyl PEG Ethers

The 2010 Cosmetic Ingredient Review Expert Panel members are: Chairman, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; Ronald A Hill, Ph.D. James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is F. Alan Andersen, Ph.D. This report was prepared by Monice M. Fiume, Senior Scientific Analyst/Writer and Bart Heldreth, Ph.D., Chemist, CIR.
© Cosmetic Ingredient Review
$110117^{\text {th }}$ Street, NW, Suite $412 \diamond$ Washington, DC 20036-4702 \diamond ph 202.331.0651 \diamond fax 202.331.0088 \diamond cirinfo@cir-safety.org

TABLE OF CONTENTS

Abstract 1
Introduction 1
Chemistry 2
Definition and Structure 2
Physical and Chemical Properties 4
UV Absorption 5
Method of Manufacture 5
Impurities. 5
Stability 5
Use 6
Cosmetic. 6
Non-Cosmetic 7
General Biology 7
Absorption, Distribution, Metabolism, and Excretion. 7
Percutaneous Absorption. 8
Penetration Enhancement 9
Spermicidal Activity 9
Animal Toxicology 10
Acute (Single Dose) Toxicity 10
Oral. 10
Dermal 10
Inhalation 11
Other 11
Repeated Dose Toxicity 12
Oral 12
Dermal 14
Dermal Irritation 16
Dermal Sensitization 17
Ocular Irritation. 19
Mucosal Irritation 20
Reproductive and Developmental Toxicity 20
Dermal 20
Oral 21
Genotoxicity. 23
Carcinogenicity 24
Clinical Assessment of Safety 24
Dermal Irritation/Sensitization. 24
Case Reports 26
Summary 26
Discussion. 30
Conclusion 31
Tables. 34
Table 1. Alkyl PEG Ethers group 34
Table 2a. Previously reviewed and component ingredients 38
Table 2b. Summaries of information provided in previous reports 39
Table 3. Structures and Physical Properties 47
Table 4a. Current and historical frequency and concentration of use according to duration and type of exposure - previously reviewed ingredients 71
Table 4b. Frequency and concentration of use according to duration and type of exposure - newly reviewed ingredients 79
Table 4c. Ingredients With No Reported Current Use 88
Table 5. Acute toxicity studies. 89
Table 6. Dermal irritation and sensitization 91
Table 7. Ocular irritation 95
Table 8. Case reports 97
References 98

Abstract

The CIR Expert Panel assessed the safety of Alkyl PEG Ethers used in cosmetics. These 369 ingredients function in cosmetics primarily as surfactants. The undeceths, laneths, and hydrogenated laneths also function as skin conditioning agents, the oleths as fragrance ingredients, and the sec-pareths as emulsion stabilizers. Some do not function as surfactants. For example, the PEG methyl ethers function as solvents and humectants, and the PEG propylheptyl ethers as emulsion stabilizers. The Panel reviewed the relevant animal and clinical data from both previous CIR reports as well as that found in an updated search. The Panel concluded that the Alkyl PEG Ethers are safe as used when formulated to be non-irritating, and the same applies to future alkyl PEG ether cosmetic ingredients that vary from those ingredients recited herein only by the number of ethylene glycol repeat units.

INTRODUCTION

This report assesses the safety of alkyl PEG ethers as used in cosmetics. Most of the alkyl PEG ethers included in this review function in cosmetics as surfactants. The undeceths, laneths, and hydrogenated laneths also function as skin conditioning agents, undecyleneth-6 as a cosmetic biocide, the oleths as fragrance ingredients, and the sec-pareths as emulsion stabilizers. Some do not function as surfactants. The PEG methyl ethers function as solvents and humectants, the PEG propylheptyl ethers as emulsion stabilizers, steareth-60 cetyl ether as a viscosity increasing agent, and PEG-4 ditallow ether as a skin conditioning agent.

Many of the ingredients have previously been reviewed by the Cosmetic Ingredient Review (CIR) Expert Panel, including laureth-4 and laureth-23. ${ }^{1}$ In 1983, the Expert Panel concluded that these ingredients are safe as cosmetic ingredients in the present practices of use and concentration. This report was initiated as a re-review of the safety of laureth-4 and laureth-23.

The laureths are members of the alkyl PEG ethers family, which consists of compounds that are the reaction products of an alkyl alcohol, in this case lauryl alcohol, and one or more equivalents of ethylene oxide. While the naming conventions used in the International Cosmetic Ingredient Dictionary and Handbook for the alkyl alcohols of different chain lengths make them seem like very different entities, they are actually very similar - both in structure and function. Therefore, the entire family of alkyl PEG ethers is included in this rereview. The list of cosmetic ingredients that belongs to this family is quite extensive and is given in Table 1.

Some alkyl PEG ethers have been previously reviewed by the CIR. These ingredients were reviewed as a family based on the alkyl alcohol, for example, the ceteths. Those that have been previously reviewed are identified in Table 1. (Often the ingredient group was incomplete in the original safety assessment. For example, ceteth-7 was not included in the original ceteth report.)

In addition to the simple alkyl PEG ethers, this report also includes mixtures of simple alkyl PEG ethers, partially unsaturated alkyl PEG ethers, branched alkyl PEG ethers, sterol-containing PEG ethers, and dialkyl PEG ethers. These ingredients are also listed in Table 1.

While the number of ingredients in this report may seem overwhelming, the Panel has already dealt with a number of these ethers as individual families based on an individual alkyl chain length, as stated above. Many of the constituents of the alkyl PEG ethers have been reviewed by CIR. Similarities of this large group are explained in the Chemistry section.

Much of the determination of safety of the ingredients included in this new alkyl PEG ethers group is based on the use of the existing safety assessments of previously reviewed ingredients, ${ }^{1-6}$ as well as the assessments that exist for some of the base components of these ethers. ${ }^{7-16}$ However, this is not a novel approach. CIR has already set a precedent in using existing information on chemically similar ingredients, as evidenced in the ceteareth review, ${ }^{2}$ as well as using safety assessments of base components, as evidenced in the reviews on the ceteths ${ }^{3}$ and oleths, ${ }^{4}$ to determine safety of an ingredient
family that does not, itself, have complete safety data. Based on these precedents, use of existing safety assessments can be used in the absence of specific data, making a determination of safety possible for all of these ingredients. The previously reviewed ingredients, and component ingredients used to evaluate safety, are listed in Table 2a. Summaries of information

from the reports on previously reviewed ingredients and from component ingredients, as well as the conclusions and

 important discussion items, are summarized in Table $\mathbf{2 b}$.
CHEMISTRY

Definition and Structure

Alkyl PEG Ethers

An alkyl PEG ether is the reaction product of an alkyl alcohol and one or more equivalents of ethylene oxide. ${ }^{17}$

Laureth-1 represents one of the simplest ingredients in this review, as the reaction product of lauryl alcohol and one equivalent of ethylene oxide:

Laureth-1

Laureth-3 (i.e. a lauryl chain attached to a polyethylene glycol chain, with an average of 3 ethylene glycol units) differs from laureth-1 by the addition of two ethylene glycol units:

Laureth-3

Each of the methoxy PEGs and PEG methyl ethers (two International Nomenclature Cosmetic Ingredient (INCI) naming conventions that both mean a methyl group attached to a variable length PEG chain); capryleths (8 carbon chain with a variable PEG); noneths (9 carbon chain with a variable PEG); deceths (10 carbon chain with a variable PEG); undeceths (11 carbon chain with a variable PEG); laureths (12 carbon chain with a variable PEG); trideceths (13 carbon chain with a variable PEG); myreths (14 carbon chain with a variable PEG); ceteths (16 carbon chain with a variable PEG); steareths (18 carbon chain with a variable PEG); arachideth-20 (20 carbon chain with a 20 unit PEG chain); and beheneths (22 carbon chain with a variable PEG) follow this simple structural motif, as shown above for laureth-3 (and in more detail in Table 3).

Alkyl PEG Ether Mixtures

Each of the ceteareths (mixture of 16 and 18 carbon chains with a variable PEG); pareths (mixture of variable length carbons chains with a variable PEG); and hydrogenated talloweths (mixture of 14,16 , and 18 carbon chains with a variable PEG) are mixtures of the above simple structures. For example, C9-11 pareth-3 is a mixture of noneth-3, deceth-3 and undeceth-3.
C9-11 Pareth-3

Partially Unsaturated Alkyl PEG Ethers

Also included in this review are partially unsaturated straight chain ingredients. These include undecyleneth-6 (omega-1 ($\Omega-1$) unsaturated 11 carbon chain with a 6 unit PEG); oleths ($\Omega-9$ unsaturated 18 carbon chain with a variable PEG); cetoleths (mixture of 16 carbon chain and $\Omega-9$ unsaturated 18 carbon chains with a variable PEG); coceths (mixture of $6,8,10,12,14,18, \Omega-9$ unsaturated $18, \Omega-6$ unsaturated 18 , and 20 carbon chains with a variable PEG); palmeth-2 (mixture of $14,16,18, \Omega-6$ unsaturated 18 , and $\Omega-6$ unsaturated 18 carbon chains with a 2 unit PEG); talloweths (mixture of 14,16 , $\Omega-9$ unsaturated $16,18, \Omega-9$ unsaturated $18, \Omega-6$ unsaturated 18 , and $\Omega-3$ unsaturated 18 carbon chains with a variable PEG); and PEG jojoba alcohols (mixture of $\Omega-9$ unsaturated $18, \Omega-9$ unsaturated 20 , and $\Omega-9$ unsaturated 22 carbon chains with a variable PEG). For example, cetoleth-2 is a mixture of ceteth-2 and oleth-2.

Although the above $\Omega-9$ unsaturated chain is drawn as the trans isomer, the cis isomer is also possible and actually more likely if the parent alcohol was obtained from natural sources.

Branched Alkyl PEG Ethers

Another structural variation within the ingredients of this review is branching. The branched ingredients included in this review are the isodeceths (mixture of various branched 10 carbon chains with a variable PEG); isolaureths (mixture of various branched 12 carbon chains with a variable PEG); isomyreths (mixture of various branched 14 carbon chains with a variable PEG); isoceteths (mixture of various branched 16 carbon chains with a variable PEG); isosteareths (mixture of various branched 18 carbon chains with a variable PEG); sec-pareths (mixture of variable length, alpha-branched (α branched) carbons chains with a variable PEG); PEG propylheptyl ethers (3 carbon chain beta-substituted (β-substituted) 7 carbon chain with a variable PEG); hexyldeceths (6 carbon chain β-substituted 10 carbon chain with a variable PEG); octyldodeceths (8 carbon chain β-substituted 12 carbon chain with a variable PEG); and decyltetradeceths (10 carbon chain β-substituted 14 carbon chain with a variable PEG). For example, hexyldeceth-2 is as shown:

Hexyldeceth-2

Sterol-Containing PEG Ethers

Another grouping of ingredients within this review contains PEG ethers of sterols. These ingredients consist of the laneths (mixture of various length saturated and partially unsaturated alkyl chains, cholesterol, lanosterol and dihydrolanosterol with a variable PEG) and the hydrogenated laneths (mixture of various length saturated alkyl chains and dihydrocholesterol with a variable PEG). For example, laneth-5 is as shown:

Dialkyl PEG Ethers

The final grouping of ingredients within this review consists of dialkyl PEG ethers. Structurally, these ingredients consist of a PEG chain, capped at each end with an alkyl group. These ingredients include hydrogenated dimer dilinoleths and PEG-4 distearyl ether (two INCI naming conventions that both mean a variable PEG capped at each end with a saturated 18 carbon chain); PEG cetyl stearyl diether and steareth-60 cetyl ether (two INCI naming conventions that both mean a variable PEG capped at one end with a saturated 18 carbon chain and at the other end with a saturated 16 carbon chain); PEG-4 ditallow ether (a 4 unit PEG independently capped at each end with one of a $14,18,18, \Omega-9$ unsaturated $18, \Omega-6$ unsaturated 18 , or $\Omega-3$ unsaturated 18 carbon chain); and PEG-16 cetyl/oleyl/stearyl/lanolin alcohol ether (a 16 unit PEG independently capped at each end with a variable length saturated or partially unsaturated alkyl chain, cholesterol, lanosterol or dihydrolanosterol). For example, PEG-4 distearyl ether is as shown:

PEG-4 Distearyl Ether

Physical and Chemical Properties

The physical and chemical properties of the alkyl PEG ethers are summarized in Table 3. ${ }^{18}$ These ingredients range from viscous liquids to amorphous solids, and from highly water soluble to highly lipid soluble.

UV Absorption

While no UV absorption data were available, the ingredients included in this review would not be expected to have any meaningful ultraviolet (UV) absorption. None of these ingredients contain metals or halogens. Except for the partially unsaturated alkyl PEG ethers and the sterol-containing PEG ethers, these ingredients also do not possess any π-bonds. The π bonds in the partially unsaturated alkyl PEG ethers and the sterol-containing PEG ethers are not part of any conjugated systems. No heteroatoms participate in these π-bonds. Accordingly, the likelihood of any of these ingredients to absorb light within the UV spectrum, at a detectable molar absorptivity, is extremely low.

Method of Manufacture

Alkaline catalysis is by far the most common method of manufacture of alkyl PEG ethers, although acid catalysis is known. ${ }^{17}$ The initiation of the alkaline catalyzed synthesis of alkyl PEG ethers consists of the addition of ethylene oxide to a dry solution of the appropriate alcohol (e.g., stearyl alcohol is used to synthesize steareths) with an alkali earth metal (e.g., potassium hydroxide) or alkoxide (e.g., sodium methoxide). The reaction continues to propagate (i.e., continues to add additional units of ethylene glycol to the alcohol) until the available ethylene oxide is consumed and/or the reaction is terminated by the addition of an acid (e.g., hydrochloric acid). Dioxane (1,4-diethylene dioxide; 1,4-dioxane) is commonly formed as a byproduct. Finally, a finishing step is commonly employed via the addition of one or more oxidizing agents (e.g., hydrogen peroxide) or antioxidants/stabilizers (e.g., butylated hydroxytoluene (BHT) or α-tocopherol (vitamin E)).

Impurities

PEG Methyl Ethers

Since PEG methyl ethers, or methoxy PEGs, are defined as having an average number of ethylene oxide units, they have the potential of containing toxicants, methoxyethanol and methoxydiglycol. ${ }^{19}$ In past assessments, CIR has acknowledged the possible presence of 1,4-dioxane and unreacted ethylene oxide (a gas), both toxic chemicals, which are possible oxidation products in alkyl PEG ethers. ${ }^{2-4}$ PEG-3 methyl ether has a purity of approximately $90-96 \%$ by volume; major impurities and/or unreacted starting material include tetraethylene glycol monomethyl ether, diethylene glycol, methoxydiglycol, and triethylene glycol. ${ }^{20}$ Production samples of PEG-7 methyl ether typically contain a combined concentration of $0.02-0.05 \%$ of ethylene glycol and 0.1% of water. ${ }^{21}$

Stability

Laureths

Samples of laureth-5 and laureth-8 were assayed for peroxide and formaldehyde content under various conditions. ${ }^{22}$ Production samples of laureth-3 and laureth-5 were subjected to 8 months of daylight and contact with air, and resulted in impurities of formaldehyde as high as $3000 \mu \mathrm{~g} / \mathrm{g}$ (i.e. 3000 ppm or 0.3%). ${ }^{22,23}$ However, these are not typical storage conditions.

In four newly opened samples of laureth-5, the formaldehyde content ranged from $0.4-6 \mu \mathrm{~g} / \mathrm{g}$, while the peroxide content ranged from $0-11 \mathrm{mEqv} / \mathrm{kg}$. In a newly opened sample of laureth -8 , the formaldehyde content was $2 \mu \mathrm{~g} / \mathrm{g}$, and the test for peroxide content was negative. Only a minor increase was seen when the products were refrigerated for 2 yrs, but surfactants are normally stored at room temperature; they generally become semi-solid if stored in temperatures below their melting point. Autoxidation occurred in daylight and in darkness. One sample of undiluted laureth-5 had a formaldehyde content of $1289 \mu \mathrm{~g} / \mathrm{g}$ after 10 mos of storage in the dark, and the test for peroxide content was positive. The highest formaldehyde and peroxide contents were observed in a sample of undiluted laureth-5 that was exposed to daylight for 8 mos and was handled, i.e. stirred for $1 \mathrm{~h}, 4 \mathrm{x} / \mathrm{day}$, to simulate use conditions. In that sample, the formaldehyde content was 2950 $\mu \mathrm{g} / \mathrm{g}$ and the peroxide content was $1087 \mathrm{mEqv} / \mathrm{kg}$.

USE

Cosmetic

Laureth-4, laureth-23, and the majority of the PEG alkyl ethers included in this review function in cosmetics as surfactants. ${ }^{24}$ Generally, within each family, although there may be exceptions, the lower chain length ingredients mostly function as surfactant - emulsifying agents, and as the chain length increases, the ingredients function as surfactant solubilizing agents and/or surfactant - cleansing agents. Some of the ingredient families have other functions, in addition to being surfactants. The undeceths, laneths, and hydrogenated laneths also function as skin conditioning agents, undecyleneth6 is also a cosmetic biocide, the oleths are also fragrance ingredients, and the sec-pareths also function as emulsion stabilizers.

A few of the ingredients included in this rereview are not reported to function as surfactants at all. The PEG methyl ethers and methoxy PEGs function as solvents and humectants. The PEG propylheptyl ethers function as emulsion stabilizers, steareth-60 cetyl ether functions as a viscosity increasing agent, aq. and non-aq., and PEG-4 ditallow ether functions as a skin conditioning agent, occlusive.

There are 369 ingredients named in this report. Of those, 61 have been reviewed previously, and 49 of those previously reviewed are currently in use. There are 99 ingredients being reviewed for the first time that are reported to be used. Currently 221 ingredients have no reported cosmetic use.

The original safety assessment on laureth-4 and laureth-23 stated that, in 1981, according to data supplied to the Food and Drug Administration (FDA) as part of the Voluntary Cosmetic Registration Program (VCRP), laureth-4 was used in 202 formulations at concentrations of $\leq 0.1-25 \%$ and laureth- 23 was used in 218 cosmetic formulations at concentrations of $\leq 0.1-5 \% .^{1}$ Since that time, the frequency of use has more than doubled for laureth-4 and nearly doubled for laureth-23. VCRP data obtained recently report that laureth-4 is used in 441 formulations and laureth- 23 is used in 404 formulations. ${ }^{25}$ Many of the ingredients that have been reviewed previously have increased in frequency of use, a few have decreased in use, and it appears that ceteth-29 is no longer being used. The biggest increase in frequency of use was for steareth-2, which was used in 107 formulations in 1986, but is currently reported to be used in 593 cosmetic formulations. The ingredients with the greatest frequency of use, according to VCRP data, are ceteareth-20, with 955 uses, laureth-7, with 932 uses, and steareth-21, with 891 uses.

The Personal Care Products Council (the Council) conducted concentration of use surveys for the alkyl PEG ethers. ${ }^{26,27}$ The concentrations of use of laureth-4 and laureth- 23 are similar to those at the time of the original safety assessment. According to these surveys, many of the ingredients included in this review are used at concentrations of $<5 \%$. The ingredient with the highest concentration of use is C12-13 pareth-3, at 32% in a product that will be diluted and at 25% in dermal preparations. Laureth-4 and isoceteth-20 are used in leave-on products at concentrations up to 21%, and steareth20 is used in leave-on products at up to 20%. The ingredients used at the highest concentration in formulations applied near the eye or that could possibly be ingested are, respectively, ceteth- 9 , which is used at 18% in an eyeliner, and ceteareth-10, which is used at 11% in a lipstick.

The frequencies and concentrations of use are summarized in Tables 4 a and 4 b . Table 4 a includes current and historical information for all ingredients previously reviewed by CIR. (Some of these ingredients now have no reported uses.) Table 4b includes all previously-unreviewed ingredients that have been identified as in-use by either VCRP data ${ }^{25}$ or the Council survey. ${ }^{26}$ Table 4 c is a listing of ingredients not reported to be used.

Many alkyl PEG ethers are used in products that may be inhaled, and effects on the lungs that may be induced by aerosolized products containing this ingredient are of concern.

The aerosol properties that determine deposition in the respiratory system are particle size and density. The parameter most closely associated with deposition is the aerodynamic diameter, d_{a}, defined as the diameter of a sphere of unit density possessing the same terminal settling velocity as the particle in question. In humans, particles with an aerodynamic diameter of $\leq 10 \mu \mathrm{~m}$ are respirable. Particles with a d_{a} from $0.1-10 \mu \mathrm{~m}$ settle in the upper respiratory tract and particles with $\operatorname{ad}_{\mathrm{a}}<0.1 \mu \mathrm{~m}$ settle in the lower respiratory tract. ${ }^{28,29}$

Particle diameters of $60-80 \mu \mathrm{~m}$ and $\geq 80 \mu \mathrm{~m}$ have been reported for anhydrous hair sprays and pump hairsprays, respectively. ${ }^{30}$ In practice, aerosols should have at least 99% of their particle diameters in the $10-110 \mu \mathrm{~m}$ range and the mean particle diameter in a typical aerosol spray has been reported as $\sim 38 \mu \mathrm{~m} .{ }^{31}$ Therefore, most aerosol particles are deposited in the nasopharyngeal region and are not respirable.

In some previous safety assessments, such as that of ceteareths, ${ }^{2}$ it was concluded that ingredients that contained a PEG moiety should not be used on damaged skin because of potential increased dermal penetration of the PEG moiety and associated renal toxicity. Based on new data, the concern about increased PEG dermal penetration exists only for severely burned skin and not for abnormal skin seen in cases, for example, of atopic dermatitis. The need to avoid use of PEG containing medications is now well understood in the burn treatment community and the caveat regarding use of cosmetic products containing PEGs on damaged skin was removed for PEGs and PEG-containing ingredients.

All of the ingredients included in this review are listed in the European Union (EU) inventory of cosmetic ingredients. ${ }^{32}$ The Scientific Committee on Consumer Products (SCCP) opinion paper exists for laureth-9 and was initiated due to concern that laureth-9 has an anesthetic effect. ${ }^{33}$ While not restricted according to the EU, the SCCP concluded that laureth- 9 does not pose a risk when used at $\leq 3 \%$ in leave-on products and $\leq 4 \%$ in rinse-off products. The information summarized in the SCCP paper was on alcohol ethoxylates analogous to laureth-9, but each compound was not clearly defined. Therefore, for the purpose of this CIR assessment, the information will be summarized under the subheading 'Laureth-9', but the test product will be given as described in the SCCP paper - i.e., by the average alkyl chain length (C) and by the average alcohol ethoxylate number (AE), e.g. $\mathrm{C}_{12-15} \mathrm{AE}_{7}$.

Non-Cosmetic

Alkyl PEG ethers are especially useful as solvents for lacquers, paints, varnishes, dyes, inks, resins, cleaning formulations, and liquid soaps. ${ }^{34}$ In addition, alkyl PEG ethers have utility as coupling solvents for a variety of chemical specialties, and they are used as intermediates in the production of plasticizers and other solvents. Laureths, ceteths, oleths, and talloweths are listed as indirect food additives. ${ }^{35}$ Laureth-7 is reported to have spasmogenic action on veins, ${ }^{36}$ although it is not approved for sclerosant use in the United States. ${ }^{37}$ PEG methyl ethers are frequently used in adhesives, lubricants, inks, soaps, and detergents. ${ }^{21}$ PEG methyl ethers are also used as components in hydraulic brake fluid. ${ }^{38}$

GENERAL BIOLOGY

Absorption, Distribution, Metabolism, and Excretion

Laureths

Non-Human
Female Colworth Wistar rats, number per group not given, were used to determine the pharmacokinetics of compounds analogous to laureth- $9 .{ }^{33}\left[{ }^{14} \mathrm{C}\right]$ Labeled $\mathrm{C}_{12} \mathrm{AE}_{3}, \mathrm{C}_{12} \mathrm{AE}_{6}$, and $\mathrm{C}_{12} \mathrm{AE}_{10}$ were each administered orally by gavage, intraperitoneally, and subcutaneously, and the rats were then place in metabolism cages for 4 days for collection of feces, urine, and expired air. Radioactivity was primarily recovered in the urine, with 49.8-87.5\% being recovered by this route. The amount of radioactivity recovered in the feces, expired air, and carcass ranged from 2.1-19.9\%, 4.1-14.2\%, and 0.8-
4.9%, respectively. Total recovery was near 100%. Route of administration did not affect the proportions of the compounds recovered in the urine, feces, and air, but proportions did increase with longer ethoxylate length. There was some indication that the longer ethoxylate chain compounds may be excreted via the bile or excreted into the intestines by other routes. For each test substance, two distinct polar metabolites were identified in the urine, with no parent compound. (These metabolites were not identified.)
$\left[{ }^{14} \mathrm{C}\right]$ Labeled $\mathrm{C}_{12-15} \mathrm{AE}_{6}$ and $\mathrm{C}_{12-15} \mathrm{AE}_{7}$ were administered orally to Cox CD rats, number not specified. More than 75% of the dose was absorbed rapidly, and approximately 50% of the absorbed dose was excreted in the urine. The greatest levels of radioactivity were found in the urine, feces, and expired air, while recovery in the tissues was negligible. Human

The absorption, distribution, and excretion of orally administered radiolabeled $\mathrm{C}_{12} \mathrm{AE}_{6}$ and $\mathrm{C}_{13} \mathrm{AE}_{6}$, compounds that are analogous to laureth-9, were examined using groups of 6 male subjects. ${ }^{33}$ The subjects were given capsules containing 50 mg of the test substance. Blood, urine, feces, and air samples were taken at various intervals after dosing. The majority of the radioactivity, 75%, was eliminated in the urine within 24 h after dosing. Fecal recovery was 5%, and 4% was recovered in expired air. The amount of radioactivity recovered in the blood was $<1 \%$. A total of $83-89 \%$ of the radioactivity was recovered within 144 h of dosing. The distribution and excretion of each test compound was similar, but the metabolic product of each compound was a defined function of carbon chain length. The longer carbon chain ethoxylates produced more metabolic CO_{2} and less urinary elimination products. The degradation of ether linkages and oxidation of the alkyl chain to form lower molecular weight PEG-like compounds and carbon dioxide and water appeared to be the major degradation pathway of alcohol ethoxylates.

Percutaneous Absorption

Laureths

Animal
In dermal metabolism studies with hairless mice treated with 0.25% solutions in ethanol, the percutaneous absorption, after 4 hours, was 22.9% for laureth-1, 15.5% for laureth-3, 10.4% for laureth-6, and 2.1% for laureth-10. ${ }^{39}$ Absorbed laureths were rapidly metabolized to carbon dioxide, and excreted with expired air. With increasing number of ethylene oxide units, the percentage in expired air was decreased, and the amount excreted in feces and urine increased.

The absorption of compounds analogous to laureth-9 was evaluated. ${ }^{33}\left[{ }^{14} \mathrm{C}\right]$ Labeled $\mathrm{C}_{12} \mathrm{AE}_{3}, \mathrm{C}_{12} \mathrm{AE}_{6}$, and $\mathrm{C}_{12} \mathrm{AE}_{10}$ were applied to female Colworth Wistar rats as 1% solutions in a series of wash and rinse procedures. It was stated that a considerable proportion of the administered dose penetrated the skin, and that the short chain ethoxylates were absorbed more readily than the longer chain ethoxylates, but details of the studies were not provided. After a single 5 min wash with 1% $\mathrm{w} / \mathrm{v}_{12} \mathrm{AE}_{3}$ and $1 \% \mathrm{w} / \mathrm{v} \mathrm{C}_{12} \mathrm{AE}_{6}, 4-5 \mu \mathrm{~g} / \mathrm{cm}^{2}$ penetrated, while in a similar study using $\mathrm{C}_{12} \mathrm{AE}_{10}$, only $0.85 \mu \mathrm{~g} / \mathrm{cm}^{2}$ penetrated rat skin. For all three test compounds, penetration was proportional to longer durations of contact and multiple applications. The highest penetration rate, $8.4 \mu \mathrm{~g} / \mathrm{cm}^{2}$, was observed after 20 min of contact to $\mathrm{C}_{12} \mathrm{AE}_{3}$.

Solutions of $0.5 \mathrm{mg}\left[{ }^{14} \mathrm{C}\right]$ labeled $\mathrm{C}_{12-15} \mathrm{AE}_{6}$ and $\mathrm{C}_{12-15} \mathrm{AE}_{7}$ were applied to a $20 \mathrm{~cm}^{2}$ shaved area on the backs of Cox CD rats. The animals were restrained to avoid ingestion and were placed in metabolism cages. Samples were collected at 24, 48 , and 72 h . By 72 h , approximately 50% of the dose was absorbed. Approximately 50% of the absorbed $\left[{ }^{14} \mathrm{C}\right]$ was excreted in the urine. The highest concentrations of radioactivity were found in the urine, feces and expired air. Radioactivity in the tissues was negligible.

Human
The absorption of compounds analogous to laureth-9 was evaluated using human subjects. ${ }^{33}$ A solution of 100 mg [$\left.{ }^{14} \mathrm{C}\right]$ labeled $\mathrm{C}_{12} \mathrm{AE}_{6}$, as a $50 / 50$ ethanol/water solution, was applied to a $90 \mathrm{~cm}^{2}$ area of the skin of 2 male subjects for 8 h . The test site was protected by a non-occlusive metal shield. After repeated washing, the area was tape-stripped 10 times. Blood samples, urine and feces, and expired air were collected at various intervals. The majority of the radioactive solution, i.e. 73.9 and 87.5%, was removed by cleansing the application site with alcohol-soaked gauze. Less than 2% of the radioactivity was detected in the urine, and measurable amounts were not found in the feces or expired carbon dioxide. Low levels of radioactivity, $0.14,0.02$, and $0.01 \mu \mathrm{~g} / \mathrm{g}$ at 8,12 , and 24 h , respectively, were found in the blood of one subject. The total radioactivity recovered was 82.4% for one subject and 94.7% for the other.

The percutaneous absorption of laureth-9 through damaged skin was evaluated using 22 atopic dermatitis patients. ${ }^{39}$ The patients were treated with a bath oil containing laureth-9 either by bathing in diluted product or by applying the oil onto the skin for 8 h after showering. Percutaneous penetration was quantified by measuring laureth- 9 blood concentrations and urinary excretion rates. Blood concentrations were $0.015-0.021 \mu \mathrm{~g} / \mathrm{ml}$ after both types of application. The calculated absorption was 0.0017% after bathing and 0.0035% following the after-shower application.

PEG-3 Methyl Ether

In an in vitro study, epidermal samples, separated from human whole abdominal skin, were mounted in a glass diffusion apparatus and used to determine the diffusion of undiluted PEG-3 methyl ether ($99.9+\%$ purity) through skin. ${ }^{40}$ The epidermal damage caused by exposure to PEG-3 methyl ether was also determined. Six samples were used. The in vitro diffusion rate of PEG-3 methyl ether through human epidermal skin samples (expressed in units of $\mu \mathrm{g}$ of test chemical diffusing through $1 \mathrm{~cm}^{2}$ of skin surface per hr) was $34 \pm 7.7 \mu \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{hr}$, indicating that PEG-3 methyl ether would not readily penetrate the skin. The diffusion barrier function of the skin was slightly diminished after 12 h of exposure to PEG-3 methyl ether.

Penetration Enhancement

Laureths

Laureth-9 was reported to promote drug absorption and increase bioavailability of high molecular weight compounds following nasal administration (the specific drugs for which bioavailability might be increased were not identified). ${ }^{41}$ It appeared as if 1% laureth- 9 induced damage to the nasal mucosa and that was the basis for the potential increased bioavailability. The damage was not observed 4 h after dosing, but was apparent after 24 and 48 h .

Oleths

Oleths have been reported to increase permeability of isolated stratum corneum in in vitro studies. ${ }^{42}$ (Details were not provided.)

Ceteareths

No effect was found on the stratum corneum, by one study group, for ceteareth-20, while another group reported that percutaneous absorption of piketoprofen was increased in rabbits following topical application of aqueous and anhydrous creams containing $2 \%, 3 \%$ or 5% ceteareth- $20 .{ }^{42}$

Spermicidal Activity

Laureths

The spermicidal activity of laureth-9 was investigated in vitro using three semen samples. ${ }^{43}$ The concentration of laureth-9 immobilizing human spermatozoa within 20 sec ranged from 1:1200-1:3000 and within 2 min ranged from 1:15001:3500.

ANIMAL TOXICOLOGY

Acute (Single Dose) Toxicity

The acute toxicity studies are summarized in Table 5.

Oral

Laureths

The acute oral toxicity of laureth-9 was evaluated using groups of 10 male albino Swiss Webster mice. ${ }^{43}$ The oral LD_{50} values after 24 h and 7 days were 3300 and $3050 \mathrm{mg} / \mathrm{kg}$, respectively. In rats, the oral LD_{50} ranged from 1642-4900 $\mathrm{mg} / \mathrm{kg} / \mathrm{bw}$ using analogs of laureth-9, applied neat. ${ }^{33}$ For a 50% solution of the analogs in corn oil, the oral LD_{50} ranged from >2000 to $2500 \mathrm{mg} / \mathrm{kg} / \mathrm{bw}$ for male rats and from $1000-2000 \mathrm{mg} / \mathrm{kg} / \mathrm{bw}$ for female rats. The oral LD_{50} of laureth-9 in beagles was $1650 \mathrm{mg} / \mathrm{kg}$ bw, and in monkeys it was $6700 \mathrm{mg} / \mathrm{kg} / \mathrm{bw}$.

Ceteths

The acute oral toxicity of an undiluted ceteth (avg. chain length not specified) was determined using fasted ddY mice. ${ }^{44}$ The oral L_{50} was $2880 \mathrm{mg} / \mathrm{kg}$ for males and $2602 \mathrm{mg} / \mathrm{kg}$ for females.

PEG Methyl Ethers

PEG-3 methyl ether (purity not specified) has an LD_{50} of $\geq 11.3 \mathrm{~g} / \mathrm{kg}$ in rats. ${ }^{20}$ The oral LD_{50} of PEG-7 methyl ether was $>16 \mathrm{ml} / \mathrm{kg}$ for the rat. ${ }^{21}$ (Details not provided.)

C9-11 Pareths

The acute oral toxicity of C9-11 pareth-6 was determined using groups of 5 male and 5 female Fischer 344 rats. ${ }^{45}$ The groups of animals were dosed by gavage with $320-3260 \mathrm{mg} / \mathrm{kg}$ of the test material. The combined LD_{50} was calculated as $1378 \mathrm{mg} / \mathrm{kg}$ C9-11 pareth-6.

The oral LD_{50} values of various C9-11 pareths for rats, which range from $1000-2900 \mathrm{mg} / \mathrm{kg}$, are stated in Table $5 .{ }^{46}$

C12-13 Pareths

The acute oral toxicity of a C12-13 pareth (avg. chain length not specified) was determined. ${ }^{47}$ Groups of 4 male and 4 female Wistar albino rats were dosed by gavage with 5 or $10 \mathrm{~g} / \mathrm{kg}$ of the test material. One female of the $5 \mathrm{~g} / \mathrm{kg}$ group, and 2 males and 3 females of the $10 \mathrm{mg} / \mathrm{kg}$, group died by day 11 . The oral LD_{50} was approximately $10 \mathrm{~g} / \mathrm{kg}$.

The acute oral toxicity of C12-13 pareth-2 was also determined. ${ }^{48}$ Four male and 4 female rats were dosed by gavage with $10 \mathrm{~g} / \mathrm{kg}$. One female died on day 4 , and the LD_{50} was $>10 \mathrm{~g} / \mathrm{kg}$. The oral LD_{50} values of various $\mathrm{C} 12-13$ pareths for rats, which range from $4600-7600 \mathrm{mg} / \mathrm{kg}$, are stated in Table 5 . 46

C12-15 Pareths

The oral LD_{50} values of various C12-15 pareths for rats, which range from $1600-5600 \mathrm{mg} / \mathrm{kg}$, are stated in Table $5 .{ }^{46}$

C14-15 Pareths

The oral LD_{50} values of various C14-15 pareths for rats, which range from $1000-2700 \mathrm{mg} / \mathrm{kg}$, are stated in Table $5 .{ }^{46}$

Dermal

Laureths

The percutaneous LD_{50} of laureth-4 was $0.93 \mathrm{ml} / \mathrm{kg}$ for male rabbits and $1.78 \mathrm{ml} / \mathrm{kg}$ for females rabbits. ${ }^{49}$ (Details not specified.) Pulmonary lesions were found within 3 days of a single dermal application. In rats, the potential for neurotoxicity was observed within 48 h of a single dermal dose. (Details not specified.)

For analogs of laureth-9, applied neat, the dermal LD_{50} was $>2000 \mathrm{mg} / \mathrm{kg}$ bw for rats and rabbits. ${ }^{33}$ The dermal LD_{50} in rats of a 40% solution in corn oil was $>920 \mathrm{mg} / \mathrm{kg}$.

PEG Methyl Ethers

The acute dermal toxicity of PEG-3 methyl ether (purity not specified) was $7.1 \mathrm{ml} / \mathrm{kg}(7.4 \mathrm{~g} / \mathrm{kg})$ in New Zealand white rabbits. ${ }^{20}$ The percutaneous LD_{50} of PEG-7 methyl ether was $>16 \mathrm{ml} / \mathrm{kg}$ for the rabbit. ${ }^{21}$ (Details not provided.)

C9-11 Pareths

The acute dermal toxicity of C9-11 pareth-6 was determined using 4 male and 4 female New Zealand white (NZW) rabbits. ${ }^{45}$ A dose of $2.0 \mathrm{~g} / \mathrm{kg}$ was applied under a 4 in x 4 in occlusive patch to the shaved back of the animals. Mild to moderate irritation was observed at patch removal, and mild and moderate edema were still observed after 14 days. The dermal LD_{50} was $>2.0 \mathrm{mg} / \mathrm{kg}$ C9-11 pareth-6. The dermal LD_{50} values of various C9-11 pareths, which range from 2000$5000 \mathrm{mg} / \mathrm{kg}$ for rabbits and $2000-4000 \mathrm{mg} / \mathrm{kg}$ for rats, are stated in Table $5 .{ }^{46}$

C12-13 Pareths

The acute dermal toxicity of a C12-13 pareth was determined. ${ }^{47}$ Two g / kg of the undiluted test material were applied under occlusion to shaved dorsal skin of 4 male and 4 female Wistar albino rats. The dermal LD_{50} was $>2.0 \mathrm{~g} / \mathrm{kg}$.

The acute dermal toxicity of C12-13 pareth-2 was determined as described above. ${ }^{48}$ One, 2, or $4 \mathrm{~g} / \mathrm{kg}$ of the test article was applied for 24 h to groups of 4 male and 4 female rats. One female of the $2 \mathrm{~g} / \mathrm{kg}$ group died on day 6 and all 4 males and 1 female died by day 14 . The dermal L_{50} was $>2 \mathrm{~g} / \mathrm{kg}$ and approximately $4 \mathrm{~g} / \mathrm{kg}$.

The dermal LD_{50} values of various C12-13 pareths, which range from $2000-3300 \mathrm{mg} / \mathrm{kg}$ for rabbits, are stated in Table 5. ${ }^{46}$

C12-15 Pareths

The dermal LD_{50} values of various C12-15 pareths, which range from $2300-5000 \mathrm{mg} / \mathrm{kg}$ for rabbits, are stated in Table 5. ${ }^{46}$

C14-15 Pareths

The dermal LD_{50} values of various C14-15 pareths, which range from $2500-5000 \mathrm{mg} / \mathrm{kg}$ for rabbits and is >5000 $\mathrm{mg} / \mathrm{kg}$ for rats, are stated in Table 5. ${ }^{46}$

Inhalation

PEG Methyl Ethers

In two separate studies, rats were either exposed to $200 \mathrm{mg} / \mathrm{l}$ PEG-3 methyl ether (purity not specified) for 1 h or exposed to concentrated vapor for $8 \mathrm{~h} .{ }^{20}$ All animals survived both studies, and the LC_{50} value was not established in either study.

Other

Laureths

The acute intravenous (i.v.) toxicity of laureth- 9 was evaluated using groups of 10 male albino Swiss Webster
mice. ${ }^{43}$ The i.v. LD_{50}, after 24 h and 7 days, was $100 \mathrm{mg} / \mathrm{kg}$.
A single intratracheal dose of $100 \mu \mathrm{l} /$ animal of 1% laureth- 9 was administered to 12 male Sprague-Dawley rats in order to examine the toxic effects on the lungs. ${ }^{50}$ A negative control group of 12 rats was dosed with water. Four rats were killed at 1,3 , or 7 days after dosing. Moderate pulmonary lesions were observed in the bronchi, bronchioles and alveoli of the test animals, but not controls, at each time period.

Repeated Dose Toxicity

Oral

Laureths

Oral toxicity of compounds analogous to laureth-9 was evaluated in a number of repeated dose studies. ${ }^{33}$ Groups of 6 Colworth Wistar rats, 3 per gender, were fed $0.023-1.5 \% \mathrm{C}_{12-14} \mathrm{AE}_{7}, \mathrm{C}_{12-15} \mathrm{AE}_{7}$, and $\mathrm{C}_{12-15} \mathrm{AE}_{11}$ in the diet for 21 days. A group of 6 male and 6 female rats was used as the control group. With all test compounds, growth was decreased in the 0.75 and 1.5% groups; changes in plasma protein concentration and organ weights were associated with this effect. The liver appeared to be the major target organ, but it was stated that changes seemed to be indicative of an adaptive response rather than a true adverse effect. The lowest observable effect level (LOEL) was 0.75% in the diet for all the test compounds. The no-observable adverse effect level (NOAEL) was 0.375% in the diet for these compounds, corresponding to $502 \mathrm{mg} / \mathrm{kg}$ bw $\mathrm{C}_{12-14} \mathrm{AE}_{7}, 459 \mathrm{mg} / \mathrm{kg}$ bw $\mathrm{C}_{12-15} \mathrm{AE}_{7}$, and $519 \mathrm{mg} / \mathrm{kg}$ bw $\mathrm{C}_{12-15} \mathrm{AE}_{11}$.

Groups of Colworth Wistar rats, number per group not specified, were fed $0.03-1.0 \%$ active material $\mathrm{C}_{12-15} \mathrm{AE}_{7}$ and $\mathrm{C}_{12-14} \mathrm{AE}_{7}$ in the diet for 90 days. (Active was not defined.) With both compounds, body weight gains were significantly decreased in male and female rats fed doses $>0.25 \%$. Relative liver to body weights were significantly increased in males fed 0.5 and 1.0% and in females fed $0.25,0.5$, and 1.0% of the test materials. Upon microscopic examination, hepatocytic enlargement was noted in the livers. No effects were observed in reproductive organs. The NOAEL for these compounds was 0.125% in the diet, which corresponded to $102 \mathrm{mg} / \mathrm{kg}$ bw $/$ day $\mathrm{C}_{12-15} \mathrm{AE}_{7}$ and $110 \mathrm{mg} / \mathrm{kg}$ bw$/$ day $\mathrm{C}_{12-14} \mathrm{AE}_{7}$.
$\mathrm{C}_{14-15} \mathrm{AE}_{7}$ was fed to groups of 6 male and 6 female Wistar rats at concentrations of $300-10,000 \mathrm{ppm}$ of active ingredient for 90-days. The control group was compromised of 12 male and 12 female rats. Body weights were decreased in males of the $10,000 \mathrm{ppm}$ group and females of the 3000 ppm group. Relative liver to body weights were increased in males and females of the 3000 and $10,000 \mathrm{ppm}$ groups and in females of the 1000 ppm group; the relative spleen to body weight was increased in males of the $10,000 \mathrm{ppm}$ group. Microscopically, no compound-related effects were seen at any dose level. The dietary NOAEL was 300 ppm , corresponding to $15 \mathrm{mg} / \mathrm{kg}$ bw $\mathrm{C}_{14-15} \mathrm{AE}_{7}$.

In another 90-day study, $\mathrm{C}_{14-15} \mathrm{AE}_{7}$ was also fed to groups of 20 male and 20 female albino rats at concentrations of $0.1,0.5$, and 1% in the diet. Five rats/gender were killed for necropsy on day 28 . No treatment-related changes in body weights, feed intake, organ weights, clinical chemistry, or hematology were observed. The NOAEL was $1 \% \mathrm{C}_{14-15} \mathrm{AE}_{7}$, corresponding to $700 \mathrm{mg} / \mathrm{kg}$ bw for males and $785 \mathrm{mg} / \mathrm{kg}$ bw for females.

In a 2-yr study, rats, number per group not specified, were fed $0.1,0.5$, and $1 \% \mathrm{C}_{12-13} \mathrm{AE}_{6.5}$ and $\mathrm{C}_{14-15} \mathrm{AE}_{7}$ in the diet. Reduced feed consumption, resulting in decreased body weight gains, was observed in the 0.5 and 1% females and 1% males. Relative liver, kidney, and brain to body weights were increased in the 0.5 and 1% female groups, an increased relative heart to body weight was observed in the 1% female group, and increased relative liver to body weights were observed in the 1% male group. The incidence of focal myocarditis was greater in treated males than in controls. No other treatment-related lesions were observed. The NOAEL was 0.1%, corresponding to $50 \mathrm{mg} / \mathrm{kg} \mathrm{bw} / \mathrm{day}$.
$\mathrm{C}_{14-15} \mathrm{AE}_{7}$ was fed to rats, number per group not specified, at concentrations of $0,0.1,0.5$, and 1% in the diet for 2 yrs. Body weights were decreased for females of the 0.5 and 1% groups and for males of the 1% group. Relative liver, kidney, heart, and thyroid/parathyroid gland to body weights were observed in the high dose group. The only significant microscopic finding was focal myocarditis in all test groups; this lesion was observed at 13 mos but not at 2 yrs. The NOAEL was 0.5%, corresponding to 190 and $162 \mathrm{mg} . / \mathrm{kg}$ bw/day for female and male rats, respectively.

Deceths

Groups of 5 female NZW rabbits were dosed orally by gavage with $2 \mathrm{ml} / \mathrm{kg}$ of $0.12,0.25,0.50,0.75$, or $1.0 \mathrm{~g} / \mathrm{kg}$ deceth (avg. chain length not specified) for 13 days. ${ }^{51}$ The negative control group was dosed with distilled water. The deaths that occurred were: 1 rabbit dosed with $0.12 \mathrm{~g} / \mathrm{kg}$ (day 8 ; thought to be gavage error); all 5 rabbits dosed with $0.25 \mathrm{~g} / \mathrm{kg}$ (days 2-12); 4 rabbits dosed with $0.5 \mathrm{~g} / \mathrm{kg}$ (days 2-14); 4 rabbits dosed with $0.75 \mathrm{~g} / \mathrm{kg}$ (days 2-14); and all 5 rabbits dosed with $1.0 \mathrm{~g} / \mathrm{kg}$ (days 2-6). The majority of the mortality was a result of respiratory distress. A number of signs of toxicity, such as post-dose inactivity, clonic convulsions, and respiratory distress, were observed occasionally in the 2 lower dose groups and frequently in the higher dose groups. Severe body weight loss was noted in the highest dose group, and slight to moderate body weight loss was observed in the other groups. Feed consumption was significantly decreased at some point for all groups.

PEG Methyl Ethers

Sprague-Dawley rats (number/gender/group not specified) were given $0,0.75,1.6,3.9$, and $8.0 \mathrm{~g} / \mathrm{kg} / \mathrm{day}$ PEG-3 methyl ether (purity not specified) in the drinking water for 14 days. ${ }^{20}$ PEG-3 methyl ether was mildly to moderately toxic at $4 \mathrm{~g} / \mathrm{kg}$ and severely toxic at $\geq 8 \mathrm{~g} / \mathrm{kg}$. A NOAEL of $1.6 \mathrm{~g} / \mathrm{kg} /$ day was assigned.

Groups of 15 male and 15 female Sprague-Dawley CD rats were given drinking water containing target doses of 0 , 400, 1200, and $4000 \mathrm{mg} / \mathrm{kg} /$ day PEG-3 Methyl Ether (98.7% purity) for 91 days. ${ }^{20}$ One female of the high dose group died during the study. No treatment-related clinical signs of toxicity, alterations in functional observational battery, or gross microscopic lesions in the nervous system were found. Statistically significant increases in absolute liver weights were observed in males of the high dose group; increased relative liver weights were also observed in males of this group. Microscopically, hepatocellular cytoplasmic vacuolization and/or hypertrophy were seen in the livers of high-dose males; the severity of these lesions was mostly minimal to mild, although some had moderate or marked vacuolization. Minimal or mild hepatocellular hypertrophy was seen in 10 high dose females. Treatment-related mild to moderate degeneration and/or minimal to moderate atrophy of the seminiferous tubules was observed in males of the high dose group. The researcher stated that a possible contributing factor in the development of testicular lesions was low-level contamination with 2methoxyethanol (0.02-0.04\%), which is a testicular toxicant. For liver effects, the researchers assigned a NOAEL of 400 $\mathrm{mg} / \mathrm{kg} /$ day and a lowest observable adverse effect level (LOAEL) of $1200 \mathrm{mg} / \mathrm{kg} /$ day PEG-3 methyl ether. For testicular effects, the researchers assigned a NOAEL of $1200 \mathrm{mg} / \mathrm{kg} /$ day and LOAEL of $4000 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$. However, it was noted that the Environmental Protection Agency (EPA) reviewed the information and determined that the LOAEL for testicular effects in this study is between 400 and $1200 \mathrm{mg} / \mathrm{kg} /$ day.

C14-15 Pareths

Groups of 12 male and 12 female Wistar rats were fed diet containing 300, 1000, 3000, or $10,000 \mathrm{ppm}$ C14-15 pareth-7 for 13 weeks. ${ }^{52}$ A control group of 24 males and 24 females was given untreated feed. All the animals were killed at the termination of dosing. Treatment-related clinical signs were not observed during the study. Mean body weights of males of the $10,000 \mathrm{ppm}$ and females of the 3000 and $10,000 \mathrm{ppm}$ groups and feed consumption of males and females of the $10,000 \mathrm{ppm}$ group were statistically significantly decreased compared to controls. Differences were noted for some hematological and clinical chemistry values compared to controls, and increases in mean liver weights (3000 and 10,000 ppm males and females and 1000 ppm females), spleen weights ($10,000 \mathrm{ppm}$ males), and kidneys (1000 ppm females) were recorded. No microscopic lesions were observed. Therefore any observed differences in organ weights and clinical chemistry and hematology values that were observed were not attributed to dosing and not considered toxicologically significant.

Oleths

A short-term oral study was performed in groups of 3 male and 3 female rats that were dosed by gavage with 0,100 , 300 , and $1000 \mathrm{mg} / \mathrm{kg} /$ day of an unspecified oleth. ${ }^{53}$ One male and 1 female died after 2 doses of $1000 \mathrm{mg} / \mathrm{kg}$, and as a result the high dose was reduced to $750 \mathrm{mg} / \mathrm{kg} /$ day. Two additional high dose males died after the $3^{\text {rd }}$ or $4^{\text {th }}$ dose, and 2 additional females in moribund condition were killed after 7 doses. A mid-dose male was killed after receiving 17 doses due to signs of toxicity. Generally, the organs and tissues appeared normal at necropsy. (No other study details were given.)

Dermal

Laureths

The dermal toxicity of laureth-4 was evaluated using groups of female Sprague-Dawley rats. ${ }^{49}$ Doses of 495, 990, and $1980 \mathrm{mg} / \mathrm{kg}$ undiluted laureth-7 (at dose volumes of $0.5,1.0$, and $2.0 \mathrm{ml} / \mathrm{kg}$, respectively) were applied to the clipped skin of the rats for 5 days during wk 1 and for 4 days during wk 2. The test sites were occlusively wrapped for at least 6 h , and the application site was rinsed when the wrap was removed. The controls were dosed with 2.0 ml of water. Erythema and edema were not observed in this study. Exfoliation was observed for animals of all test groups. Excoriation and/or fissures were observed for 2, 7, and 11 animals of the low, mid, and high dose groups, respectively. Microscopic lesions, such as acanthosis and hyperkeratosis, were also reported. All test groups had an increase in the incidence of abnormal gait. This finding was not considered neurotoxicologically significant since there were no other neurotoxicological observations. No other treatment-related clinical signs of toxicity were observed.

A dose of $2 \mathrm{ml} / \mathrm{kg}$ bw of 2.5% aq. $\mathrm{C}_{14-15} \mathrm{AE}_{7}$, a compound analogous to laureth- 9 , was applied 5 days a wk, $6 \mathrm{~h} / \mathrm{day}$, for 13 wks to groups of 3 male and 3 female rabbits. ${ }^{33}$ Three test animals died during the study; death was attributed to an infectious disease (also observed in the controls) and the stress of treatment. Moderate localized dermal irritation, as evidenced by erythema and edema, was observed in all test groups.

PEG Methyl Ethers

Groups of 5 rats/gender were dosed dermally with $0,1000,2500$, or $4000 \mathrm{mg} / \mathrm{kg} /$ day PEG-3 methyl ether (purity not specified), $6 \mathrm{~h} /$ day. ${ }^{20}$ Nine applications were made during a 12-day period. No treatment-related adverse effects were observed. Slight scabbing or crusting was noted at the test site of a few mid or high dose males and females. Clinical chemistry and hematological and urinalysis values that were statistically significantly different from control values were reported, but these effects were not considered by the researchers to be treatment-related. The NOAEL was determined to be $4000 \mathrm{mg} / \mathrm{kg} /$ day for this study.

A group of 5 male and 5 female NZW rabbits was used to determine the dermal toxicity of PEG-3 methyl ether ($99.9+\%$ purity). ${ }^{20,40}$ A dose of $1000 \mathrm{mg} / \mathrm{kg} /$ day was applied neat to the shaved skin (size of test area not specified) on the back of each animal, $6 \mathrm{~h} / \mathrm{sday}$, 5 days/wk for 3 wks , under an occlusive covering; the animals were restrained during dosing. Six h after application, the site was rinsed. The negative control group of 10 animals was sham-treated. The test sites were scored for dermal irritation immediately prior to dosing. All animals were killed within 24 h of the last dose.

No animals died during the study. The only observation made related to testing was the incidence of erythema and edema due to dermal application of PEG-3 methyl ether. Slight erythema and edema was first observed for 1 animal on day 6. Erythema was observed for all animals on day 9 and continued until study termination. Edema was observed in some, but not all, animals, and it resolved completely by day 18. According to microscopic examination, the lesions were primarily trace acanthosis. No other significant toxicological findings were reported during the study or at necropsy.

The toxic potential of undiluted PEG-3 methyl ether (99.23% purity) was evaluated by applying doses of 0,400 , 1200 , or $4000 \mathrm{mg} / \mathrm{kg}$ bw to a shaved site on the backs of $10 \mathrm{rats} /$ gender/group for $6 \mathrm{~h} / \mathrm{day}, 5$ days $/ \mathrm{wk}$, for $13 .^{20}$ The test
material was uniformly spread on a $12 \mathrm{~cm}^{2}$ area under a semi-occlusive covering. Additional groups of $5 \mathrm{rats} /$ gender/dose were used for interim evaluations. There were no indications of systemic toxicity, and the researchers did not consider testicular effects in one high dose and one mid-dose male to be test-article related. (Dermal effects were not described.) The researchers assigned a NOAEL of $4000 \mathrm{mg} / \mathrm{kg}$ bw/day PEG-3 methyl ether. However, it was noted that the EPA reviewed that data and, based on testicular effects in 2 males, the assigned an NOAEL of >400 and $<1200 \mathrm{mg} / \mathrm{kg}$ bw.

The dermal toxicity of PEG-7 methyl ether was evaluated in 14-day and 28-day studies using $\mathrm{CD}(\mathrm{SD}) \mathrm{BR}$ rats. ${ }^{21}$ In the 14-day study, 10 males and 10 females were dosed dermally with $5000 \mathrm{mg} / \mathrm{kg}$ undiluted PEG-7 methyl ether. The test site was clipped of hair, and applications were made 5 days/wk. The application site was not occluded, but a collar was placed on the animals just prior to dosing until study termination. Controls were handled similarly, except no applications were made. In the 28 -day study, groups of 15 male rats were dosed dermally with 1250,2500 , or $5000 \mathrm{mg} / \mathrm{kg}$ undiluted PEG-7 methyl ether, 5 days/wk.

No mortality was recorded. In the 28 -day study, slight to moderate erythema and slight to moderate desquamation were observed for some animals. In the 14-day study, the mean absolute weight of the spleens of males were significantly decreased and the mean and absolute relative thymus gland to body weight ratios of test males and females were slightly, but not significantly, decreased compared to controls. In the 28-day study, the mean absolute body weights of the high dose animals and the mean testes weights of the low dose group was significantly decreased compared to the controls. No microscopic lesions were reported for any test group, and as such the researchers found that it was unlikely that there was any biological significance associated with the changes in organ weights.

The same researchers also examined the dermal toxicity of PEG-7 methyl ether in a 9-day study and 90-day study using NZW rabbits. In the 9-day study, the dorsal surfaces 5 male rabbits/group were clipped free of hair, and the rabbits were dosed with 1.0 ml of a solution of 50% PEG-7 methyl ether in 0.1% methyl cellulose in distilled water or with undiluted PEG-7 methyl ether. After 6 h , the test site was wiped. Five applications were made during wk 1, and 4 were made during wk 2. The application site was not occluded, but a collar was placed on the animals daily, prior to dosing, until the site was wiped. Vehicle was applied to animals in the negative control group. No mortality was recorded. Barely perceptible erythema and slight to moderate desquamation was observed. No significant differences in organ or body weights were observed as compared to controls.

In the 90-day study, groups of 10 male and 10 female rabbits were dosed, 5 days/wk, with 1.0 ml of a solution of 50% PEG-7 methyl ether in 0.1% methyl cellulose in distilled water or with undiluted PEG-7 methyl ether. The application site was not occluded, but a collar was placed on the animals daily, prior to dosing, until the site was wiped. Vehicle was applied to animals in the negative control group. No mortality was recorded. Barely perceptible erythema and slight to moderate desquamation was observed. No significant differences in organ or body weights were observed as compared to controls. Mild acanthosis was observed for 3 females dosed with undiluted PEG-7 methyl ether. This lesion was not considered toxicologically significant.

C9-11 Pareths

Groups of 20 Fischer 344 rats, 10 per gender, were exposed dermally to $0.5 \mathrm{ml} / \mathrm{kg}$ of $0,1,10$ or $25 \% \mathrm{w} / \mathrm{v}$ aq. C9-11 pareth-6, 3 days/wk for 13 wks. ${ }^{45}$ The test site was shaved, but the application site was not covered. Each week the test site was evaluated for irritation. None of the animals died during the study. No toxicologically significant differences in feed consumption, body weights, or clinical signs were noted for the test groups as compared to controls. Irritation scores were 0 for all animals. Dry and flaking skin was observed in the 10 and 25% dose groups, and females of these groups had an increase in discoloration at the test site. Microscopically, the epidermal thickening with hyperkeratosis observed for the skin at
the treatment site appeared to be a physiologic response to an irritant, rather than a toxic effect. Differences in organ weights, such as relative kidney to body weights in the high dose group, were not considered treatment-related since no renal lesions were observed. Differences in clinical chemistry values were also not considered treatment-related.

Talloweths

Applications of $2 \mathrm{ml} / \mathrm{kg}$ of a 0.5% solution of a talloweth (chain length not specified) in deionized water was applied to the shaved backs of 9 male and 9 female NZW rabbits. ${ }^{54}$ The applications were made 5 times/wk for 13 wks, followed by a 4 -wk recovery period. A group of 9 male and 9 female rabbits were dosed with deionized water and was used as the negative control group. The animals were placed in collars for 7 h to minimize ingestion, and the test sites were rinsed when the collars were removed. The application site was evaluated daily for irritation.

Slight irritation was observed at the test site during dosing, but the skin was almost completely normal at the end of the recovery period. At the 4 -wk interim sacrifice, moderate epidermal hyperplasia, hyperkeratosis, and inflammatory infiltrates were observed microscopically, and after 13 wks , slight to moderate hyperplasia was reported. After the 4 -wk recovery period, there were no specific microscopic findings. There were no toxicologically significant findings.

Dermal Irritation

The dermal irritation studies are summarized in Table 6.

Laureths

A Draize test was performed to determine the dermal irritation of laureth-9. ${ }^{43}$ Laureth-9 was applied undiluted or as a 15 or 20% aq. solution under occlusion to the intact and abraded skin of rabbits (number, strain, and gender not specified). The test sites were scored 24 and 72 h after application. A slight irritant effect was observed on intact and abraded skin 24 h , but not 72 h , after application of the 15 and 20% solutions. Using undiluted laureth- 9 , slight irritation was reported at the intact sites and moderate irritation at the abraded sites at both the 24 and 72 h readings.

The dermal irritation potential of a number of test substances analogous to laureth-9 was determined. ${ }^{33} \mathrm{C}_{14-15} \mathrm{AE}_{7}$, 0.5 ml at 10,25 , or 100%, was not irritating when applied to rabbits under a semi-occlusive patch for 4 h ; the PII was 1.7. Following a 4 h occlusive application to rabbit skin, undiluted $\mathrm{C}_{12-14} \mathrm{AE}_{10}$ and undiluted $\mathrm{C}_{13} \mathrm{AE}_{6}$ were moderately irritating, and undiluted $\mathrm{C}_{13} \mathrm{AE}_{6.5}$ and undiluted $\mathrm{C}_{12-14} \mathrm{AE}_{6}$ were severely irritating. A 24 h occlusive application of $\mathrm{C}_{14-15} \mathrm{AE}_{7}$ was severely irritating to rabbit skin, producing slight to moderate erythema and moderate to severe edema.

The dermal irritation of a contraceptive aerosol formulation containing 20% laureth- 9 was also determined in a Draize study. ${ }^{43}$ The formulation was applied using occlusive patches to intact and abraded skin of 4 rabbits, and the sites were scored 24 and 72 h after application. The aerosol formulation containing 20% laureth- 9 was a mild irritant.

One-tenth g of a mixture containing a laureth (chain length unspecified; composition percentage not stated) was applied to the shaved dorsal skin of 6 male albino rabbits. ${ }^{55}$ The test site was occluded for 24 h , and the site was evaluated upon removal and after 2 and 5 days. It was concluded that the laureth tested was a strong irritant, causing necrotic skin for 2 of the test animals.

PEG Methyl Ethers

Two g/kg PEG-3 methyl ether (purity not specified) was applied to intact and abraded skin of 5 New Zealand white rabbits, and the site was covered for $24 \mathrm{~h} .^{20}$ With intact skin, erythema, but not edema, was seen in 4 rabbits. With abraded skin, erythema and edema were both seen in 1 rabbit. (A conclusion regarding irritation potential was not given.)

PEG-3 methyl ether (purity not specified), 0.1 ml , was applied uncovered to the skin of 5 rabbits for 24 h. ${ }^{20}$ PEG-3 methyl ether caused minimal irritation, with an irritation score of $2 / 10$ at 24 h ,

C9-11 Pareths

The primary dermal irritation potential of undiluted C9-11 pareth-6 was evaluated in a Draize test using 3 male and 3 female NZW rabbits. ${ }^{45}$ Two g/kg were applied to a 1 " square of gauze, and the gauze was applied to the shaved backs of the animals under an occlusive patch for 24 h . The test site was scored at patch removal after 24 and 72 h . The PII was 5.3/8, and C9-11 pareth-6 was classified as "moderately irritating".

The dermal irritation potentials of undiluted C9-11 pareth-3, C9-11 pareth-5, C9-11 pareth-6, and C9-11 pareth-8 was evaluated in Draize studies, each using 6 albino rabbits. ${ }^{46}$ All of these ingredients were severely irritating. Some dilutions (vehicle not specified) were also tested. C9-11 Pareth-5 was non-irritating at 0.1%, minimally irritating at 1%, and slightly irritating at 10%. C9-11 Pareth-6 was non-irritating at 0.1% and slightly irritating at 1%. C9-11 Pareth-8 was minimally irritating at 0.1%, mildly irritating at 1%, and moderately irritating at 10%.

C12-13 Pareths

The dermal irritation potential of a C12-13 pareth (chain length unspecified) was evaluated in a Draize test using 3 male NZW rabbits. ${ }^{47}$ A single occlusive patch of undiluted test material was applied to intact and abraded skin for 24 h , and the test sites were graded at $24 \mathrm{~h}, 72 \mathrm{~h}$, and 7 days after application. Mean scores of $2,2.2$, and $2.5 / 4$ for erythema and 1,2 , $2 / 4$ for edema were reported at $24 \mathrm{~h}, 72$, h and 7 days, respectively, for both intact and abraded skin. Necrosis and cracking skin was observed. The test substance was moderately irritating.

The same protocol was followed to determine the dermal irritation potential of undiluted C12-13 pareth-2 (chain length nor specified). ${ }^{48}$ The erythema and edema scores were slightly lower, and necrosis was not observed, but this compound was also classified as moderately irritating.

The dermal irritation potentials of undiluted C12-13 pareth-3 and C12-13 pareth-7 were evaluated in a Draize study using 6 albino rabbits. ${ }^{46}$ C12-13 pareth-3 was severely irritating and C12-13 pareth-7 was mildly to severely irritating. Dilutions of C12-13 Pareth-7 (vehicle not specified) was non-irritating at 0.1%, mildly irritating at 1%, and moderately irritating at 10%.

C12-15 Pareths

The dermal irritation potentials of undiluted C12-15 pareth-3, C12-15 pareth-7, and C12-15 pareth-9 were evaluated in Draize studies, each using 6 albino rabbits. ${ }^{46}$ C12-15 pareth-3 was moderately to extremely irritating, C12-15 pareth-7 was moderately irritating, and C12-15 pareth-9 was severely irritating. Some dilutions (vehicle not specified) were also tested. A 50% solution of C12-15 pareth-12 was minimally irritating. At concentrations of 0.1 and $1 \%, \mathrm{C} 12-15$ pareth- 7 was mildly irritating, while at 10%, it was moderately irritating. C12-15 pareth-9 was non-irritating at concentrations of 0.1 and 1%.

C14-15 Pareths

The dermal irritation potentials of undiluted C14-15 pareth-7, C14-15 pareth-11, C14-15 pareth-13, and C14-15 pareth-18 were evaluated in Draize studies, each using 6 albino rabbits. ${ }^{46}$ C14-15 pareth-7 was severely irritating, C14-15 pareth-11 was moderately to severely irritating, C14-15 pareth-13 was moderately irritating, and C14-15 pareth-18 was mildly irritating. Some dilutions (vehicle not specified) were also tested. C14-15 Pareth-7 was minimally irritating at 0.1%, mildly irritating at 1%, and moderately irritating at 10%. C14-15 pareth- 11 was non- irritating at 0.1%, slightly irritating at 1%, and moderately to severely irritating at 10%. C14-15 Pareth-18 was non-irritating at 0.1%, minimally irritating at 1%, and slightly irritating at 10%.

Dermal Sensitization

Sensitization studies are summarized in Table 6.

Laureths

The sensitization potential of laureth- 5 was examined in a modified cumulative contact enhancement test that was performed without adjuvant stimulation at induction and with closed epidermal challenge. ${ }^{22}$ At induction, occlusive applications of 200 mg of 10% aq. laureth- 5 were made to the shaved backs of 15 Dunkin-Hartley guinea pigs on days $0,2,7$, and 9 of induction. Water was used for induction with the negative control group. The challenge was performed on day 21, and 15 $\mu \mathrm{g}$ of $0,0.1,1$, and 5% aq. laureth- 5 was applied to the shaved left flank for 24 h using Finn chambers. The test sites were evaluated 48,72 , or 96 h after application. Laureth-5 did not produce a sensitization reaction. However, confluent erythema was seen in 1 test and 2 control animals at 48 h and in 2 test and 1 control animal at 72 h and 1 test and 1 control animal with the 1% induction and at 96 h in 1 test and 1 control animal with the 5% challenge.

Groups of 7 male guinea pigs were dosed intracutaneously with a 0.02% aq. solution of laureth -9 or a 0.1% solution of an aerosol contraceptive formulation containing 20% laureth- 9 , to determine the sensitization potential. ${ }^{43}$ The injections were made 3 times per wk for a total of 10 applications. The first dose volume was 0.05 ml , and the subsequent injections were 0.1 ml . A control group was injected with distilled water. Two wks after the last induction injection, 0.05 ml of the corresponding test or control solution was given as a single injection. A small, transient raised area was observed after test and control injections. Neither laureth-9 solution produced direct or delayed sensitization reactions.

The sensitization potential of a number of test substances analogous to laureth-9 was determined. ${ }^{33}$ In MagnussonKligman guinea pig maximization tests in which intradermal induction used concentrations of 0.05-0.2\%, dermal induction used concentrations of $20-100 \%$, and challenge was with concentrations of $15-60 \%$, the compounds were non-sensitizing. In Buehler studies using guinea pigs, the products were applied undiluted during induction and at $50 \% \mathrm{aq}$. at challenge. Again, no sensitization was observed.

C9-11 Pareths

The sensitization potential of a 1% aq. solution of C $9-11$ pareth- 6 was evaluated using the Buehler method. ${ }^{45}$ Induction patches of the negative, positive, or irritant controls or the test article were applied to the clipped skin on the back of 4 groups of 5 male and 5 female Dunkin-Hartley albino guinea pigs. The occlusive patches were applied $1 \mathrm{day} / \mathrm{wk}, 6 \mathrm{~h} / \mathrm{day}$, for 3 consecutive weeks. The rest period duration was not stated. Signs of sensitization were scored 24 and 48 h after the challenge applications. C9-11 pareth-6 did not produce a sensitization reaction.

C 9-11 Pareth-3, C9-11 pareth-5, C9-11 pareth-6, and C9-11 pareth-8 were not sensitizers in guinea pigs studies. ${ }^{46}$ (Technique used not specified.)

C12-13 Pareths

The dermal sensitization potential of a C12-13 pareth (chain length not specified) was evaluated with a MagnussonKligman maximization study. ${ }^{47}$ The test group consisted of 10 male and 10 female guinea pigs, while the negative control group had 5 animals per gender. A dose of $0.50 \% \mathrm{w} / \mathrm{v}$ was used for the intradermal induction, $50 \% \mathrm{w} / \mathrm{v}$ for topical induction, and $25 \% \mathrm{w} / \mathrm{v}$ for the topical challenge patch. Corn oil was used as the vehicle. Erythema was scored immediately and 24 and 48 h after removal of the challenge patch, and trace erythema was observed for 1 female test animal at each reading. It was concluded that the test material was a very weak sensitizer in guinea pigs.

The dermal sensitization potential of C12-13 pareth-2 (chain length not specified) was evaluated using the same procedure. ${ }^{48}$ In this study, the intradermal induction dose was $0.1 \% \mathrm{w} / \mathrm{v}$, the topical induction used undiluted test material, and the topical challenge dose was $50 \% \mathrm{w} / \mathrm{v}$. None of the guinea pigs had an erythematous response, and the test material was not considered to be a sensitizer.

C12-13 Pareth-3 was not a sensitizer in guinea pigs, and, C12-13 pareth-7 had either low sensitization potential or was negative for sensitization. ${ }^{46}$ (Details not given.)

C12-15 Pareths

C12-15 Pareth-3, C12-15 pareth-7, and C12-15 pareth-9, concentrations not specified, were not sensitizers in guinea pig studies. ${ }^{46}$ (Details not given.)

C14-15 Pareths

C14-15 Pareth-7, C14-15 pareth-11, C14-15 pareth-13 and C14-15 pareth-18, concentrations not specified, were not sensitizers in guinea pig studies. ${ }^{46}$ (Details not given.)

Ocular Irritation

Ocular irritation studies of alkyl PEG ethers are summarized in Table 7.

Laureths

Laureth-9, 5% aq., was not irritating and had an anesthetic effect on the cornea of rabbit eyes. ${ }^{39}$ (The methodology used to determine the anesthetic effect was not described.)

The ocular irritation potential of a number of test substances analogous to laureth-9 was determined using rabbits. ${ }^{33}$ The compounds were instilled neat or in varying concentrations. Undiluted compounds were moderately to severely irritating. A $10 \% \mathrm{aq}$. solution was moderately irritating, while $0.1-1.0 \% \mathrm{aq}$. solutions were non-irritating to rabbit eyes. (Additional details are provided in Table 7.)

PEG Methyl Ethers

The ocular irritation potential of PEG-3 methyl ether (purity not specified) was evaluated in rabbit eyes using various concentrations and volumes of the test material. ${ }^{20}$ PEG-3 methyl ether was slightly irritating to rabbit eyes, with an irritation score of $1 / 10$.

C9-11 Pareths

Draize studies in rabbits were used to evaluate the ocular irritation potential of some C9-11 pareths. Undiluted C911 pareth-3, C9-11 pareth-5, C9-11 pareth-6, and C9-11 pareth-8 were severely irritating to rabbit eyes. ${ }^{46}$ With rinsing, C911 pareth-3 was mildly irritating, while C9-11 pareth-6 was still moderately to severely irritating. Dilutions (vehicle not specified) were also evaluated. C9-11 Pareth-5, C9-11 pareth-6, and C9-11 pareth-8 were all non-irritating at 0.1% and were non- to slightly irritating at 1%. A 1% solution of C9-11 pareth-5 was moderately irritating. (Number per group not specified.)

C12-13 Pareths

Undiluted C12-13 pareth-3 was moderately to extremely irritating and C12-13 pareth-7 was severely irritating to rabbit eyes in Draize studies. ${ }^{46}$ With rinsing, C12-13 pareth-7 was minimally irritating. At 0.1 and 1% (vehicle not specified), it was non-irritating, and, at 10%, it was moderately irritating.

The ocular irritation potential of a C12-13 pareth was evaluated using 3 NZW rabbits. ${ }^{47}$ The test material, 0.2 ml , was instilled into the lower conjunctival sac of one eye, and the eye was not rinsed. The undiluted test material was mildly irritating to rabbit eyes. In a study evaluating the ocular irritation potential of C12-13 pareth-2, this test material was defined as non-irritating. ${ }^{48}$

C12-15 Pareths

In Draize studies, undiluted C12-15 pareth-3 was severely irritating, undiluted C12-15 pareth-7 was moderately irritating, and undiluted C12-15 pareth-9 and C12-15 pareth-12 were severely to extremely irritating to rabbit eyes. ${ }^{46}$ With
rinsing, undiluted C12-15 pareth-7 was mildly to moderately irritating. Undiluted C12-15 pareth-7 produced no to mild irritation.

C14-15 Pareths

Undiluted C14-15 pareth-11 and C14-15 pareth-13 were severely irritating and undiluted C14-15 pareth-18 was minimally to mildly irritating to rabbit eyes in Draize studies. ${ }^{46}$ With rinsing, C14-15 pareth-7 was mildly irritating. At $0.1 \%, \mathrm{C} 14-15$ pareth-7, C14-15 pareth-11, and C14-15 pareth-18 were non-irritating. At 1% (vehicle not specified), these ingredients were non- to mildly irritating, and at 10% C14-15 pareth-7 was mildly irritating and C14-15 pareth-18 was practically non-irritating, but C14-15 pareth-11 was severely irritating.

Oleths

In a Draize test, 5% Oleth-20 (vehicle not specified) produced very mild, transient conjunctival redness and chemosis in rabbit eyes. ${ }^{56}$

Mucosal Irritation

Laureths

The effect of laureth-9 on the nasal mucosa was examined using male Sprague-Dawley rats. ${ }^{41}$ Twenty-five ml of 1% laureth- 9 was placed into the left nostril of each test animal, while saline was instilled into the nostril of the negative controls. (Number of animals not given.) Two to 4 test animals and one control were killed 4 h or $2,3,4,5$, 7 , or 10 days after dosing, and the nasal mucosal tissues were examined. Four h after dosing, swelling was observed, but there were no changes in the nasal epithelium. Severe damage was observed on day 2, with shedding of necrotic epithelium. Regeneration of the epithelium started by day 3 , and there was evidence of basal cell regrowth by day 4 . The epithelium was completely regenerated between days 7-10.

A single dose of 5 ml undiluted laureth- 9 was instilled into the vagina of 2 dogs. ${ }^{43}$ No irritation was observed in the cervical or vaginal mucosa of either dog on day 0 or 3 . The researchers performed a second study in which 5 ml of a 15% aq. solution of laureth-9 was instilled once daily for 5 days. Again, no mucosal irritation was observed.

REPRODUCTIVE AND DEVELOPMENTAL TOXICITY

Dermal

C9-11 Pareths

A two-generation reproductive study was performed using Fischer 344 rats to examine whether C9-11 pareth-6 had any effect on reproductive parameters. ${ }^{45}$ The F_{0} groups, consisting of 30 males and 30 females, were exposed dermally to 1 $\mathrm{ml} / \mathrm{kg}$ of $0,1,10$ or $25 \% \mathrm{w} / \mathrm{v}$ aq. C9-11 pareth- 6 for 119 days prior to mating. The test site was shaved, but the application sites were not covered. The test material was not applied during mating to avoid ingestion. For the second generation, after 133 days of dosing, groups of 20 males and 20 females per test group were mated. For both generations, the application sites were evaluated for irritation. The male rats of both generations were killed following mating. Gross necropsies were performed on all F_{0} and F_{1} parents and on 5 pups/gender/dose.

There was no mortality in the F_{0} generations, and deaths that did occur in the F_{1} generation were not attributed to treatment. No irritation was observed for any of the animals, but dry flaking skin was observed in the 10 and 25% dose groups. For effects on body weight, 10% was a no-effect level and 25% C9-11 pareth-6 caused a minimal decrease in body weights over the study. There were no compound-related effects on maternal body weights in any test group. No toxicologically significant effects were observed regarding organ weights, mating indices, fertility indices, or mean gestational length,
and dermal administration of the test compound did not have an effect on the growth or development of the offspring. A decrease in the number of sperm in the high dose F_{0} males was not considered treatment-related or toxicologically significant.

Oral

Laureths

The reproductive and teratogenic toxicity of compounds analogous to laureth-9 was evaluated. ${ }^{33}$ Groups of 25 gravid female rabbits were dosed orally with $0,50,100$, or $200 \mathrm{mg} / \mathrm{kg}$ bw $\mathrm{C}_{12} \mathrm{AE}_{6}$ on days $2-16$ of gestation, and the animals were killed and necropsied on day 28 of gestation. In the 100 and $200 \mathrm{mg} / \mathrm{kg}$ groups, ataxia and a slight decrease in body weights was evidence of maternal toxicity. No effects on reproductive parameters were noted. Nine control animals and 1 test animal died during the study. Based on maternal toxicity, the NOAEL was $>50 \mathrm{mg} / \mathrm{kg}$ bw/day.

Groups of 25 male and 25 female $C D$ rats were used to evaluate the reproductive toxicity of $\mathrm{C}_{14-15} \mathrm{AE}_{7}$ in a twogeneration study. The animals were fed a diet containing $0,0.05,0.1$, and 0.5% of the test article (equivalent to approximately $0,25,50$, and $250 \mathrm{mg} / \mathrm{kg}$ bw/day). In three test groups, males and females were given treated feed throughout the study; in another three groups, females only were dosed, and dosing was performed on days 6-15 of gestation. (Additional details regarding study and dosing regimen were not provided.). No compound-related differences in fertility, gestation, or viability indices were observed, and the NOAEL for reproduction with dietary administration of $\mathrm{C}_{14-15} \mathrm{AE}_{7}$ was $>0.5 \%$ (equivalent to $250 \mathrm{mg} / \mathrm{kg}$ bw/day).

In addition, effects on the F_{C} generation, i.e. offspring from the third mating of the F_{0} and F_{1} parenteral generation, were examined. Gravid female rats were necropsied and examined on either day 13 or day 21 of gestation. Differences in maternal and fetal indices were observed in the test groups compared to the controls, but these effects were not considered test-compound related. Parental female rats and pups of the high-dose group had reduced body weight gains. In the 0.5% continuous feeding test group, increased mean liver weights of males and females of the P_{1} generation and an increase in relative liver to body weights of males of the 0.5% continuous feeding group of the P_{2} generation at 60 days were considered compound-related. The NOAEL for maternal and developmental toxicity was $50 \mathrm{mg} / \mathrm{kg}$ bw/day.

The reproductive toxicity of $\mathrm{C}_{12} \mathrm{AE}_{6}$ was evaluated in a similar study, and the animals were fed $0,25,50$, or 250 $\mathrm{mg} / \mathrm{kg}$ bw/day of the test article in the diet. No treatment-related effects on behavior, appearance, survival, or fertility were observed in any of the test groups. Parental and offspring weight gain was reduced in the $250 \mathrm{~m} / \mathrm{kg}$ group. In the $250 \mathrm{mg} / \mathrm{kg}$ group, statistically significant increases in embryo lethality and soft tissue anomalies were observed, and in the $50 \mathrm{mg} / \mathrm{kg}$ group, a statistically significant decrease in mean fetal liver weights was observed. None of these effects were considered test article-related. The NOAEL for reproduction was $>250 \mathrm{mg} / \mathrm{kg}$ bw/day, and the NOAELs for maternal and developmental toxicity were $50 \mathrm{mg} / \mathrm{kg} \mathrm{bw} /$ day $\mathrm{C}_{12} \mathrm{AE}_{6}$ in the diet.

PEG Methyl Ethers

In a modified Chernoff-Kavlock test, groups of 10 gravid Alpk:AP Wistar rats were dosed daily by gavage with 250 or $1000 \mathrm{mg} / \mathrm{kg}$ PEG-3 methyl ether $(99.9+\%)$ at a volume of $10 \mathrm{ml} / \mathrm{kg}$ on days $7-16$ of gestation. ${ }^{40}$ The negative control group of 10 gravid rats was given $10 \mathrm{ml} / \mathrm{kg}$ water and the 2 positive control groups were dosed with 50 and $250 \mathrm{mg} / \mathrm{kg}$ methoxyethanol. The dams were allowed to deliver their pups. Treatment-related effects were not seen in either the dams or the pups as a result of dosing with 250 or $1000 \mathrm{mg} / \mathrm{kg}$ PEG-3 methyl ether, as compared to the negative controls. All dams of the negative control and PEG-3 methyl ether groups delivered live fetuses. None of the positive control animals delivered any litters.

Groups of gravid CD (SD) rats (number not stated) were dosed orally by gavage with $0,300,1650$, or $3000 \mathrm{mg} / \mathrm{kg}$ PEG-3 methyl ether on day 6 of gestation to post-natal day (PND) $21 .{ }^{57}$ The litters were culled to 8 pups on PND 4, and 1
male and 1 female pup from each litter was killed on PNDs 22 and 68. The only maternal dose-related effects reported were increased length of gestation and in increase in kidney weight at the highest dose. Birth weight of females in the mid dose group and males and females in the high dose group were significantly increased compared to controls. However, post-natal weight gains were decreased at various times. No effects on motor activity were observed.

The developmental toxicity of PEG-3 methyl ether (99.27% purity) was evaluated using rats and rabbits. ${ }^{38}$ Gravid Crl:CD (SD) BR rats, 25 per group, were dosed orally by gavage with $625,1250,2500$, or $5000 \mathrm{mg} / \mathrm{kg}$ on days $6-15$ of gestation, and the animals were killed on day 20 of gestation. A negative control group was given deionized water by gavage. In the high dose group, clinical signs of toxicity, such as decreased motor activity, excess salivation, ataxia, and impaired righting reflex, were statistically significantly increased and occurred with the first or second dose of $5000 \mathrm{mg} / \mathrm{kg}$ PEG-3 methyl ether. One rat in this group, which was actually non-gravid, died on day 13; no treatment-related effects were seen at necropsy. No signs of toxicity were seen in the other dose groups. Maternal body weights, gravid uterine weights, and feed consumption were statistically significantly reduced in the high dose group, and feed consumption was statistically decreased in the $2500 \mathrm{mg} / \mathrm{kg}$ group on days 12-16 of gestation. Pregnancy rates were not affected, but embryo lethality was statistically significantly increased in the high dose group. Fetal body weights were statistically significantly decreased in the 2500 and $5000 \mathrm{mg} / \mathrm{kg}$ group and slightly decreased in the $1250 \mathrm{mg} / \mathrm{kg}$ group. The incidence of gross external, soft tissue, or skeletal fetal malformations was not affected at any dose level. Doses of $\geq 1250 \mathrm{mg} / \mathrm{kg}$ PEG- 3 methyl ether did cause significant increases in reversible delayed ossification. The maternal and developmental no-observable effect levels (NOELs) for rats were $625 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$ PEG-3 methyl ether. The NOAEL for maternal toxicity in the rat was 1250 $\mathrm{mg} / \mathrm{kg} /$ day .

Gravid NZW rabbits, 20 per group, were also dosed orally with PEG-3 methyl ether. Doses of 250,500 , 1000, or $1500 \mathrm{mg} / \mathrm{kg}$ were given by stomach tube on days 6-18 of gestation, and the animals were killed on day 29 of gestation. A negative control group was dosed with deionized water. In the high dose group, clinical signs of toxicity, such as decreased motor activity, labored breathing, reddish brown staining of the anogenital area and a red substance in the cage, appeared near the end of dosing, and the incidence was statistically significant. Mortality was also statistically significantly increased for this group; 8 does died during days 17-21 of gestation. Gastric ulcerations, observed at necropsy, were also statistically significantly increased for this group. Treatment-related effects were not seen in the other dose groups, but one doe of the $1000 \mathrm{mg} / \mathrm{kg}$ groups died on day 18 of gestation.

Maternal weight gain was decreased for the high dose group during dosing, but a rebound effects occurred during the post-treatment period, leading to significantly increased body weight gains. The average uterine weight was decreased in the high dose group as compared to controls. Feed consumption was decreased throughout dosing. Again, a rebound effect was seen post-dosing, and feed consumption was increased in the $500 \mathrm{mg} / \mathrm{kg}$ group and statistically significantly increased in the 1000 and $1500 \mathrm{mg} / \mathrm{kg}$ groups. Oral administration of PEG-3 methyl ether did not affect pregnancy rates, average number of corpora lutea or implantation sites, or mean fetal body weights, and it did not cause any gross external, internal soft tissue, or skeletal malformations. Decreased live litter sizes and increased resorption rates in the 1000 and $1500 \mathrm{mg} / \mathrm{kg}$ groups occurred, but were not statistically significant. Fetal and/or litter incidence of two common skeletal variations, angulated hyoid alae and reversible delayed ossification of the xiphoid, were statistically significantly increased in the $1500 \mathrm{mg} / \mathrm{kg}$ group. For rabbits, the maternal and developmental toxicity NOELs were 250 and $1000 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$ PEG-3 methyl ether, respectively. The NOAEL for maternal toxicity was $500 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$, and the presumed NOAEL for developmental toxicity was $1500 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$.

Groups of 64 gravid female Sprague-Dawley rats were dosed orally, by gavage, with $0,300,1650$, or 3000 $\mathrm{mg} / \mathrm{kg} /$ day PEG-3 methyl ether (99.2% purity) on days $6-21$ of gestation in a study of developmental neurotoxicity. ${ }^{20}$ The pups were delivered, litters were culled on day 4 , and the offspring were observed in a number of tests. One male and one female pup from each litter were killed on post-natal days (PNDs) 22 and 68. In maternal animals, no dose-related patterns of clinical signs of toxicity or mortality were noted, and there were no significant differences in body weights between test and control animals. Kidneys weights of maternal rats were statistically significantly increased in high dose dams compared to controls. A maternal NOAEL of $1650 \mathrm{mg} / \mathrm{kg}$ bw was assigned.

The length of gestation was statistically significantly increased in animals of the high dose group; however, the researchers found the biological significance of this questionable. Body weights of female pups of the mid and high dose groups and male pups of the high dose group were significantly greater than controls at PND 0 . At PND 68, male pups of the high dose group weighed statistically significantly less than controls. Male pup development, determined by time of testes descent, was significantly advanced in pups of the mid and high dose groups; no treatment-related effects for this observation were found at necropsy. Behavioral evaluations did not find any dose-related effects on motor activity or active avoidance. A significant effect on auditory startle response parameters was noted; the significance of this finding was not clear to the researchers. The researchers assigned an NOEL of $300 \mathrm{mg} / \mathrm{kg}$ for offspring, while EPA assigned an NOAEL of $300 \mathrm{mg} / \mathrm{kg}$ for teratogenicity.

GENOTOXICITY

Laureths

Laureth (chain length not specified) was tested in a number of genotoxicity studies. In an Ames study, laureth (3$333 \mu \mathrm{~g} /$ plate) was negative with and without activation. ${ }^{58}$ In a standard transformation assay with BALB/c-3T3 cells, laureth (tested at 0.00132-0.0417 and 0.00625-0.0250 mM) was inactive. ${ }^{59}$ Using Chinese hamster ovary (CHO) cells, laureth did not induce sister chromatid exchanges (concentrations of $3.08-10.8 \mu \mathrm{~g} / \mathrm{ml}$ with or $0.308-3.08 \mu \mathrm{~g} / \mathrm{ml}$ without metabolic activation) or chromosomal aberrations ($5-50 \mu \mathrm{~g} / \mathrm{ml}$ with or without activation). ${ }^{60}$ In a L5178Y mouse lymphoma cell mutation assay ($0-50 \mathrm{nl} / \mathrm{ml}$ with and $0-40 \mathrm{nl} / \mathrm{ml}$ without activation), the results were suggestive of a lack of mutagenic activity; one test without metabolic activation produced questionable results, and one with metabolic activation had inconclusive results. ${ }^{61}$ In a mouse bone marrow micronucleus assay, laureth was not genotoxic when tested at doses of $31.25-125 \mathrm{mg} / \mathrm{kg} .{ }^{62}$

Compounds that are analogous to laureth -9 were not mutagenic in the Ames test at concentrations of $\leq 5000 \mu \mathrm{~g} /$ plate or clastogenic in a chromosomal aberration assay using CHO cells at concentrations of $\leq 25 \mu 1 / \mathrm{ml}$, with or without metabolic activation. ${ }^{33}$ In vivo, $1.7 \mathrm{~g} / \mathrm{kg}$ of a 20% solution and $2.5 \mathrm{~g} / \mathrm{kg}$ active ingredient of a 10% solution did not induce chromosomal aberrations in Chinese hamsters. A dose of $1000 \mathrm{mg} / \mathrm{kg}$ was not clastogenic in Wistar rats.

PEG Methyl Ethers

The mutagenicity and genotoxicity of aq. PEG-3 methyl ether (99.23% purity) was evaluated in an Ames test using four strains of S. typhimurium at concentrations $\leq 5000 \mu \mathrm{~g} /$ plate with and without metabolic activation, in an HGPRT forward mutation assay in CHO cells at concentrations of $\leq 5000 \mu \mathrm{~g} /$ plate with and without metabolic activation, and in an in vivo mouse micronucleus test at concentrations of $\leq 5000 \mathrm{mg} / \mathrm{kg} .{ }^{20}$ The results were negative in all three studies. Expected results were seen with appropriate negative and positive controls.

The mutagenic potential of PEG-7 methyl ether was evaluated using an Ames assay. ${ }^{21}$ Concentrations of 1-110 $\mathrm{mg} /$ plate were tested using five strains of Salmonella typhimurium, with and without metabolic activation. PEG-7 methyl ether was not mutagenic at any dose.

C9-11 Pareths

The mutagenic potential of $\leq 1 \mathrm{mg}$ /plate C9-11 pareth-6 was evaluated in an Ames test using S. typhimurium strains TA98, TA100, TA1535, TA1537, and TA1538 in the presence and absence of metabolic activation. ${ }^{45}$ The appropriate positive controls were used with each strain to validate the study. Toxicity occurred at higher concentrations (actual doses not specified) in all strains, but there were no mutagenic responses to $\mathrm{C} 9-11$ pareth-6, with or without metabolic activation.

CARCINOGENICITY

Laureths

The carcinogenic potential of compounds analogous to laureth-9 was evaluated. ${ }^{33}$ Groups of 65 rats/gender were fed a diet containing $0,0.1,0.5$, and $1 \% \mathrm{C}_{14-15} \mathrm{AE}_{7}$ for 2 yrs . At $1 \mathrm{yr}, 14-15$ animals per gender were killed and necropsied. No compound-related changes were seen in behavior or appearance at any time. Survival rate was comparable between test and control animals. Body weight gains were significantly decreased in females of the 0.5 and 1.0% groups and males of the 1% group. At necropsy, no differences in relative or absolute organ weights were observed between test and control animals. There was no evidence of a carcinogenic effect.
$\mathrm{C}_{12-13} \mathrm{AE}_{6.5}$ was fed to 100 Sprague-Dawley rats at concentrations up to 1% in feed for 2 yrs . Feed consumption, and correspondingly, body weight gain, was reduced for females fed 0.5 or 1% and for males fed diets containing 1% of the test compound. No microscopic effects were seen, and $\mathrm{C}_{12-13} \mathrm{AE}_{6.5}$ was not carcinogenic.

CLINICAL ASSESSMENT OF SAFETY

Dermal Irritation/Sensitization

Laureths

In a retrospective (Jan-Apr 1996) European study of allergic contact response, only 1 of 475 patients had an allergic contact reaction to laureth-4. ${ }^{63}$ From 1992 to 1999,3186 patients were patch tested with 0.5% laureth- $9 .{ }^{64}$ Based on 72 h readings, 0.94% had questionable (erythematous) reactions, and $0.88,0.97$, and 0.25% had slightly irritating, weakly positive, and strongly positive reactions, respectively. For 6202 patients that were patch tested with 3% laureth- $9,1.79,0.48,1.77$, and 0.34% of the subjects had questionable, irritating, weakly positive, and strongly positive reactions, respectively. For the 649 patients patch tested with both concentrations, the concordance was moderate.

Clinical dermal irritation testing was performed with test substances that were analogous to laureth-9. ${ }^{33}$ In a 3-patch application test using 10 subjects, undiluted or 25% aq. $\mathrm{C}_{14-15} \mathrm{AE}_{7}$ was applied under occlusive patches for 4 h on 3 alternate days. Slight to negligible irritation was observed. In a 24 h occlusive patch test with 8 subjects, a 10% aq. solution of C_{12} ${ }_{13} \mathrm{AE}_{6.5}$ was slightly irritating.

A human repeat insult patch test (HRIPT) was completed with 51 subjects to determine the sensitization potential of aerosol cream preparations containing 10,15 , and 20% laureth- $9 .{ }^{43}$ During induction, occlusive patches were applied for 24 h to the anterolateral surface of the upper arm, 3 times/wk for 3 wks . Challenge patches were applied 16 days after removal of the last induction patch, and those patches were left in place for 24 h .

During induction, reactions were observed for all 3 preparations with patches 3-9. Most of the reactions were mild (1+). A $2+$ reaction was recorded for some subjects after the third 20% formulation patch and after the sixth patch for all formulations. Following the ninth application, all formulations produced $1+$ to $3+$ reactions. This was interpreted as skin
fatigue. At challenge, 12% of the subjects had a mild reaction to the 10 and 15% formulations, while 18% had a mild reaction to the 20% solution. These numbers decreased to 4 and 6%, respectively, by day 3 . None of the subjects had reactions that were indicative of sensitization.

HRIPTs were performed with test substances that were analogous to laureth-9. ${ }^{33}$ In an HRIPT performed using 108 subjects, 24-h induction patches with 0.3 ml of 5 , 10 , or 25% aq. $\mathrm{C}_{12-15} \mathrm{AE}_{7}$ and $\mathrm{C}_{12-15} \mathrm{AE}_{9}$ were applied 3 times/wk for 9 wks. A 24-h challenge patch was applied after a $2-w k$ non-treatment period. During induction, patches with 25% of the test materials caused very slight primary skin irritation, with slight erythema seen in $6 / 108$ subjects induced with $25 \% \mathrm{C}_{12-15} \mathrm{AE}_{7}$ and in $15 / 108$ subjects induced with $25 \% \mathrm{C}_{12-15} \mathrm{AE}_{9}$. At induction with 5%, very slight erythema was seen in 1 and 5 subjects for $\mathrm{C}_{12-15} \mathrm{AE}_{7}$ and $\mathrm{C}_{12-15} \mathrm{AE}_{9}$, respectively. Upon challenge, there was no evidence of sensitization with either compound.

In the same HRIPT, induction patches containing 0.3 ml of 5 or 15% aq. $\mathrm{C}_{12-13} \mathrm{AE}_{6.5}$ and $\mathrm{C}_{12-15} \mathrm{AE}_{12}$ were applied to 12 subjects per test material. With both induction concentrations of $\mathrm{C}_{12-15} \mathrm{AE}_{6}, 1$ subject developed mild erythema. Erythema was not observed with $\mathrm{C}_{12-15} \mathrm{AE}_{6}$. Upon challenge, there was no evidence of sensitization with either test substance.
$\mathrm{C}_{12-15} \mathrm{AE}_{6.5}$ and $\mathrm{C}_{12-15} \mathrm{AE}_{9}$, using patches containing $1 \% \mathrm{aq}$. solution, were evaluated in another HRIPT witn 12 subjects following the same protocol. Very slight primary skin irritation was observed with $\mathrm{C}_{12-13} \mathrm{AE}_{6.5}$, with very slight erythema observed for one subject at 4 different readings. $\mathrm{C}_{12-15} \mathrm{AE}_{9}$ did not produce any irritant effects. Upon challenge, there was no evidence of sensitization with either compound.

A study was reported in which subjects wore patches containing 2.5% aq. $\mathrm{C}_{14-15} \mathrm{AE}_{7}$ (144 subjects) or $\mathrm{C}_{12-13} \mathrm{AE}_{6.5}$ (165 subjects) for up to 3 wks , with challenge following a 17 day non-treatment period. Skin hyperactivity was observed in one subject exposed to $\mathrm{C}_{12-13} \mathrm{AE}_{6.5}$.

Steareths

The effect of steareth-2, steareth-10 and steareth-21 was evaluated on normal and damaged skin. ${ }^{65}$ The test compounds were applied at a concentration of $5 \% \mathrm{w} / \mathrm{v}$ in a water/mineral oil (50:50) mixture. Vehicle was used for the control. Fifty $\mu \mathrm{l}$ of each test compound and the control were applied to normal skin of the volar forearm of 20 subjects for 48 h . An aluminum chamber was used for application. Upon removal, the sites were washed. For the second part of the study, the skin of 27 subjects was irritated using sodium lauryl sulfate prior to application of the test material. The chambers were removed after 17 h , and the sites were washed. At 24 h after patch removal, the sites were examined for irritation based on the presence of erythema, the transepidermal water loss (TEWL; measured with an evaporimeter), and microvascular blood flow (measured with a laser Doppler flowmeter).

Erythema was similar between the control and the test sites for both normal and damaged skin. With normal skin, TEWL was statistically significantly increased for all three steareths as compared to the controls. Skin blood flow was similar. With irritated skin, TEWL was statistically significantly decreased with stearth-2 and steareth -21 when compared to controls. Again, skin blood flow was similar to control values.

PEG Methyl Ethers

The dermal irritation of PEG-3 methyl ether (purity not specified) was evaluated using groups of 20 subjects. ${ }^{20}$ The test material, 0.03 ml ,, was applied to the gauze center of a $3 / 8$ " $\times 11 / 2 "$ bandage and placed on the skin for 24 h . One h after removal, the procedure was repeated for 3 consecutive days. At $24 \mathrm{~h}, 10$ subjects had an erythema score of $1 / 4$ and 3 subjects had a score of $2 / 4$. By $72 \mathrm{~h}, 7$ subjects had an erythema score of 1 , and 13 subjects has an erythema score of 2 . No edema was observed. The average total irritation score by 72 h was 1.65 , and the test material was slightly irritating.

C12-13 Pareths

In an HRIPT, C12-13 pareth-7, tested at concentrations of 1, 5, and 15%, produced very slight irritation and was not a sensitizer. ${ }^{46}$

C12-15 Pareths

In an HRIPT, C12-15 pareth-7, tested at concentrations of 5, 15 , and 25%, produced very slight irritation, and C1215 pareth -9 , tested at the same concentrations, produced very slight to mild irritation. ${ }^{46}$ C12-15 Pareth-12 was very slightly (5\%) or non-irritating (15\%). None of the C12-15 pareths were sensitizers in human subjects.

Case Reports

Case reports are summarized in Table $8{ }^{36,66-74}$ The majority of the reports are reactions to laureths, especially laureth-9. Reactions included, but were not limited to, eczema, contact dermatitis, and a pruritic rash.

SUMMARY

Laureth-4 and laureth-23 have previously been reviewed by the Cosmetic Ingredient Review (CIR) Expert Panel, and in 1983 it was concluded that both of these ingredients are safe as used as cosmetic ingredients. The laureths actually are alkyl PEG ethers - the reaction product of an alkyl alcohol, in this case lauryl alcohol, and one or more equivalents of ethylene oxide. In preparing the rereview document, it became obvious that a large number of ingredients included in the International Cosmetic Ingredient Dictionary and Handbook belong to this family, and should be included in this review. (See Table 1.)

Some of the alkyl PEG ethers, or at least portions of a specific family, have previously been reviewed by CIR. These ingredients are included in this assessment. Rather than summarize the data from the previous reports with the new data, all the data from previous reports are summarized in Table 2.

The ingredients in this report are comprised of alkyl PEG ethers with alkyl chain lengths ranging from 1 carbon to 22 carbons, and ethylene oxide repeat units numbering from 1 to 200. The number of ethylene oxide repeat units in each ingredient is an average (e.g. laureth-4 has an average number of ethylene oxide repeat units equal to four, but may include some laureth-5, laureth-3 etc.). There are also some ingredients in this report with known average distributions of alkyl chain length and degree of unsaturation (e.g. talloweth-4 ranges in alkyl chain length from 14 to 18 carbons, and in degrees of unsaturation from 0 to 3). Mixtures of the alkyl PEG ethers are also included. For example, the ceteareths are mixtures of 16 and 18 carbon chains and a variable PEG. Also included are unsaturated straight chain ingredients, branched compounds, PEG ethers of sterols, and dialkyl PEG ethers.

The ingredients included in this review would not be expected to have any meaningful ultraviolet absorption.
Alkyl PEG ethers are most commonly manufactured by alkaline catalysis, although acid catalysis is known. The initiation of the synthesis includes the addition of ethylene oxide to a dry solution of the appropriate alcohol, and the reaction propagates until the available ethylene oxide is consumed. Dioxane is often formed as a byproduct, and the cosmetics industry is aware of the possible presence of dioxane and the need for a purification step to remove it prior to blending into cosmetic ingredients. Formaldehyde, BHT, and/or butylated hydroxyanisole (BHA) are possible residual by-products from the manufacture of alkyl PEG ethers. The potential for methoxyethanol and methoxydiglycol to be present in PEG methyl ethers and methoxy PEGs exists.

The alkyl PEG ethers function primarily as surfactants. Generally, in each family, the lower chain length ingredients mostly function as surfactant - emulsifying agents. As the chain length increases, the ingredients function as surfactant

- solubilizing agents and/or surfactant - cleansing agents. A few of the ingredients have additional functions, and a very few do not function as surfactants at all.

The use of laureth-4 has more than doubled since 1981, with 441 uses reported recently, and the use of laureth-23 has come close to doubling, with 404 uses. The ingredients with the greatest frequency of use, according to VCRP data, are ceteareth-20, with 955 uses, laureth-7, with 932 uses, and steareth-21, with 891 uses. Many of the ingredients included in this review are used at concentrations of $<5 \%$. The ingredient with the highest concentration of use is C12-13 pareth-3, at 32% in a product that will be diluted and at 25% in dermal preparations. Laureth- 4 and isoceteth- 20 are used in leave-on products at concentrations up to 21%, and steareth-20 is used in leave-on products at up to 20%. The ingredients used at the highest concentration in formulations applied near the eye or that could possibly be ingested are, respectively, ceteth-9, which is used at 18% in an eyeliner, and ceteareth-10, which is used at 11% in a lipstick.

All of the alkyl PEG ethers named in this report are listed in the European Union inventory of cosmetic ingredients. Laureth-9 is not restricted, but a Scientific Committee on Consumer Products (SCCP) opinion paper does exist, stating that laureth- 9 does not pose a risk when used at $\leq 3 \%$ in leave-on products and $\leq 4 \%$ in rinse-off products. Information used to reach that conclusion was on alcohol ethoxylates analogous to laureth-9, but each compound was not clearly defined. Therefore the tested products are as described in the SCCP paper - i.e., by the average alkyl chain length (C) and by the average alcohol ethoxylate number (AE), e.g. $\mathrm{C}_{12-15} \mathrm{AE}_{7}$.

In general, alkyl PEG ethers are readily absorbed through the skin of guinea pigs and rats and through the intestinal mucosa of rats. They are quickly eliminated from the body through the urine, feces, and expired air. In rats, compounds analogous to laureth-9 were rapidly absorbed and excreted in the urine after oral, intraperitoneal, or subcutaneous dosing. Two distinct polar metabolites were identified in the urine for each compound tested. The length of the alkyl chain appeared to have an effect on metabolism, with excretion of longer alkyl chains occurring at a higher proportion in expired air and less in the urine. Similar results were found following oral administration in humans. Again, the major route of excretion was the urine. The metabolic product of each compound was a defined function of carbon chain length. However, the longer carbon chain ethoxylates produced more metabolic CO_{2} and less urinary elimination products. The degradation of ether linkage and oxidation of the alkyl chain to form lower molecular weight PEG-like compounds and carbon dioxide and water appeared to be the major degradation pathway of alcohol ethoxylates.

In dermal metabolism studies with hairless mice with 0.25% solutions in ethanol, the percutaneous absorption after 4 hours was 22.9% for laureth-1, 15.5% for laureth- $3,10.4 \%$ for laureth- 6 and 2.1% for laureth- 10 . The absorbed laureths were rapidly metabolized to carbon dioxide. Compounds analogous to laureth-9 readily penetrated the skin of rats, and approximately 50% of the absorbed dose was excreted. Using human subjects, the majority of the dose could be wiped away from the test site after 8 h ; less than 2% was found in the urine. With atopic patients, the calculated dermal absorption rate for laureth- 9 was 0.0017% with diluted bath oil and 0.0035% with after-shower application. For PEG-3 methyl ether, however, in vitro absorption data indicated that it would not readily penetrate the skin. Some alkyl PEG ethers, such as ceteareths and oleths, have been reported to enhance the penetration of certain compounds through the skin.

Acute oral toxicity data were available for some of the laureths, PEG methyl ethers, and the C- pareth ingredients. C9-11 Pareth-8, C14-15 pareth-11, and C14-15 pareth-13 had the lowest LD_{50} values, which were $1 \mathrm{mg} / \mathrm{kg}$ in rats. Many of the LD_{50} values were in the range of $2300-3300 \mathrm{mg} / \mathrm{kg}$, with some, such as $\mathrm{C} 12-13$ pareth -2 , having a value $>10,000 \mathrm{mg} / \mathrm{kg}$. Dermally, the data available indicated the LD_{50} values for rats and rabbits were mostly $>2000 \mathrm{mg} / \mathrm{kg}$ for these families of ingredients. Specifically for laureth-4, the dermal LD_{50} ranged from $0.93-1.78 \mathrm{ml} / \mathrm{kg}$ for rabbits, and the researchers indicat-
ed that, in rats, the potential for neurotoxicity was observed. In acute inhalation studies with PEG-3 methyl ether, an LC_{50} value was not established, as all animals survived exposure to $200 \mathrm{mg} / \mathrm{l}$ for 1 h and to concentrated vapors for 8 h .

In short-term oral studies, compounds analogous to laureth-9 had dietary NOAELs of 459-519 mg/kg bw. Doses of $\geq 25 \mathrm{~g} / \mathrm{kg}$ of an unspecified deceth to rabbits resulted in death. In a 14-day drinking water study, PEG-3 methyl ether was mildly to moderately toxic at $4 \mathrm{~g} / \mathrm{kg}$ and severely toxic at $\geq 8 \mathrm{~g} / \mathrm{kg}$. For an unspecified oleth administered orally to rats, doses of $\geq 750 \mathrm{mg} / \mathrm{kg}$ resulted in either death or significant signs of toxicity, and 1 of 6 animals given $3000 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$ for 17 days was killed in moribund condition. However, at necropsy, the organs and tissues appeared normal. In short-term dermal studies, dosing with $495-1980 \mathrm{mg} / \mathrm{kg} /$ day undiluted laureth-4 under occlusion did not result in erythema or edema, and no toxicologically significant results were reported. For PEG-3 methyl ether, some erythema and edema were observed with occlusive applications of $1000 \mathrm{mg} / \mathrm{kg} /$ day using rats; however, one study using rats reported a NOAEL of $4000 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$. Similar results were observed with PEG-7 methyl ether, in which $\leq 5000 \mathrm{mg} / \mathrm{kg}$, unoccluded, produced slight to moderate erythema and desquamation in rats and a 50% solution applied unocclusively produced slight to moderate erythema and slight desquamation in rabbits. No results observed with any of the PEG methyl ethers were considered toxicologically significant.

In a subchronic feeding studies, compounds analogous to laureth-9 had NOAELs ranging from $50-785 \mathrm{mg} / \mathrm{kg}$ bw in feed. Decreases in body weight and increased relative liver, kidney, and heart to body weights were observed. In a 91-day drinking water study, PEG-3 methyl ether had a NOAEL of $400 \mathrm{mg} / \mathrm{kd} /$ day for liver effects. In this study, testicular effects were observed, but were attributed to contamination with 2-methoxyethanol. A dose of $\leq 10,000 \mathrm{ppm} \mathrm{C} 14-15$ pareth-7 produced some differences compared to controls in organ weights and clinical chemistry and hematology values, but since no microscopic lesions were observed, these were not considered toxicologically significant. In a subchronic dermal study, moderate localized erythema was observed at all doses levels in a 13-wk study of 2.5% aq. $\mathrm{C}_{14-15} \mathrm{AE}_{7}$ in rabbits. For PEG-3 methyl ether, the dermal dose NOEL was $4000 \mathrm{mg} / \mathrm{kg} /$ day. The dermal responses observed in a 13 wk studies involving application of $\leq 25 \%$ aq. C9-11 pareth- 6 to rats (epidermal thickening with hyperkeratosis) or a 0.5% solution of an unspecified talloweth to rabbits (slight irritation, moderate epidermal hyperplasia, hyperkeratosis, and inflammatory infiltrates), were not considered toxicologically significant.

In 2-yr feeding studies with compounds analogous to laureth-9, reduced feed consumption, decreased body weights, increased relative organ to body weights were observed. The NOAEL ranged from $50-162 \mathrm{mg} / \mathrm{kg} \mathrm{bw} / \mathrm{day}$.

Using rabbits, undiluted laureth-9 produced moderate irritation at abraded sites, while 10 and 20% dilutions caused slight irritation at intact and abraded sites at 24 h . The dermal irritation potentials of several compounds that were analogous to laureth-9 were determined. Under semi-occlusive conditions with a 4 h application $\mathrm{C}_{14-15} \mathrm{AE}_{7}, 0.5 \mathrm{ml}$ at 10,25 , or 100%, was not irritating to rabbit skin. Following a 4 h occlusive application to rabbit skin, undiluted $\mathrm{C}_{12-14} \mathrm{AE}_{10}$ and undiluted $\mathrm{C}_{13} \mathrm{AE}_{6}$ were moderately irritating, and undiluted $\mathrm{C}_{13} \mathrm{AE}_{6.5}$ and undiluted $\mathrm{C}_{12-14} \mathrm{AE}_{6}$ were severely irritating. A 24 h occlusive application of $\mathrm{C}_{14-15} \mathrm{AE}_{7}$ was severely irritating to rabbit skin. A contraceptive aerosol formulation containing 20\% laureth-9 was mildly irritating in a Draize test. In a mixture containing an unspecified laureth, the laureth was considered to be strong irritant to rabbit skin. Non-occlusive applications of PEG-3 methyl ether caused minimal irritation to rabbit skin. Undiluted C9-11, C12-13, C12-15, and C14-15 pareths were moderately to severely irritating to rabbit skin in Draize studies, with the exception of C14-15 pareth-18, which was mildly irritating. Dilutions of these ingredients were also tested, and, generally, 0.1 and 1% dilutions were non- to mildly irritating, while 10% dilutions ranged from slightly to, mostly, moderately irritating.

The sensitization potential of a number of alkyl PEG ethers was evaluated using guinea pigs. Laureths-5 and -9, compounds analogous to laureth-9, C9-11 pareth $-3,-5,-6,-8$, C12-13 pareth-2, -3 , and -7, C12-15 pareth-3, -7 , and -9 , and C14-15 pareth-7, $-11,-13$, and -18 were not sensitizers using guinea pigs.

A 5% aq. solution of laureth- 9 was not irritating to rabbit eyes. Compounds analogous to laureth- 9 were moderately to severely irritating when instilled into rabbit eyes, and a 10% solution was moderately irritating. Dilution of these compounds reduced irritancy, and 0.1-1.0\% solutions were non-irritating to rabbit eyes. At varying concentrations, PEG-3 methyl ether was slightly irritating to rabbit eyes. Undiluted C9-11, C12-13, C12-15, and C14-15 pareths were moderately to extremely irritating in Draize tests using unrinsed rabbit eyes, except for C14-15 pareth-18, which was minimally to mildly irritating. Rinsing reduced irritation in some cases but not all. At concentrations of $0.1-1 \%$, these ingredients were non- to mildly irritating, while at 10%, they were moderately to severely irritating in some cases and practically non- to mildly irritating in others. A 5\% solution of Oleth-20 produced mild, transient conjunctival redness and chemosis in rabbit eyes.

Laureth- $9,1 \%$, caused severe damage to the nasal mucosa of rats. Regeneration of the epithelium started by day 3 . As a 15% aq. solution, laureth- 9 was not an irritant to the vaginal mucosa of dogs.

In a two-generation reproductive study, dermal administration of $\leq 25 \% \mathrm{C} 9-11$ pareth- 6 did not have a toxicologically significant effect on dams or offspring. In two-generation oral reproductive studies with dietary administration of compounds analogous to laureth-9, the NOAEL for reproductive toxicity was $>250 \mathrm{mg} / \mathrm{kg}$ bw/day, and the NOAELs for maternal and developmental toxicity was $50 \mathrm{mg} / \mathrm{kg}$ bw/day. Dosing with $\leq 1000 \mathrm{mg} / \mathrm{kg}$ PEG-3 methyl ether did not result in any treat-ment-related reproductive effects in rats. A dose of $3000 \mathrm{mg} / \mathrm{kg}$ PEG- 3 methyl ether did result in increased length of gestation and increased maternal kidney weights. In a study in which gravid rats were dosed with $\leq 5000 \mathrm{mg} / \mathrm{kg}$ PEG- 3 methyl ether on days 6-15 of gestation, the maternal and developmental NOELs for rats were $625 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$, and the NOAEL for maternal toxicity was $1250 \mathrm{mg} / \mathrm{kg} /$ day. For rabbits given $\leq 1500 \mathrm{mg} / \mathrm{kg}$ PEG-3 methyl ether on days 6-18 of gestation, clinical signs of toxicity and mortality were statistically significantly increased for the high dose group. The maternal and developmental NOELs for rabbits were 250 and $1000 \mathrm{mg} / \mathrm{kg} /$ day PEG-3 methyl ether, respectively. The NOAEL for maternal toxicity was $500 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$, and the presumed NOAEL for developmental toxicity was $1500 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$. In a test for developmental neurotoxicity, no neurotoxic effects attributable to PEG-3 methyl ether were identified.

An unspecified laureth was not mutagenic or genotoxic in an Ames test, transformation assay, or mouse lymphoma assay, and it did not induce sister chromatid exchanges or chromosomal aberrations in Chinese hamster ovary cells. Compounds analogous to laureth-9 were not mutagenic in a Ames test or clastogenic in in vitro or in vivo chromosomal aberration studies. PEG-3 methyl ether was not mutagenic or gentoxic in an Ames test, forward mutation assay, or in vivo mouse micronucleus test. PEG-7 methyl ether and C9-11 pareth-6 were not mutagenic in Ames tests.

Compounds that are analogous to laureth-9 were not carcinogenic in feeding studies in which rats were given up to 1% in the diet for 2 yrs .

In a retrospective clinical study, only 0.97% of patients had a weakly positive and 0.25% of patients had a strongly positive reaction to 0.5% laureth- 9 , and only 1.77 and 0.34% had weakly and strongly positive allergic contact reactions, respectively, to 3% laureth- 9 . Undiluted and 25% aq. $\mathrm{C}_{14-15} \mathrm{AE}_{7}$ produced negligible to slight irritation in an occlusive 3-patch application test, and a 10% aq. solution of $\mathrm{C}_{12-13} \mathrm{AE}_{6.5}$ was slightly irritating when applied under an occlusive patch for 24 h . In a human repeat insult patch test (HRIPT) of formulations containing laureth-9, 12% of subjects challenged with 10 and 15% formulations and 18% of patients challenged with formulations containing 20% laureth- 9 had mild reactions. Test compounds analogous to laureth-9, evaluated in HRIPTs at concentrations of $1-25 \%$, were not sensitizers. In HRIPTs to determine the sensitization potential of 1-15\% C12-13 pareth-7 and 5-25\% C12-15 pareth-7, slight or mild irritation was
observed, but the ingredients were not sensitizers to human subjects. The clinical effect of steareth-2, -10 , and -21 was evaluated on normal and damaged skin. The steareths did not have an effect on dermal blood flow with either normal or damaged skin, but transepidermal water loss of damaged skin was decreased with steareth-2 and steareth-21. PEG-3 methyl ether was slightly irritating in a clinical study.

A number of case studies, primarily with laureths, particularly laureth-9, have been reported. Reactions included, but were not limited to, eczema, contact dermatitis, and a pruritic rash.

DISCUSSION

This report was initiated as a re-review of laureth-4 and laureth-23. Upon review, it was discovered there is a large number of ingredients that are very similar to one another - structurally, functionally, and toxicologically. Fundamentally, all simple alkyl PEG ethers are the reaction products of alkyl alcohols and one or more equivalents of ethylene oxide. In the past, the Panel has reviewed a number of the alkyl PEG ethers as individual groups, i.e. Ceteareths, Ceteths, Laneths, Oleths, and Steareths, and in this report, the Panel has relied to a great extent on data from these past reports. Based on the fundamental similarities between these ingredients, data available for any one ingredient or ingredient group may be extrapolated to, or in current terms, read across, to the others.

Some of the past assessments of ingredients that included a PEG moiety stated that the ingredient should not be used on damaged skin. Since an amended conclusion has been issued for the PEGs, that caveat is no longer necessary.

A concern was expressed regarding the extent of dermal absorption for certain long-chain, branched alkyl PEG ethers because of uncertainty in bio-handling of branched alkyl chains. The prevailing Panel view was that because dermal penetration of long chain alcohols is likely to be low, and the dermal penetration for alkyl PEG ethers is likely to be even lower, inferring toxicity characteristics from ingredients where toxicity data were available was appropriate.

The potential adverse effects of inhaled aerosols depend on the specific chemical species, the concentration and the duration of the exposure and their site of deposition within the respiratory system. In practice, aerosols should have at least 99% of their particle diameters in the $10-110 \mu \mathrm{~m}$ range and the mean particle diameter in a typical aerosol spray has been reported as $\sim 38 \mu \mathrm{~m}$. Particles with an aerodynamic diameter of $\leq 10 \mu \mathrm{~m}$ are respirable. In the absences of inhalation toxicity data, the panel determined that alkyl PEG ethers can be used safely in hair sprays, because the product size is not respirable.

Also of concern to the Expert Panel was the possible presence of 1,4-dioxane, ethylene oxide, methoxyethanol, and methoxydiglycol impurities. The Panel stressed that the cosmetics industry should continue to use the necessary procedures to remove 1,4-dioxane and ethylene oxide impurities from the ingredients before blending them into cosmetic formulations. Since methoxy PEGs are defined as having an average number of ethylene oxide units, they have the potential of containing methoxyethanol and methoxydiglycol. Cosmetic preparations should not contain these impurities. The Panel has also stated that impurities or residual by-products that may be present, such as formaldehyde, BHT, or BHA, should only be present at concentrations allowed by the Panel in past assessments.

The Panel was also concerned with the dangers inherent in using animal-derived ingredients, namely the transmission of infectious agents. The CIR Expert Panel stressed that any animal-derived ingredient must be free of detectible pathogenic viruses or infectious agents (e.g. Bovine Spongiform Encephalopathy (BSE)). Suppliers and users of these ingredients must accept responsibility for assuring that these ingredients are risk-free. Tests to assure the absence of a pathogenic agent in the ingredients, or controls to assure derivation from pathogen-free sources are two approaches that should be considered.

The CIR accepts the FDA determination, that, to assure the absence of a pathogenic agent, hydrogenated talloweth12, hydrogenated talloweth-25, PEG-4 ditallow ether, talloweth-4, talloweth-5, talloweth-6, and talloweth-7 must be made from tallow containing a maximum level of insoluble impurities of 0.15% in weight.

The Expert Panel recognized that some of these ingredients can enhance the penetration of other ingredients through the skin. The Panel cautioned that care should be taken in formulating cosmetic products that may contain these ingredients in combination with any ingredients whose safety was based on their lack of dermal absorption data, or when dermal absorption was a concern.

The Expert Panel was also concerned that the potential exists for dermal irritation with the use of products formulated using some of the alkyl PEG ethers. The Expert Panel specified that products must be formulated to be non-irritating.

Finally, this assessment is intended to address future cosmetic use of alkyl PEG ethers that vary from those in this assessment only in the number of ethylene glycol repeat units. The Expert Panel considers that the available data would extend to additional alkyl PEG ethers that could be used in cosmetics in the future.

CONCLUSION

The CIR Expert Panel concluded that the alkyl PEG ethers, listed below, are safe in the present practices of use and concentration described in this safety assessment when formulated to be non-irritating. Were ingredients in this group not in current use to be used in the future, the expectation is that they would be used in product categories and at concentrations comparable to others in this group. This assessment is also intended to address future alkyl PEG ether cosmetic ingredients that vary from those ingredients recited herein only by the number of ethylene glycol repeat units. The ingredients reviewed in this safety assessment are:

Arachideth-20	C12-13 Pareth-2	C14-15 Pareth-8
Beheneth-2	C12-13 Pareth-3	C14-15 Pareth-11
Beheneth-5	C12-13 Pareth-4	C14-15 Pareth-12
Beheneth-10	C12-13 Pareth-5	C14-15 Pareth-13
Beheneth-15	C12-13 Pareth-6	C20-22 Pareth-30
Beheneth-20	C12-13 Pareth-7	C20-40 Pareth-3
Beheneth-25	C12-13 Pareth-9	C20-40 Pareth-10
Beheneth-30	C12-13 Pareth-10	C20-40 Pareth-24
C9-11 Pareth-3	C12-13 Pareth-15	C20-40 Pareth-40
C9-11 Pareth-4	C12-13 Pareth-23	C20-40 Pareth-95
C9-11 Pareth-6	C12-14 Pareth-3	C22-24 Pareth-33
C9-11-Pareth-8	C12-14 Pareth-5	C30-50 Pareth-3
C9-15 Pareth-8	C12-14 Pareth-7	C30-50 Pareth-10
C10-16 Pareth-1	C12-14 Pareth-9	C30-50 Pareth-40
C10-16 Pareth-2	C12-14 Pareth-12	C40-60 Pareth-3
C11-13 Pareth-6	C12-15 Pareth-2	C40-60 Pareth-10
C11-13 Pareth-9	C12-15 Pareth-3	C11-15 Sec-Pareth-12
C11-13 Pareth-10	C12-15 Pareth-4	C12-14 Sec-Pareth-3
C11-15 Pareth-3	C12-15 Pareth-5	C12-14 Sec-Pareth-5
C11-15 Pareth-5	C12-15 Pareth-7	C12-14 Sec-Pareth-7
C11-15 Pareth-7	C12-15 Pareth-9	C12-14 Sec-Pareth-8
C11-15 Pareth-9	C12-15 Pareth-10	C12-14 Sec-Pareth-9
C11-15 Pareth-12	C12-15 Pareth-11	C12-14 Sec-Pareth-12
C11-15 Pareth-15	C12-15 Pareth-12	C12-14 Sec-Pareth-15
C11-15 Pareth-20	C12-16 Pareth-5	C12-14 Sec-Pareth-20
C11-15 Pareth-30	C12-16 Pareth-7	C12-14 Sec-Pareth-30
C11-15 Pareth-40	C12-16 Pareth-9	C12-14 Sec-Pareth-40
C11-21-Pareth-3	C13-15 Pareth-21	C12-14 Sec-Pareth-50
C11-21-Pareth-10	C14-15 Pareth-4	Capryleth-4
C12-13 Pareth-1	C14-15 Pareth-7	Capryleth-5

Ceteareth-2
Ceteareth-3
Ceteareth-4
Ceteareth-5
Ceteareth-6
Ceteareth-7
Ceteareth-8
Ceteareth-9
Ceteareth-10
Ceteareth-11
Ceteareth-12
Ceteareth-13
Ceteareth-14
Ceteareth-15
Ceteareth-16
Ceteareth-17
Ceteareth-18
Ceteareth-20
Ceteareth-22
Ceteareth-23
Ceteareth-24
Ceteareth-25
Ceteareth-27
Ceteareth-28
Ceteareth-29
Ceteareth-30
Ceteareth-33
Ceteareth-34
Ceteareth-40
Ceteareth-50
Ceteareth-55
Ceteareth-60
Ceteareth-80
Ceteareth-100
Ceteth-1
Ceteth-2
Ceteth-3
Ceteth-4

Ceteth-5

Ceteth-6
Ceteth-7
Ceteth-10
Ceteth-12
Ceteth-13
Ceteth-14
Ceteth-15
Ceteth-16
Ceteth-17
Ceteth-18
Ceteth-20
Ceteth-23
Ceteth-24
Ceteth-25
Ceteth-30
Ceteth-40
Ceteth-45
Ceteth-150
Cetoleth-2
Cetoleth-4

Cetoleth-5	Isodeceth-5
Cetoleth-6	Isodeceth-6
Cetoleth-10	Isolaureth-3
Cetoleth-11	Isolaureth-6
Cetoleth-15	Isolaureth-10
Cetoleth-18	Isomyreth-3
Cetoleth-20	Isomyreth-9
Cetoleth-22	Isosteareth-2
Cetoleth-24	Isosteareth-3
Cetoleth-25	Isosteareth-5
Cetoleth-30	Isosteareth-8
Coceth-3	Isosteareth-10
Coceth-5	Isosteareth-12
Coceth-6	Isosteareth-15
Coceth-7	Isosteareth-16
Coceth-8	Isosteareth-20
Coceth-10	Isosteareth-22
Coceth-20	Isosteareth-25
Coceth-25	Isosteareth-50
Deceth-3	Laneth-5
Deceth-4	Laneth-10
Deceth-5	Laneth-15
Deceth-6	Laneth-16
Deceth-7	Laneth-20
Deceth-8	Laneth-25
Deceth-9	Laneth-40
Deceth-10	Laneth-50
Decyltetradeceth-5	Laneth-60
Decyltetradeceth-10	Laneth-75
Decyltetradeceth-15	Laureth-1
Decyltetradeceth-20	Laureth-2
Decyltetradeceth-25	Laureth-3
Decyltetradeceth-30	Laureth-4
Hexyldeceth-2	Laureth-5
Hexyldeceth-20	Laureth-6
Hydrogenated Dimer Dilinoleth-	Laureth-7
20	Laureth-8
Hydrogenated Dimer Dilinoleth-	Laureth-9
30	Laureth-10
Hydrogenated Dimer Dilinoleth-	Laureth-11
40	Laureth-12
Hydrogenated Dimer Dilinoleth-	Laureth-13
60	Laureth-14
Hydrogenated Dimer Dilinoleth-	Laureth-15
80	Laureth-16
Hydrogenated Laneth-5	Laureth-20
Hydrogenated Laneth-20	Laureth-21
Hydrogenated Laneth-25	Laureth-23
Hydrogenated Talloweth-12	Laureth-25
Hydrogenated Talloweth-25	Laureth-30
Isoceteth-5	Laureth-38
Isoceteth-7	Laureth-40
Isoceteth-10	Laureth-50
Isoceteth-12	Methoxy PEG-7
Isoceteth-15	Methoxy PEG-10
Isoceteth-20	Methoxy PEG-16
Isoceteth-25	Methoxy PEG-25
Isoceteth-30	Methoxy PEG-40
Isodeceth-4	Methoxy PEG-100

Myreth-2	Oleth-100	Steareth-40
Myreth-3	Oleth-106	Steareth-50
Myreth-4	Palmeth-2	Steareth-80
Myreth-5	PEG-16	Steareth-100
Myreth-10	Cetyl/Oleyl/Stearyl/Lanolin	Steareth-200
Noneth-8	Alcohol Ether	Steareth-60 Cetyl Ether
Octyldodeceth-2	PEG-Cetyl Stearyl Diether	Talloweth-4
Octyldodeceth-5	PEG-4 Distearyl Ether	Talloweth-5
Octyldodeceth-10	PEG-4 Ditallow Ether	Talloweth-6
Octyldodeceth-16	PEG-15 Jojoba Alcohol	Talloweth-7
Octyldodeceth-20	PEG-26 Jojoba Alcohol	Talloweth-18
Octyldodeceth-25	PEG-40 Jojoba Alcohol	Trideceth-2
Octyldodeceth-30	PEG-3 Methyl Ether	Trideceth-3
Oleth-2	PEG-4 Methyl Ether	Trideceth-4
Oleth-3	PEG-6 Methyl Ether	Trideceth-5
Oleth-4	PEG-7 Methyl Ether	Trideceth-6
Oleth-5	PEG-7 Propylheptyl Ether	Trideceth-7
Oleth-6	PEG-8 Propylheptyl Ether	Trideceth-8
Oleth-7	Steareth-1	Trideceth-9
Oleth-8	Steareth-2	Trideceth-10
Oleth-9	Steareth-3	Trideceth-11
Oleth-10	Steareth-4	Trideceth-12
Oleth-11	Steareth-5	Trideceth-15
Oleth-12	Steareth-6	Trideceth-18
Oleth-15	Steareth-7	Trideceth-20
Oleth-16	Steareth-8	Trideceth-21
Oleth-20	Steareth-10	Trideceth-50
Oleth-23	Steareth-11	Undeceth-3
Oleth-24	Steareth-13	Undeceth-5
Oleth-25	Steareth-14	Undeceth-7
Oleth-30	Steareth-15	Undeceth-8
Oleth-35	Steareth-16	Undeceth-9
Oleth-40	Steareth-20	Undeceth-11
Oleth-44	Steareth-21	Undeceth-40
Oleth-45	Steareth-25	Undecyleneth-6
Oleth-50	Steareth-27	
Oleth-82	Steareth-30	

Table 1. Alkyl PEG Ethers group

Alkyl PEG Ethers		
Laureth-4* (CAS Nos. 9002-92-0* 68439-50-9; 5274-68-0)	Ceteth-13 (CAS No. 9004-95-9)	Steareth-21 (CAS No. 9005-00-9)
Laureth-23* (CAS No. 9002-92-0)	Ceteth-14* (CAS No. 9004-95-9)	Steareth-25 (CAS No. 9005-00-9)
Laureth-1 (CAS Nos. 9002-92-0; 4536-30-5)	Ceteth-15* (CAS No. 9004-95-9)	Steareth-27 (CAS No. 9005-00-9)
Laureth-2 (CAS Nos. 9002-92-0; 3055-93-4)	Ceteth-16* (CAS No. 9004-95-9)	Steareth-30 (CAS No. 9005-00-9)
Laureth-3 (CAS Nos. 9002-92-0; 3055-94-5)	Ceteth-17 (CAS No. 9004-95-9)	Steareth-40 (CAS No. 9005-00-9)
Laureth-5 (CAS Nos. 9002-92-0; 3055-95-6)	Ceteth-18 (CAS No. 9004-95-9)	Steareth-50 (CAS No. 9005-00-9)
Laureth-6 (CAS Nos. 9002-92-0; 3055-96-7)	Ceteth-20* (CAS No. 9004-95-9)	Steareth-80 (CAS No. 9005-00-9)
Laureth-7 (CAS Nos. 9002-92-0; 3055-97-8)	Ceteth-23 (CAS No. 9004-95-9)	Steareth-100 (CAS No. 9005-00-9)
Laureth-8 (CAS Nos. 9002-92-0; 3055-98-8)	Ceteth-24* (CAS No. 9004-95-9)	Steareth-200 (CAS No. 9005-00-9)
Laureth-9 (CAS Nos. 9002-92-0; 3055-99-0)	Ceteth-25* (CAS No. 9004-95-9)	Trideceth-2 (CAS No. 24938-91-8)
Laureth-10 (CAS Nos. 9002-92-0; 68002-97-1; 6540-99-4)	Ceteth-30* (CAS No. 9004-95-9)	Trideceth-3 (CAS No. 24938-91-8; 4403-12-7)
Laureth-11 (CAS Nos. 9002-92-0; 68002-97-1)	Ceteth-40 (CAS No. 9004-95-9)	Trideceth-4
Laureth-12 (CAS Nos. (CAS Nos. 9002-92-0; 68002-97-1)	Ceteth-45* (CAS No. 9004-95-9)	Trideceth-5 (CAS No. 24938-91-8)
Laureth-13 (CAS Nos. 9002-92-0; 68002-97-1)	Ceteth-150 (CAS No. 9004-95-9)	Trideceth-6 (CAS No. 24938-91-8)
Laureth-14 (CAS Nos. 9002-92-0; 68002-97-1)	Deceth-3 (CAS No. 26138-52-8)	Trideceth-7 (CAS No. 24938-91-8)
Laureth-15 (CAS Nos. 9002-92-0; 68002-97-1)	Deceth-4 (CAS No. 26183-52-8; 5703-94-6)	Trideceth-8 (CAS No. 24938-91-8)
Laureth-16 (CAS Nos. 9002-92-0; 68002-97-1)	Deceth-5 (CAS No. 26183-52-8)	Trideceth-9 (CAS No. 24938-91-8; 69011-36-5)
Laureth-20 (CAS No. 9002-92-0)	Deceth-6 (CAS No. 26183-52-8)	Trideceth-10 (CAS No. 24938-91-8)
Laureth-21 (CAS No. 9002-92-0)	Deceth-7 (CAS No. 26183-52-8)	Trideceth-11 (CAS No. 24938-91-8)
Laureth-25 (CAS No. 9002-92-0)	Deceth-8 (CAS No. 26183-52-8)	Trideceth-12 (CAS No. 24938-91-8; 78330-21-9)
Laureth-30 (CAS No. 9002-92-0)	Deceth-9 (CAS No. 26183-52-8)	Trideceth-15 (CAS No. 24938-91-8)
Laureth-38 (CAS No. 9002-92-0)	Deceth-10 (CAS No. 26183-52-8)	Trideceth-18 (CAS No. 24938-91-8)
Laureth-40 (CAS No. 9002-92-0)	Myreth-2 (CAS No. 27306-79-2)	Trideceth-20 (CAS No. 24938-91-8)
Laureth-50**	Myreth-3 (CAS No. 27306-79-2; 26826-30-2)	Trideceth-21 (CAS No. 24938-91-8)
Arachideth-20	Myreth-4 (CAS No. 27306-79-2; 39034-24-7)	Trideceth-50 (CAS No. 24938-91-8)
Beheneth-2	Myreth-5 (CAS No. 27306-79-2; 92669-010-7)	Undeceth-3 (CAS No. 34398-01-1)
Beheneth-5	Myreth-10 (CAS No. 27306-79-2)	Undeceth-5 (CAS No. 34398-01-1)
Beheneth-10	Noneth-8	Undeceth-7 (CAS No. 34398-01-1)
Beheneth-15	Steareth-1 (CAS No. 9005-00-9)	Undeceth-8 (CAS No. 34398-01-1)
Beheneth-20	Steareth-2* (CAS No. 9005-00-9; 16057-43-5)	Undeceth-9 (CAS No. 34398-01-1)
Beheneth-25	Steareth-3 (CAS No. 9005-00-9; 4439-32-1)	Undeceth-11 (CAS No. 34398-01-1)
Beheneth-30	Steareth-4* (CAS No. 9005-00-9; 59970-10-4)	Undeceth-40 (CAS No. 34398-01-1; 127036-24-2)
Capryleth-4	Steareth-5 (CAS No. 9005-00-9; 71093-13-5)	PEG-3 Methyl Ether (CAS No. 9004-74-4; 112-35-6)
Capryleth-5	Steareth-6 (CAS No. 9005-00-9; 2420-29-3)	PEG-4 Methyl Ether (CAS No. 9004-74-4)
Ceteth-1* (CAS No. 9004-95-9; 2136-71-2)	Steareth-7 (CAS No. 9005-00-9; 66146-84-7)	PEG-6 Methyl Ether (CAS No. 9004-74-4)
Ceteth-2* (CAS No. 9004-95-9; 5274-61-3)	Steareth-8 (CAS No. 9005-00-9)	PEG-7 Methyl Ether (CAS No. 9004-74-4)
Ceteth-3* (CAS No. 9004-95-9; 4484-59-7)	Steareth-10* (CAS No. 9005-00-9; 13149-86-5)	Methoxy PEG-7 (CAS No. 9004-74-4)
Ceteth-4* (CAS No. 9004-95-9; 5274-63-5)	Steareth-11* (CAS No. 9005-00-9)	Methoxy PEG-10 (CAS No. 9004-74-4)
Ceteth-5* (CAS No. 9004-95-9; 4478-97-1)	Steareth-13* (CAS No. 9005-00-9)	Methoxy PEG-16 (CAS No. 9004-74-4)
Ceteth-6* (CAS No. 9004-95-9; 5168-91-2)	Steareth-14 (CAS No. 9005-00-9)	Methoxy PEG-25 (CAS No. 9004-74-4)
Ceteth-7 (CAS No. 9004-95-9)	Steareth-15* (CAS No. 9005-00-9)	Methoxy PEG-40 (CAS No. 9004-74-4)
Ceteth-10* (CAS No. 9004-95-9; 14529-40-9)	Steareth-16 (CAS No. 9005-00-9)	Methoxy PEG-100 (CAS No. 9004-74-4)
Ceteth-12* (CAS No. 9004-95-9; 94159-75-8)	Steareth-20* (CAS No. 9005-00-9)	

Table 1. Alkyl PEG Ethers Ingredient Group (continued)

Alkyl PEG Ether Mixtures		
Ceteareth-2* (CAS No. 68439-49-6)	C9-11 Pareth-4 (CAS No. 68439-46-3)	C12-14 Pareth-12 (CAS No. 68439-50-9)
Ceteareth-3* (CAS No. 68439-49-6)	C9-11-Pareth-6 (CAS No. 68439-46-3)	C12-15 Pareth-2 (CAS No. 68131-39-5)
Ceteareth-4* (CAS No. 68439-49-6)	C9-11 Pareth-8 (CAS No. 68439-46-3)	C12-15 Pareth-3 (CAS No. 68131-39-5)
Ceteareth-5* (CAS No. 68439-49-6)	C9-15 Pareth-8 (CAS No. 157627-88-8)	C12-15 Pareth-4 (CAS No. 68131-39-5)
Ceteareth-6* (CAS No. 68439-49-6)	C10-16 Pareth-1 (CAS No. 68002-97-1)	C12-15 Pareth-5 (CAS No. 68131-39-5)
Ceteareth-7* (CAS No. 68439-49-6)	C10-16 Pareth-2 (CAS No. 68002-97-1)	C12-15 Pareth-7 (CAS No. 68131-39-5)
Ceteareth-8* (CAS No. 68439-49-6)	C11-13 Pareth-6 (CAS No. 308060-94-8)	C12-15 Pareth-9 (CAS No. 68131-39-5)
Ceteareth-9* (CAS No. 68439-49-6)	C11-13 Pareth-9 (CAS No. 308060-94-8)	C12-15 Pareth-10 (CAS No. 68131-39-5)
Ceteareth-10* (CAS No. 68439-49-6)	C11-13 Pareth-10 (CAS No. 308060-94-8)	C12-15 Pareth-11 (CAS No. 68131-39-5)
Ceteareth-11* (CAS No. 68439-49-6)	C11-15 Pareth-3 (CAS No. 68131-40-8)	C12-15 Pareth-12 (CAS No. 68131-39-5)
Ceteareth-12* (CAS No. 68439-49-6)	C11-15 Pareth-5 (CAS No. 68131-40-8)	C12-16 Pareth-5 (CAS No. 68551-12-2)
Ceteareth-13* (CAS No. 68439-49-6)	C11-15 Pareth-7 (CAS No. 68131-40-8)	C12-16 Pareth-7 (CAS No. 68551-12-2)
Ceteareth-14* (CAS No. 68439-49-6)	C11-15 Pareth-9 (CAS No. 68131-40-8)	C12-16 Pareth-9 (CAS No. 68551-12-2)
Ceteareth-15* (CAS No. 68439-49-6)	C11-15 Pareth-12 (CAS No. 68131-40-8)	C13-15 Pareth-21 (CAS No. 64425-86-1)
Ceteareth-16* (CAS No. 68439-49-6)	C11-15 Pareth-15 (CAS No. 68131-40-8)	C14-15 Pareth-4 (CAS No. 68951-67-7)
Ceteareth-17* (CAS No. 68439-49-6)	C11-15 Pareth-20 (CAS No. 68131-40-8)	C14-15 Pareth-7 (CAS No. 68951-67-7)
Ceteareth-18* (CAS No. 68439-49-6)	C11-15 Pareth-30 (CAS No. 68131-40-8)	C14-15 Pareth-8 (CAS No. 68951-67-7)
Ceteareth-20* (CAS No. 68439-49-6)	C11-15 Pareth-40 (CAS No. 68131-40-8)	C14-15 Pareth-11 (CAS No. 68951-67-7)
Ceteareth-22* (CAS No. 68439-49-6)	C11-21-Pareth-3 (CAS No. 246538-82-9)	C14-15 Pareth-12 (CAS No. 68951-67-7)
Ceteareth-23* (CAS No. 68439-49-6)	C11-21-Pareth-10 (CAS No. 246538-82-9)	C14-15 Pareth-13 (CAS No. 68951-67-7)
Ceteareth-24* (CAS No. 68439-49-6)	C12-13 Pareth-1 (CAS No. 66455-14-9)	C20-22 Pareth-30
Ceteareth-25* (CAS No. 68439-49-6)	C12-13 Pareth-2 (CAS No. 66455-14-9)	C20-40 Pareth-3 (CAS No. 246538-83-0)
Ceteareth-27* (CAS No. 68439-49-6)	C12-13 Pareth-3 (CAS No. 66455-14-9)	C20-40 Pareth-10 (CAS No. 246538-83-0)
Ceteareth-28* (CAS No. 68439-49-6)	C12-13 Pareth-4 (CAS No. 66455-14-9)	C20-40 Pareth-24 (CAS No. 246538-83-0)
Ceteareth-29* (CAS No. 68439-49-6)	C12-13 Pareth-5 (CAS No. 66455-14-9)	C20-40 Pareth-40 (CAS No. 246538-83-0)
Ceteareth-30* (CAS No. 68439-49-6)	C12-13 Pareth-6 (CAS No. 66455-14-9)	C20-40 Pareth-95 (CAS No. 246538-83-0)
Ceteareth-33* (CAS No. 68439-49-6)	C12-13 Pareth-7 (CAS No. 66455-14-9)	C22-24 Pareth-33 (CAS No. 246538-84-1)
Ceteareth-34* (CAS No. 68439-49-6)	C12-13 Pareth-9 (CAS No. 66455-14-9)	C30-50 Pareth-3 (CAS No. 246538-85-2)
Ceteareth-40* (CAS No. 68439-49-6)	C12-13 Pareth-10 (CAS No. 66455-14-9)	C30-50 Pareth-10 (CAS No. 246538-85-2)
Ceteareth-50* (CAS No. 68439-49-6)	C12-13 Pareth-15 (CAS No. 66455-14-9)	C30-50 Pareth-40 (CAS No. 246538-85-2)
Ceteareth-55* (CAS No. 68439-49-6)	C12-13 Pareth-23 (CAS No. 66455-14-9)	C40-60 Pareth-3 (CAS No. 246538-86-3)
Ceteareth-60* (CAS No. 68439-49-6)	C12-14 Pareth-3 (CAS No. 68439-50-9)	C40-60 Pareth-10 (CAS No. 246538-86-3)
Ceteareth-80* (CAS No. 68439-49-6)	C12-14 Pareth-5 (CAS No. 68439-50-9)	Hydrogenated Talloweth-12
Ceteareth-100* (CAS No. 68439-49-6)	C12-14 Pareth-7 (CAS No. 68439-50-9)	Hydrogenated Talloweth-25
C9-11 Pareth-3 (CAS No. 68439-46-3)	C12-14 Pareth-9 (CAS No. 68439-50-9)	

Table 1. Alkyl PEG Ethers Ingredient Group (continued)

Partially Unsaturated Alkyl PEG Ethers		
Undecyleneth-6	Oleth-40* (CAS No. 9004-98-2)	
Oleth-2* (CAS No. 9004-98-2; 5274-65-7; 95287-03-9)	Oleth-44* (CAS No. 9004-98-2)	Cetoleth-30 (CAS No. 8065-81-4)
Oleth-3* (CAS No. 9004-98-2; 5274-66-8; 96459-08-4)	Oleth-45 (CAS No. 9004-98-2)	Coceth-3 (CAS No. 61791-13-7)
Oleth-4* (CAS No. 9004-98-2; 5353-26-4; 103622-85-1)	Oleth-50* (CAS No. 9004-98-2)	Coceth-5 (CAS No. 61791-13-7)
Oleth-5* (CAS No. 9004-98-2; 5353-27-5)	Oleth-82 (CAS No. 9004-98-2)	Coceth-6 (CAS No. 61791-13-7)
Oleth-6* (CAS No. 9004-98-2)	Oleth-100 (CAS No. 9004-98-2)	Coceth-7 (CAS No. 61791-13-7)
Oleth-7* (CAS No. 9004-98-2)	Oleth-106 (CAS No. 9004-98-2)	Coceth-8 (CAS No. 61791-13-7)
Oleth-8* (CAS No. 9004-98-2; 26996-03-2; 27040-03-5)	Cetoleth-2 (CAS No. 8065-81-4)	Coceth-10 (CAS No. 61791-13-7)
Oleth-9* (CAS No. 9004-98-2)	Cetoleth-4 (CAS No. 8065-81-4)	Coceth-20 (CAS No. 61791-13-7)
Oleth-10* (CAS No. 9004-98-2)	Cetoleth-5 (CAS No. 8065-81-4)	Coceth-25 (CAS No. 61791-13-7)
Oleth-11* (CAS No. 9004-98-2)	Cetoleth-6 (CAS No. 8065-81-4)	Palmeth-2
Oleth-12* (CAS No. 9004-98-2)	Cetoleth-10 (CAS No. 8065-81-4)	Talloweth-4 (CAS No. 61791-28-4)
Oleth-15* (CAS No. 9004-98-2)	Cetoleth-11 (CAS No. 8065-81-4)	Talloweth-5 (CAS No. 61791-28-4)
Oleth-16* (CAS No. 9004-98-2; 25190-05-0)	Cetoleth-15 (CAS No. 8065-81-4)	Talloweth-6 (CAS No. 61791-28-4)
Oleth-20* (CAS No. 9004-98-2)	Cetoleth-18 (CAS No. 8065-81-4)	Talloweth-7 (CAS No. 61791-28-4)
Oleth-23* (CAS No. 9004-98-2)	Cetoleth-20 (CAS No. 8065-81-4)	Talloweth-18 (CAS No. 61791-28-4)
Oleth-24 (CAS No. 9004-98-2)	Cetoleth-22 (CAS No. 8065-81-4)	PEG-15 Jojoba Alcohol
Oleth-25* (CAS No. 9004-98-2)	Cetoleth-24 (CAS No. 8065-81-4)	PEG-26 Jojoba Alcohol
Oleth-30* (CAS No. 9004-98-2)	Cetoleth-25 (CAS No. 8065-81-4)	PEG-40 Jojoba Alcohol
Oleth-35 (CAS No. 9004-98-2)		
Branched Alkyl PEG Ethers		
Isodeceth-4	Isosteareth-8 (CAS No. 52292-17-8)	C12-14 Sec-Pareth-40 (CAS No. 84133-50-6)
Isodeceth-5	Isosteareth-10 (CAS No. 52292-17-8)	C12-14 Sec-Pareth-50 (CAS No. 84133-50-6)
Isodeceth-6	Isosteareth-12 (CAS No. 52292-17-8)	PEG-7 Propylheptyl Ether
Isolaureth-3 (CAS No. 39365-90-7)	Isosteareth-15 (CAS No. 52292-17-8)	PEG-8 Propylheptyl Ether
Isolaureth-6 (CAS No. 39365-90-7)	Isosteareth-16 (CAS No. 52292-17-8)	Hexyldeceth-2 (CAS No. 52609-19-5)
Isolaureth-10 (CAS No. 39365-90-7)	Isosteareth-20 (CAS No. 52292-17-8)	Hexyldeceth-20 (CAS No. 52609-19-5)
Isomyreth-3	Isosteareth-22 (CAS No. 52292-17-8)	Octyldodeceth-2 (CAS No. 32128-65-7)
Isomyreth-9	Isosteareth-25 (CAS No. 52292-17-8)	Octyldodeceth-5 (CAS No. 32128-65-7)
Isoceteth-5 (CAS No. 69364-63-2)	Isosteareth-50 (CAS No. 52292-17-8)	Octyldodeceth-10 (CAS No. 32128-65-7)
Isoceteth-7 (CAS No. 69364-63-2)	C11-15 Sec-Pareth-12 (CAS No. 68131-40-8)	Octyldodeceth-16 (CAS No. 32128-65-7)
Isoceteth-10 (CAS No. 69364-63-2)	C12-14 Sec-Pareth-3 (CAS No. 84133-50-6)	Octyldodeceth-20 (CAS No. 32128-65-7)
Isoceteth-12 (CAS No. 69364-63-2)	C12-14 Sec-Pareth-5 (CAS No. 84133-50-6)	Octyldodeceth-25 (CAS No. 32128-65-7)
Isoceteth-15 (CAS No. 69364-63-2)	C12-14 Sec-Pareth-7 (CAS No. 84133-50-6)	Octyldodeceth-30 (CAS No. 32128-65-7)
Isoceteth-20 (CAS No. 69364-63-2)	C12-14 Sec-Pareth-8 (CAS No. 84133-50-6)	Decyltetradeceth-5
Isoceteth-25 (CAS No. 69364-63-2)	C12-14 Sec-Pareth-9 (CAS No. 84133-50-6)	Decyltetradeceth-10
Isoceteth-30 (CAS No. 69364-63-2)	C12-14 Sec-Pareth-12 (CAS No. 84133-50-6)	Decyltetradeceth-15
Isosteareth-2 (CAS No. 52292-17-8)	C12-14 Sec-Pareth-15 (CAS No. 84133-50-6)	Decyltetradeceth-20
Isosteareth-3 (CAS No. 52292-17-8)	C12-14 Sec-Pareth-20 (CAS No. 84133-50-6)	Decyltetradeceth-25
Isosteareth-5 (CAS No. 52292-17-8)	C12-14 Sec-Pareth-30 (CAS No. 84133-50-6)	Decyltetradeceth-30

Table 1. Alkyl PEG Ethers Ingredient Group (continued)
Table 2a. Previously reviewed and component ingredients

Ingredient	Conclusion	Reference
PREVIOUSLY REVIEWED		
$\begin{aligned} & \text { Ceteareth-2, }-3,-4,-5,-6,-7,-8,-9,-10,-11,-12,-13,-14,-15,-16,-17,-18,-20,-22,-23,-24,-25,-27 \text {, } \\ & -28,-29,-30,-33,-34,-40,-50,-55,-60,-80,-100 \end{aligned}$	safe as used	2
Ceteth-1, -2, -3, -4, -5, -6, -10, -12, -14, -15, -16, -20, -24, -25, -30, -45	safe as used	3
Laneth-5, -16, -25	safe for topical application	5
Laureth-4, -23	safe as used	1
Oleth-2, -3, -4, -5, -6, -7, -8, -9, -10, -11,-12, -15, -16, -20, -23, -25, -30, -40, -44, -50	safe as used	4
Steareth-2, -4, -6, -7, -10, -11, -13, -15, -20	safe as used	6
COMPONENTS		
PEGs; Triethylene Glycol and Polyethylene Glycols (PEGs))-4, $-6,-7,-8,-9,-10,-12,-14,-16,-18,-20$, $-32,-33,-40,-45,-55,-60,-75,-80,-90,-100,-135,-150,-180,-160 \mathrm{M},-180 \mathrm{M}$ and any PEG ≥ 4	safe as used	15
Behenyl Alcohol	safe as used	12
Cetearyl Alcohol	safe as used	12
Cetyl Alcohol	safe as used	12
Cholesterol	safe as used	11
Coconut Alcohol	safe as used	14
Isostearyl Alcohol	safe as used	12
Jojoba Alcohol	safe as used	13
Lanolin Alcohol	safe for topical application	9
Methyl Alcohol	safe as used to denature alcohol	16
Myristyl Alcohol	safe as used	12
Octyl Dodecanol	safe as used	10
Oleyl Alcohol	safe as used	10
Stearyl Alcohol	safe as used	10
Special Report on Ethylene Glycol and its Ethers	it was found that metabolites of ethylene glycol monoalkyl ethers are repro. and developmental toxins; in general, however, the metabolites of concern are not expected to be formed in cosmetic formulations that contain polymers of ethylene glycol. The toxicity of the metabolites is inversely proportional to the length of the alkyl chain; e.g., 2-butoxyethanol is not a reproductive toxicant	7

Table 2b. Summaries of information provided in previous reports

Ingredient	Parameter Evaluated	Outcome	Reference
Ceteareths		PREVIOUSLY REVEIWED INGREDIENTS	2
	method of manufacture	surfactants prepared by ethoxylation of fatty alcohol mixtures with ethylene oxide	
	animal toxicology	no data	
	dermal irritation/sensitization	formulation containing 10% ceteareth-15 was minimally irritating to rabbit skin	
	ocular irritation	ceteareth-15: 10%, not irritating	
	repro/developmental toxicity	considered unlikely to cause reproductive or teratogenic effects, based on chemical and structural characteristics	
	genotoxicity	no data	
	carcinogenicity	no data	
	clinical assessment of safety	ceteareth 15: formulations $\mathrm{w} / 1.35-15 \%$, essentially non- to non-irritating	
		ceteareth-15: formulation $\mathrm{w} / 1.25 \%$, not a sensitizer	
	important Discussion items	ceteareths, particularly cetereth-20, enhance drug absorption; care should be taken when creating formulations, especially those for use on infant skin; ceteareth preparations should not contain 1,4-dioxane or ethylene oxide, which are possible oxidation products; in that ceteareths are PEG compounds, stated that ceteareths should not be used on damaged skin - no longer applicable due to new PEGs conclusion	
	Conclusion	safe as used	
Ceteths	method of manufacture	by the ethoxylation of cetyl alcohol with the ingredient's corresponding number of moles of ethylene oxide	3
	impurities animal toxicology	peroxides were found in ceteth-20; peroxide formation rate, when expressed in terms of peroxide number, was inversely proportional to the concentration of ceteth-20; in terms of absolute concentration of peroxides, peroxide content was proportional to PEG concentration oral LD_{50} (rats): ceteth $2,>25 \mathrm{~g} / \mathrm{kg}$; ceteth $-10,2.5-3.5 \mathrm{~g} / \mathrm{kg}$; ceteth- 20	
	dermal irritation/sensitization	4 -wk dermal: ceteth-2 (2.5%, rabbits; 3%, rats): no systemic toxicity, moderate erythema in rabbits ceteth-2: 1 and 5%, erythema and edema, $\geq 10 \%$, thickening of the skin; formulation $w / 2.5 \%$, minimal irritation; ceteth- $10: 1$ and 5%, erythema and edema, $\geq 10 \%$, thickening of the skin	
	ocular irritation	ceteth-2, formulation $\mathrm{w} / 2.5 \%$, not irritating	
	repro/developmental toxicity	considered unlikely to cause reproductive or teratogenic effects, based on chemical and structural characteristics	
	genotoxicity	Ceteth-20: enhanced transposition of Tn9 in E. coli	
	carcinogenicity	no data	
	clinical assessment of safety	no data	
	important Discussion items	should not contain 1,4-dioxane or ethylene oxide, which are possible oxidation products; addressed use in inhalation products	
	Conclusion	safe as used	
Laneths	method of manufacture animal toxicology	lanolin alcohol can be reacted with an appropriate molar concentration of ethylene oxide in an exothermic, addition reaction to generate the desired laneth; the lanolin alcohols are melted and then agitated in the presence of ethylene oxide gas at $130-180^{\circ} \mathrm{C}$; sodium methoxide may be used as a catalyst in this process; the product is refined by bleaching with hydrogen peroxide followed by vacuum stripping and filtration oral LD_{50} (rats); laneth-5, $\geq 25 \mathrm{ml} / \mathrm{kg}$; laneth-16, $9.33-12.2 \mathrm{ml} / \mathrm{kg}, 2.15 \mathrm{~g} / \mathrm{kg} ;$ laneth- $25,>3 \mathrm{~g} / \mathrm{kg}$	5
	dermal irritation/sensitization	PIIs (max=8; rabbits):laneth-5, 0.5 (10\%), 0.8-1.3 (100\%); laneth-16, 1.0 (10\%), 1-2.43 (100\%); laneth-25, 0.04 (10\%), 3.83 (100\%)	
	ocular irritation	laneth-5: 10%, non-irritating; 100%, non- to minimally irritating; laneth- $16: 100 \%$, non- to minimally irritating; formulations $w / 35 \%$, practically non- to minimally irritating; laneth -25 : 100%, minimally irritating	
	repro/developmental toxicity	no data	
	genotoxicity	no data	
	carcinogenicity	no data	
	clinical assessment of safety	laneth-5; 50%, not an irritant, mild fatiguing agent; laneth $-16,50 \%$, not an irritant, fatiguing agent; laneth $-25,50 \%$, not an irritant laneth- $5 ; 50 \%$, not a sensitizer; laneth- $16,50 \%$, not a sensitizer; laneth- $25,50 \%$, not a sensitizer	

Table 2b. Summaries of information provided in previous reports (continued)

Ingredient	Parameter Evaluated	Outcome	Reference
	important Discussion items	Discussion not included in report	
	Conclusion	safe for topical application	
Laureths	impurities/by-products of mfg ADME	special grades of laureth-4may have butylated hydroxyanisole (BHA) (0.05%) and citric acid (0.01%) added; laureth- 23 may have BHA (0.01%) or citric acid (0.005%) added; lauryl alcohol is a mixture of fatty alcohols containing $55 \%-64 \%$ dodecanol and $21 \%-28 \%$ tetradecanol with up to 13% hexadecanol, 5% decanol, 5% octadecanol, and 0.4% octanol; the laureths may contain unreacted ethylene oxide that is not completely purged from the system; a reaction product of ethoxylation, 1,4-dioxane, may also be present in trace amounts in general, alkyl PEG ethers are readily absorbed through the skin of guinea pigs and rats and through the intestinal mucosa of rats; they are quickly eliminated from the body through the urine, feces, and expired air	1
	animal toxicology	acute oral: undiluted laureth-4, practically non-toxic (rats and mice); LD $_{50}$: laureth- $23,7.8-9.4 \mathrm{~g} / \mathrm{kg}$ (rats) and $3.5-4 \mathrm{~g} / \mathrm{kg}$ (mice); acute dermal LD_{50} : $>$ no mortality w/formulations containing $\leq 17 \%$ laureth- 4	
	dermal irritation/sensitization	laureth-4: 100% or formulation $\mathrm{w} / 1.8 \%$, not a primary skin irritant (rabbits)	
	ocular irritation	laureth-4: 100%, moderately irritating; 10 and 20%, minimally (unrinsed) to non-irritating (rinsed); formulation w/17\%, irritation scores of 33/110 at 1 h and $5 / 110$ at 24 h ; laureth- 23 : 100%, slight conjunctival effect; formulation $\mathrm{w} / 4 \%$, mild transient conjunctivitis and iritis	
	repro/developmental toxicity	laureth-4: 6\% in 52\% ethanol and water, not teratogenic or embryotoxic (rats or rabbits), not a reproductive or fetal toxicant (rats)	
	genotoxicity	no data	
	carcinogenicity	no data	
	clinical assessment of safety	laureth-4: 100\%, not an irritant; laureth-23: 100%,not an irritant	
		laureth-4: 100%, not a sensitizer, laureth- $23,25 \%$, not a sensitizer laureth-4: 6% in 52% ethanol, or formulation $w / 1.8 \%$, not phototoxic; laureth- $23: 25 \%$ or formulations $w / 0.899 \%$, not phototoxic	
	important Discussion items	no relevant items identified	
	Conclusion	safe as used	
Oleths	method of manufacture animal toxicology	manufactured by the ethoxylation of oleyl alcohol with the ingredient's corresponding number of moles of ethylene oxide oral LD_{50} : oleth $10,>5 \mathrm{~g} / \mathrm{kg}$ (rats)	4
		90-day feeding study: oleth-20 (rats), no systemic toxicology; oleth-20 (dogs), hepatic lesion suggestive of a toxic etiology, 1 dog fed 0.64%	
	dermal irritation/sensitization ocular irritation	oleth-10: 100%, occlusive, minimally irritating; oleth- $20: 10 \%$, closed patch, primary dermal irritant; 50%, open patch, minimally irritating oleth-10: 100%, moderate irritant; oleth-20: 70% active, moderate irritant; 50% : moderate irritant	
	repro/developmental toxicity	considered unlikely to cause reproductive or teratogenic effects, based on chemical and structural characteristics	
	genotoxicity	no data	
	carcinogenicity	no data	
	clinical assessment of safety	oleth-10: 21 day cumulative irritation study, formulation $w / 3 \%$, cumulative irritant in $3 / 8$ subjects	
	important Discussion items	oleths may increase permeability of the stratum corneum as demonstrated in vitro; should not contain 1,4-dioxane or ethylene oxide, which are possible oxidation products; addressed use in inhalation products	
	Conclusion	safe as used	
Steareths	method of manufacture	are prepared by reacting ethylene oxide with stearyl alcohol	6
	animal toxicology	oral LD50 (rats):steareth-2, $16 \mathrm{~g} / \mathrm{kg}$ (unspecified concentration)), $\geq 21 \mathrm{~g} / \mathrm{kg}$ (25% in corn oil or 40% in water); formulations with $\leq 2.75 \%$ steareth $-2,>5 \mathrm{~g} / \mathrm{kg}$; steareth $-10,2.9 \mathrm{~g} / \mathrm{kg}$ (unspecified concentration); steareth-20, $\sim 1.9 \mathrm{~g} / \mathrm{kg}$ (unspecified concentration), $\sim 2.1 \mathrm{~g} / \mathrm{kg}$ (25% in corn oil or distilled water); formulation containing 1.5% steareth $-20,>10 \mathrm{ml} / \mathrm{kg}$	
		3 mos dermal: formulation containing 4\% steareth-20 (rabbits), no systemic toxicity, some dermal irritation	

Table 2b. Summaries of information provided in previous reports (continued)

Ingredient	Parameter Evaluated	Outcome	Reference
	dermal irritation/sensitization ocular irritation repro/developmental toxicity genotoxicity carcinogenicity clinical assessment of safety Conclusion	steareth $2, \leq 60 \%$ and in formulation $\mathrm{w} / \leq 2.75 \%$, mildly irritating at most; steareth- $10,60 \%$, mild irritant; steareth-20, 60%, mild irritant, in formulations $\mathrm{w} / \leq 5 \%$, moderate irritant at most steareth-20: unspecified concentration, moderate irritant; 60%, minimal irritant no data no data a structurally undefined polyoxyethylene alkyl ether was neither a carcinogen nor a tumor promoter in a mouse skin painting study steareth- $2: 60 \%$, not a primary irritant, formulation $w / 0.6 \%$, mild irritant; steareth- 10 and steareth $-20,60 \%$, not a primary irritant steareth- 2 and steareth-20: not primary sensitizers formulation $\mathrm{w} / 2.7 \%$ steareth-2 and 2.25% steareth- 20 , not phototoxic; formulation containing 4% steareth- 20 , not phototoxic no relevant items identified safe as used	
COMPONENTS			
PEGs	ADME animal toxicology	in metabolism studies with rats, rabbits, dogs, and humans, the lower molecular weight PEGs were absorbed by the digestive tract and excreted in the urine and feces; the higher molecular weight PEGs were absorbed more slowly or not at all; e.g. PEG-8 is rapidly absorbed by the gastrointestinal (GI) tracts of several mammalian species and excreted primarily in the urine with less excretion in the feces, and PEG-150 in water was not absorbed from the GI tract of humans oral $\mathrm{LD}_{50}: 15-22 \mathrm{~g} / \mathrm{kg}$ (rodents), higher mol wts less toxic than lower mol wts, i.v. $\mathrm{LD}_{50}: 7.3-9.5 \mathrm{~g} / \mathrm{kg}$ (rodents) 13 wk oral: PEG-8, $\leq 5.6 \mathrm{~g} / \mathrm{kg} /$ day, no systemic toxicity (rats) inhalation: PEG-75, $\leq 1003 \mathrm{mg} / \mathrm{m}^{3}$, little or no toxicity (rats)	15
	dermal irritation/sensitization ocular irritation repro/developmental toxicity genotoxicity	PEGs: not irritating to rabbits or guinea pigs PEG-75: not a sensitizer mild, transient irritation no biologically significant embryotoxicity or teratogenicity negative: Ames assay, CHO cell mutation assay, in vivo bone marrow assay, dominant lethal assay, mouse forward mutation assay, SCE assay	
	carcinogenicity clinical assessment of safety	PEG-8: when used as a solvent control, not carcinogenic w/oral, i.p., or s.c. admin PEG-6, PEG-8: mild case of immediate hypersensitivity; PEG-8: not a sensitizer use of antimicrobial creams w/PEG vehicle have been associated w/renal toxicity when applied to burned skin; margin of safety (MOS) ranged from 113 to >2600	
	important Discussion items	discussed the use of PEGs with damaged or burned skin (this is no longer an issue); should not contain 1,4-dioxane or ethylene oxide, which are possible oxidation products; aerosol boiler plate	
	Conclusion	Triethylene Glycol and Polyethylene Glycols (PEGs))-4, $-6,-7,-8,-9,-10,-12,-14,-16,-18,-20,-32,-33,-40,-45,-55,-60,-75,-80,-90,-$ $100,-135,-150,-180,-160 \mathrm{M}$ and -180 M and any $\mathrm{PEG} \geq 4$ are safe in the present practices of use and concentration	
Behenyl Alcohol	animal toxicology dermal irritation/sensitization ocular irritation repro/developmental toxicity genotoxicity carcinogenicity	no data no data 1%, transient conjunctival irritation no data no data no data	12

Table 2b. Summaries of information provided in previous reports (continued)
Ingredient

Ingredient	Parameter Evaluated	Outcome	Reference
	clinical assessment of safety important Discussion items Conclusion	no data no relevant items identified safe as used	
Cetearyl Alcohol	animal toxicology dermal irritation/sensitization ocular irritation repro/developmental toxicity genotoxicity carcinogenicity clinical assessment of safety important Discussion items Conclusion	no data formulation $\mathrm{w} / 3 \%$, mildly irritating (rabbits) formulation $\mathrm{w} / 3 \%$, not irritating no data no data no data formulation $\mathrm{w} / 3 \%$: not a sensitizer no relevant items identified safe as used	12
Cetyl Alcohol	ADME animal toxicology dermal irritation/sensitization ocular irritation mucosal irritation repro/developmental toxicity genotoxicity carcinogenicity clinical assessment of safety important Discussion items Conclusion	in general, long-chain aliphatic alcohols, such as cetyl alcohol, are oxidized to their corresponding fatty acids in mammalian tissues; in rats administered radioactive cetyl alcohol by either stomach tube or thoracic duct fistulas, most of the radioactivity was found in the thoracic duct lymph, indicating good absorption; some of the cetyl alcohol was eliminated unchanged in waste products, but most of the cetyl alcohol was oxidized to palmitic acid and incorporated into triglycerides and phospholipids oral $\mathrm{LD}_{50}(\mathrm{rats}):>8.2 \mathrm{~g} / \mathrm{kg}$; formulations $\mathrm{w} / \leq 4 \%$, no toxic effects; dermal LD_{50} : $>2.6 \mathrm{~g} / \mathrm{kg}$; formulation $\mathrm{w} / 5 \%, 2 \mathrm{~g} / \mathrm{kg}$; inhalation: 6-h exposure, 26 ppm (rats, mice, guinea pigs), slight irritation of mucous membranes, but no signs of systemic toxicity or mortality; 6 h exposure, $2220 \mathrm{mg} / \mathrm{m}^{3}, 100 \%$ mortality short-term dermal: 20 day, $11.5 \%, 5 \mathrm{x} /$ day, exfoliative dermatitis, parakeratosis, hyperkeratosis (rabbits); 30 day, 30% in methyl alcohol and propylene glycol, dermal infiltrates of histocytes 3 mos dermal study: formulations w/20\%, well-defined erythema, mild edema, no systemic toxicity (rabbits) undiluted, minimally to slightly irritating; formulations $w / 2-4 \%$, no to well-defined erythema and edema formulations $\mathrm{w} / \leq 6.36 \%$, mostly non-irritating 2% : not irritating to genital mucosa of rabbits no data negative, Ames test no data 100\%: not irritating; formulations w/2-11.5\%, at most, mild irritants formulations w/1-8.4\%, not sensitizers 30% : 11.2% of eczema patients (pop. 330) had allergic reactions formulations $w / 1-4 \%$, not photosensitizers no relevant items identified safe as used	12
Cholesterol	ADME animal toxicology dermal irritation/sensitization	found in all animals, is a membrane component and an important metabolic precursor of certain hormones, vitamins, and steroidal compounds; is a component of skin surface lipids and sebum; the normal metabolism and excretion is well understood in man and animals; upon ingestion, cholesterol is incorporated into cell membranes, further metabolized into plasma lipoproteins, bile salts, and steroid hormones, metabolized by gut bacteria, or excreted via the skin, urine, and as neutral fecal steroids. 4 wk oral study: 1%, reversible hepatic changes (mice) undiluted, no irritating (rabbits); formulation w/1.7\%, slight irritant	11
	ocular irritation	formulations w/1.7-6\%, at most, minimal irritants	

$\begin{array}{cc}\text { Table 2b. Summaries of information provided in previous reports (continued) } \\ \text { Ingredient } & \text { Parameter Evaluated }\end{array}$

Table 2b. Summaries of information provided in previous Outcome

Table 2b. Summaries of information provided in previous reports (continued)
Ingredient Parameter Evaluated Outcome

Ingredient	Parameter Evaluated	Outcome	Reference
	important Discussion items Conclusion	because of toxicity, Panel did not state whether methyl alcohol is safe or unsafe as a solvent safe as used to denature alcohol	
Myristyl Alcohol	animal toxicology dermal irritation/sensitization ocular irritation repro/developmental toxicity genotoxicity carcinogenicity clinical assessment of safety Conclusion	oral LD_{50} (rats): $>8 \mathrm{~g} / \mathrm{kg}$; formulation $\mathrm{w} / 0.8 \%,>5 \mathrm{~g} / \mathrm{kg}$; dermal LD_{50} : formulation $\mathrm{w} / 0.8 \%,>2 \mathrm{~g} / \mathrm{kg}$ inhalation: $3 \%, 1 \mathrm{~h}$, ataxia and moderate nasal irritation in all animals 10 min after exposure, no mortality formulation $\mathrm{w} / 0.8 \%$, non-irritating (rabbits) formulation $\mathrm{w} / 0.8 \%$: not irritating; formulation $\mathrm{w} / 3 \%$: mildly irritating (rinsed eyes), moderately irritating (unrinsed eyes) no data no data no data formulations $w / 0.1-0.25 \%$, not irritants; formulations $w / 0.25-0.8 \%$, not irritating in a 4 -wk clinical study formulations w/0.1-0.25\%, not sensitizers formulation $w / 0.1 \%$, not a photosensitizer no relevant items identified safe as used	12
Octyl Dodecanol	animal toxicology dermal irritation/sensitization ocular irritation repro/developmental toxicity genotoxicity carcinogenicity clinical assessment of safety	oral LD_{50} (rats): $>5 \mathrm{~g} / \mathrm{kg}$, undiluted; formulation $w / 10.2 \%,>25 \mathrm{~g} / \mathrm{kg}$; dermal $\mathrm{LD}_{50}:>3 \mathrm{~g} / \mathrm{kg}$ 100% : irritation score of 0-1.13/4 (rabbits); 30% : irritation score $0 / 4$ (rabbits); formulations w/4 and 10.2%, mild irritation, at most; technical grade: moderate to severe irritation (rabbits, guinea pigs, rats), no irritation (swine, humans) 100% : irritation score of 1 or $4 / 110$ (24 h) no data no data no data 100% : mild irritation in $1 / 40$ subjects; undiluted technical grade: no irritation; formulations w/3-10.2\%: essentially non-irritating screening patch tests for contact sensitization in large populations: incidence rate of $0.36 \%(6 / 1664)$ formulation $\mathrm{w} / 10.2 \%$: not phototoxic or photoallergenic	10
Oleyl Alcohol	important Discussion items Conclusion animal toxicology dermal irritation/sensitization	no Discussion safe as used oral LD_{50} : formulations w/8 or $20 \%,>10 \mathrm{~g} / \mathrm{kg}$ 100% : slightly to moderately irritating (rabbits): 25% : no to low irritation; 10% : non-irritating (rabbits); formulations w/8-20\%, mild irritation, at most; formulation $\mathrm{w} / 1.5 \%$, irritating (rat and mice); technical grade: moderate to severe irritation (rabbits, guinea pigs, rats), no irritation (swine, humans)	10
	ocular irritation repro/developmental toxicity genotoxicity carcinogenicity	100% : essentially non- to minimally irritating; formulations w/1.5-20\%, no or minimal transient irritation no data no data no data	
	clinical assessment of safety important Discussion items Conclusion	undiluted technical grade: no irritation; formulations $w / 2.5-20 \%$, non-to mildly irritating formulations $\mathrm{w} / 2.5-12.7 \%$, not sensitizers screening patch tests for contact sensitization in large population: incidence rate of $0.6 \%(10 / 1664)$ formulations $w / 2.5-8 \%$, not photosensitizing diluted hair dye product $\mathrm{w} / 1.5 \%$, not an ocular irritant Discussion not included in report safe as used	

Table 2b. Summaries of information provided in previous reports (continued)
Ingredient

Ingredient	Parameter Evaluated	Outcome	Reference
Stearyl Alcohol	ADME animal toxicology dermal irritation/sensitization ocular irritation repro/developmental toxicity genotoxicity carcinogenicity clinical assessment of safety important Discussion items Conclusion	found naturally in various mammalian tissues; readily converted to stearic acid, another common constituent of mammalian tissues; results from several studies indicate that stearyl alcohol is poorly absorbed from the GI tract oral LD_{50} : $>8 \mathrm{~g} / \mathrm{kg}$; 3 mos dermal study: formulations w/8\%,some dermal effects, , no systemic toxicity (rabbits) 100% : minimal to mild primary skin irritant (rabbits) formulation $\mathrm{w} / 24 \%$: not a sensitizer 100% : mildly irritating no data negative: Ames test did not promote tumor formation in mice when tested with dimethylbenz[a]anthracene 100% : produced mild irritation in $1 / 80$ subjects; formulations $\mathrm{w} / 14-24 \%$ were non- to slightly irritating formulations $w / 14-2 \%$, not sensitizers screening patch tests for contact sensitization in large population: incidence rate of $0.51 \%(19 / 3740)$ Discussion not included in report safe as used	10
Special Report on Ethylene Glycol and its Ethers	repro/developmental toxicity	it was found that metabolites of ethylene glycol monoalkyl ethers are repro. and developmental toxins; in general, however, the metabolites of concern are not expected to be formed in cosmetic formulations that contain polymers of ethylene glycol;. The toxicity of the metabolites is inversely proportional to the length of the alkyl chain; e.g., 2-butoxyethanol is not a reproductive toxicant	7

Table 3. Structures and Physical Properties
(unless otherwise noted, these values were calculated) ${ }^{75}$
"**, indicates those ingredients previously assessed by the CIR Expert Panel.

Methoxy PEG-n / PEG-n Methyl Ethers (a methyl group attached to a variable length PEG chain)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., PEG-7 Methyl Ether (or Methoxy PEG-7) is when $\mathrm{n}=7$)

INCI Name	Molecular Weight	M.P. / B.P.	$\operatorname{logK} \mathrm{o}_{\mathrm{o} / \mathrm{w}}$
PEG-3 Methyl Ether (CAS No. 9004-74-4; 112-35-6)	164.2	$-44 / 249^{\circ} \mathrm{C}(\exp)$	-0.74
PEG-4 Methyl Ether (CAS No. 9004-74-4)	208.25	$62 / 291^{\circ} \mathrm{C}$	-1.73
PEG-6 Methyl Ether (CAS No. 9004-74-4)	296.36	$120 / 3677^{\circ} \mathrm{C}$	-2.28
PEG-7 Methyl Ether (CAS No. 9004-74-4)	340.41	$149 / 404^{\circ} \mathrm{C}$	-2.55
Methoxy PEG-7 (CAS No. 9004-74-4)	340.41	$149 / 404^{\circ} \mathrm{C}$	-2.55
Methoxy PEG-10 (CAS No. 9004-74-4)	472.57	$215 / 510^{\circ} \mathrm{C}$	-3.38
Methoxy PEG-16 (CAS No. 9004-74-4)	736.88	$316 / 722^{\circ} \mathrm{C}$	-5.02
Methoxy PEG-25 (CAS No. 9004-74-4)	1132.36	$350 / 1039^{\circ} \mathrm{C}$	-7.49
Methoxy PEG-40 (CAS No. 9004-74-4)	1794.14	$--/ 1568^{\circ} \mathrm{C}$	-11.61
Methoxy PEG-100 (CAS No. 9004-74-4)	4437.40	--	-

Capreths (8 carbon chain with a variable PEG)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Capreth -4 is when $\mathrm{n}=4$)

INCI Name	Molecular Weight	M.P. / B.P.	$\log \mathrm{K}_{\mathrm{o} / \mathrm{w}}$
Capryleth-4	306.44	$127 / 380^{\circ} \mathrm{C}$	1.71
Capryleth-5	350.49	$150 / 415^{\circ} \mathrm{C}$	1.43

Noneth-8 (9 carbon chain with an 8 unit PEG)
General Structure:

$\mathrm{n}=9$

INCI Name	Molecular Weight	M.P. / B.P.	$\operatorname{logK}_{\mathrm{o} / \mathrm{w}}$
Noneth-8	496.67	$225 / 532^{\circ} \mathrm{C}$	1.10

Table 3. Structures and Physical Properties (continued)
Deceths (10 carbon chain with a variable PEG)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Deceth-4 is when $\mathrm{n}=4$)

INCI Name	Molecular Weight	M.P. / B.P.	$\operatorname{logK}{ }_{\mathrm{o} / \mathrm{w}}$
Deceth-3 (CAS No. 26138-52-8)	290.44	$113 / 368^{\circ} \mathrm{C}$	2.96
Deceth-4 (CAS No. 26183-52-8; 5703-94-6)	334.49	$138 / 403^{\circ} \mathrm{C}$	2.69
Deceth-5 (CAS No. 26183-52-8)	378.54	$166 / 438^{\circ} \mathrm{C}$	2.42
Deceth-6 (CAS No. 26183-52-8)	422.60	$182 / 473^{\circ} \mathrm{C}$	2.14
Deceth-7 (CAS No. 26183-52-8)	466.65	$208 / 509^{\circ} \mathrm{C}$	1.87
Deceth-8 (CAS No. 26183-52-8)	510.70	$233 / 544^{\circ} \mathrm{C}$	1.59
Deceth-9 (CAS No. 26183-52-8)	554.75	$250 / 579^{\circ} \mathrm{C}$	1.32
Deceth-10 (CAS No. 26183-52-8)	598.81	$266 / 514^{\circ} \mathrm{C}$	1.04

Undeceths (11 carbon chain with a variable PEG)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Undeceth-3 is when $\mathrm{n}=3$)

INCI Name	Molecular Weight	M.P. / B.P.	$\operatorname{logK}_{\mathrm{o} / \mathrm{w}}$
Undeceth-3 (CAS No. 34398-01-1)	304.47	$122 / 379^{\circ} \mathrm{C}$	3.46
Undeceth-5 (CAS No. 34398-01-1)	392.57	$174 / 450^{\circ} \mathrm{C}$	2.91
Undeceth-7 (CAS No. 34398-01-1)	480.68	$215 / 520^{\circ} \mathrm{C}$	2.36
Undeceth-8 (CAS No. 34398-01-1)	524.73	$239 / 5566^{\circ} \mathrm{C}$	2.08
Undeceth-9 (CAS No. 34398-01-1)	568.78	$255 / 591^{\circ} \mathrm{C}$	1.81
Undeceth-11 (CAS No. 34398-01-1)	656.89	$288 / 661^{\circ} \mathrm{C}$	1.26
Undeceth-40 (CAS No. 34398-01-1; 127036-24-2)	1931.34	$350 / 1684^{\circ} \mathrm{C}$	-6.70

Table 3. Structures and Physical Properties (continued)
Laureths (12 carbon chain with a variable PEG)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Laureth -11 is when $\mathrm{n}=11$)

INCI Name	Molecular Weight	M.P. / B.P.	$\log \mathrm{K}_{\mathrm{o} / \mathrm{w}}$
Laureth-1 (CAS Nos. 9002-92-0; 4536-30-5)	230.39	$65 / 318{ }^{\circ} \mathrm{C}$	4.50
Laureth-2 (CAS Nos. 9002-92-0; 3055-93-4)	274.44	$98 / 356{ }^{\circ} \mathrm{C}$	4.22
Laureth-3 (CAS Nos. 9002-92-0; 3055-94-5)	318.49	131/391 ${ }^{\circ} \mathrm{C}$	3.95
Laureth-4* (CAS Nos. 9002-92-0; 68439-50-9; 5274-68-0)	362.54	$154 / 426{ }^{\circ} \mathrm{C}$	3.67
Laureth-5 (CAS Nos. 9002-92-0; 3055-95-6)	406.60	$176 / 461{ }^{\circ} \mathrm{C}$	3.40
Laureth-6 (CAS Nos. 9002-92-0; 3055-96-7)	450.65	197/497 ${ }^{\circ} \mathrm{C}$	3.12
Laureth-7 (CAS Nos. 9002-92-0; 3055-97-8)	494.70	223/532 ${ }^{\circ} \mathrm{C}$	2.85
Laureth-8 (CAS Nos. 9002-92-0; 3055-98-8)	538.75	$244 / 567{ }^{\circ} \mathrm{C}$	2.57
Laureth-9 (CAS Nos. 9002-92-0; 3055-99-0)	582.81	261/602 ${ }^{\circ} \mathrm{C}$	2.30
Laureth-10 (CAS Nos. 9002-92-0; 68002-97-1; 6540-99-4)	626.86	$277 / 638^{\circ} \mathrm{C}$	2.03
Laureth-11 (CAS Nos. 9002-92-0; 68002-97-1)	670.91	293/673 ${ }^{\circ} \mathrm{C}$	1.75
Laureth-12 (CAS Nos. 9002-92-0; 68002-97-1)	714.96	$310 / 708^{\circ} \mathrm{C}$	1.48
Laureth-13 (CAS Nos. 9002-92-0; 68002-97-1)	759.02	$326 / 743{ }^{\circ} \mathrm{C}$	1.20
Laureth-14 (CAS Nos. 9002-92-0; 68002-97-1)	803.07	$343 / 779{ }^{\circ} \mathrm{C}$	0.93
Laureth-15 (CAS Nos. 9002-92-0; 68002-97-1)	847.12	$350 / 815^{\circ} \mathrm{C}$	0.65
Laureth-16 (CAS Nos. 9002-92-0; 68002-97-1)	891.18	$--/ 849^{\circ} \mathrm{C}$	0.38
Laureth-20 (CAS No. 9002-92-0)	1067.39	--/990 ${ }^{\circ} \mathrm{C}$	-0.72
Laureth-21 (CAS No. 9002-92-0)	1111.44	--/1026 ${ }^{\circ} \mathrm{C}$	-0.99
Laureth-23* (CAS No. 9002-92-0)	1199.54	--/1096 ${ }^{\circ} \mathrm{C}$	-1.54
Laureth-25 (CAS No. 9002-92-0)	1287.65	--/1167 ${ }^{\circ} \mathrm{C}$	-2.09
Laureth-30 (CAS No. 9002-92-0)	1507.91	--/1343 ${ }^{\circ} \mathrm{C}$	-3.46
Laureth-38 (CAS No. 9002-92-0)	1860.33	--/1625 ${ }^{\circ} \mathrm{C}$	-5.66
Laureth-40 (CAS No. 9002-92-0)	1948.44	--/1696 ${ }^{\circ} \mathrm{C}$	-6.21
Laureth-50	2388.96	--/2048 ${ }^{\circ} \mathrm{C}$	-8.95

Table 3. Structures and Physical Properties (continued)
Trideceths (13 carbon chain with a variable PEG)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Trideceth -3 is when $\mathrm{n}=3$)

INCI Name	Molecular Weight	M.P. $/ \mathrm{B} . \mathrm{P}$.	$\log \mathrm{K}_{\mathrm{o} / \mathrm{w}}$
Trideceth-2 (CAS No. 24938-91-8)	332.52	$140 / 403^{\circ} \mathrm{C}$	4.44
Trideceth-3 (CAS No. 24938-91-8; 4403-12-7)	376.57	$162 / 438^{\circ} \mathrm{C}$	4.16
Trideceth-4	420.62	$184 / 473^{\circ} \mathrm{C}$	3.89
Trideceth-5 (CAS No. 24938-91-8)	464.48	$205 / 508^{\circ} \mathrm{C}$	3.61
Trideceth-6 (CAS No. 24938-91-8)	508.73	$230 / 543^{\circ} \mathrm{C}$	3.34
Trideceth-7 (CAS No. 24938-91-8)	552.78	$249 / 579^{\circ} \mathrm{C}$	3.07
Trideceth-8 (CAS No. 24938-91-8)	596.83	$266 / 614^{\circ} \mathrm{C}$	2.79
Trideceth-9 (CAS No. 24938-91-8; 69011-36-5)	640.89	$282 / 649^{\circ} \mathrm{C}$	2.52
Trideceth-10 (CAS No. 24938-91-8)	684.94	$299 / 685^{\circ} \mathrm{C}$	2.24
Trideceth-11 (CAS No. 24938-91-8)	728.99	$315 / 720^{\circ} \mathrm{C}$	1.97
Trideceth-12 (CAS No. 24938-91-8; $78330-21-9)$	773.04	$332 / 755^{\circ} \mathrm{C}$	1.69
Trideceth-15 (CAS No. 24938-91-8)	905.20	$350 / 861^{\circ} \mathrm{C}$	0.87
Trideceth-18 (CAS No. 24938-91-8)	1037.36	$--/ 967^{\circ} \mathrm{C}$	0.05
Trideceth-20 (CAS No. 24938-91-8)	1125.46	$--/ 1037^{\circ} \mathrm{C}$	-0.50
Trideceth-21 (CAS No. 24938-91-8)	1169.52	$--/ 1072{ }^{\circ} \mathrm{C}$	-0.78
Trideceth-50 (CAS No. 24938-91-8)	2447.04	$--/ 2095^{\circ} \mathrm{C}$	-8.73

Myreths (14 carbon chain with a variable PEG)
General Structure:

$n=$ the average number of ethylene glycol units (e.g., Myreth-3 is when $n=3$)

INCI Name	Molecular Weight	M.P. / B.P.	$\log K_{o / w}$
Myreth-2 (CAS No. 27306-79-2)	302.49	$116 / 379^{\circ} \mathrm{C}$	5.20
Myreth-3 (CAS No. 27306-79-2; 26826-30-2)	346.55	$142 / 414^{\circ} \mathrm{C}$	4.93
Myreth-4 (CAS No. 27306-79-2; 39034-24-7)	390.60	$171 / 449^{\circ} \mathrm{C}$	4.65
Myreth-5 (CAS No. 27306-79-2; 92669-010-7)	434.65	$187 / 485^{\circ} \mathrm{C}$	4.38
Myreth-10 (CAS No. 27306-79-2)	654.91	$288 / 661^{\circ} \mathrm{C}$	3.01

Table 3. Structures and Physical Properties (continued)
Ceteths (16 carbon chain with a variable PEG)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Ceteth-3 is when $\mathrm{n}=3$)

INCI Name	Molecular Weight	M.P. / B.P.	$\log \mathrm{K}_{\mathrm{o} / \mathrm{w}}$
Ceteth-1* (CAS No. 9004-95-9; 2136-71-2)	286.49	101/367 ${ }^{\circ} \mathrm{C}$	6.46
Ceteth-2* (CAS No. 9004-95-9; 5274-61-3)	330.54	$134 / 402{ }^{\circ} \mathrm{C}$	6.19
Ceteth-3* (CAS No. 9004-95-9; 4484-59-7)	374.59	$158 / 437{ }^{\circ} \mathrm{C}$	5.91
Ceteth-4* (CAS No. 9004-95-9; 5274-63-5)	418.64	$187 / 473{ }^{\circ} \mathrm{C}$	5.64
Ceteth-5* (CAS No. 9004-95-9; 4478-97-1)	462.70	203/508 ${ }^{\circ} \mathrm{C}$	5.36
Ceteth-6* (CAS No. 9004-95-9; 5168-91-2)	506.75	$228 / 543{ }^{\circ} \mathrm{C}$	5.09
Ceteth-7 (CAS No. 9004-95-9)	550.44	$249 / 578{ }^{\circ} \mathrm{C}$	4.81
Ceteth-10* (CAS No. 9004-95-9; 14529-40-9)	682.96	299/684 ${ }^{\circ} \mathrm{C}$	3.99
Ceteth-12* (CAS No. 9004-95-9; 94159-75-8)	771.06	$332 / 755^{\circ} \mathrm{C}$	3.44
Ceteth-13 (CAS No. 9004-95-9)	815.12	$348 / 790{ }^{\circ} \mathrm{C}$	3.17
Ceteth-14* (CAS No. 9004-95-9)	859.17	$--/ 825^{\circ} \mathrm{C}$	2.89
Ceteth-15* (CAS No. 9004-95-9)	903.22	--/860 ${ }^{\circ} \mathrm{C}$	2.62
Ceteth-16* (CAS No. 9004-95-9)	947.27	$--/ 896{ }^{\circ} \mathrm{C}$	2.34
Ceteth-17 (CAS No. 9004-95-9)	991.33	--/931 ${ }^{\circ} \mathrm{C}$	2.07
Ceteth-18 (CAS No. 9004-95-9)	1035.39	--/966 ${ }^{\circ} \mathrm{C}$	1.80
Ceteth-20* (CAS No. 9004-95-9)	1123.48	--/1037 ${ }^{\circ} \mathrm{C}$	1.25
Ceteth-23 (CAS No. 9004-95-9)	1255.65	--/1142 ${ }^{\circ} \mathrm{C}$	0.42
Ceteth-24* (CAS No. 9004-95-9)	1299.69	--/1178 ${ }^{\circ} \mathrm{C}$	0.15
Ceteth-25* (CAS No. 9004-95-9)	1343.75	--/1213 ${ }^{\circ} \mathrm{C}$	-0.13
Ceteth-30* (CAS No. 9004-95-9)	1564.01	--/1389 ${ }^{\circ} \mathrm{C}$	-1.50
Ceteth-40 (CAS No. 9004-95-9)	2004.54	--/1742 ${ }^{\circ} \mathrm{C}$	-4.24
Ceteth-45* (CAS No. 9004-95-9)	2224.80	--/1918 ${ }^{\circ} \mathrm{C}$	-5.61
Ceteth-150 (CAS No. 9004-95-9)	6850.35	----	--

Table 3. Structures and Physical Properties (continued)
Steareths (18 carbon chain with a variable PEG)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Steareth 3 is when $\mathrm{n}=3$)

INCI Name

Steareth-1 (CAS No. 9005-00-9)	314.55
Steareth-2* (CAS No. 9005-00-9; 16057-43-5)	358.60
Steareth-3 (CAS No. 9005-00-9; 4439-32-1)	402.65
Steareth-4* (CAS No. 9005-00-9; 59970-10-4)	446.70
Steareth-5 (CAS No. 9005-00-9; 71093-13-5)	490.76
Steareth-6 (CAS No. 9005-00-9; 2420-29-3)	534.81
Steareth-7 (CAS No. 9005-00-9; 66146-84-7)	578.86
Steareth-8 (CAS No. 9005-00-9)	622.91
Steareth-10* (CAS No. 9005-00-9; 13149-86-5)	711.02
Steareth-11* (CAS No. 9005-00-9)	755.07
Steareth-13* (CAS No. 9005-00-9)	843.18
Steareth-14 (CAS No. 9005-00-9)	887.23
Steareth-15* (CAS No. 9005-00-9)	931.28
Steareth-16 (CAS No. 9005-00-9)	975.33
Steareth-20* (CAS No. 9005-00-9)	1151.54
Steareth-21 (CAS No. 9005-00-9)	1195.60
Steareth-25 (CAS No. 9005-00-9)	1371.81
Steareth-27 (CAS No. 9005-00-9)	1459.91
Steareth-30 (CAS No. 9005-00-9)	1592.07
Steareth-40 (CAS No. 9005-00-9)	2032.60
Steareth-50 (CAS No. 9005-00-9)	2473.12
Steareth-80 (CAS No. 9005-00-9)	3497.70
Steareth-100 (CAS No. 9005-00-9)	4675.75
Steareth-200 (CAS No. 9005-00-9)	9081.01

Arachideth-20 (20 carbon chain with a 20 unit PEG)
Structure:

$\mathrm{n}=20$

INCI Name
Arachideth-20

Molecular Weight
1179.60
$\begin{array}{cc}\text { M.P. / B.P. } & \log \mathrm{K}_{\mathrm{o} / \mathrm{w}} \\ --/ 1083^{\circ} \mathrm{C} & 3.21\end{array}$

Table 3. Structures and Physical Properties (continued)
Beheneths (22 carbon chain with a variable PEG)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Beheneth-2 is when $\mathrm{n}=2$)

INCI Name
Beheneth-2
Beheneth-5
Beheneth-10
Beheneth-15
Beheneth-20
Beheneth-25
Beheneth-30

Molecular Weight
414.71
546.85
767.13
987.39
1207.65
1427.91
1648.18

M.P. / B.P.	$\log \mathrm{K}_{\mathrm{o} / \mathrm{w}}$
$179 / 472^{\circ} \mathrm{C}$	9.13
$249 / 577{ }^{\circ} \mathrm{C}$	8.31
$331 / 754^{\circ} \mathrm{C}$	6.94
$--/ 930{ }^{\circ} \mathrm{C}$	5.56
$--/ 1106^{\circ} \mathrm{C}$	4.19
$--/ 1283{ }^{\circ} \mathrm{C}$	2.82
$--/ 1459^{\circ} \mathrm{C}$	1.45

Table 3. Structures and Physical Properties (continued)
Ceteareths (mixture of 16 and 18 carbon chains with a variable PEG)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Ceteareth 3 is when $\mathrm{n}=3$)
As these are mixtures of two molecules at unknown ratios, molecular weights and physical properties are not calculable.

INCI Name

Ceteareth-2*	(CAS No. 68439-49-6)	Molecular weight < 1000
Ceteareth-3*	(CAS No. 68439-49-6)	Molecular weight < 1000
Ceteareth-4*	(CAS No. 68439-49-6)	Molecular weight < 1000
Ceteareth-5*	(CAS No. 68439-49-6)	Molecular weight < 1000
Ceteareth-6*	(CAS No. 68439-49-6)	Molecular weight < 1000
Ceteareth-7*	(CAS No. 68439-49-6)	Molecular weight < 1000
Ceteareth-8*	(CAS No. 68439-49-6)	Molecular weight < 1000
Ceteareth-9*	(CAS No. 68439-49-6)	Molecular weight < 1000
Ceteareth-10*	(CAS No. 68439-49-6)	Molecular weight < 1000
Ceteareth-11*	(CAS No. 68439-49-6)	Molecular weight < 1000
Ceteareth-12*	(CAS No. 68439-49-6)	Molecular weight < 1000
Ceteareth-13*	(CAS No. 68439-49-6)	Molecular weight < 1000
Ceteareth-14*	(CAS No. 68439-49-6)	Molecular weight < 1000
Ceteareth-15*	(CAS No. 68439-49-6)	Molecular weight < 1000
Ceteareth-16*	(CAS No. 68439-49-6)	Molecular weight < 1000
Ceteareth-17*	(CAS No. 68439-49-6)	Molecular weight ~ 1000
Ceteareth-18*	(CAS No. 68439-49-6)	Molecular weight > 1000
Ceteareth-20*	(CAS No. 68439-49-6)	Molecular weight > 1000
Ceteareth-22*	(CAS No. 68439-49-6)	Molecular weight > 1000
Ceteareth-23*	(CAS No. 68439-49-6)	Molecular weight > 1000
Ceteareth-24*	(CAS No. 68439-49-6)	Molecular weight > 1000
Ceteareth-25*	(CAS No. 68439-49-6)	Molecular weight > 1000
Ceteareth-27*	(CAS No. 68439-49-6)	Molecular weight > 1000
Ceteareth-28*	(CAS No. 68439-49-6)	Molecular weight > 1000
Ceteareth-29*	(CAS No. 68439-49-6)	Molecular weight > 1000
Ceteareth-30*	(CAS No. 68439-49-6)	Molecular weight > 1000
Ceteareth-33*	(CAS No. 68439-49-6)	Molecular weight > 1000
Ceteareth-34*	(CAS No. 68439-49-6)	Molecular weight > 1000
Ceteareth-40*	(CAS No. 68439-49-6)	Molecular weight > 1000
Ceteareth-50*	(CAS No. 68439-49-6)	Molecular weight > 1000
Ceteareth-55*	(CAS No. 68439-49-6)	Molecular weight > 1000
Ceteareth-60*	(CAS No. 68439-49-6)	Molecular weight > 1000
Ceteareth-80*	(CAS No. 68439-49-6)	Molecular weight > 1000
Ceteareth-100*	* (CAS No. 68439-49-6)	Molecular weight > 1000

Table 3. Structures and Physical Properties (continued)
Pareths (mixture of variable length carbons chains with a variable PEG)
Structure Example: C12-14 Pareth-3

As these are mixtures of more than one molecule at unknown ratios, molecular weights and physical properties are not calculable.
INCI Name

C9-11 Pareth-3 (CAS No. 68439-46-3)
C9-11 Pareth-4 (CAS No. 68439-46-3)
C9-11-Pareth-6 (CAS No. 68439-46-3)
C9-11 Pareth-8 (CAS No. 68439-46-3)
C9-15 Pareth-8 (CAS No. 157627-88-8)
C10-16 Pareth-1 (CAS No. 68002-97-1)
C10-16 Pareth-2 (CAS No. 68002-97-1)
C11-13 Pareth-6 (CAS No. 308060-94-8)
C11-13 Pareth-9 (CAS No. 308060-94-8)
C11-13 Pareth-10 (CAS No. 308060-94-8)
C11-15 Pareth-3 (CAS No. 68131-40-8)
C11-15 Pareth-5 (CAS No. 68131-40-8)
C11-15 Pareth-7 (CAS No. 68131-40-8)
C11-15 Pareth-9 (CAS No. 68131-40-8)
C11-15 Pareth-12 (CAS No. 68131-40-8)
C11-15 Pareth-15 (CAS No. 68131-40-8)
C11-15 Pareth-20 (CAS No. 68131-40-8)
C11-15 Pareth-30 (CAS No. 68131-40-8)
C11-15 Pareth-40 (CAS No. 68131-40-8)
C11-21-Pareth-3 (CAS No. 246538-82-9)
C11-21-Pareth-10 (CAS No. 246538-82-9)
C12-13 Pareth-1 (CAS No. 66455-14-9)
C12-13 Pareth-2 (CAS No. 66455-14-9)
C12-13 Pareth-3 (CAS No. 66455-14-9)
C12-13 Pareth-4 (CAS No. 66455-14-9)
C12-13 Pareth-5 (CAS No. 66455-14-9)
C12-13 Pareth-6 (CAS No. 66455-14-9)
C12-13 Pareth-7 (CAS No. 66455-14-9)
C12-13 Pareth-9 (CAS No. 66455-14-9)
C12-13 Pareth-10 (CAS No. 66455-14-9)
C12-13 Pareth-15 (CAS No. 66455-14-9)
C12-13 Pareth-23 (CAS No. 66455-14-9)
C12-14 Pareth-3 (CAS No. 68439-50-9)
C12-14 Pareth-5 (CAS No. 68439-50-9)
C12-14 Pareth-7 (CAS No. 68439-50-9)
C12-14 Pareth-9 (CAS No. 68439-50-9)
C12-14 Pareth-12 (CAS No. 68439-50-9)
C12-15 Pareth-2 (CAS No. 68131-39-5)
C12-15 Pareth-3 (CAS No. 68131-39-5)
C12-15 Pareth-4 (CAS No. 68131-39-5)
C12-15 Pareth-5 (CAS No. 68131-39-5)
C12-15 Pareth-7 (CAS No. 68131-39-5)
C12-15 Pareth-9 (CAS No. 68131-39-5)
C12-15 Pareth-10 (CAS No. 68131-39-5)

Molecular weight < 1000
Molecular weight > 1000
Molecular weight >1000
Molecular weight > 1000
Molecular weight < 1000
Molecular weight > 1000
Molecular weight < 1000

Table 3. Structures and Physical Properties (continued)

C12-15 Pareth-11 (CAS No. 68131-39-5)
C12-15 Pareth-12 (CAS No. 68131-39-5)
C12-16 Pareth-5 (CAS No. 68551-12-2)
C12-16 Pareth-7 (CAS No. 68551-12-2)
C12-16 Pareth-9 (CAS No. 68551-12-2)
C13-15 Pareth-21 (CAS No. 64425-86-1)
C14-15 Pareth-4 (CAS No. 68951-67-7)
C14-15 Pareth-7 (CAS No. 68951-67-7)
C14-15 Pareth-8 (CAS No. 68951-67-7)
C14-15 Pareth-11 (CAS No. 68951-67-7)
C14-15 Pareth-12 (CAS No. 68951-67-7)
C14-15 Pareth-13 (CAS No. 68951-67-7)
C20-22 Pareth-30
C20-40 Pareth-3 (CAS No. 246538-83-0)
C20-40 Pareth-10 (CAS No. 246538-83-0)
C20-40 Pareth-24 (CAS No. 246538-83-0)
C20-40 Pareth-40 (CAS No. 246538-83-0)
C20-40 Pareth-95 (CAS No. 246538-83-0)
C22-24 Pareth-33 (CAS No. 246538-84-1)
C30-50 Pareth-3 (CAS No. 246538-85-2)
C30-50 Pareth-10 (CAS No. 246538-85-2)
C30-50 Pareth-40 (CAS No. 246538-85-2)
C40-60 Pareth-3 (CAS No. 246538-86-3)
C40-60 Pareth-10 (CAS No. 246538-86-3)

Molecular weight < 1000
Molecular weight > 1000
Molecular weight < 1000
Molecular weight > 1000
Molecular weight < 1000
Molecular weight ~ 1000
Molecular weight > 1000
Molecular weight > 1000
Molecular weight > 1000
Molecular weight > 1000
Molecular weight < 1000
Molecular weight ~ 1000
Molecular weight > 1000
Molecular weight < 1000
Molecular weight > 1000

Hydrogenated Talloweths (mixture of 14, 16, and 18 carbon chains with a variable PEG)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Hydrogenated Talloweth-12 is when $\mathrm{n}=12$)
As these are mixtures of more than one molecule at unknown ratios, molecular weights and physical properties are not calculable.

INCI Name
Hydrogenated Talloweth-12
Molecular weight < 1000
Hydrogenated Talloweth-25
Molecular weight > 1000

Table 3. Structures and Physical Properties (continued)

Partially Unsaturated Alkyl PEG Ethers

Undecyleneth-6 (Ω-1 unsaturated 11 carbon chain with a 6 unit PEG)
Structure:

Oleths ($\Omega-9$ unsaturated 18 carbon chain with a variable PEG)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Oleth -2 is when $\mathrm{n}=2$)

INCI Name	Molecular Weight	M.P. / B.P.	$\log \mathrm{K}_{\mathrm{o} / \mathrm{w}}$
Oleth-2* (CAS No. 9004-98-2; 5274-65-7; 95287-03-9)	356.58	$151 / 429{ }^{\circ} \mathrm{C}$	6.95
Oleth-3* (CAS No. 9004-98-2; 5274-66-8; 96459-08-4)	400.64	175/464 ${ }^{\circ} \mathrm{C}$	6.68
Oleth-4* (CAS No. 9004-98-2; 5353-26-4; 103622-85-1)	444.69	193/499 ${ }^{\circ} \mathrm{C}$	6.40
Oleth-5* (CAS No. 9004-98-2; 5353-27-5)	488.74	$219 / 535{ }^{\circ} \mathrm{C}$	6.13
Oleth-6* (CAS No. 9004-98-2)	532.79	$244 / 570^{\circ} \mathrm{C}$	5.86
Oleth-7* (CAS No. 9004-98-2)	576.85	$262 / 605{ }^{\circ} \mathrm{C}$	5.58
Oleth-8* (CAS No. 9004-98-2; 26996-03-2; 27040-03-5)	620.90	$278 / 640^{\circ} \mathrm{C}$	5.31
Oleth-9* (CAS No. 9004-98-2)	664.95	$295 / 676{ }^{\circ} \mathrm{C}$	5.03
Oleth-10* (CAS No. 9004-98-2)	709.00	$311 / 711^{\circ} \mathrm{C}$	4.76
Oleth-11* (CAS No. 9004-98-2)	753.06	$328 / 746{ }^{\circ} \mathrm{C}$	4.48
Oleth-12* (CAS No. 9004-98-2)	797.11	$344 / 781{ }^{\circ} \mathrm{C}$	4.21
Oleth-15* (CAS No. 9004-98-2)	929.27	$350 / 887{ }^{\circ} \mathrm{C}$	3.39
Oleth-16* (CAS No. 9004-98-2; 25190-05-0)	973.32	--/922 ${ }^{\circ} \mathrm{C}$	3.11
Oleth-20* (CAS No. 9004-98-2)	1149.53	--/1063 ${ }^{\circ} \mathrm{C}$	2.01
Oleth-23* (CAS No. 9004-98-2)	1281.69	--/1169 ${ }^{\circ} \mathrm{C}$	1.19
Oleth-24 (CAS No. 9004-98-2)	1325.74	--/1204 ${ }^{\circ} \mathrm{C}$	0.92
Oleth-25* (CAS No. 9004-98-2)	1369.79	--/1240 ${ }^{\circ} \mathrm{C}$	0.64
Oleth-30* (CAS No. 9004-98-2)	1590.05	--/ $1416{ }^{\circ} \mathrm{C}$	-0.73
Oleth-35 (CAS No. 9004-98-2)	1810.32	--/1592 ${ }^{\circ} \mathrm{C}$	-2.10
Oleth-40* (CAS No. 9004-98-2)	2030.58	--/1769 ${ }^{\circ} \mathrm{C}$	-3.47
Oleth-44* (CAS No. 9004-98-2)	2206.79	--/1910 ${ }^{\circ} \mathrm{C}$	-4.57
Oleth-45 (CAS No. 9004-98-2)	2250.84	--/1945 ${ }^{\circ} \mathrm{C}$	-4.85
Oleth-50* (CAS No. 9004-98-2)	2471.11	--/2121 ${ }^{\circ} \mathrm{C}$	-6.22
Oleth-82 (CAS No. 9004-98-2)	3880.79	--/--	--
Oleth-100 (CAS No. 9004-98-2)	4673.73	--/--	--
Oleth-106 (CAS No. 9004-98-2)	4938.05	--/--	--

Table 3. Structures and Physical Properties (continued)
Cetoleths (mixture of 16 carbon chain and $\Omega-9$ unsaturated 18 carbon chains with a variable PEG)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Cetoleth -6 is when $\mathrm{n}=6$)
As these are mixtures of two molecules at unknown ratios, molecular weights and physical properties are not calculable.

INCI Name

Cetoleth-2 \quad (CAS No. 8065-81-4)
Cetoleth-4
(CAS No. 8065-81-4)
Cetoleth-5
(CAS No. 8065-81-4)
Cetoleth-6
(CAS No. 8065-81-4)
Cetoleth-10
(CAS No. 8065-81-4)
Cetoleth-11
(CAS No. 8065-81-4)
Cetoleth-15
Cetoleth-20
(CAS No. 8065-81-4)
(CAS No. 8065-81-4)
Cetoleth-22 (CAS No. 8065-81-4)

Molecular weight < 1000
Molecular weight > 1000

Table 3. Structures and Physical Properties (continued)
Coceths (mixture of $6,8,10,12,14,18, \Omega-9$ unsaturated $18, \Omega-6$ unsaturated 18 , and 20 carbon chains with a variable PEG)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Coceth-3 is when $\mathrm{n}=3$)
As these are mixtures of more than one molecule at unknown ratios, molecular weights and physical properties are not calculable.

INCI Name

Coceth-3 (CAS No. 61791-13-7)
Coceth-5 (CAS No. 61791-13-7)
Coceth-6 (CAS No. 61791-13-7)
Coceth-7 (CAS No. 61791-13-7)
Coceth-8 (CAS No. 61791-13-7)
Coceth-10 (CAS No. 61791-13-7)
Coceth-20 (CAS No. 61791-13-7)
Coceth-25 (CAS No. 61791-13-7)

Molecular weight < 1000
Molecular weight > 1000
Molecular weight > 1000

Table 3. Structures and Physical Properties (continued)
Palmeth-2 (mixture of $14,16,18, \Omega-6$ unsaturated 18 , and $\Omega-6$ unsaturated 18 carbon chains with a 2 unit PEG)
Structure:

As palmeth-2 is a mixture of more than one molecule at unknown ratio, molecular weight and physical properties are not calculable.

INCI Name

Molecular weight < 1000

Talloweths (mixture of $14,16, \Omega-9$ unsaturated $16,18, \Omega-9$ unsaturated $18, \Omega-6$ unsaturated 18 , and $\Omega-3$ unsaturated 18 carbon chains with a variable PEG)

General Structure:

average number of ethylene glycol units (e.g., Talloweth-4 is when $n=4$)
As these are mixtures of more than one molecule at unknown ratios, molecular weights and physical properties are not calculable.

INCI Name

Talloweth-4 (CAS No. 61791-28-4)
Talloweth-5 (CAS No. 61791-28-4)
Talloweth-6 (CAS No. 61791-28-4)
Talloweth-7 (CAS No. 61791-28-4)
Talloweth-18 (CAS No. 61791-28-4)

Molecular weight < 1000
Molecular weight < 1000
Molecular weight < 1000
Molecular weight < 1000
Molecular weight > 1000

Table 3. Structures and Physical Properties (continued)
PEG Jojoba Alcohols (mixture of $\Omega-9$ unsaturated 18, $\Omega-9$ unsaturated 20, and $\Omega-9$ unsaturated 22 carbon chains with a variable PEG)

General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., PEG-15 Jojoba Alcohol is when $\mathrm{n}=15$)
As these are mixtures of more than one molecule at unknown ratios, molecular weights and physical properties are not calculable.

INCI Name

PEG-15 Jojoba Alcohol
PEG-26 Jojoba Alcohol
PEG-40 Jojoba Alcohol

Molecular weight < 1000
Molecular weight > 1000
Molecular weight > 1000

Branched Alkyl PEG Ethers

Isodeceths (mixture of various branched 10 carbon chains with a variable PEG)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Isodeceth -4 is when $\mathrm{n}=4$); "iso" $=$ a mixture of branched isomers, one example of which would be:

As these are mixtures of more than one isomer at unknown ratios, physical properties are not calculable.

INCI Name
Isodeceth-4
Isodeceth-5
Isodeceth-6

Molecular Weight

334.49
378.54
422.60

Table 3. Structures and Physical Properties (continued)
Isolaureths (mixture of various branched 12 carbon chains with a variable PEG)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Isolaureth-10 is when $\mathrm{n}=10$); "iso" $=$ a mixture of branched isomers, one example of which would be:

As these are mixtures of more than one isomer at unknown ratios, physical properties are not calculable.

INCI Name

Isolaureth-3 (CAS No. 39365-90-7)
Isolaureth-6 (CAS No. 39365-90-7)
Isolaureth-10 (CAS No. 39365-90-7)

Molecular Weight
318.49
450.65
626.86

Isomyreths (mixture of various branched 14 carbon chains with a variable PEG)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Isomyreth-9 is when $\mathrm{n}=9$); "iso" $=$ a mixture of branched isomers, one example of which would be:

As these are mixtures of more than one isomer at unknown ratios, physical properties are not calculable.

INCI Name

Isomyreth-3
Isomyreth-9

Molecular Weight
346.55
610.86

Table 3. Structures and Physical Properties (continued)
Isoceteths (mixture of various branched 16 carbon chains with a variable PEG)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Isoceteth-5 is when $\mathrm{n}=5$); "iso" = a mixture of branched isomers, one example of which would be:

As these are mixtures of more than one isomer at unknown ratios, physical properties are not calculable.

INCI Name
Isoceteth-5 (CAS No. 69364-63-2)
Isoceteth-7 (CAS No. 69364-63-2)
Isoceteth-10 (CAS No. 69364-63-2)
Isoceteth-12 (CAS No. 69364-63-2)
Isoceteth-15 (CAS No. 69364-63-2)
Isoceteth-20 (CAS No. 69364-63-2)
Isoceteth-25 (CAS No. 69364-63-2)
Isoceteth-30 (CAS No. 69364-63-2)

Molecular Weight
462.70
550.81
682.97
771.07
903.23
1123.49
1343.75
1564.02

Table 3. Structures and Physical Properties (continued)
Isosteareths (mixture of various branched 18 carbon chains with a variable PEG)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Isosteareth-6 is when $\mathrm{n}=6$); "iso" $=$ a mixture of branched isomers, one example of which would be:

As these are mixtures of more than one isomer at unknown ratios, physical properties are not calculable.

INCI Name
Isosteareth-2 (CAS No. 52292-17-8)
Isosteareth-3 (CAS No. 52292-17-8)
Isosteareth-5 (CAS No. 52292-17-8)
Isosteareth-8 (CAS No. 52292-17-8)
Isosteareth-10 (CAS No. 52292-17-8)
Isosteareth-12 (CAS No. 52292-17-8)
Isosteareth-15 (CAS No. 52292-17-8)
Isosteareth-16 (CAS No. 52292-17-8)
Isosteareth-20 (CAS No. 52292-17-8)
Isosteareth-22 (CAS No. 52292-17-8)
Isosteareth-25 (CAS No. 52292-17-8)
Isosteareth-50 (CAS No. 52292-17-8)

Molecular Weight
358.60
402.65
490.76
622.91
711.02
799.12
931.28
975.33
1151.54
1239.65
1371.81
2473.12

Table 3. Structures and Physical Properties (continued)
sec-Pareths (mixture of variable length α-branched carbons chains with a variable PEG)
Structure Example: C12-14 sec-Pareth-3

As these are mixtures of more than one molecule at unknown ratios, molecular weights and physical properties are not calculable.

INCI Name

C11-15 Sec-Pareth-12 (CAS No. $\mathbf{6 8 1 3 1 - 4 0 - 8})$	Molecular weight < 1000
C12-14 Sec-Pareth-3 (CAS No. 84133-50-6)	Molecular weight < 1000
C12-14 Sec-Pareth-5 (CAS No. 84133-50-6)	Molecular weight < 1000
C12-14 Sec-Pareth-7 (CAS No. 84133-50-6)	Molecular weight < 1000
C12-14 Sec-Pareth-8 (CAS No. 84133-50-6)	Molecular weight < 1000
C12-14 Sec-Pareth-9 (CAS No. 84133-50-6)	Molecular weight < 1000
C12-14 Sec-Pareth-12 (CAS No. 84133-50-6)	Molecular weight < weight < 1000
C12-14 Sec-Pareth-15 (CAS No. 84133-50-6)	Molecular weight ~ 1000
C12-14 Sec-Pareth-20 (CAS No. 84133-50-6)	Molecular weight > 1000
C12-14 Sec-Pareth-30 (CAS No. 84133-50-6)	Molecular weight > 1000
C12-14 Sec-Pareth-40 (CAS No. 84133-50-6)	Molecular weight > 1000
C12-14 Sec-Pareth-50 (CAS No. 84133-50-6)	

PEG Propylheptyl Ethers (3 carbon chain β-substituted 7 carbon chain with a variable PEG)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., PEG-7 Propylheptyl Ether is when $\mathrm{n}=7$)

INCI Name	Molecular Weight	M.P. / B.P.	$\log \mathrm{K}_{\mathrm{o} / \mathrm{w}}$
PEG-7 Propylheptyl Ether	466.65	$201 / 502^{\circ} \mathrm{C}$	1.79
PEG-8 Propylheptyl Ether	510.70	$227 / 537^{\circ} \mathrm{C}$	1.52

Table 3. Structures and Physical Properties (continued)
Hexyldeceths (6 carbon chain beta-substituted (β-substituted) ten carbon chain with a variable PEG)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Hexyldeceth -2 is when $\mathrm{n}=2$)

INCI Name	Molecular Weight	M.P. / B.P.	$\log \mathrm{K}_{\mathrm{o} / \mathrm{w}}$
Hexyldeceth-2 (CAS No. 52609-19-5)	330.55	$125 / 395^{\circ} \mathrm{C}$	6.11
Hexyldeceth-20 (CAS No. 52609-19-5)	1123.49	$--/ 1030^{\circ} \mathrm{C}$	1.17

Octyldodeceths (8 carbon chain β-substituted 12 carbon chain with a variable PEG)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Octyldodeceth -2 is when $\mathrm{n}=2$)

INCI Name	Molecular Weight	M.P. / B.P.	$\log \mathrm{K}_{\mathrm{o} / \mathrm{w}}$
Octyldodeceth-2 (CAS No. 32128-65-7)	386.65	$161 / 441^{\circ} \mathrm{C}$	8.08
Octyldodeceth-5 (CAS No. 32128-65-7)	518.81	$227 / 547^{\circ} \mathrm{C}$	7.25
Octyldodeceth-10 (CAS No. 32128-65-7)	739.07	$317 / 723^{\circ} \mathrm{C}$	5.88
Octyldodeceth-16 (CAS No. 32128-65-7)	1003.39	$--/ 935^{\circ} \mathrm{C}$	4.23
Octyldodeceth-20 (CAS No. 32128-65-7)	1179.60	$--/ 1076^{\circ} \mathrm{C}$	3.14
Octyldodeceth-25 (CAS No. 32128-65-7)	1399.86	$--/ 1252^{\circ} \mathrm{C}$	1.77
Octyldodeceth-30 (CAS No. 32128-65-7)	1620.12	$--/ 1429^{\circ} \mathrm{C}$	0.39

Table 3. Structures and Physical Properties (continued)
Decyltetradeceths (10 carbon chain β-substituted 14 carbon chain with a variable PEG)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Decyltetradeceth 15 is when $\mathrm{n}=15$)

INCI Name	Molecular Weight	M.P. / B.P.	$\log \mathrm{o}_{\mathrm{o} / \mathrm{w}}$
Decyltetradeceth-5	574.92	$256 / 594$	9.22
Decyltetradeceth-10	795.18	$339 / 770$	7.85
Decyltetradeceth-15	1015.44	$--/ 946$	6.47
Decyltetradeceth-20	1235.70	--1123	5.10
Decyltetradeceth-25	1455.97	$--/ 1299$	3.73
Decyltetradeceth-30	1676.23	$--/ 1475$	2.36

Table 3. Structures and Physical Properties (continued)

Sterol Containing PEG Ethers

Laneths (mixture of various length saturated and partially unsaturated, straight and branched alkyl chains; cholesterol;
lanosterol; and dihydrolanosterol with a variable PEG)
General Structure:

R \& R' = saturated or partially unsaturated alkyl chains of various lengths
$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Laneth- 25 is when $\mathrm{n}=25$)
As these are mixtures of more than one molecule at unknown ratios, molecular weights and physical properties are not calculable.
INCI Name
Laneth-5* (CAS No. 61791-20-6)
Laneth-10 (CAS No. 61791-20-6)
Laneth-15 (CAS No. 61791-20-6)
Laneth-16* (CAS No. 61791-20-6)
Laneth-20 (CAS No. 61791-20-6)
Laneth-25* (CAS No. 61791-20-6)
Laneth-40 (CAS No. 61791-20-6)
Laneth-50 (CAS No. 61791-20-6)
Laneth-60 (CAS No. 61791-20-6)
Laneth-75 (CAS No. 61791-20-6)

Molecular weight < 1000
Molecular weight < 1000
Molecular weight > 1000

Table 3. Structures and Physical Properties (continued)
Hydrogenated Laneths (mixture of various length saturated alkyl chains and dihydrocholesterol with a variable PEG)
General Structure:

$R \& R^{\prime}=$ saturated alkyl chains of various lengths
$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Hydrogenated Laneth-5 is when $\mathrm{n}=5$)
As these are mixtures of more than one molecule at unknown ratios, molecular weights and physical properties are not calculable.

INCI Name

Hydrogenated Laneth-5	Molecular weight <1000
Hydrogenated Laneth-20	Molecular weight >1000
Hydrogenated Laneth-25	Molecular weight >1000

Dialkyl PEG Ethers

Hydrogenated Dimer Dilinoleths and PEG-4 Distearyl Ether (variable PEG capped at each end with a saturated 18 carbon chain)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Hydrogenated Dimer Dilinoeth-60 is when $\mathrm{n}=60$; PEG-4 Distearyl Ether is when $n=4$)

INCI Name	Molecular Weight	M.P. / B.P.	$\log K_{0 / \mathrm{w}}$
PEG-4 Distearyl Ether	699.18	$294 / 673^{\circ} \mathrm{C}$	15.67
Hydrogenated Dimer Dilinoleth-20	1404.02	$--/ 1237^{\circ} \mathrm{C}$	11.28
Hydrogenated Dimer Dilinoleth-30	1844.55	$--1599^{\circ} \mathrm{C}$	8.53
Hydrogenated Dimer Dilinoleth-40	2285.07	$--/ 1943^{\circ} \mathrm{C}$	5.79
Hydrogenated Dimer Dilinoleth-60	3166.13	$--/-$	--
Hydrogenated Dimer Dilinoleth-80	4047.18	---	--

Table 3. Structures and Physical Properties (continued)

PEG Cetyl Stearyl Diether and Steareth-60 Cetyl Ether (variable PEG capped at one end with a saturated 18 carbon chain and at the other end with a saturated 16 carbon chain)
Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., Steareth-60 Cetyl Ether is when $\mathrm{n}=60$)
As the number of ethylene glycol units present in PEG-Cetyl Stearyl Diether is unknown, molecular weight and physical properties are not calculable.

INCI Name	Molecular Weight	M.P. / B.P.	$\log K_{\text {o/w }}$
PEG-Cetyl Stearyl Diether	--	$--/--$	--
Steareth-60 Cetyl Ether (CAS No. 9005-00-9)	3138.07	$--/--$	--

PEG-4 Ditallow Ether (a 4 unit PEG independently capped at each end with one of a $14,18,18, \Omega-9$ unsaturated 18, Ω-6 unsaturated 18, or Ω-3 unsaturated 18 carbon chain) and PEG-16 Cetyl/Oleyl/Stearyl/Lanolin Alcohol Ether (a 16 unit PEG independently capped at each end with a variable length saturated or partially unsaturated alkyl chain, cholesterol, lanosterol or dihydrolanosterol)
General Structure:

$\mathrm{n}=$ the average number of ethylene glycol units (e.g., PEG-16 Cetyl/Oleyl/Stearyl/Lanolin Alcohol Ether is when $\mathrm{n}=16$) As these are mixtures of more than one molecule at unknown ratios, molecular weights and physical properties are not calculable.
INCI Name

PEG-4 Ditallow Ether	Molecular weight <1000
PEG-16 Cetyl/Oleyl/Stearyl/Lanolin Alcohol Ether	--

"** indicates those ingredients previously assessed by the CIR Expert Panel.
Table 4a. Current and historical frequency and concentration of use according to duration and type of exposure - previously reviewed ingredients

	\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)	
	$1981{ }^{1}$	2010^{25}	$1981{ }^{1}$	2010^{27}	1981 ${ }^{1}$.	2010^{25}	$1981{ }^{1}$	2010^{27}	$1996{ }^{3}$	2010^{25}	$1996{ }^{3}$	2010^{27}	$1996{ }^{3}$	2010^{25}	$1996{ }^{3}$	2010^{27}
	Laureth-4				Laureth-23				Ceteth-1				Ceteth-2			
Totals ${ }^{\text {b }}$	202	441	≤ 25	0.0002-21	218	404	≤ 5	0.0002-8	NR	NR	NR	0.2-3	33	214	$5^{\text {c }}$	0.2-4
Duration of Use																
Leave-On	134	236	≤ 10	0.002-21	52	197	≤ 5	0.003-3	NR	NR	NR	0.3-2	8	17	NR	0.5-4
Rinse Off	68	205	≤ 25	0.0002-12	166	207	≤ 5	0.0002-8	$N R$	$N R$	NR	0.2-3	25	197	5	0.2-3
Exposure Type																
Eye Area	86	40	0.1-5	0.007-4	2	12	1-5	$\begin{gathered} \hline 0.003- \\ 0.09 \end{gathered}$	NR	NR	NR	0.4	NR	3	NR	NR
Possible Ingestion	NR	NR	NR	0.02-0.2	NR											
Inhalation	2	7	≤ 0.1	NR	2	1	≤ 5	3	NR							
Dermal Contact	151	264	≤ 10	0.0002-21	60	147	≤ 5	0.0002-7	NR	NR	NR	0.2-2	8	11	NR	0.5-3
Deodorant (underarm)	15	9	0.1-10	0.8	10	15	0.1-5	0.4-2	NR	0.8-3						
Hair - Non-Coloring	28	145	≤ 10	0.01-4	147	145	≤ 5	0.008-8	NR	NR	NR	0.2-3	23	22	5	0.2-4
Hair-Coloring	21	30	0.1-25	0.04-6	6	107	≤ 5	0.04-2	NR	NR	NR	0.7	NR	180	NR	0.5
\bigcirc Nail	2	NR	1-5	2-7	5	1	≤ 1	2	NR	NR	NR	NR	2	1	NR	NR
$\bar{\chi}$ Mucous Membrane	7	70	0.1-10	0.0002-2	9	10	≤ 5	0.0002-2	NR	NR	NR	0.2	2	NR	NR	NR
${ }^{0}$ Bath Products	8	15	0.1-10	8-12	3	2	0.1-1	NR								
区 Baby Products	NR	15	NR	NR	1	2	0.1-1	NR								
$\stackrel{\square}{\square}$	\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)	
$\stackrel{\rightharpoonup}{\omega}$	$1996{ }^{3}$	2010^{25}	$1996{ }^{3}$	2010^{27}	$1996{ }^{3}$	2010^{25}	1996^{3}	2010^{27}	$1996{ }^{3}$	2010^{25}	$1996{ }^{3}$	2010^{27}	$1996{ }^{3}$	2010^{25}	$1996{ }^{3}$	2010^{27}
	Ceteth-3				Ceteth-5				Ceteth-6				Ceteth-10			
Totals	NR	NR	NR	0.2	2	NR	NR	NR	NR	NR	NR	$\begin{gathered} 0.006- \\ 0.06 \\ \hline \end{gathered}$	16	36	$0.15{ }^{\text {c }}$	0.02-5
Duration of Use																
Leave-On	NR	NR	$N R$	NR	2	NR	$N R$	NR	NR	NR	$N R$	0.006	12	26	0.15	0.02-3
Rinse Off	$N R$	$N R$	$N R$	0.2	$N R$	0.06	4	10	NR	0.6-5						
Exposure Type																
Eye Area	NR	3	NR	0.1												
Possible Ingestion	NR															
Inhalation	NR	1	1	0.15	NR											
Dermal Contact	NR	NR	NR	NR	2	NR	11	26	NR	0.1-1						
Deodorant (underarm)	NR	,	NR	NR												
Hair - Non-Coloring	NR	NR	NR	0.2	NR	$\begin{gathered} 0.006- \\ 0.06 \end{gathered}$	5	10	NR	3-5						
Hair-Coloring	NR															
Nail	NR	0.02-0.08														
Mucous Membrane	NR															
Bath Products	NR															
Baby Products	NR															

Table 4a. Current and historical frequency and concentration of use according to duration and type of exposure - previously reviewed ingredients (2010) - continued

	\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)		\# of Uses			Use (\%)	\# of Uses		Conc. of Use (\%)	
	$1996{ }^{3}$	2010^{25}	$1996{ }^{3}$	2010^{27}	$1996{ }^{3}$	2010^{25}	$1996{ }^{3}$	2010^{27}	$1996{ }^{3}$	2010^{25}	$1996{ }^{3}$	2010^{27}	$1996{ }^{3}$	2010^{25}	$1996{ }^{3}$	2010^{27}
	Ceteth-12				Ceteth-14				Ceteth-15				Ceteth-16			
Totals	3	NR	NR	0.02	2	NR	NR	NR	NR	7	NR	2	18	9	$5{ }^{\text {c }}$	0.06-1
Duration of Use																
Leave-On	2	NR	NR	0.02	NR	NR	NR	NR	NR	1	NR	NR	13	7	NR	0.06
Rinse Off	1	$N R$	NR	NR	2	NR	$N R$	NR	NR	6	NR	2	5	2	5	0.5-1
Exposure Type																
Eye Area	NR															
Possible Ingestion	NR															
Inhalation	NR															
Dermal Contact	1	NR	NR	0.02	2	NR	NR	NR	NR	1	NR	NR	11	7	NR	0.06
Deodorant (underarm)	NR	2	NR	NR	0.06											
Hair - Non-Coloring	NR	2	NR	2	7	2	5	NR								
Hair-Coloring	2	NR	3	NR	NR	NR	NR	NR	0.5-1							
Nail	NR															
\bigcirc Mucous Membrane	NR	NR	NR	NR	1	NR	2	NR	NR	NR						
$\overline{\bar{\delta}}$ Bath Products	NR	1	NR	NR	NR											
0 Baby Products	NR															
$\%$	\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)	
$\stackrel{+}{\square}$	$1996{ }^{3}$	2010^{25}	$1996{ }^{3}$	2010^{27}	$1996{ }^{3}$	2010^{25}	$1996{ }^{3}$	2010^{27}	$1996{ }^{3}$	2010^{25}	$1996{ }^{3}$	2010^{27}	$1996{ }^{3}$	2010^{25}	$1996{ }^{3}$	2010^{27}
$\stackrel{\rightharpoonup}{\square}$	Ceteth-20				Ceteth-24				Ceteth-25				Ceteth-29**			
Totals	114	220	$25^{\text {c }}$	0.04-4	67	169	NR	0.0009-2	1	1	NR	0.6-3	NR	NR	$<1^{\text {c }}$	NR
Duration of Use																
Leave-On	43	145	25	0.2-3	42	117	$N R$	0.05-2	NR	1	NR	0.6-3	NR	$N R$	NR	NR
Rinse Off	8	75	NR	0.04-4	25	52	NR	$\begin{gathered} 0.0009- \\ 0.5 \end{gathered}$	1	NR	$N R$	1-2	$N R$	NR	<1	$N R$
Exposure Type																
Eye Area	NR	30	NR	0.3-0.9	3	3	NR	0.05-0.2	NR							
Possible Ingestion	NR	NR	NR	NR	1	NR										
Inhalation	1	1	NR	2	5	NR	NR	0.2	NR							
Dermal Contact	54	190	NR	0.04-4	46	117	NR	0.0009-2	1	1	NR	1-3	NR	NR	NR	NR
Deodorant (underarm)	1	2	NR	0.82	NR											
Hair - Non-Coloring	46	28	NR	0.2-2	1	11	NR	0.05-0.5	NR	NR	NR	0.6	NR	NR	<1	NR
Hair-Coloring	9	NR	NR	NR	20	41	NR	NR	NR	NR	NR	1	NR	NR	NR	NR
Nail	NR	1	NR	0.8	NR	NR	NR	0.09	NR							
Mucous Membrane	2	26	NR	0.04-4	NR	1	NR	0.0009	NR							
Bath Products	NR	NR	NR	NR	2	NR										
Baby Products	1	NR	NR	NR	1	NR										

Table 4a. Current and historical frequency and concentration of use according to duration and type of exposure - previously reviewed ingredients (2010) - continued

	\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)		\# of Uses				\# of Uses		Conc. of Use (\%)	
	$1996{ }^{3}$	2010^{25}	$1996{ }^{3}$	2010^{27}	$1986{ }^{6}$	2010^{25}	$1986{ }^{6}$	2010^{27}	$1986{ }^{6}$	2010^{25}	$1986{ }^{6}$	2010^{27}	$1986{ }^{6}$	2010^{25}	$1986{ }^{6}$	2010^{27}
	Ceteth-30				Steareth-2				Steareth-4				Steareth-6			
Totals	2	1	NR	NR	$107^{\text {d }}$	593	$\leq 10^{\text {d }}$	0.008-10	NR	41	NR	0.02-3	NR	NR	NR	3
Duration of Use																
Leave-On	NR	NR	NR	NR	NR	527	NR	0.1-5	NR	2	NR	0.02-1	NR	NR	NR	3
Rinse Off	2	1	NR	NR	NR	66	$N R$	0.008-10	NR	39	$N R$	0.1-3	NR	$N R$	$N R$	NR
Exposure Type																
Eye Area	NR	NR	NR	NR	NR	59	NR	0.2-3	NR	NR	NR	0.02	NR	NR	NR	NR
Possible Ingestion	NR	NR	NR	NR	NR	2	NR	1-2	NR							
Inhalation	NR	NR	NR	NR	NR	8	NR	0.8	NR	NR	NR	1	NR	NR	NR	NR
Dermal Contact	NR	NR	NR	NR	NR	545	NR	0.008-5	NR	38	NR	0.02-2	NR	NR	NR	NR
Deodorant (underarm)	NR	NR	NR	NR	NR	58	NR	0.5-3	NR							
Hair - Non-Coloring	2	NR	NR	NR	NR	32	NR	1-10	NR	3	NR	0.1-3	NR	NR	NR	3
Hair-Coloring	NR	1	NR	NR	NR	1	NR	0.8-3	NR	NR	NR	0.5	NR	NR	NR	NR
Nail	NR	NR	NR	NR	NR	2	NR	5	NR	NR	NR	0.06	NR	NR	NR	NR
@ Mucous Membrane	NR	NR	NR	NR	NR	19	NR	0.008-3	NR	25	NR	0.1-2	NR	NR	NR	NR
$\overline{0}^{0}$ Bath Products	NR	9	NR	NR	NR	NR	NR	NR								
O Baby Products	NR	NR	NR	NR	NR	2	NR	4	NR							
0	\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)	
$\stackrel{\rightharpoonup}{ \pm}$	$1986{ }^{6}$	2010^{25}	$1986{ }^{6}$	2010^{27}	$1986{ }^{6}$	2010^{25}	$1986{ }^{6}$	2010^{27}	$1986{ }^{6}$	2010^{25}	$1986{ }^{6}$	2010^{27}	$1986{ }^{6}$	$2010{ }^{25}$	$1986{ }^{6}$	2010^{27}
\cdots	Steareth-7				Steareth-10				Steareth-15				Steareth-20			
Totals	NR	10	NR	NR	$\mathbf{N r}^{\text {e }}$	49	NR ${ }^{\text {e }}$	0.5-4	NR ${ }^{\text {e }}$	2	NR ${ }^{\text {e }}$	NR	NR ${ }^{\text {e }}$	433	$\mathrm{NR}^{\text {e }}$	0.006-20
Duration of Use																
Leave-On	$N R$	5	NR	NR	NR	46	$N R$	0.5-4	NR	2	NR	NR	NR	377	NR	0.006-20
Rinse Off	$N R$	5	NR	NR	$N R$	3	$N R$	NR	$N R$	NR	NR	$N R$	$N R$	56	$N R$	0.007-3
Exposure Type																
Eye Ara	NR	NR	NR	NR	NR	6	NR	0.5-2	NR	NR	NR	NR	NR	59	NR	0.02-4
Possible Ingestion	NR															
Inhalation	NR	NR	NR	NR	NR	1	NR	NR	NR	1	NR	NR	NR	2	NR	NR
Dermal Contact	NR	9	NR	NR	NR	48	NR	0.5-4	NR	2	NR	NR	NR	380	NR	0.006-8
Deodorant (underarm)	NR	1	NR	NR	NR	49	NR	0.6-2								
Hair - Non-Coloring	NR	1	NR	46	NR	0.01-20										
Hair-Coloring	NR	3														
Nail	NR	,	NR	0.7-2												
Mucous Membrane	NR	11	NR	0.007-2												
Bath Products	NR	1	NR	NR												
Baby Products	NR	1	NR													

Table 4a. Current and historical frequency and concentration of use according to duration and type of exposure - previously reviewed ingredients (2010) - continued

	\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)	
	$1996{ }^{2}$	2010^{25}	1996^{2}	2010^{27}	$1996{ }^{2}$	2010^{25}	$1996{ }^{2}$	2010^{27}	$1996{ }^{2}$	2010^{25}	$1996{ }^{2}$	2010^{27}	$1996{ }^{2}$	2010^{25}	$1996{ }^{2}$	2010^{27}
	Ceteareth-2				Ceteareth-3				Ceteareth-4				Ceteareth-5			
Totals	NR	NR	NR	2	1	10	$5{ }^{\text {c }}$	2	NR	1	NR	NR	20	24	$10^{\text {c }}$	NR
Duration of Use					1											
Leave-On	NR	NR	NR	NR	1	8	NR	2	NR	1	NR	NR	14	7	$N R$	NR
Rinse Off	$N R$	$N R$	$N R$	2	NR	2	NR	NR	$N R$	NR	NR	$N R$	6	17	$N R$	NR
Exposure Type																
Eye Area	NR	NR	NR	NR	NR	1	NR	NR	NR	NR	NR	NR	1	NR	NR	NR
Possible Ingestion	NR															
Inhalation	NR															
Dermal Contact	NR	NR	NR	NR	1	9	NR	NR	NR	NR	NR	NR	12	5	NR	NR
Deodorant (underarm)	NR															
Hair - Non-Coloring	NR	NR	NR	2	NR	NR	NR	NR	NR	1	NR	NR	7	3	NR	NR
Hair-Coloring	NR	1	16	NR	NR											
Nail	NR	NR	NR	NR	NR	1	NR	2	NR							
\bigcirc Mucous Membrane	NR															
$\bar{\chi}$ Bath Products	NR															
Daby Products	NR															
$\begin{aligned} & \text { 미 } \\ & \text { 웃 } \end{aligned}$																
$\begin{aligned} & \stackrel{0}{\circ} \\ & \stackrel{\circ}{\stackrel{ }{\circ}} \end{aligned}$	\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)	
	$1996{ }^{2}$	2010^{25}	$1996{ }^{2}$	2010^{27}	$1996{ }^{2}$	2010^{25}	$1996{ }^{2}$	2010^{27}	$1996{ }^{2}$	2010^{25}	$1996{ }^{2}$	2010^{27}	$1996{ }^{2}$	2010^{25}	1996 ${ }^{2}$	2010^{27}
	Ceteareth-6				Ceteareth-7				Ceteareth-10				Ceteareth-12			
Totals	9	36	$25^{\text {c }}$	0.008-5	NR	NR	NR	0.2	29	2	$5{ }^{\text {c }}$	0.003-11	57	127	$50^{\text {c }}$	0.02-4
Duration of Use																
Leave-On	3	26	NR	0.008-0.8	NR	NR	NR	NR	3	1	NR	0.003-11	43	93	NR	0.02-2
Rinse Off	6	10	NR	2	$N R$	$N R$	$N R$	0.2	26	1	$N R$	0.5-2	14	34	$N R$	0.1-4
Exposure Type																
Eye Area	1	1	NR	0.02-8	NR	4	NR	0.02-0.1								
Possible Ingestion	2	2	NR	11	NR	NR	NR	NR								
Inhalation	NR	1	1	NR	0.3											
Dermal Contact	8	34	NR	0.008-2	NR	NR	NR	NR	2	2	NR	0.003-11	55	114	NR	0.02-4
Deodorant (underarm)	NR	3	NR	NR												
Hair - Non-Coloring	NR	0.2	NR	NR	NR	NR	2	13	NR	0.3-1						
Hair-Coloring	NR	26	NR	NR	0.5-2	NR	NR	NR	NR							
Nail	NR	1	NR	NR	NR	NR	NR	NR	2							
Mucous Membrane	NR	1	NR	4	NR	NR										
Bath Products	NR															
Baby Products	NR	14	NR	1	NR	NR										

Table 4a. Current and historical frequency and concentration of use according to duration and type of exposure - previously reviewed ingredients (2010) - continued

	\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)		\# of Uses				\# of Uses		Conc. of Use (\%)	
	$1996{ }^{2}$	2010^{25}	$1996{ }^{2}$	2010^{27}	$1996{ }^{2}$	2010^{25}	$1996{ }^{2}$	2010^{27}	$1996{ }^{2}$	2010^{25}	$1996{ }^{2}$	2010^{27}	$1996{ }^{2}$	2010^{25}	$1996{ }^{2}$	2010^{27}
	Ceteareth-15				Ceteareth-16				Ceteareth-17				Ceteareth-20			
Totals	11	6	10	0.2-10	NR	1	NR	NR	NR	NR	$5{ }^{\text {c }}$	NR	452	955	$10^{\text {c }}$	0.008-11
Duration of Use																
Leave-On	2	5	3.5	0.2-10	NR	1	NR	NR	NR	NR	NR	NR	156	630	NR	0.02-11
Rinse Off	9	1	10	1-2	$N R$	NR	$N R$	NR	$N R$	$N R$	$N R$	NR	296	326	NR	0.008-10
Exposure Type																
Eye Area	NR	5	19	NR	0.02-3											
Possible Ingestion	NR															
Inhalation	NR	1	5	NR	0.8											
Dermal Contact	2	5	1.35	1-4	NR	1	NR	NR	NR	NR	NR	NR	203	673	NR	0.02-4
Deodorant (underarm)	NR	16	NR	0.5												
Hair - Non-Coloring	1	1	10	0.2-10	NR	136	166	NR	0.008-11							
Hair-Coloring	8	NR	112	113	NR	0.3-10										
Nail	NR	NR	3.5	4	NR	1	NR	3-5								
\bigcirc Mucous Membrane	NR	2	6	NR	0.2-3											
$\bar{\chi}$ Bath Products	NR	1	2	NR	NR											
\bigcirc Baby Products	NR	1	2	NR	NR											
-																
$\%$	\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)	
$\stackrel{+}{\square}$	$1996{ }^{2}$	2010^{25}	$1996{ }^{2}$	2010^{27}	$1996{ }^{2}$	2010^{25}	$1996{ }^{2}$	2010^{27}	$1996{ }^{2}$	$2010{ }^{25}$	$1996{ }^{2}$	2010^{27}	$1996{ }^{2}$	2010^{25}	$1996{ }^{2}$	2010^{27}
$\stackrel{\rightharpoonup}{V}$	Ceteareth-22				Ceteareth-23				Ceteareth-25				Ceteareth-30			
Totals	NR	NR	NR	1	NR	3	NR	NR	33	308	NR	0.03-16	26	42	NR	0.09-0.3
Duration of Use																
Leave-On	NR	NR	NR	1	NR	NR	NR	NR	1	73	NR	0.1-16	11	14	NR	0.09-0.3
Rinse Off	$N R$	$N R$	$N R$	NR	$N R$	3	$N R$	$N R$	32	234	NR	0.03-2	15	28	NR	NR
Exposure Type																
Eye Area	NR	1	1	NR	NR											
Possible Ingestion	NR															
Inhalation	NR	2	NR	NR	NR	NR	NR	NR								
Dermal Contact	NR	NR	NR	1	NR	NR	NR	NR	1	39	NR	0.1-16	13	15	NR	0.09-0.3
Deodorant (underarm)	NR	0.5	1	1	NR	0.3										
Hair - Non-Coloring	NR	2	59	NR	0.03-8	5	1	NR	NR							
Hair-Coloring	NR	NR	NR	NR	NR	3	NR	NR	30	210	NR	0.3-2	8	26	NR	NR
Nail	NR	1	NR	14-16	NR	NR	NR	NR								
Mucous Membrane	NR	1	NR	NR	NR	NR	NR	NR								
Bath Products	NR															
Baby Products	NR	1	NR	0.1	NR	NR	NR	NR								

Table 4a. Current and historical frequency and concentration of use according to duration and type of exposure - previously reviewed ingredients (2010) - continued

	\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)		\# of Uses			Se (\%)	\# of Uses		Conc. of Use (\%)	
	$1996{ }^{2}$	2010^{25}	$1996{ }^{2}$	2010^{27}	$1996{ }^{2}$	2010^{25}	$1996{ }^{2}$	2010^{27}	$1996{ }^{2}$	2010^{25}	$1996{ }^{2}$	2010^{27}	$1996{ }^{2}$	2010^{25}	1996^{2}	2010^{27}
	Ceteareth-33				Ceteareth-50				Ceteareth-60				Ceteareth-100			
Totals	5	82	NR	0.2-9	NR	44	NR	3-6	NR	5	NR	NR	37	37	NR	NR
Duration of Use																
Leave-On	1	46	$N R$	0.2-8	NR	NR	$N R$	4	NR							
Rinse Off	4	36	$N R$	0.8-9	$N R$	44	$N R$	3-6	$N R$	5	$N R$	$N R$	37	37	$N R$	NR
Exposure Type																
Eye Area	NR	1	NR													
Possible Ingestion	NR															
Inhalation	NR															
Dermal Contact	1	49	NR	0.2-8	NR	NR	NR	4	NR							
Deodorant (underarm)	NR	NR	NR	1-5	NR											
Hair - Non-Coloring	4	26	NR	0.8-9	NR	NR	NR	NR	NR	2	NR	NR	NR	NR	NR	NR
Hair-Coloring	NR	7	NR	2	NR	44	NR	3-6	NR	3	NR	NR	37	37	NR	NR
Nail	NR															
\bigcirc Mucous Membrane	NR															
$\bar{\chi}$ Bath Products	NR															
\bigcirc Baby Products	NR															
-																
®	\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)	
\circ	$1996{ }^{4}$	2010^{25}	$1996{ }^{4}$	2010^{27}	$1996{ }^{4}$	2010^{25}	$1996{ }^{4}$	2010^{27}	$1996{ }^{4}$	2010^{25}	$1996{ }^{4}$	2010^{27}	$1996{ }^{4}$	2010^{25}	$1996{ }^{4}$	2010^{27}
$\stackrel{\rightharpoonup}{\infty}$	Oleth-2				Oleth-3				Oleth-4				Oleth-5			
Totals	14	177	$\leq 25^{\text {c }}$	0.1-18	11	34	NR	0.3-10	NR	NR	NR	1-4	26	174	NR	0.06-10
Duration of Use																
Leave-On	5	25	≤ 25	0.1-10	6	23	NR	0.3-4	NR	NR	NR	$N R$	16	38	$N R$	0.3-10
Rinse Off	9	152	$N R$	0.2-18	5	11	$N R$	7-10	$N R$	$N R$	NR	1-4	10	136	$N R$	0.06-10
Exposure Type																
Eye Area	NR	0.4	NR	0.3												
Possible Ingestion	NR															
Inhalation	NR	NR	NR	0.1-5	1	1	NR	NR	NR	NR	NR	NR	3	NR	NR	NR
Dermal Contact	6	17	NR	0.3-6	6	8	NR	0.3-7	NR	NR	NR	NR	17	14	NR	0.3-10
Deodorant (underarm)	NR	2	NR	0.4	NR	NR	NR	1	NR							
Hair - Non-Coloring	8	14	≤ 25	0.1-10	5	20	NR	4	NR	NR	NR	1	9	36	NR	0.06-10
Hair-Coloring	NR	146	NR	0.2-18	NR	6	NR	10	NR	NR	NR	4	NR	126	NR	NR
Nail	NR	3-4														
Mucous Membrane	NR															
Bath Products	3	2	NR	6	NR	NR	NR	7	NR	NR	NR	NR	1	2	NR	10
Baby Products	NR															

Table 4a. Current and historical frequency and concentration of use according to duration and type of exposure - previously reviewed ingredients (2010) - continued

	\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)		\# of Uses			Use (\%)	\# of Uses		Conc. of Use (\%)	
	$1996{ }^{4}$	2010^{25}	$1996{ }^{4}$	2010^{27}	$1996{ }^{4}$	2010^{25}	$1996{ }^{4}$	2010^{27}	$1996{ }^{4}$	2010^{25}	$1996{ }^{4}$	2010^{27}	$1996{ }^{4}$	2010^{25}	$1996{ }^{4}$	2010^{27}
	Oleth-8				Oleth-9				Oleth-10				Oleth-12			
Totals	8	NR	NR	1-2	2	NR	NR	NR	97	370	$25^{\text {c }}$	0.2-14	NR	1	NR	1-2
Duration of Use																
Leave-On	NR	$N R$	48	57	NR	0.2-14	NR	1	NR	1-2						
Rinse Off	8	$N R$	$N R$	1-2	2	$N R$	NR	NR	49	313	$N R$	0.2-5	$N R$	NR	$N R$	NR
Exposure Type																
Eye Area	NR	3	2	NR	0.5	NR	NR	NR	1							
Possible Ingestion	NR	0.2	NR	NR	NR	NR										
Inhalation	NR	7	5	NR	4-6	NR	NR	NR	NR							
Dermal Contact	NR	NR	NR	NR	2	NR	NR	NR	64	44	25	0.2-6	NR	1	NR	1-2
Deodorant (underarm)	NR	0.5	NR	NR	NR	NR										
Hair - Non-Coloring	8	NR	NR	1-2	NR	NR	NR	NR	12	115	25	0.3-14	NR	NR	NR	NR
Hair-Coloring	NR	21	213	NR	0.2-5	NR	NR	NR	NR							
Nail	NR															
\bigcirc Mucous Membrane	NR	1	6	NR	0.5-3	NR	NR	NR	NR							
$\bar{\chi}$ Bath Products	NR	NR	NR	NR	2	NR	NR	NR	1	1	NR	NR	NR	NR	NR	NR
Daby Products	NR															
$\begin{aligned} & \text { 밍 } \\ & \text { 웃 } \end{aligned}$																
O-	\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)		\# of Uses		Conc. of Use (\%)	
$\stackrel{\square}{\square}$	$1996{ }^{4}$	2010^{25}	$1996{ }^{4}$	2010^{27}	$1996{ }^{4}$	2010^{25}	$1996{ }^{4}$	2010^{27}	$1996{ }^{4}$	2010^{25}	$1996{ }^{4}$	2010^{27}	$1996{ }^{4}$	2010^{25}	1996^{4}	2010^{27}
$\stackrel{\rightharpoonup}{\bullet}$	Oleth-15				Oleth-16				Oleth-20				Oleth-25			
Totals	3	NR	NR	0.4-0.7	13	9	$5{ }^{\text {c }}$	0.03-0.8	321	246	$25^{\text {c }}$	0.01-17	3	3	NR	0.2
Duration of Use																
Leave-On	3	NR	NR	0.4	9	7	$N R$	0.03-0.5	205	146	25	0.1-17	3	3	NR	NR
Rinse Off	$N R$	$N R$	$N R$	0.7	4	2	$N R$	0.8	116	100	NR	0.01-6	NR	NR	$N R$	0.2
Exposure Type																
Eye Area	2	NR	2	6	NR	2	NR	NR	NR	NR						
Possible Ingestion	NR	0.2	NR	NR	NR	NR										
Inhalation	NR	0.06	5	3	25	NR	NR	NR	NR	NR						
Dermal Contact	3	NR	NR	0.4-0.7	5	7	NR	$\begin{gathered} 0.03- \\ 0.06 \end{gathered}$	91	104	25	0.1-4	3	3	NR	NR
Deodorant (underarm)	,	NR	NR	NR	NR	NR	NR	0.06	1	12	NR	0.9-3	NR	NR	NR	NR
Hair - Non-Coloring	NR	NR	NR	NR	8	2	NR	NR	225	139	NR	0.01-17	NR	NR	NR	0.2
Hair-Coloring	NR	0.8	4	3	NR	1	NR	NR	NR	NR						
Nail	NR	1	NR	NR	4	NR	NR	NR	NR							
Mucous Membrane	NR	4	22	NR	4	NR	NR	NR	NR							
Bath Products	NR	NR	NR	NR	1	NR	NR	NR	3	2	NR	NR	NR	NR	NR	NR
Baby Products	NR	0.03	4	NR												

Table 4b. Frequency and concentration of use according to duration and type of exposure - newly reviewed ingredients

	\# of Uses ${ }^{25}$	$\begin{gathered} \text { Conc of Use } \\ (\%)^{26} \end{gathered}$	\# of Uses ${ }^{2}$	$\begin{gathered} \text { Conc of Use } \\ (\%)^{26} \end{gathered}$	\# of Uses ${ }^{25}$	Conc of Use $(\%)^{26}$	\# of Uses ${ }^{25}$	$\begin{gathered} \text { Conc of Use } \\ (\%)^{26} \end{gathered}$	\# of Uses ${ }^{25}$	Conc of Use $(\%)^{26}$	\# of Uses ${ }^{25}$	Conc of Use $(\%)^{26}$
		eth-1		eth-2		eth-3		eth-5		th-6		th-7
Totals ${ }^{\text {a }}$	1	7-15	176	0.005-9	97	0.0004-20	NR	0.0002	2	6-8	932	0.001-4
Duration of Use												
Leave-On	NR	NR	9	0.005-7	33	0.02-0.8	NR	0.0002	NR	$N R$	853	0.001-4
Rinse Off	I	7-15	167	0.2-9	64	0.0004-20	$N R$	$N R$	2	6-8	79	0.2-2
Exposure Type												
Eye Area	NR	NR	NR	0.2	NR	NR	NR	NR	NR	NR	70	0.02-0.4
Possible Ingestion	NR	NR	NR	0.005	NR	0.05-00.4						
Inhalation	NR	NR	NR	0.8	NR	NR	NR	NR	NR	NR	5	NR
Dermal Contact	NR	7	76	0.005-7	55	0.0004-0.8	NR	NR	NR	6-8	828	0.01-4
Deodorant (underarm)	NR	1	NR									
Hair - Non-Coloring	NR	12	43	0.6-5	14	0.5-1	NR	0.0002	1	NR	91	0.047-2
Hair-Coloring	1	15	57	0.2-9	28	2-20	NR	NR	1	NR	8	0.2-0.3
Nail	NR	NR	NR	NR	1	NR	NR	NR	NR	NR	4	0.02-0.1
\bigcirc Mucous Membrane	NR	NR	41	0.5-0.9	4	0.02	NR	NR	NR	6-8	4	0.02-0.2
$\overline{\overline{0}}$ Bath Products	NR	NR	7	NR	19	NR	NR	NR	NR	NR	5	NR
D Baby Products	NR	NR	2	NR	7	NR						
$\stackrel{\otimes}{0}$		eth-8		eth-9		eth-10		th-11		th-12		th-14
${ }^{\text {® }}$ Totals	NR	0.05-8	110	0.0003-2	71	0.05-8	17	2-5	241	0.02-6	1	NR
$\stackrel{\sim}{\sim}$ Duration of Use												
Leave-On	$N R$	0.05-0.2	23	0.0003-1	5	0.4-0.5	6	2	10	0.02-2	NR	NR
Rinse Off	$N R$	6-8	87	0.006-2	66	0.05-8	11	5	231	0.3-6	1	$N R$
Exposure Type												
Eye Area	NR	0.08	NR	1	NR	NR	NR	NR	2	0.05-0.06	NR	NR
Possible Ingestion	NR	1	NR	NR	NR							
Inhalation	NR	NR	1	0.3	1	NR						
Dermal Contact	NR	0.05-8	6	0.3-1	43	0.05-8	NR	2	29	0.02-6	1	NR
Deodorant (underarm)	NR											
Hair - Non-Coloring	NR	NR	100	0.0003-2	27	0.09-5	17	5	10	0.3-3	NR	NR
Hair-Coloring	NR	NR	4	NR	1	NR	NR	NR	202	1-5	NR	NR
Nail	NR											
Mucous Membrane	NR	6-8	2	NR	14	0.05-8	NR	NR	18	6	1	NR
Bath Products	NR	NR	2	NR	10	NR	NR	NR	1	NR	NR	NR
Baby Products	NR	NR	NR	NR	2	NR	NR	N0	NR	NR	NR	NR

Table 4b. Frequency and concentration of use according to duration and type of exposure - newly reviewed ingredients (continued)

	\# of Uses ${ }^{25}$	Conc of Use $(\%)^{26}$	\# of Uses ${ }^{25}$	$\begin{gathered} \text { Conc of Use } \\ (\%)^{26} \end{gathered}$	\# of Uses ${ }^{25}$	Conc of Use $(\%)^{26}$	\# of Uses ${ }^{2}$	$\begin{gathered} \text { Conc of Use } \\ (\%)^{26} \end{gathered}$	\# of Uses ${ }^{25}$	$\begin{gathered} \text { Conc of Use } \\ (\%)^{26} \end{gathered}$	\# of Uses ${ }^{25}$	Conc of Use $(\%)^{26}$
		th-16		th-20		th-21		th-25		th-30	Beh	th-10
Totals	12	3	6	0.0008-5	14	0.003-0.6	4	0.03-3	3	0.02-0.3	13	0.5-5
Duration of Use												
Leave-On	NR	NR	6	0.0008-0.06	14	0.003-0.6	NR	3	3	0.02-0.3	8	0.5-4
Rinse Off	12	3	$N R$	5	$N R$	$N R$	4	0.03-0.2	$N R$	0.07	5	5
Exposure Type												
Eye Area	NR	NR	4	0.02-0.06	13	0.003-0.6	NR	3	2	03.02-0.3	NR	5
Possible Ingestion	NR	NR	NR	NR	NR	0.03	NR	NR	NR	NR	NR	NR
Inhalation	NR											
Dermal Contact	NR	NR	2	0.0008-0.05	4	0.003-0.6	NR	3	1	0.07-0.3	11	0.5-5
Deodorant (underarm)	NR	1										
Hair - Non-Coloring	12	3	NR	5	NR	NR	4	0.03-0.2	NR	NR	2	4
Hair-Coloring	NR	0.07	NR	NR								
Nail	NR											
\bigcirc Mucous Membrane	NR	2	NR									
$\bar{\lambda}$ Bath Products	NR											
0 Baby Products	NR											
@												
$\begin{aligned} & \text { D } \\ & \text { 읒 } \end{aligned}$												
8		eth-20		eth-25		eth-30		th-3		th-5		th-7
$\stackrel{\text { ® }}{ }{ }^{\text {Totals }}$	9	0.7-2	17	1-3	6	0.2-3	235	NR	74	NR	6	1
N Duration of Use												
Leave-On	9	0.7-2	17	1-3	6	0.3-3	NR	$N R$	NR	$N R$	3	1
Rinse Off	NR	NR	NR	1	NR	0.2	235	$N R$	74	$N R$	3	1
Exposure Type												
Eye Area	3	0.7	2	3	3	1-3	NR	NR	NR	NR	NR	NR
Possible Ingestion	NR											
Inhalation	NR	2	NR									
Dermal Contact	9	0.7-2	17	1-3	4	0.3-3	NR	NR	NR	NR	3	1
Deodorant (underarm)	NR											
Hair - Non-Coloring	NR	NR	NR	NR	1	NR						
Hair-Coloring	NR	NR	NR	NR	NR	NR	235	NR	74	NR	NR	NR
Nail	NR	NR	NR	NR	1	NR						
Mucous Membrane	NR	NR	NR	NR	NR	0.2	NR	NR	NR	NR	NR	1
Bath Products	NR	3	NR									
Baby Products	NR											

Table 4b. Frequency and concentration of use according to duration and type of exposure - newly reviewed ingredients (continued)

Table $4 b$. Frequency and concentration of use according to duration and type of exposure - newly reviewed ingredients (continued)

	\# of Uses ${ }^{25}$	$\begin{gathered} \text { Conc of Use } \\ (\%)^{26} \end{gathered}$	\# of Uses ${ }^{25}$	$\begin{gathered} \text { Conc of Use } \\ (\%)^{26} \end{gathered}$	\# of Uses ${ }^{25}$	Conc of Use $(\%)^{26}$	\# of Uses ${ }^{25}$	$\begin{gathered} \text { Conc of Use } \\ (\%)^{26} \end{gathered}$	\# of Uses ${ }^{25}$	Conc of Use $(\%)^{26}$	\# of Uses ${ }^{25}$	Conc of Use $(\%)^{26}$
	Ste	th-200		eth-3	Tri	eth-5		eth-6	Tri	eth-7	Tric	ceth-8
Totals	NR	1	19	4	12	0.2-0.9	189	0.008-6	2	NR	NR	0.1
Duration of Use												
Leave-On	NR	NR		NR	NR			0.008-0.5		NR	NR	0.1
Rinse Off	$N R$	1	14	4	12	0.2-0.9	90	0.1-6	$N R$	$N R$	$N R$	$N R$
Exposure Type												
Eye Area	NR	NR	NR	NR	NR	NR	1	NR	NR	NR	NR	NR
Possible Ingestion	NR											
Inhalation	NR	NR	NR	NR	NR	NR	2	0.06	NR	NR	NR	NR
Dermal Contact	NR	1	11	4	NR	NR	93	0.06-5	2	NR	NR	0.1
Deodorant (underarm)	NR											
Hair - Non-Coloring	NR	NR	8	NR	11	NR	82	0.1-6	NR	NR	NR	NR
Hair-Coloring	NR	NR	NR	NR	1	0.2-0.9	14	5	NR	NR	NR	NR
Nail	NR	0.008-0.08	NR	NR	NR	NR						
Mucous Membrane	NR	NR	10	4	NR	NR	2	NR	NR	NR	NR	NR
${ }_{\overline{\text { D }}}$ Bath Products	NR											
${ }_{0}$ Baby Products	NR	0.5	NR	NR	NR	NR						
,												
		eth-9		th-10	Tri	th-12		eth-3	Und	deth-5	Und	th-11
${ }^{\circ}$ Totals	135	0.00001-13	36	0.06-3	601	0.005-2	79	37	23	0.02-0.2	23	0.04
$\stackrel{\sim}{+}$ Duration of Use												
Leave-On	79	0.002-8	17	0.06-0.5	195	0.006-0.5	NR	NR	7	0.02-0.2	7	0.04
Rinse Off	56	0.00001-13	19	0.1-3	406	0.005-2	79	37	16	NR	16	NR
Exposure Type												
Eye Area	2	NR										
Possible Ingestion	NR											
Inhalation	5	4	NR	NR	1	0.02-0.08	NR	NR	NR	NR	NR	NR
Dermal Contact	92	0.0003-13	8	0.006-3	4	0.005-0.5	NR	NR	1	NR	1	NR
Deodorant (underarm)	1	NR										
Hair - Non-Coloring	43	0.00001-1	28	0.1-0.5	506	0.006-2	NR	NR	21	0.02-0.2	21	0.04
Hair-Coloring	NR	NR	NR	NR	91	0.06-0.3	79	37	1	NR	1	NR
Nail	NR											
Mucous Membrane	17	NR	1	NR	,	NR						
Bath Products	2	NR										
Baby Products	1	NR	NR	NR	NR	0.2	NR	NR	NR	NR	NR	NR

Table 4b. Frequency and concentration of use according to duration and type of exposure - newly reviewed ingredients (continued)

	\# of Uses ${ }^{25}$	$\begin{gathered} \text { Conc of Use } \\ (\%)^{26} \end{gathered}$	\# of Uses ${ }^{25}$	$\begin{gathered} \text { Conc of Use } \\ (\%)^{26} \end{gathered}$	\# of Uses ${ }^{25}$	$\begin{gathered} \text { Conc of Use } \\ (\%)^{26} \end{gathered}$	\# of Uses ${ }^{23}$	$\begin{gathered} \text { Conc of Use } \\ (\%)^{26} \end{gathered}$	\# of Uses ${ }^{25}$	Conc of Use $(\%)^{26}$	\# of Uses ${ }^{25}$	Conc of Use $(\%)^{26}$
	Meth	PEG-16	C9-1	Pareth-6	C9-1	areth-8	C11	Pareth-3	C11-1	areth-5	C11-1	areth-7
Totals	NR	0.4	NR	5	NR	0.3	11	16	1	NR	187	0.00008-1
Duration of Use												
Leave-On	NR	NR	NR	NR	NR	0.3	NR	NR		NR	69	0.008-1
Rinse Off	$N R$	0.4	$N R$	5	$N R$	NR	11	16	$N R$	$N R$	118	0.00008-1
Exposure Type												
Eye Area	NR	1	0.03									
Possible Ingestion	NR	0.3										
Inhalation	NR	2	0.008-0.07									
Dermal Contact	NR	0.4	NR	NR	NR	NR	NR	NR	1	NR	NR	0.02-0.3
Deodorant (underarm)	NR											
Hair - Non-Coloring	NR	NR	NR	NR	NR	0.3	NR	NR	NR	NR	182	0.00008-1
Hair-Coloring	NR	NR	NR	NR	NR	NR	11	16	NR	NR	4	1
Nail	NR											
Mucous Membrane	NR											
${ }_{\overline{\text { D }}}$ Bath Products	NR											
${ }_{0}$ D Baby Products	NR											
,												
	C11-	Pareth-9	C11-1	areth-40	C12	Pareth-3	C12	Pareth-7	C12-1	areth-23	C12-1	areth-3
${ }^{\circ}$ Totals	137	0.1-6	1	NR	73	0.009-32	NR	0.09	46	0.02-0.2	NR	0.5
NTDuration of Use												
Leave-On	7	0.1-6	1	NR	35	0.009-25	NR	NR	25	0.04-0.2	NR	0.5
Rinse Off	130	NR	$N R$	$N R$	38	0.2-32	$N R$	0.09	21	0.02-0.06	$N R$	NR
Exposure Type												
Eye Area	NR	NR	NR	NR	NR	0.04	NR	NR	NR	0.06	NR	NR
Possible Ingestion	NR	NR	NR	NR	1	NR	NR	NR	1	NR	NR	NR
Inhalation	1	6	NR	NR	NR	0.1	NR	NR	NR	NR	NR	NR
Dermal Contact	1	6	NR	NR	53	0.009-32	NR	NR	26	0.04-0.2	NR	0.5
Deodorant (underarm)	NR											
Hair - Non-Coloring	7	0.1	1	NR	20	0.02-0.1	NR	0.09	20	0.02-0.06	NR	NR
Hair-Coloring	129	NR	NR	NR	NR	0.1	NR	NR	NR	NR	NR	NR
Nail	NR											
Mucous Membrane	NR	NR	NR	NR	2	8	NR	NR	2	NR	NR	NR
Bath Products	NR	NR	NR	NR	16	9-32	NR	NR	NR	NR	NR	NR
Baby Products	NR	2	NR	NR	NR							

Table 4b. Frequency and concentration of use according to duration and type of exposure - newly reviewed ingredients (continued)

Table 4b. Frequency and concentration of use according to duration and type of exposure - newly reviewed ingredients (continued)

Table 4b. Frequency and concentration of use according to duration and type of exposure - newly reviewed ingredients (continued)

	\# of Uses ${ }^{25}$	$\begin{gathered} \text { Conc of Use } \\ (\%)^{26} \end{gathered}$	\# of Uses ${ }^{25}$	$\begin{gathered} \text { Conc of Use } \\ (\%)^{26} \end{gathered}$	\# of Uses ${ }^{25}$	$\begin{gathered} \text { Conc of Use } \\ (\%)^{26} \end{gathered}$	\# of Uses ${ }^{25}$	$\begin{gathered} \text { Conc of Use } \\ (\%)^{26} \end{gathered}$	\# of Uses ${ }^{25}$	$\begin{gathered} \text { Conc of Use } \\ (\%)^{26} \end{gathered}$	\# of Uses ${ }^{25}$	$\begin{gathered} \text { Conc of Use } \\ (\%)^{26} \end{gathered}$
	Iso	th-25	Iso	reth-2	Isos	reth-5	Isos	reth-10	Isost	eth-20	C12-14	-Pareth-5
Totals	1	0.002-0.1	2	1	NR	0.006	8	1	14	0.5-6	5	0.06-0.09
Duration of Use												
Leave-On	1	0.002-0.1	1	NR	NR	0.006	5	1	12	1-6	1	0.06
Rinse Off	$N R$	0.004	1	1	$N R$	$N R$	3	$N R$	2	0.5-2	4	0.09
Exposure Type												
Eye Area	NR	0.8	NR	NR								
Possible Ingestion	NR											
Inhalation	NR	NR	1	NR	NR	NR	NR	NR	2	NR	NR	NR
Dermal Contact	1	0.1	NR	NR	NR	0.006	3	1	3	0.5-5	NR	NR
Deodorant (underarm)	NR	NR	NR	NR	NR	NR	1	1	3	1-5	NR	NR
Hair - Non-Coloring	NR	0.002-0.004	2	1	NR	NR	5	NR	11	2-6	5	0.06-0.09
Hair-Coloring	NR											
Nail	NR											
\bigcirc Mucous Membrane	NR											
${ }_{\overline{\text { ® }}}$ Bath Products	NR											
${ }^{0}$ Baby Products	NR											
¢												
$\begin{aligned} & \text { 밍 } \\ & \text { 웃 } \end{aligned}$												
	C12-14	-Pareth-7	PEG-7 Pr	lheptyl Ether	PEG-8 Pro	Iheptyl Ether	Octy	eceth-16	Octyld	eeth-20	Octyl	ceth-25
${ }^{\circ}$ Totals	5	0.03-0.05	12	NR	NR	0.005-0.05	1	0.1-2	17	0.1-18	10	0.1-17
Noduration of Use												
Leave-On	2	0.03	NR	$N R$	NR	0.005-0.05	1	0.1-2	16	0.2-18	4	0.5-1
Rinse Off	3	0.05	12	$N R$	$N R$	NR	$N R$	0.5-1	1	0.1-2	6	0.1-17
Exposure Type												
Eye Area	NR	2	0.1									
Possible Ingestion	NR											
Inhalation	NR	NR	NR	NR	NR	0.005-0.05	NR	2	NR	4	NR	NR
Dermal Contact	NR	NR	NR	NR	NR	NR	1	0.1-2	15	0.2-18	10	0.1-17
Deodorant (underarm)	NR	1	NR	NR	NR	NR						
Hair - Non-Coloring	5	0.03-0.05	12	NR	NR	NR	NR	1	2	0.1-1	NR	0.5
Hair-Coloring	NR	1	NR	NR	NR	0.5						
Nail	NR											
Mucous Membrane	NR	0.5	NR	2	NR	10						
Bath Products	NR											
Baby Products	NR											

Table 4b. Frequency and concentration of use according to duration and type of exposure - newly reviewed ingredients (continued)

PEG－16 Cetyl／Oleyl／Stearyl／Lanolin Alcohol Ether PEG－Cetyl Stearyl Diether PEG－4 Ditallow Ether 응
0
0
0
0
0
0
0
0
0
0
0
0号

 III II
 ホn

Arachideth－20
Beheneth－2
Beheneth－5
Beheneth－15
C9－11 Pareth－3
C9－11 Pareth－3
C9－11 Pareth－4
？

Ingredient	Animals	No./Group	Dose	$\mathbf{L D}_{50}$	Reference
ORAL					
Laureths					
Laureth-9	albino Swiss Webster mice	10 M		$3300 \mathrm{mg} / \mathrm{kg}$ (24 h); $3050 \mathrm{mg} / \mathrm{kg}$ (7 day)	43
compounds analogous to Laureth-9					
$\mathrm{C}_{12-13} \mathrm{AE}_{6.5}$	albino rats	5M/5F	25% aq solution, neat, 612- $5000 \mathrm{mg} / \mathrm{kg}$	$2120 \mathrm{mg} / \mathrm{kg}$	33
$\mathrm{C}_{12-13} \mathrm{AE}_{6.5}$	Fischer 344 rats	$5 \mathrm{M} / \mathrm{F}$	50% in corn oil, $900-2500$ $\mathrm{mg} / \mathrm{kg}$	$2500 \mathrm{mg} / \mathrm{kg} \mathrm{M}) ; 1637 \mathrm{mg} / \mathrm{kg}$ (F)	33
$\mathrm{C}_{12-15} \mathrm{AE}_{7}$	Fischer 344 rats	5M/5F	undiluted, $700-5000 \mathrm{mg} / \mathrm{kg}$	$1642 \mathrm{mg} / \mathrm{kg}$	33
$\mathrm{C}_{12-15} \mathrm{AE}_{11}$	rat	5M/5F	50% in corn oil, 1000$2000 \mathrm{mg} / \mathrm{kg}$	>2000 mg/kg (M); 1000-2000 mg/kg (F)	33
$\mathrm{C}_{12-14} \mathrm{AE}_{6}$	rat	5M/5F	neat, $5010-10,000 \mathrm{mg} / \mathrm{kg}$	$4900 \mathrm{mg} / \mathrm{kg}$	33
$\mathrm{C}_{12-13} \mathrm{AE}_{6.5}$	beagle			$1650 \mathrm{mg} / \mathrm{kg}$	33
$\mathrm{C}_{1415} \mathrm{AE}_{7}$	monkey		neat	$6700 \mathrm{mg} / \mathrm{kg}$	33
Ceteths					
	ddY mice	10	undiluted	$2880 \mathrm{mg} / \mathrm{kg}$ (M); $2602 \mathrm{mg} / \mathrm{kg}$ (F)	44
PEG Methyl Ethers					
PEG-3 Methyl Ether	Wistar rats			$12.6 \mathrm{~g} / \mathrm{kg}$	20
PEG-3 Methyl ether	Carworth-Wistar rats	5	diluted with either water,	$11.3 \mathrm{ml} / \mathrm{kg}(11.8 \mathrm{~g} / \mathrm{kg})$	20
PEG-3 Methyl Ether	Carworth Farms- Nelson rats	males	corn oil, or agar 4,8, or $16 \mathrm{ml} / \mathrm{kg}$	$11.3 \mathrm{~g} / \mathrm{kg}$; all animals dosed with $16 \mathrm{ml} / \mathrm{kg}$ died in 1 day	20
PEG-7 Methyl Ethers	rats			$>16 \mathrm{ml} / \mathrm{kg}$	21
C9-11 Pareths					
C9-11 Pareth-3	rats			2700-10,000 mg/kg	46
C9-11 Pareth-5	rats			$2900 \mathrm{mg} / \mathrm{kg}$	46
C9-11 Pareth-6	rats			$1200-4100 \mathrm{mg} / \mathrm{kg}$	46
C9-11 Pareth-6	Fischer 344 rats	5M/5F	$320-3260 \mathrm{mg} / \mathrm{kg}$	1378 mg/kg	45
C9-11 Pareth-8	rats			$1000-2700 \mathrm{mg} / \mathrm{kg}$	46
C12-13 Pareths					
	Wistar albino rats	4M/4F	5 or $10 \mathrm{~g} / \mathrm{kg}$	$10,000 \mathrm{mg} / \mathrm{kg}$	47
C12-13 Pareth-2	Wistar albino rats	4M/4F	$10 \mathrm{~g} / \mathrm{kg}$	$>10,000 \mathrm{mg} / \mathrm{kg}$	48
C12-13 Pareth-3	rats			$7600 \mathrm{mg} / \mathrm{kg}$	46
C12-13 Pareth-7	rats			$4600 \mathrm{mg} / \mathrm{kg}$	46
C12-15 Pareths					
C12-15 Pareth-3	rats			$2300 \mathrm{mg} / \mathrm{kg}$	46
C12-15 Pareth-7	rats			$1700-2700 \mathrm{mg} / \mathrm{kg}$	46
C12-15 Pareth-9	rats			$1600-5600 \mathrm{mg} / \mathrm{kg}$	46
C12-15 Pareth-12	rats			$1800 \mathrm{mg} / \mathrm{kg}$	46
C14-15 Pareths					
C14-15 Pareth-7	rats			$2300-2700 \mathrm{mg} / \mathrm{kg}$	46
C14-15 Pareth-11	rats			$1000 \mathrm{mg} / \mathrm{kg}$	46
C14-15 Pareth-13	rats			$1000 \mathrm{mg} / \mathrm{kg}$	46

DERMAL

Laureths

Laureth-4	rabbits	$0.93 \mathrm{ml} / \mathrm{kg}$ (males); $1.78 \mathrm{ml} / \mathrm{kg}$ (females); pulmonary lesions were observed with 3 days of a single dermal application
Laureth-4		
	rats	potential for neurotoxicity observed within 4
Analogs of Laureth-9 described in the SCCP opinion paper		
$\mathrm{C}_{12-14} \mathrm{AE}_{6}$	rabbits	neat
$\mathrm{C}_{12-14} \mathrm{AE}_{9}$	rabbits	neat

Ingredient	Animals	No./Group	Dose	$\mathbf{L D}_{\mathbf{5 0}}$	Reference
$\mathrm{C}_{12-15} \mathrm{AE}_{7}$	rats	5M/5F	neat	>2000 mg/kg	33
$\mathrm{C}_{13-15} \mathrm{AE}_{7}$	rats	6M/6F	40% in corn oil; dosage volume to skin, $2.3 \mathrm{ml} / \mathrm{kg}$	>920 mg/kg	33
PEG Methyl Ethers					
PEG-3 Methyl Ether	New Zealand White rabbits	2 or 5 M	$2.5(\mathrm{n}=2), 5(\mathrm{n}=4)$, or 10 $\mathrm{ml} / \mathrm{kg}(\mathrm{n}=2)$; 24 h occlusive application	$7.1 \mathrm{ml} / \mathrm{kg}(7.4 \mathrm{~g} / \mathrm{kg})$	20
PEG-7 Methyl Ether	rabbits			$>16 \mathrm{ml} / \mathrm{kg}$	21
C9-11 Pareths					
C9-11 Pareth-3	rabbits			$>5000 \mathrm{mg} / \mathrm{kg}$	46
C9-11 Pareth-3	rats			$>2000 \mathrm{mg} / \mathrm{kg}$	46
C9-11 Pareth-5	rats			$>2000 \mathrm{mg} / \mathrm{kg}$	46
C9-11 Pareth-6	rabbits			$>2000-5000 \mathrm{mg} / \mathrm{kg}$	46
C9-11 Pareth-6	NZW rabbits	4M/4F	$2.0 \mathrm{~g} / \mathrm{kg}$ (occ.)	$>2000 \mathrm{mg} / \mathrm{kg}$; mild to moderate irritation observed at patch removal	45
C9-11 Pareth-8	rats			$4000 \mathrm{mg} / \mathrm{kg}$	46
C12-13 Pareths					
	Wistar albino rats	4M/4F	$2.0 \mathrm{~g} / \mathrm{kg}$ (occ.)	$>2000 \mathrm{~m} / \mathrm{kg}$	47
C12-13 Pareth-2	Wistar albino rats	4M/4F	1,2 , or $4 \mathrm{~g} / \mathrm{kg}$ (occ.)	> $2000 \mathrm{mg} / \mathrm{kg} ; \sim 4000 \mathrm{mg} / \mathrm{kg}$	48
C12-13 Pareth-3	rabbits			$3300 \mathrm{mg} / \mathrm{kg}$	46
C12-13 Pareth-7	rabbits			$2000 \mathrm{mg} / \mathrm{kg}$	46
C12-15 Pareths					
C12-15 Pareth-3	rabbits			$3000 \mathrm{mg} / \mathrm{kg}$	46
C12-15 Pareth-7	rabbits			$2300-5000 \mathrm{mg} / \mathrm{kg}$	46
C12-15 Pareth-9	rabbits			$2500-3400 \mathrm{mg} / \mathrm{kg}$	46
C12-15 Pareth-12	rabbits			$2500 \mathrm{mg} / \mathrm{kg}$	46
C14-15 Pareths					
C14-15 Pareth-7	rabbits			$<5000 \mathrm{mg} / \mathrm{kg}$	46
${ }^{46} \mathrm{C} 14-15$ Pareth-7	rats			$>5000 \mathrm{mg} / \mathrm{kg}$	46
C14-15 Pareth-11	rabbits			$5000 \mathrm{mg} / \mathrm{kg}$	46
C14-15 Pareth-13	rabbits			$5000 \mathrm{mg} / \mathrm{kg}$	46

Methyl Ethers

PEG-3 Methyl Ether	Wistar rats	1 h exposure to $200 \mathrm{mg} / \mathrm{l}$	no LC_{50} established; no mortality or toxicity observed	
PEG-3 Methyl Ether	rats	6 F	8 hr exposure to concen- trated vapor	no LC_{50} established; no mortality

Laureths

Laureth-9	albino Swiss Webster mice	10 M	$100 \mathrm{mg} / \mathrm{kg}$ (i.v.)		
Laureth-9	Sprague-Dawley rats	12 M	1%, intratracheally		Moderate pulmonary lesions were
:---					
observed in the bronchi, bronchioles and					
alveoli after 1, 3, and 7 days					

Table 6. Dermal irritation and sensitization					
Ingredient	Concentration*	Animals	Procedure	Results	Reference
Dermal Irritation					
Laureths					
laureth-9	undiluted	rabbits (number, gender strain not specified)	Draize test	slight irritation at intact sites and moderate irritation at abraded sites at 24 and 72 h	43
	15,20\% aq.			slight irritant effect on intact and abraded skin at 24 h	
laureth-9	20% in a contraceptive aerosol formulation	4 rabbits (gender and strain not specified)	Draize test	mild irritant	43
laureth (unspecified)	unspecified	6 male albino rabbits	0.10 g applied under occlusion	Strong irritant with necrosis occurring in 2 animals.	55
compounds analogous to Laureth-9					
$\mathrm{C}_{1415} \mathrm{AE}_{7}$	10 or $25 \% \mathrm{~m} / \mathrm{v}$ aq.; undiluted	rabbits	0.5 ml , semi-occluded, 4 h	PII $=1.7 / 8 ;$ not irritating	33
$\mathrm{C}_{12 \cdot 44} \mathrm{AE}_{10}$	undiluted	rabbits	occlusive application, 4 h	PII $=4.1 / 8 ;$ moderate irritant	33
$\mathrm{C}_{13} \mathrm{AE}_{6}$	undiluted	rabbits	occlusive application, 4 h	$\mathrm{PII}=5.1 / 8$; moderate irritant	33
$\mathrm{C}_{13} \mathrm{AE}_{6.5}$	undiluted	rabbits`	occlusive application, 4 h	$\mathrm{PII}=5.5 / 8 ;$ severe irritant	33
$\mathrm{C}_{12-14} \mathrm{AE}_{6}$	undiluted	rabbits	occlusive application, 4 h	PII $=6.3 / 8$; severe irritant	33
$\mathrm{C}_{1415} \mathrm{AE}_{7}$	undiluted	rabbits	occlusive application, 24 h	PII $=6.42 / 8$; severe irritant; slight to moderate erythema and moderate to severe edema	33
PEG Methyl Ethers					
PEG-3 Methyl Ether	neat	5 New Zealand white rabbits	$2.0 \mathrm{~g} / \mathrm{kg}$ applied under occlusion; intact and abraded skin	intact skin: erythema in 4 rabbits; no edema abraded skin: erythema in 1 rabbit edema in 1 rabbit	20
PEG-3 Methyl Ether	undiluted	5 rabbits	0.01 ml applied uncovered for 24 h	irritation grade 2/10 (minimal irritation)	20
C9-11 Pareths					
C9-11 pareth-6	not specified	3 male and 3 female NZW rabbits	Draize test; 1 " sq. of gauze used for application	moderately irritating	45
C9-11 pareth-3	undiluted	6 albino rabbits	Draize test	severely irritating	46
C9-11 pareth-5	undiluted	6 albino rabbits	Draize test	severely irritating	46
	0.1, 1, 10\%	6 albino rabbits	Draize test	0.1% - non-irritating; 1% - minimally irritating; 10% slightly irritating	
C9-11pareth-6	undiluted	6 albino rabbits	Draize test	severely irritating	46
	0.1, 1\%	rabbits	Draize test	0.1% - non-irritating; 1%-slightly irritating	46
C9-11 pareth-8	undiluted	6 albino rabbits	Draize test	severely irritating	46
Table 6. Dermal irritation and sensitization					
:---:	:---:	:---:	:---:	:---:	:---:
Ingredient	Concentration*	Animals	Procedure	Results	Reference
	0.1, 1, 10\%	6 albino rabbits	Draize test	0.1%-minimally irritating; 1% - mildly irritating; 10% moderately irritating	
C12-13 Pareths					
C12-13 pareth (unspecified)	undiluted	3 male NZW rabbits	Draize test	moderately irritating with necrosis and cracking of skin	47
C12-13 pareth-2	undiluted	3 male NZW rabbits	Draize test	moderately irritating with no necrosis observed	48
C12-13 pareth-3	undiluted	6 albino rabbits	Draize test	severely irritating	46
C12-13 pareth-7	undiluted	6 albino rabbits	Draize test	mildly to severely irritating	46
C12-13 pareth-7	0,1, , and 10%	6 albino rabbits	Draize test	0.1% - non-irritating; 1% - mildly irritating; 10% moderately irritating	
C12-15 Pareths					
C12-15 pareth-3	undiluted	6 albino rabbits	Draize test	moderately to extremely irritating	46
C12-15 pareth-7	undiluted	6 albino rabbits	Draize test	moderately irritating	46
	0.1, 1, 10\%	6 albino rabbits	Draize test	$0.1,1 \%$ - mildly irritating; 10% - moderately irritating	
C12-15 pareth-9	undiluted	6 albino rabbits	Draize test	severely irritating	46
	0.1,1\%	6 albino rabbits	Draize test	non-irritating	
C12-15 pareth-12	50\%	6 albino rabbits	Draize test	minimally irritating	46
C14-15 Pareths					
C14-15 pareth-7	undiluted	6 albino rabbits	Draize test	severely irritating	46
	0.1, 1, and 10\%	6 albino rabbits	Draize test	0.1% - minimally irritating; 1% - mildly irritating; 10% moderately irritating	
C14-15 pareth-11	undiluted	6 albino rabbits	Draize test	moderately to severely irritating	46
	0.1, 1, and 10\%	6 albino rabbits	Draize test	0.1% - non-irritating; 1% - slightly irritating; 10% moderately to severely irritating	
C14-15 pareth-13	undiluted	6 albino rabbits	Draize test	moderately irritating	46
C14-15 pareth-18	undiluted	6 albino rabbits	Draize test	mildly irritating	46
	0.1, 1 , and 10%	6 albino rabbits	Draize test	0.1% non-irritating; 1% - minimally irritating; 10% slightly irritating	
Dermal Sensitization					
Laureths					
laureth-5	Induction: 10% aq. laureth-5, challenge: 0$5 \%$ aq. laureth-5	15 Dunkin-Hartley guinea pigs	Modified cumulative contact enhancement test	no sensitization reactions observed; confluent erythema observed at 96 h in 1 test and 1 control animal at the 5% challenge and at 48 and 72 h in 1-2 test and control animals at the 1% challenge.	23
laureth-9	0.02% aq. solution	Groups of 7 male guinea pigs	Intracutaneous test; injections $3 \mathrm{w} / \mathrm{wk}$ for 10 injections; challenge was a single injection 2 wks later	no direct or delayed sensitization reactions	43
Table 6. Dermal irritation and sensitization					
:---:	:---:	:---:	:---:	:---:	:---:
Ingredient	Concentration*	Animals	Procedure	Results	Reference
laureth-9	0.1% solution of an aerosol contraceptive formulation containing 20% laureth-9	Groups of 7 male guinea pigs	Intracutaneous test; injections $3 \mathrm{x} / \mathrm{wk}$ for 10 xs ; challenge: single injection 2 wks later	no direct or delayed sensitization reactions	43
compounds analogous to Laureth-9					
$\mathrm{C}_{12-15} \mathrm{AE}_{7}$	intraderm. induction: 0.05% aq.; top. induction: 20% aq.; top. challenge: 15% aq.	20 test and 10 control guinea pigs	Magnusson-Kligman sensitization study	not sensitizing	33
$\mathrm{C}_{14,15} \mathrm{AE}_{7}$	intraderm. induction: 0.2% in corn oil.; top. induction: undiluted.; top. challenge: 60% in corn oil	20 test and 10 control guinea pigs	Magnusson-Kligman sensitization study	not sensitizing	33
$\mathrm{C}_{12-14} \mathrm{AE}_{6}$	induction: undiluted; challenge: 50% in deionized water	20 test and 10 control guinea pigs	Buehler method	not sensitizing	33
$\mathrm{C}_{12-14} \mathrm{AE}_{9}$	induction: undiluted; challenge: 50% in deionized water	21 test and 10 control guinea pigs	Buehler method	not sensitizing	33
laureth-9	0.1% solution of an aerosol contraceptive formulation containing 20% laureth-9	Groups of 7 male guinea pigs	Intracutaneous test; injections $3 \mathrm{x} / \mathrm{wk}$ for 10 totals; challenge was a single injection 2 wks later	no direct or delayed sensitization reactions	43
C9-11 Pareths					
C9-11 pareth-6	$1 \% \mathrm{aq}$.	4 groups of 5 male and 5 female DunkinHartley albino guinea pigs	Buehler method	no sensitization reactions	45
C9-11 pareth-3	not specified	guinea pigs (number, gender, strain not specified)	not specified	not sensitizing	46
C9-11 pareth-5	not specified	guinea pigs (number, gender, strain not spec)	not specified	not sensitizing	46
C9-11 pareth-6	not specified	guinea pigs (number, gender, strain not specified)	not specified	not sensitizing	46
C9-11 pareth-8	not specified	guinea pigs (number, gender, strain not specified)	not specified	not sensitizing	46
C12-13 Pareths					
C12-13 pareth (unspecified)	intradermal induction: 0.5%, topical induction: 50%, challenge: 25%; in corn oil	10 male and 10 female guinea pigs (strain not provided)	Magnusson-Kligman maximization study	Trace erythema was observed for 1 female test animal at each reading; test material was considered a very weak sensitizer	47
C12-13 pareth-2	intradermal induction: 0.10%; topical induction: undiluted; challenge: 50%; in corn oil	10 male and 10 female guinea pigs (strain not provided)	Magnusson-Kligman maximization study	not sensitizing	48
Ingredient	Concentration*	Animals	Procedure	Results	Reference
:---:	:---:	:---:	:---:	:---:	:---:
C12-13 pareth-3	not specified	guinea pigs (number, gender, strain not specified)	not specified	not sensitizing	46
C12-13 pareth-7	not specified	guinea pigs (number, gender, strain not specified)	not specified	non-sensitizing to low sensitizing	46
C12-15 Pareths					
C12-15 pareth-3	not specified	guinea pigs (number, gender, strain not specified)	not specified	not sensitizing	46
C12-15 pareth-7	not specified	guinea pigs (number, gender, strain not specified)	not specified	not sensitizing	46
C12-15 pareth-9	not specified	guinea pigs (number, gender, strain not specified)	not specified	not sensitizing	46
C14-15 Pareths					
C14-15 pareth-7	not specified	guinea pigs (number, gender, strain not specified)	not specified	not sensitizing	46
C14-15 pareth-11	not specified	guinea pigs (number, gender, strain not specified)	not specified	not sensitizing	46
C14-15 pareth-13	not specified	guinea pigs (number, gender, strain not specified)	not specified	not sensitizing	46
C14-15 pareth-18	not specified	guinea pigs (number, gender, strain not specified)	not specified	not sensitizing	46

Table 7. Ocular irritation					
Ingredient	Concentration*	Animals	Procedure	Results	Reference
C12-13 pareth-7	undiluted, rinsed	albino rabbits (number and gender unspecified)		minimally irritating	46
	0,1, 1 , and 10%	albino rabbits (number and gender unspecified)		0.1 and 1% - non-irritating; 10% - moderately irritating	
C12-13 pareth (unspecified)	undiluted, unrinsed	3 NZW rabbits (gender unspecified)	0.2 ml placed in the conjunctival sac	mildly irritating	47
C12-13 pareth-2	undiluted, unrinsed	3 NZW rabbits (gender unspecified)	0.2 ml placed in the conjunctival sac	non-irritating	48
C12-15 Pareths					
C12-15 pareth-3	undiluted, unrinsed	albino rabbits (number and gender unspecified)	Draize test	severely irritating	46
C12-15 pareth-7	undiluted, unrinsed	albino rabbits (number and gender unspecified)	Draize test	moderately irritating	46
	undiluted, rinsed			mildly to moderately irritating	
	$0.1,1,10 \%$ undiluted, unrinsed			0.1% - non-irritating; 1% - minimally irritating; 10%-mildly irritating severely to extremely irritating	
C12-15 pareth-9	0.1, 1%	albino rabbits (number and gender unspecified)	Draize test	non-irritating	46
C12-15 pareth-12	undiluted, unrinsed	albino rabbits (number and gender unspecified)	Draize test	severely irritating	46
C14-15 Pareths					
C14-15 pareth-7	undiluted, unrinsed	albino rabbits (number and gender unspecified)	Draize test	moderately to severely irritating	46
	undiluted, rinsed			mildly irritating	
	$0.1,1$, and 10%			0.1 and 1% - non-irritating; 10% - mildly irritating	
C14-15 pareth-11	undiluted, unrinsed	albino rabbits (number and gender unspecified)	Draize test	severely irritating	46
	0.1, 1, and 10\%			0.1% - non-irritating; 1% - slightly to mildly irritating; 10% severely irritating	
C14-15 pareth-13	undiluted, unrinsed	albino rabbits (number and gender unspecified)	Draize test	severely irritating	46
C14-15 pareth-18	undiluted, unrinsed	albino rabbits (number and gender unspecified)	Draize test	minimally to mildly irritating	46
	0.1, 1 , and 10%			0.1 and 1% - non-irritating; 10% - practically non- irritating	
Oleths					
oleth-20	5\%	rabbits (number, gender strain unspecified)	Draize test	mild, transient conjunctival redness and chemosis	76
*the vehicle is identified when known					
Table 8. Case reports					
	Subject	Presentation	Follow-Up Testing/Discussion	Reference	
:---:	:---:	:---:	:---:	:---:	
laureth-4	14 yr old female	eczematous lesions redeveloped after use of a commercial acne ointment	Laureths in patch-testing with the individual components of the ointment, the patient had strong reactions to 0.1 and 1% laureth- 4 in ethanol; a control group of 20 patients did not react	73	
laureth-4	79 yr old female	patient had a venous ulceration	10 patients with strong positive reactions to lanolin alcohol were patch tested with laureth-4 in ethanol; 1 patient had strong reactions to 0.1 and 1% and a weak reaction to 0.01%	73	
laureth-7	21 yr old female	pruritic follicular papules on face; rash resolved after discontinuation of new cosmetics	patch testing with 1% laureth-7 caused papules at 72 h and follicular papules at 96 h ; no irritation response in 6 normal subjects; a 7 -day use test with 1% produced follicular papules in 7 days	72	
laureth-9	52 yr old female	developed typical contact dermatitis after using an ointment containing laureth-9	Patch testing with 3\% laurethh-9 was positive	71	
laureth-9	16 patients	patients had chronic dermatitis	all 16 initially had positive patch test reactions to laureth- 9 ; in repeat testing, only 2 of 6 patients had a positive reaction	68	
laureth-9	32 yr old female	occurrence of eczema after using a new moisturizer lotion several times per day	in patch testing with the "Italian standard series" and her own product, reaction was only seen to the product; upon patch testing with product components, positive reactions were observed with laureth-9 (and polyquternium-7)	69	
laureth-2; laureth-9	48 yr old female	patient had a significant reaction after using a hair dye, she then used a dry scalp shampoo and had an eczematous eruption over the scalp, down the neck, to the abdomen	patch testing found that in addition to p-phenylenediamine (PPD) and 4-aminophenol (hair dye ingredients), the subject reacted to 3% laureth- 9 (a component of the shampoo) and to laureth-2	70	
laureth-9	50-yr old female	following treatment with a microfoam of laureth-, the patient developed confluent erythematous and edematous papules where the product was applied, swelling and papules then spread	the patient and 5 controls were skin prick tested with 2% laureth- 9 ; the patient and 2 controls had papular eruptions; the patient was later patch tested with 2% aq or 2% in petrolatum laureth-9; a pruritic eruption was reported 24 h after testing	36	
laureth-12	47-yr old female	history of recurrent facial swelling and scalp irritation following hair dye use	patch testing with hair dye constituents reported positive reactions to laureth-12 (and tbutylhydroquinone); patch testing was negative for PPD	67	
oleth-5	$30-\mathrm{yr}$ old male	patient had an urticarial rash linked to use of a finishing hair wax	Oleths following patch testing with the hair wax ingredients, positive visicubullous reactions were seen with oleth-5 (and oleth-3-phosphate); patch testing was negative in 20 controls; the patient had a delayed hypersensitivity reaction	66	
PEG-7 methyl ether	74-yr old female	developed eczema after use of gel for actinic keratoses	Methyl Ethers patch testing with the individual components, including PEG-7 methyl ether, gave negative results on the back; in patch testing on the upper arm with the components, strong positive reactions to 5 and 10% in pet were seen after 4 days; in controls, patch test results were negative at 24 h	74	
PEG-7 methyl ether	60-yr old female	developed vesicular eczema after use of gel for actinic keratoses	patch testing with the individual components of the gel gave positive reactions to 1 and 5% aq. PEG-7 methyl ether	77	

REFERENCES

1. Elder, RL (ed). Final report on the safety assessment of Laureths -4 and -23. J Am Coll Toxicol. 1983;2:(7):1-15.
2. Andersen, FA (ed). Final report on the safety assessment of Ceteareth-2, $-3,-4,-5,-6,-7,-8,-9,-10,-11,-12,-13,-14,-$ $15,-16,-17,-18,-19,-20,-22,-23,-24,-25,-27,-28,-29,-30,-33,-34,-40,-50,-55,-60,-80$, and -100 . Int J Toxicol. 1999;18:(Suppl 3):41-49.
3. Andersen, FA (ed). Final report on the safety assessment of Ceteth-1, $-2,-3,-4,-5,-6,-10,-12,-14,-15,-16,20,-24,-$ 25, -30, and -45. Int J Toxicol. 1999;18:(Suppl 2):1-8.
4. Andersen, FA (ed). Final report on the safety assessment of Oleth-2, $-3,-4,-5,-6,-7,-8,-9,-10,-11,-12,-15,-16,-20$, -23, -25, -30, -40, -44, and -50. Int J Toxicol. 1999;18:(Suppl 2):17-24.
5. Elder, RL (ed). Final report on the safety assessment of Laneth-10 Acetate group. J Am Coll Toxicol. 1982;1:(4):1-23.
6. Elder, RL (ed). Final report on the safety assessment of Steareth-2, -4, -6, -7, -10, -11, -13, -15, and -20. J Am Coll Toxicol. 1988;7:(6):881-910.
7. Andersen, FA (ed). Special report; Reproductive and developmental toxicity of ethylene glycol and its ethers. Int J Toxicol. 1999;18:(Suppl 2):53-67.
8. Andersen, FA (ed). Final report onthe safety assessment of Methyl Alcohol. Int J Toxicol. 2001;20:(1):57-85.
9. Elder, RL (ed). Final report of the safety assessment for Acetylated Lanolin Alcohol and related compounds. J Environ Pathol Toxicol. 1980;4:(4):63-92.
10. Elder, RL (ed). Final report on the safety assessment of Stearyl Alcohol, Oleyl Alcohol, and Octyl Dodecanol. J Am Coll Toxicol. 1985;4:(5):1-29.
11. Elder, RL (ed). Final report on the safety assessment of Cholesterol. J Am Coll Toxicol. 1986;5:(5):491-516.
12. Elder, RL (ed). Final report o the safety assessment of Cetearyl Alcohol, Cetyl Alcohol, Isostearyl Alcohol, Myristyl Alcohol, and Behenyl Alcohol. J Am Coll Toxicol. 1988;7:(3):359-413.
13. Becker LC, Andersen, FA, and Cosmetic Ingredient Review Expert Panel. Final report of the safety assessment of Simmondsia Chinensis (Jojoba) Seed Oil, Simmondsia Chinensis (Jojoba) Seed Wax, Hydrogenated Jojoba Oil, Hydrolyzed Jojoba Esters, Isomerized Jojoba Oil, Jojoba Esters, Simmondsia Chinensis (Jojoba) Butter, Jojoba Alcohol, and Synthetic Jojoba Oil. 2008.
14. Diamante, CD, Andersen, FA, and Cosmetic Ingredient Review Expert Panel. Amended safety assessment of Cocos Nucifera (Coconut) Oil, Coconut Acid, Hydrogenated Coconut Acid, Hydrogenated Coconut Oil, Ammonium Cocomonoglyceride Sulfate, Butylene Glycol Cocoate, Caprylic/Capric/Coco Glycerides, Cocoglycerides, Coconut Alcohol, Coconut Oil Decyl Esters, Decyl Cocoate, Ethylhexyl Cocoate, Hydrogenated CocoGlycerides, Isodecyl Cocoate, Lauryl Cocoate, Magnesium Cocoate, Methyl Cocoate, Octyldodecyl Cocoate, Pentaerythrityl Cocoate, Potassium Cocoate, Potassium Hydrogenated Cocoate, Sodium Cocoate, Sodium Cocomonoglyceride Sulfate, Sodium Hydrogenated Cocoate, and Tridecyl Cocoate. 2008.
15. Andersen, FA and Cosmetic Ingredient Review Expert Panel. Final amended safety assessement of Triethylene Glycol and Polyethylene Glycols (PEGs)-4, -6, -7, -8, -9, -10, -12, -14, -16, -18, -20, -32, -33, -40, -45, -55, -60, -75, -$80,-90,-100,-135,-150,-180,-200,-220,-240,-350,-400,-450,-500,-800,-2 \mathrm{M},-5 \mathrm{M},-7 \mathrm{M},-9 \mathrm{M},-14 \mathrm{M},-$ $20 \mathrm{M},-23 \mathrm{M},-25 \mathrm{M},-45 \mathrm{M},-65 \mathrm{M},-90 \mathrm{M},-115 \mathrm{M},-160 \mathrm{M}$ and -180 M and any PEGs $=4$ as used in Cosmetics. 6-29-2010.
16. Andersen, FA (ed). Final report on the safety assessment of Methyl Alcohol. Int J Toxicol. 2001;20:(1):57-85.
17. Hinton C (ed.). The Chemistry and Manufacture of Cosmetics. 2002.
18. US EPA. EPI Suite (for Windows). 2009. Washington DC: Environmental Protection Agency.
19. Personal Care Products Council. Comments on the draft report on the ethoxylated alcohols for the June 28-29, 2010 CIR Expert Panel meeting. Correspondence submitted by the Council (4 pp). 6-21-2010.
20. Organisation of Economic Co-operation and Development.SIDS Intial Assessment Report for SIAM 4. 2-(2-(2-Methoxyethoxy)-ethanol. CAS NO. 112-35-6. (PEG-3 Methyl Ether). 2005. http://www.chem.unep.ch/irptc/sids/OECDSIDS/112356.pdf. Accessed 10-26-2010.
21. Hermansky, S. J. and Leung, H. W. Cutaneous toxicity studies with methoxy polyethylene glycol-350 (MPEG-350) in rats and rabbits. Food Chem Toxicol. 1997;35:1031-1039.
22. Bergh, M., Magnusson, K., Nilsson, J. L. G., and Karlberg, A.-T. Formation of formaldehyde and peroxides by air oxidation of high purity polyoxyethylene surfactants. Contact Derm. 1998;39:14-20.
23. Bergh M, Shao LP, HAgelthron G, Gavert E, Nilsson LG, and Karlberg A-T. Contact allergens from surfactants. J Pharm Sci. 1998;87:(3):276-282.
24. Personal Care Products Council. 2010. Monograph proofs of ethoxylated alchohols dated $3 / 15 / 2010$. (Unpublished data -78 pp).
25. Food and Drug Administration (FDA). Frequency of use of cosmetic ingredients. FDA Database. 2010. Washington, DC: FDA.
26. Personal Care Products Council. Concentration of use of alkyl PEG ethers included in the March 2010 concentration of use survey, i.e., those not previously reviewed by CIR. 2010.
27. Personal Care Products Council. Updated concentration of use - ethoxylated alcohols, May 2010 concentration of use survey. 8-11-2010.
28. James AC, Stahlhofen W, Rudolf G, and et al. Deposition of inhaled particles. Annals of the ICRP. 1994;24:(1-3):321-2.
29. Oberdorster G, Oberdorster E, and Oberdosrster J. An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ Health Perspect. 2005;113:(7):823-829.
30. Bower D. Unpublished information on hair spray particle sizes provided at the September 9, 1999 CIR Expert Panel meeting. 1999.
31. Johnson MA. Influence of particle size. Spray Technology and Marketing. 2004;(November):24-27.
32. European Commission.European Commission Health and Consumers Cosmetics - Cosing - Database. 2010. http://ec.europa.eu/consumers/cosmetics/cosing/.
33. Scientific Committee on Consumer Products.Opinion on polidocanol (laureth-9). 10-2-2007. http://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_113.pdf. Accessed 5-13-2010.
34. Miller RR. Metabolism and disposition of glycol ethers. Drug Metabolism Reviews. 1987;18:(1):1-22.
35. Food and Drug Administration (FDA).List of Indirect Additives Used in Food Contact Substances. 5-10-2010. http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?rpt=iaListing\&displayAll=true. Accessed 5-140010.
36. Henriquez-Santana, A., Fernandez-Guarino, M., González deOlano, D., Gonzalez-Cervera, J., Huertas-Barbudo, B., and Aldanondo, I. Urticaria induced by Etoxisclerol (polidocanol). J Eur Acad Dermatol Venereol. 2008;22:261262.
37. Food and Drug Administration (FDA).FDA Important Alert 66-49: Detention Without Physical Examination Of All Polidocanol Finished Dosage Form Products And Active Pharmaceutical Ingredients (APIs) From All Sources Under All Brand Names Including Aetoxisclerol, Aethoxysklerol, And Sclerovein. 10-2-2009. http://www.accessdata.fda.gov/cms_ia/importalert_195.html. Accessed 5-23-2010.
38. Hoberman, A. M., Krasavage, W. J., Christian, M. S., and Stack, C. R. Developmental toxicity studies of triethylene glycol monomethyl ether administered orally to rats and rabbits. J Am Coll Toxicol. 1996;15:(5):349-370.
39. Fruijitier-Pölloth, C. Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. Toxicol. 2005;214:1-38.
40. Leber, A. P., Scott, R. C., Hodge, M. C. E., Johnson, D., and Krasavage, W. J. Triethylene glycol ethers: Evaluations of in vitro absorption through human epidermis, 21-day dermal toxicity in rabbits, and a developmental toxicity screen in rats. J Am Coll Toxicol. 1990;9:(5):507-515.
41. Zhou, M. and Donovan, M. D. Recovery of the nasal mucosa following laureth 9 induced damage. Int.J.Pharm. 1996;130:93-102.
42. Fruijtier-Polloth, Claudia. Safety Assessment on Polyethylene Glycols (PEGs) and Their Derivatives as Used in Cosmetic Products. Toxicology. 2005;214:1-38.
43. Berberian, D. A., Gorman, W. G., Drobeck, H. P., Coulston, F., and Slighter, R. G., Jr. The toxicology and biological properties of laureth 9 (a polyoxyethylene lauryl ether), a new spermicidal agent. Toxicol Appl Pharmacol. 1965;7:206-214.
44. Hasegawa, R., Nakaji, Y., Kurokawa, Y., and Tobe, M. Acute toxicity tests on 113 environmental chemicals. Sci Rep Res Inst Tohoku Univ, -C. 1989;36:(1-4):10-16.
45. Gingell, R. and Lu, C. C. Acute, subchronic, and reproductive toxicity of a linear alcohol ethoxylate surfactant in the rat. J Am Coll Toxicol. 1991;10:(4):477-486.
46. Shell Chemical Company. Human safety of neodol products. 1981.
47. Shell Oil Company. Initial submission. Toxicology of detergents: Acute mammalian toxicity, skin and eye irritancy and skin sensitizing potential of Dobanol 25-3 (Final report). W-attaqch \& lttr 011792. 1-20-1978.
48. Shell Oil Company. Initial submission. Toxicology of detergent intermediates: Acute mammalian toxicity, skin and eye irritancy, and skin sensitizing potential of Dobanol 23-2 (Final report). W-ltte 111291. 10-1-1979.
49. Bushy Run Research Center. Tergitol nonionic surfactant 24-L-60N: Nine-day cutaneous dose toxicity study with neurotoxicity evaluation in albino rats. 1-29-1990.
50. Suzuki, M., Machida, M., Adachi, K., Otabe, K., Sugimoto, T., Hayashi, M., and Awazu, S. Histopathological study of the effects of a single intratracheal instillation of surface active agents on lung in rats. J Toxicol Sci. 2000;25:(1):49-55.
51. International Research and Development Corporation. Pilot teratology study in rabbits. 6-20-1980.
52. Sittingbourne Research Centre. A subchronic (90-day) feeding study on dobanol 45-7 (C14-15 Pareth-7) in rats. 8-271982.
53. Exponent. Letter from James Messina to the EPA regarding a dose selection study for an OECD definitive study. Re: alkyl alkoxylate, CAS \# 9004-98-2 (oleths). 1-18-2008.
54. Procter \& Gamble Company. Initial submission: 91-day percutaneous toxicity study in rabbits on E-9305.02 and E0122.01 with cover letter dated 081292. 9-1-1981.
55. DuPont. Letter from Dr. A.M.Kaplan to the EPA describing a 1971 skin irritation study of a formulations containing a laureth (9002-92-0). 11-23-2009.
56. Marzulli FN and Ruggles DI. Rabbit eye irritation: collaborative study. J Assoc Off Anal Chem. 2010;56:905-914.
57. Chemical Manufacturers Association (Bates, H.K.). Developmental neurotoxicity evaluation of triethylene glycol monomethyl ether (CAS 112-35-6) administered by gavage to timed-mated CD rats on gestional day 6 though postnatal day 21. 1992.
58. Zeiger, E., Anderson, B., Haworth, S., Lawlor, T., Mortelmans, K., and Speck, W. Salmonella mutagenicity tests: III. Results from the testing of 255 chemicals. Environ Mutagen. 1987;9:(Suppl 9):1-110.
59. Matthews, E. J., Spalding, J. W., and Tennant, R. W. Transformation of BALB/c-3T3 cells: V. Transformation responses of 168 chemicals compared with mutagenicity in Salmonella and carcinogenicity in rodent bioassays. Environ Health Perspect. 1993;101:(Suppl 2):347-482.
60. Loveday, K. S., Anderson, B. E., Resnick, M. A., and Zeiger, E. Chromosome aberration and sister chromatid exchange tests in Chinese hamster ovary cells in vitro. V: Results with 46 chemicals. Environ Mol Mutagen. 1990;16:272-303.
61. Myhr, B. C. and Caspary, W. J. Chemical mutagenesis at the thymidine kinase locus in L5178Y mouse lymphoma cells: Results for 31 coded compounds in the National Toxicology Program. Environ Mol Mutagen. 1991;18:51-83.
62. Shelby, M. D., Erexson, G. L., Hook, G. J., and Tice, R. R. Evaluation of a three-exposure mouse bone marrow micronucleus protocol: Results with 49 chemicals. Environ Mol Mutagen. 1993;21:160-179.
63. Goossens, A., Beck, M. H., Haneke, E., Mcfadden, J. P., Nolting, S., Durupt, G., and Ries, G. Adverse cutaneous reactions to cosmetic allergens. Contact Derm. 1999;40:112-113.
64. Uter, W., Geier, J., and Fuchs, T. Contact allergy to polidocanol, 1992 to 1999. J Allergy Clin Immunol. 2000;106:(6):1203-1204.
65. Bárány E, Lindberg M, and Lodén M. Unexpected skin barrier influence from nonionic emulsifiers. Int J Pharm. 2000;195:189-195.
66. Abdullah, A., Walker, S., Tan, C. Y., and Foulds, I. S. Sensitization of oleth-3-phosphate and oleth-5 in a hair wax. Contact Derm. 1997;37:188.
67. Field, S., Hazelwood, E., Bourke, B., and Bourke, J. F. Allergic contact dermatitis from tertiary-butylhydroquinone and Laureth 12 in a hair dye. Contact Derm. 2007;56:116-117.
68. Frosch, P. J. and Schulze-Dirks, A. Contact allergy caused by polidocanol (thesit). Hautarzt. 1989;40:(3):146-149.
69. Gallo, R., Basso, M., Voltolini, S., and Guarrera, M. Allergic contact dermatitis from laureth-9 and polyquaternium-7 in a skin-care product. Contact Derm. 2001;45:356-357.
70. Grills, C. E. and Cooper, S. M. Polidocanol: a potential contact allergen in shampoo. Contact Derm. 2007;56:178.
71. Huber-Riffeser, G. Allergic contact dermatitis to polidocanol (Thesit). Contact Derm. 1978;4:(4):245.
72. Kimura, M. and Kawada, A. Follicular contact dermatitis due to polyoxyethylene laurylether. J Am Acad Dermatol. 2000;42:(5 Pt 2):879-880.
73. Svensson, A. Allergic contact dermatitis to laureth-4. Contact Derm. 1988;18:(2):113-114.
74. Taibjee, S. M., Prais, L., and Foulds, I. S. Allergic contact dermatitis from polyethylene glycol monomethyl ether 350 in Solaraze gel. Contact Derm. 2003;49:170-171.
75. US EPA. EPI Suite (for Windows). 2009. (4.0):Washington DC: Environmental Protection Agency.
76. Marzulli FN and Ruggles DI. Rabbit eye irritation: collaborative study. J Assoc Off Anal Chem. 1973;56:905-914.
77. Kleyn, C. E., Bharati, A., and King, C. M. Contact dermatitis from 3 different allergens in Solaraze gel. Contact Derm. 2004;51:215-216.

DATA

Memorandum
TO:
F. Alan Andersen, Ph.D.

Director - COSMETIC INGREDIENT REVIEW (CIR)

FROM: John Bailey, Ph.D.
Industry Liaison to the CIR Expert Panel
DATE: August 11, 2010
SUBJECT: Updated Concentration of Use Ethoxylated Alcohols, May 2010 Concentration of Use Survey

Concentration of Use by FDA Product Category

Ceteareth-2, Ceteareth-3, Ceteareth-4, Ceteareth-5, Ceteareth-6, Ceteareth-7, Ceteareth-8, Ceteareth-9, Ceteareth-10, Ceteareth-11, Ceteareth-12, Ceteareth-13, Ceteareth-14, Ceteareth-15, Ceteareth-16, Ceteareth-17, Ceteareth-18, Ceteareth-20, Ceteareth-22, Ceteareth-23, Ceteareth-24, Ceteareth-25, Ceteareth-27, Ceteareth-28, Ceteareth-29, Ceteareth-30, Ceteareth-33, Ceteareth-34, Ceteareth-40, Ceteareth-50, Ceteareth-55, Ceteareth-60, Ceteareth-80, Ceteareth-100, Ceteth-1, Ceteth-2, Ceteth-3, Ceteth-4, Ceteth-5, Ceteth-6, Ceteth-7, Ceteth-10, Ceteth-12, Ceteth-13, Ceteth-14, Ceteth-15, Ceteth-16, Ceteth-17, Ceteth-18, Ceteth-20, Ceteth-23, Ceteth-24, Ceteth-25, Ceteth-30, Ceteth-40, Ceteth-45, Ceteth-150, Hydrogenated Laneth-5, Hydrogenated Laneth-20, Hydrogenated Laneth-25, Laneth-5, Laneth-10, Laneth-15, Laneth-16, Laneth-20, Laneth-25, Laneth-40, Laneth-50, Laneth-60, Laneth-75, Laureth-1, Laureth-2, Laureth-3, Laureth-4, Laureth-5, Laureth-6, Laureth-7, Laureth-8, Laureth-9, Laureth-10, Laureth-11, Laureth-12, Laureth-13, Laureth-14, Laureth-15, Laureth-16, Laureth-20, Laureth-21, Laureth-23, Laureth-25, Laureth-30, Laureth-38, Laureth-40, Laureth-50, Oleth-2, Oleth-3, Oleth-4, Oleth-5, Oleth-6, Oleth-7, Oleth-8, Oleth-9, Oleth-10, Oleth-11, Oleth-12, Oleth-15, Oleth-16, Oleth-20, Oleth-23, Oleth-24, Oleth-25, Oleth-30, Oleth-35, Oleth-40, Oleth-44, Oleth-45, Oleth-50, Oleth-82, Oleth-100, Oleth-106, Steareth-1, Steareth-2, Steareth-3, Steareth-4, Steareth-5, Steareth-6, Steareth-7, Steareth-8, Steareth-10, Steareth-11, Steareth-13, Steareth-14, Steareth-15, Steareth-16, Steareth-20, Steareth-21, Steareth-25, Steareth-27, Steareth-30, Steareth-40, Steareth-50, Steareth-80, Steareth-100, Steareth-200, Steareth-60 Cetyl Ether and PEG-16 Cetyl/Oleyl/Stearyl/Lanolin Alcohol Ether*

Ingredient	Product Category	Concentration of Use
Ceteareth-2	Rinses (noncoloring)	2%
Ceteareth-3	Other manicuring preparations	2%
Ceteareth-6	Depilatories	2%
Ceteareth-6	Body and hand creams, lotions and powders	0.8%
Ceteareth-6	Moisturizing creams, lotions and powders	0.008%
Ceteareth-7	Shampoos (noncoloring)	0.2%
Ceteareth-10	Eye shadow	8%
Ceteareth-10	Eye lotion	0.02%
Ceteareth-10	Hair dyes and colors (all types requiring caution statement and patch test)	0.5%
Ceteareth-10	Hair rinses (coloring)	2%
Ceteareth-10	Face powders	0.003%

Ceteareth-10	Foundations	1%
Ceteareth-10	Lipstick	11%
Ceteareth-10	Skin cleansing (cold creams, cleansing lotions, liquids and pads)	2%
Ceteareth-10	Face and neck creams, lotions and powders	0.05\%
Ceteareth-10	Night creams, lotions and powders	0.02\%
Ceteareth-12	Eye lotion	0.02\%
Ceteareth-12	Eye makeup remover	0.1\%
Ceteareth-12	Hair conditioners	0.3\%
Ceteareth-12	Shampoos (noncoloring)	0.5\%
Ceteareth-12	Tonics, dressings and other hair grooming aids	1%
Ceteareth-12	Other manicuring preparations	2\%
Ceteareth-12	Other shaving preparations	4\%
Ceteareth-12	Face and neck creams, lotions and powders	0.3-1\%
Ceteareth-12	Body and hand creams, lotions and powders	0.02-0.5\%
Ceteareth-12	Body and hand sprays	0.3\%
Ceteareth-12	Skin fresheners	0.3\%
Ceteareth-12	Other skin care preparations	2%
Ceteareth-12	Indoor tanning preparations	0.3-0.4\%
Ceteareth-15	Shampoos (noncoloring)	2%
Ceteareth-15	Tonics, dressings and other hair grooming aids	0.2-10\%
Ceteareth-15	Cuticle softeners	4\%
Ceteareth-15	Skin cleansing (cold creams, cleansing lotions, liquids and pads)	1%
Ceteareth-15	Indoor tanning preparations	3%
Ceteareth-20	Eyeliner	3%
Ceteareth-20	Eye shadow	0.02-1\%
Ceteareth-20	Eye lotion	0.2-0.7\%
Ceteareth-20	Mascara	0.05-0.3\%
Ceteareth-20	Hair conditioners	0.008-9\%
Ceteareth-20	Hair straighteners	0.9-3\%

Page 2 of 22

Ceteareth-20	Tonics, dressings and other hair grooming aids	$0.2-11 \%$
Ceteareth-20	Other hair preparations (noncoloring)	2%
Ceteareth-20	Hair dyes and colors (all types requiring caution statement and patch test)	$0.3-10 \%$
Ceteareth-20	Hair bleaches	0.5%
Ceteareth-20	Other hair coloring preparations	2%
Ceteareth-20	Blushers (all types)	0.05%
Ceteareth-20	Foundations	$0.3-0.8 \%$
Ceteareth-20	Makeup bases	$0.5-0.9 \%$
Ceteareth-20	Other makeup preparations	0.3%
Ceteareth-20	Other manicuring preparations	$3-5 \%$
Ceteareth-20	Bath soaps and detergents	0.7%
Ceteareth-20	Deodorants (underarm)	0.5%
Ceteareth-20	Other personal cleanliness products	$0.2-3 \%$
Ceteareth-20	Aftershave lotions	$0.4-2 \%$
Ceteareth-20	Other shaving preparations	0.2%
Ceteareth-20	Skin cleansing (cold creams, cleansing lotions, liquids and pads)	$0.2-4 \%$
Ceteareth-20	Depilatories	$1-2 \%$
Ceteareth-20	Face and neck creams, lotions and powders	$0.05-2 \%$
Ceteareth-20	Body and hand creams, lotions and powders oils, powders and creams	$0.7-3 \%$
Ceteareth-20	Body and hand sprays	0.8%
Ceteareth-20	Moisturizing creams, lotions and powders	$0.9-2 \%$
Ceteareth-20	Night creams, lotions and powders	0.9%
Ceteareth-20	Skin fresheners	$0.7-3 \%$
Ceteareth-20	Other skin care preparations	$0.3-0.5 \%$
Ceteareth-20	Ceteareth-22-25	Ceteareth-20

Page 3 of 22

Ceteareth-25	Hair conditioners	0.8\%
Ceteareth-25	Permanent waves	0.3\%
Ceteareth-25	Shampoos (noncoloring)	0.03\%
Ceteareth-25	Tonics, dressings and other hair grooming aids	0.1-8\%
Ceteareth-25	Other hair preparations (noncoloring)	2\%
Ceteareth-25	Hair dyes and colors (all types requiring caution statement and patch test)	0.3-2\%
Ceteareth-25	Other manicuring preparations	14-16\%
Ceteareth-25	Deodorants (underarm)	0.5\%
Ceteareth-25	Skin cleansing (cold creams, cleansing lotions, liquids and pads)	0.1\%
Ceteareth-25	Depilatories	1-2\%
Ceteareth-25	Face and neck creams, lotions and powders	0.4-0.5\%
Ceteareth-25	Body and hand creams, lotions and powders	0.3-2\%
Ceteareth-25	Night creams, lotions and powders	0.3\%
Ceteareth-30	Deodorants (underarm)	0.3\%
Ceteareth-30	Face and neck creams, lotions and powders	0.09\%
Ceteareth-33	Hair conditioners	0.8-9\%
Ceteareth-33	Tonics, dressings and other hair grooming aids	2%
Ceteareth-33	Hair dyes and colors (all types requiring caution statement and patch test)	2\%
Ceteareth-33	Deodorants (underarm)	1-5\%
Ceteareth-33	Face and neck creams, lotions and powders	3%
Ceteareth-33	Body and hand creams, lotions and powders	0.2-3\%
Ceteareth-33	Moisturizing creams, lotions and powders	2%
Ceteareth-33	Night creams, lotions and powders	5\%
Ceteareth-33	Other skin care preparations	1-8\%
Ceteareth-50	Hair dyes and colors (all types requiring caution statement and patch test)	3-6\%
Ceteareth-50	Foundations	4\%
Ceteth-1	Eyeliner	0.4\%

Page 4 of 22

Ceteth-1	Hair conditioners	0.2\%
Ceteth-1	Permanent waves	0.5\%
Ceteth-1	Rinses (noncoloring)	0.2\%
Ceteth-1	Shampoos (noncoloring)	3%
Ceteth-1	Tonics, dressings and other hair grooming aids	2\%
Ceteth-1	Hair dyes and colors (all types requiring caution statement and patch test)	0.7\%
Ceteth-1	Bath soaps and detergents	0.2\%
Ceteth-1	Face and neck creams, lotions and powders	2\%
Ceteth-1	Other skin care preparations	0.3\%
Ceteth-2	Hair conditioners	0.6\%
Ceteth-2	Hair straighteners	1%
Ceteth-2	Permanent waves	0.2-3\%
Ceteth-2	Tonics, dressings and other hair grooming aids	0.9-4\%
Ceteth-2	Hair dyes and colors (all types requiring caution statement and patch test)	0.5\%
Ceteth-2	Deodorants (underarm)	0.8-3\%
Ceteth-2	Skin cleansing (cold creams, cleansing lotions, liquids and pads)	3%
Ceteth-2	Face and neck creams, lotions and powders	0.5-1\%
Ceteth-2	Paste masks (mud packs)	1%
Ceteth-2	Other skin care preparations	3\%
Ceteth-2	Suntan gels, creams and liquids	0.6\%
Ceteth-3	Rinses (noncoloring)	0.2\%
Ceteth-6	Shampoos (noncoloring)	0.06\%
Ceteth-6	Tonics, dressings and other hair grooming aids	0.006\%
Ceteth-10	Eye lotion	0.1\%
Ceteth-10	Hair conditioners	5\%
Ceteth-10	Tonics, dressings and other hair grooming aids	3\%
Ceteth-10	Foundations	0.2-1\%
Ceteth-10	Other manicuring preparations	0.02-0.08\%

Page 5 of 22

Ceteth-10	Depilatories	0.6\%
Ceteth-10	Face and neck creams, lotions and powders	0.1-0.2\%
Ceteth-12	Face and neck creams, lotions and powders	0.02\%
Ceteth-15	Shampoos (noncoloring)	2\%
Ceteth-16	Hair bleaches	1\%
Ceteth-16	Other hair coloring preparations	0.5\%
Ceteth-16	Deodorants (underarm)	0.06\%
Ceteth-20	Eye lotion	0.4-0.9\%
Ceteth-20	Mascara	0.3\%
Ceteth-20	Hair conditioners	0.6-1\%
Ceteth-20	Hair straighteners	2\%
Ceteth-20	Permanent waves	0.2\%
Ceteth-20	Shampoos (noncoloring)	2\%
Ceteth-20	Other hair preparations (noncoloring)	0.2\%
Ceteth-20	Other manicuring preparations	0.8\%
Ceteth-20	Bath soaps and detergents	0.04-4\%
Ceteth-20	Deodorants (underarm)	0.82\%
Ceteth-20	Other shaving preparations	2\%
Ceteth-20	Skin cleansing (cold creams, cleansing lotions, liquids and pads)	1-3\%
Ceteth-20	Face and neck creams, lotions and powders	0.4-3\%
Ceteth-20	Body and hand creams, lotions and powders	2-3\%
Ceteth-20	Body and hand sprays	0.8\%
Ceteth-20	Moisturizing creams, lotions and powders	0.08-3\%
Ceteth-20	Moisturizing sprays	2\%
Ceteth-20	Night creams, lotions and powders	0.5\%
Ceteth-20	Other skin care preparations	0.4-2\%
Ceteth-20	Indoor tanning preparations	0.2\%
Ceteth-24	Eye shadow	0.2\%
Ceteth-24	Eye lotion	0.05-0.2\%

Page 6 of 22

Ceteth-24	Perfumes	0.2\%
Ceteth-24	Other fragrance preparations	0.2\%
Ceteth-24	Hair conditioners	0.2\%
Ceteth-24	Permanent waves	0.5\%
Ceteth-24	Shampoos (noncoloring)	0.05\%
Ceteth-24	Tonics, dressings and other hair grooming aids	0.5\%
Ceteth-24	Foundations	0.2-0.8\%
Ceteth-24	Other makeup preparations	0.3\%
Ceteth-24	Cuticle softeners	0.09\%
Ceteth-24	Bath soaps and detergents	0.0009\%
Ceteth-24	Skin cleansing (cold creams, cleansing lotions, liquids and pads)	0.09-0.3\%
Ceteth-24	Face and neck creams, lotions and powders	0.05-2\%
Ceteth-24	Body and hand creams, lotions and powders	0.09-0.7\%
Ceteth-24	Moisturizing creams, lotions and powders	0.7\%
Ceteth-24	Night creams, lotions and powders	0.2\%
Ceteth-24	Paste masks (mud packs)	0.2\%
Ceteth-24	Skin fresheners	0.05-0.09\%
Ceteth-24	Other skin care preparations	0.07\%
Ceteth-24	Suntan gels, creams and liquids	0.5\%
Ceteth-24	Indoor tanning preparations	0.2\%
Ceteth-25	Tonics, dressings and other hair grooming aids	0.6\%
Ceteth-25	Hair bleaches	1%
Ceteth-25	Face and neck creams, lotions and powders	1%
Ceteth-25	Body and hand creams, lotions and powders	1%
Ceteth-25	Moisturizing creams, lotions and powders	3\%
Ceteth-25	Paste masks (mud packs)	2\%
Laneth-5	Hair dyes and colors (all types requiring caution statement and patch test)	0.8\%
Laneth-15	Hair conditioners	10-30\%
Laneth-15	Hair straighteners	0.5-3\%

Page 7 of 22

Laneth-15	Tonics, dressings and other hair grooming aids	0.1-3\%
Laneth-15	Other skin care preparations	0.3\%
Laneth-16	Hair bleaches	2\%
Laneth-16	Other hair coloring preparations	0.7\%
Laneth-16	Deodorants (underarm)	0.08\%
Laneth-20	Hair straighteners	0.7\%
Laneth-20	Tonics, dressings and other hair grooming aids	0.5\%
Laneth-40	Hair conditioners	10-30\%
Laneth-40	Hair straighteners	1-3\%
Laureth-1	Shampoos (noncoloring)	12%
Laureth-1	Hair dyes and colors (all types requiring caution statement and patch test)	15\%
Laureth-1	Skin cleansing (cold creams, cleansing lotions, liquids and pads)	7\%
Laureth-2	Eye shadow	0.2\%
Laureth-2	Other fragrance preparations	0.8\%
Laureth-2	Hair conditioners	0.6-5\%
Laureth-2	Shampoos (noncoloring)	0.6-0.9\%
Laureth-2	Hair dyes and colors (all types requiring caution statement and patch test)	4-9\%
Laureth-2	Other hair coloring preparations	0.2\%
Laureth-2	Lipstick	0.005\%
Laureth-2	Bath soaps and detergents	0.9\%
Laureth-2	Other personal cleanliness products	0.5\%
Laureth-2	Aftershave lotions	0.02\%
Laureth-2	Skin cleansing (cold creams, cleansing lotions, liquids and pads)	0.3-2\%
Laureth-2	Depilatories	7\%
Laureth-2	Face and neck creams, lotions and powders	7\%
Laureth-2	Night creams, lotions and powders	0.2\%
Laureth-2	Paste masks (mud packs)	0.2\%

Page 8 of 22

Laureth-2	Skin fresheners	0.2\%
Laureth-2	Other skin care preparations	0.5\%
Laureth-3	Hair conditioners	$<1 \%$
Laureth-3	Shampoos (noncoloring)	0.5-1\%
Laureth-3	Tonics, dressings and other hair grooming aids	0.8\%
Laureth-3	Hair dyes and colors (all types requiring caution statement and patch test)	3-20\%
Laureth-3	Hair bleaches	2-10\%
Laureth-3	Other personal cleanliness products	0.02\%
Laureth-3	Skin cleansing (cold creams, cleansing lotions, liquids and pads)	0.0004\%
Laureth-3	Face and neck creams, lotions and powders	0.05\%
Laureth-3	Body and hand creams, lotions and powders	0.8\%
Laureth-3	Moisturizing creams, lotions and powders	0.02\%
Laureth-4	Bath oils, tablets and salts	10\%
Laureth-4	Bubble baths	8-12\%
Laureth-4	Eyebrow pencil	0.007\%
Laureth-4	Eyeliner	2-4\%
Laureth-4	Eye shadow	0.02\%
Laureth-4	Eye lotion	0.05-0.2\%
Laureth-4	Mascara	0.02-0.3\%
Laureth-4	Other eye makeup preparations	0.03\%
Laureth-4	Hair conditioners	0.01-4\%
Laureth-4	Rinses (noncoloring)	0.2\%
Laureth-4	Shampoos (noncoloring)	0.4-2\%
Laureth-4	Tonics, dressings and other hair grooming aids	0.05-3\%
Laureth-4	Hair dyes and colors (all types requiring caution statement and patch test)	0.05-6\%
Laureth-4	Other hair coloring preparations	0.04-0.3\%
Laureth-4	Blushers (all types)	0.06-0.8\%
Laureth-4	Face powders	0.004-1\%

Page 9 of 22

Laureth-4	Foundations	0.002-0.5\%
Laureth-4	Lipstick	0.02-0.2\%
Laureth-4	Other makeup preparations	0.1\%
Laureth-4	Cuticle softeners	7\%
Laureth-4	Other manicuring preparations	2-6\%
Laureth-4	Bath soaps and detergents	0.0002-2\%
Laureth-4	Deodorants (underarm)	0.8\%
Laureth-4	Other personal cleanliness products	0.3-2\%
Laureth-4	Skin cleansing (cold creams, cleansing lotions, liquids and pads	4-21\%
Laureth-4	Face and neck creams, lotions and powders	0.09-1\%
Laureth-4	Body and hand creams, lotions and powders	0.02-20\%
Laureth-4	Other skin care preparations	4-5\%
Laureth-4	Suntan gels, creams and liquids	0.2\%
Laureth-4	Indoor tanning preparations	3%
Laureth-4	Other suntan preparations	0.1\%
Laureth-5	Tonics, dressings and other hair grooming aids	0.0002\%
Laureth-6	Other personal cleanliness products	6-8\%
Laureth-7	Eyeliner	0.02-0.06\%
Laureth-7	Eye shadow	0.07-0.2\%
Laureth-7	Eye lotion	0.04-0.4\%
Laureth-7	Mascara	0.06\%
Laureth-7	Other eye makeup preparations	0.3\%
Laureth-7	Powders (dusting and talcum)	0.07\%
Laureth-7	Hair conditioners	0.04-2\%
Laureth-7	Shampoos (noncoloring)	<1\%
Laureth-7	Tonics, dressings and other hair grooming aids	0.2-0.4\%
Laureth-7	Other hair preparations (noncoloring)	0.9\%
Laureth-7	Hair dyes and colors (all types requiring caution statement and patch testing)	0.3\%
Laureth-7	Hair tints	0.2\%

Page 10 of 22

Laureth-7	Blushers (all types)	0.2\%
Laureth-7	Face powders	0.001-0.2\%
Laureth-7	Foundations	0.1-0.5\%
Laureth-7	Lipstick	0.05-0.4\%
Laureth-7	Makeup bases	0.05-0.4\%
Laureth-7	Rouges	0.2\%
Laureth-7	Other makeup preparations	0.02-0.3\%
Laureth-7	Cuticle softeners	0.02-0.1\%
Laureth-7	Other manicuring preparations	0.3\%
Laureth-7	Other personal cleanliness products	0.020.2\%
Laureth-7	Aftershave lotions	0.05-0.2\%
Laureth-7	Skin cleansing (cold creams, cleansing lotions, liquids and pads)	0.09-0.4\%
Laureth-7	Face and neck creams, lotions and powders	0.04-4\%
Laureth-7	Body and hand creams, lotions and powders	0.004-0.4\%
Laureth-7	Moisturizing creams, lotions and powders	0.2-0.3\%
Laureth-7	Night creams, lotions and powders	0.08-0.4\%
Laureth-7	Skin fresheners	0.3\%
Laureth-7	Other skin care preparations	0.02-0.3\%
Laureth-7	Suntan gels, creams and liquids	0.5\%
Laureth-7	Indoor tanning preparations	0.2-0.4\%
Laureth-8	Eye lotion	0.08\%
Laureth-8	Other personal cleanliness products	6-8\%
Laureth-8	Aftershave lotions	0.2\%
Laureth-8	Face and neck creams, lotions and powders	0.08\%
Laureth-8	Body and hand creams, lotions and powders	0.08\%
Laureth-8	Other skin care preparations	0.05\%
Laureth-9	Eye makeup remover	1%
Laureth-9	Hair conditioners	0.09-0.3\%
Laureth-9	Hair sprays (aerosol fixatives)	0.3\%

Page 11 of 22

Laureth-9	Permanent waves	0.06\%
Laureth-9	Shampoos (noncoloring)	0.006-2\%
Laureth-9	Tonics, dressings and other hair grooming aids	0.0003\%
Laureth-9	Face and neck creams, lotions and powders	0.3\%
Laureth-9	Body and hand creams, lotions and powders	0.4\%
Laureth-9	Moisturizing creams, lotions and powders	1\%
Laureth-10	Hair conditioners	5\%
Laureth-10	Shampoos (noncoloring)	0.09-1\%
Laureth-10	Other personal cleanliness products	0.05-8\%
Laureth-10	Skin cleansing (cold creams, cleansing lotions, liquids and pads)	1-5\%
Laureth-10	Face and neck creams, lotions and powders	0.4\%
Laureth-10	Body and hand creams, lotions and powders	0.5\%
Laureth-11	Hair conditioners	5\%
Laureth-11	Face and neck creams, lotions and powders	2\%
Laureth-12	Eye shadow	0.05\%
Laureth-12	Eye lotion	0.06\%
Laureth-12	Hair conditioners	0.3-1\%
Laureth-12	Shampoos (noncoloring)	3%
Laureth-12	Tonics, dressings and other hair grooming aids	2%
Laureth-12	Hair dyes and colors (all types requiring caution statement and patch test)	5\%
Laureth-12	Hair tints	1%
Laureth-12	Blushers (all types)	0.1\%
Laureth-12	Foundations	0.04-0.3\%
Laureth-12	Bath soaps and detergents	6\%
Laureth-12	Face and neck creams, lotions and powders	0.03-1\%
Laureth-12	Body and hand creams, lotions and powders	0.02-1\%
Laureth-12	Moisturizing creams, lotions and powders	0.3\%
Laureth-12	Night creams, lotions and powders	0.2\%
Laureth-12	Other skin care preparation	0.05\%

Page 12 of 22

Laureth-16	Shampoos (noncoloring)	3\%
Laureth-20	Eyebrow pencil	0.05\%
Laureth-20	Mascara	0.03-0.06\%
Laureth-20	Other eye makeup preparations	0.02\%
Laureth-20	Shampoos (noncoloring)	5\%
Laureth-20	Face and neck creams, lotions and powders	0.0008\%
Laureth-20	Other skin care preparations	0.03\%
Laureth-21	Eyeliner	0.6\%
Laureth-21	Eye shadow	0.006-0.2\%
Laureth-21	Mascara	0.03-0.07\%
Laureth-21	Blushers (all types)	0.003\%
Laureth-21	Lipstick	0.03\%
Laureth-23	Eye lotion	0.09\%
Laureth-23	Mascara	0.003\%
Laureth-23	Colognes and toilet waters	3\%
Laureth-23	Hair conditioners	0.02-2\%
Laureth-23	Permanent waves	2-4\%
Laureth-23	Rinses (noncoloring)	0.4\%
Laureth-23	Shampoos (noncoloring)	0.05-0.4\%
Laureth-23	Tonics, dressings and other hair grooming aids	0.008-2\%
Laureth-23	Other hair preparations (noncoloring)	8\%
Laureth-23	Other hair coloring preparations	0.04-0.5\%
Laureth-23	Cuticle softeners	2%
Laureth-23	Bath soaps and detergents	0.0002\%
Laureth-23	Deodorants (underarm)	0.4-2\%
Laureth-23	Other personal cleanliness products	0.07-2\%
Laureth-23	Beard softeners	3\%
Laureth-23	Shaving cream (aerosol, brushless and lather)	2-7\%
Laureth-23	Other shaving preparations	0.1\%
Laureth-23	Skin cleansing (cold creams, cleansing lotions, liquids	0.04-1\%

Page 13 of 22

	and pads)	
Laureth-23	Face and neck creams, lotions and powders	0.4-1\%
Laureth-23	Body and hand creams, lotions and powders	0.4-2\%
Laureth-23	Other skin care preparations	2%
Laureth-23	Suntan gels, creams and liquids	0.2\%
Laureth-25	Eyeliner	3%
Laureth-25	Hair conditioners	0.09\%
Laureth-25	Permanent waves	0.03\%
Laureth-25	Shampoos (noncoloring)	0.04-0.2\%
Laureth-30	Eyeliner	0.3\%
Laureth-30	Mascara	0.02-0.3\%
Laureth-30	Hair tints	0.07\%
Laureth-30	Face and neck creams, lotions and powders	0.07\%
Oleth-2	Bath oils, tablets and salts	6\%
Oleth-2	Other fragrance preparations	5\%
Oleth-2	Hair conditioners	0.5-4\%
Oleth-2	Hair sprays (aerosol fixatives)	0.1\%
Oleth-2	Tonics, dressings and other hair grooming aids	3-10\%
Oleth-2	Hair dyes and colors (all types requiring caution statement and patch test)	0.2-18\%
Oleth-2	Hair tints	1\%
Oleth-2	Deodorants (underarm)	0.4\%
Oleth-2	Skin cleansing (cold creams, cleansing lotions, liquids and pads)	0.3-3\%
Oleth-2	Face and neck creams, lotions and powders	0.8\%
Oleth-2	Body and hand creams, lotions and powders	1\%
Oleth-3	Bath oils, tablets and salts	7%
Oleth-3	Eye lotion	0.4\%
Oleth-3	Tonics, dressings and other hair grooming aids	4\%
Oleth-3	Hair dyes and colors (all types requiring caution statement and patch test)	10\%

Oleth-3	Deodorants (underarn)	1%
Oleth-3	Face and neck creams, lotions and powders	0.4\%
Oleth-3	Body and hand creams, lotions and powders	1\%
Oleth-3	Suntan gels, creams and liquids	0.3\%
Oleth-4	Permanent waves	1\%
Oleth-4	Hair dyes and colors (all types requiring caution statement and patch test)	4\%
Oleth-5	Bath oils, tablets and salts	10\%
Oleth-5	Eye lotion	0.3\%
Oleth-5	Hair conditioners	0.5-3\%
Oleth-5	Hair straighteners	1\%
Oleth-5	Permanent waves	5\%
Oleth-5	Rinses (noncoloring)	0.06\%
Oleth-5	Shampoos (noncoloring)	0.06\%
Oleth-5	Tonics, dressings and other hair grooming aids	5-10\%
Oleth-5	Nail creams and lotions	4%
Oleth-5	Other manicuring preparations	3\%
Oleth-5	Skin cleansing (cold creams, cleansing lotions, liquids and pads)	1%
Oleth-5	Face and neck creams, lotions and powders	0.7\%
Oleth-5	Body and hand creams, lotions and powders	3%
Oleth-5	Moisturizing creams, lotions and powders	1%
Oleth-5	Skin fresheners	0.3\%
Oleth-8	Hair conditioners	2\%
Oleth-8	Permanent waves	1\%
Oleth-10	Eye lotion	0.5\%
Oleth-10	Perfumes	6\%
Oleth-10	Other fragrance preparations	4\%
Oleth-10	Hair conditioners	0.3-1\%
Oleth-10	Shampoos (noncoloring)	1%
Oleth-10	Tonics, dressings and other hair grooming aids	0.3-11\%

Page 15 of 22

Oleth-10	Other hair preparations (noncoloring)	14\%
Oleth-10	Hair dyes and colors (all types requiring caution statement and patch test)	0.2-5\%
Oleth-10	Mouthwashes and breath fresheners (liquids and sprays)	0.2\%
Oleth-10	Bath soaps and detergents	1%
Oleth-10	Deodorants (underarm)	0.5\%
Oleth-10	Other personal cleanliness products	0.5-3\%
Oleth-10	Other shaving preparations	1\%
Oleth-10	Skin cleansing (cold creams, cleansing lotions, liquids and pads)	0.3-4\%
Oleth-10	Face and neck creams, lotions and powders	0.2-0.8\%
Oleth-10	Body and hand creams, lotions and powders	0.2-8\%
Oleth-10	Moisturizing creams, lotions and powders	0.6\%
Oleth-10	Paste masks (mud packs)	0.2-0.4\%
Oleth-10	Other skin care preparations	0.5\%
Oleth-10	Suntan gels, creams and liquids	0.3\%
Oleth-12	Eyeliner	1\%
Oleth-12	Body and hand creams, lotions and powders	2\%
Oleth-15	Face and neck creams, lotions and powders	0.4\%
Oleth-15	Paste masks (mud packs)	0.7\%
Oleth-16	Baby lotions, oils, powders and creams	0.03\%
Oleth-16	Colognes and toilet waters	0.06\%
Oleth-16	Hair bleaches	0.8\%
Oleth-16	Other hair coloring preparations	0.5\%
Oleth-16	Deodorants (underarm)	0.06\%
Oleth-20	Eyeliner	2\%
Oleth-20	Hair conditioners	0.2-2\%
Oleth-20	Permanent waves	1\%
Oleth-20	Rinses (noncoloring)	3\%
Oleth-20	Shampoos (noncoloring)	0.01-3\%

Page 16 of 22

Oleth-20	Tonics, dressings and other hair grooming aids	0.3-17\%
Oleth-20	Other hair preparations (noncoloring)	6\%
Oleth-20	Hair dyes and colors (all types requiring caution statement and patch test)	1%
Oleth-20	Hair bleaches	1%
Oleth-20	Foundations	0.3\%
Oleth-20	Cuticle softeners	4\%
Oleth-20	Nail polish and enamel	4\%
Oleth-20	Mouthwashes and breath fresheners (liquids and sprays)	0.2\%
Oleth-20	Deodorants (underarm)	0.9-3\%
Oleth-20	Other personal cleanliness products	4\%
Oleth-20	Aftershave lotions	0.4\%
Oleth-20	Shaving cream (aerosol, brushless and lather)	4\%
Oleth-20	Other shaving preparations	0.5\%
Oleth-20	Skin cleansing (cold creams, cleansing lotions, liquids and pads)	0.7-3\%
Oleth-20	Face and neck creams, lotions and powders	0.1-2\%
Oleth-20	Body and hand creams, lotions and powders	0.2-0.9\%
Oleth-20	Moisturizing creams, lotions and powders	0.4\%
Oleth-20	Paste masks (mud packs)	0.1-0.7\%
Oleth-20	Skin fresheners	1%
Oleth-20	Other skin care preparations	0.9-3\%
Oleth-25	Permanent waves	0.2\%
Oleth-30	Hair dyes and colors (all types requiring caution statement and patch test)	3\%
Oleth-30	Shaving cream (aerosol, brushless and lather)	8\%
Oleth-50	Hair conditioners	0.7\%
Oleth-50	Permanent waves	2%
Oleth-50	Rinses (noncoloring)	0.5\%
Oleth-50	Hair dyes and colors (all types requiring caution statement and patch test)	0.3\%

Page 17 of 22

Oleth-50	Depilatories	4%
Oleth-50	Face and neck creams, lotions and powders	1%
Oleth-106	Hair dyes and colors (all types requiring caution statement and patch test)	5%
Steareth-2	Other baby products	4%
Steareth-2	Eyeliner	1%
Steareth-2	Eye shadow	$0.2-2 \%$
Steareth-2	Eye lotion	$0.8-3 \%$
Steareth-2	Eye makeup remover	2%
Steareth-2	Mascara	$0.2-2 \%$
Steareth-2	Hair conditioners	$1-10 \%$
Steareth-2	Tonics, dressings and other hair grooming aids	$1-5 \%$
Steareth-2	Face and neck creams, lotions and powders	$0.4-5 \%$
Steareth-2	Hair dyes and colors (all types requiring caution	3%
Statement and patch test)	$0.3-3 \%$	
Steareth-2	Skin cleansing (cold creams, cleansing lotions, liquids	$0.3-2 \%$
Steareth-2	Hair pads) rinses (coloring)	1%
Steareth-2	Other personal cleanliness products	0.3%
Steareth-2	Blushers (all types)	0.8%
Steareth-2	Sthererders	$0.1-2 \%$
Steareth-2	Steareth-2	Face powders

Page 18 of 22

Steareth-2	Body and hand sprays	0.8\%
Steareth-2	Moisturizing creams, lotions and powders	1-3\%
Steareth-2	Night creams, lotions and powders	0.8-3\%
Steareth-2	Paste masks (mud packs)	0.5\%
Steareth-2	Skin fresheners	0.5\%
Steareth-2	Other skin care preparations	0.6-3\%
Steareth-2	Suntan gels, creams and liquids	2-3\%
Steareth-2	Indoor tanning preparations	0.3-1\%
Steareth-4	Eyeliner	0.02\%
Steareth-4	Hair conditioners	1\%
Steareth-4	Hair sprays (aerosol fixatives)	1\%
Steareth-4	Permanent waves	3\%
Steareth-4	Rinses (noncoloring)	1\%
Steareth-4	Shampoos (noncoloring)	0.1-1\%
Steareth-4	Tonics, dressings and other hair grooming aids	1\%
Steareth-4	Hair dyes and colors (all types requiring caution statement and patch testing)	0.5\%
Steareth-4	Other manicuring preparations	0.06\%
Steareth-4	Bath soaps and detergents	0.1\%
Steareth-4	Other personal cleanliness products	0.3-2\%
Steareth-4	Other skin care preparations	0.06-0.2\%
Steareth-6	Tonics, dressings and other hair grooming aids	3\%
Steareth-10	Eye lotion	0.5-2\%
Steareth-10	Other eye makeup preparations	2\%
Steareth-10	Foundations	4\%
Steareth-10	Face and neck creams, lotions and powders	0.9-3\%
Steareth-10	Body and hand creams, lotions and powders	1-2\%
Steareth-16	Colognes and toilet waters	0.2\%
Steareth-16	Hair bleaches	1\%
Steareth-16	Other hair coloring preparations	0.4\%

Page 19 of 22

Steareth-20	Eyeliner	0.3\%
Steareth-20	Eye lotion	0.08-2\%
Steareth-20	Eye makeup remover	0.8\%
Steareth-20	Mascara	2-4\%
Steareth-20	Other eye makeup preparations	0.02\%
Steareth-20	Hair conditioners	1%
Steareth-20	Tonics, dressings and other hair grooming aids	0.01-20\%
Steareth-20	Other hair preparations (noncoloring)	0.2\%
Steareth-20	Hair dyes and colors (all types requiring caution statement and patch test)	3\%
Steareth-20	Blushers (all types)	0.1-8\%
Steareth-20	Foundations	0.03-2\%
Steareth-20	Other makeup preparations	0.02-0.03\%
Steareth-20	Nail creams and lotions	0.7\%
Steareth-20	Other manicuring preparations	2%
Steareth-20	Bath soaps and detergents	0.007-2\%
Steareth-20	Deodorants (underarm)	0.6-2\%
Steareth-20	Other personal cleanliness products	2\%
Steareth-20	Aftershave lotions	2\%
Steareth-20	Shaving cream (aerosol, brushless and lather)	0.05\%
Steareth-20	Shaving soaps (cakes, sticks, etc)	0.01\%
Steareth-20	Skin cleansing (cold creams, cleansing lotions, liquids and pads)	0.01-1\%
Steareth-20	Depilatories	3%
Steareth-20	Face and neck creams, lotions and powders	0.08-3\%
Steareth-20	Body and hand creams, lotions and powders	0.9-3\%
Steareth-20	Moisturizing creams, lotions and powders	0.6\%
Steareth-20	Night creams, lotions and powders	0.03-0.09\%
Steareth-20	Paste masks (mud packs)	0.08\%
Steareth-20	Other skin care preparations	0.006-0.03\%
Steareth-20	Suntan gels, creams and liquids	0.3\%

Page 20 of 22

Steareth-20	Indoor tanning preparations	0.2\%
Steareth-21	Eyeliner	1%
Steareth-21	Eye shadow	0.4-0.6\%
Steareth-21	Eye lotion	0.8-2\%
Steareth-21	Other eye makeup preparations	2%
Steareth-21	Hair conditioners	<1-3\%
Steareth-21	Tonics, dressings and other hair grooming aids	2-7\%
Steareth-21	Other hair preparations (noncoloring)	2%
Steareth-21	Hair dyes and colors (all types requiring caution statement and patch test)	2-5\%
Steareth-21	Hair tints	2%
Steareth-21	Hair rinses (coloring)	0.5\%
Steareth-21	Blushers (all types)	0.4-0.6\%
Steareth-21	Face powders	2\%
Steareth-21	Foundations	0.05-3\%
Steareth-21	Leg and body paints	0.7\%
Steareth-21	Lipstick	0.5-1\%
Steareth-21	Other makeup preparations	0.4-2\%
Steareth-21	Cuticle softeners	1%
Steareth-21	Other manicuring preparations	0.01\%
Steareth-21	Bath soaps and detergents	0.04\%
Steareth-21	Deodorants (underarm)	0.8-2\%
Steareth-21	Other personal cleanliness products	2\%
Steareth-21	Aftershave lotions	0.7-3\%
Steareth-21	Skin cleansing (cold creams, cleansing lotions, liquids and pads)	0.5-3\%
Steareth-21	Face and neck creams, lotions and powders	0.9-4\%
Steareth-21	Body and hand creams, lotions and powders	0.9-3\%
Steareth-21	Foot powders and sprays	2%
Steareth-21	Moisturizing creams, lotions and powders	2%
Steareth-21	Night creams, lotions and powders	0.8-2\%

Page 21 of 22

Steareth-21	Paste masks (mud packs)	2\%
Steareth-21	Other skin care preparations	3\%
Steareth-21	Suntan gels, creams and liquids	3\%
Steareth-25	Body and hand creams, lotions and powders	2\%
Steareth-25	Moisturizing creams, lotions and powders	0.3\%
Stearaeth-30	Other hair preparations (noncoloring)	0.5\%
Steareth-50	Face and neck creams, lotions and powders	4\%
Steareth-100	Bath oils, tablets and salts	0.02\%
Steareth-100	Eye lotion	0.3-1\%
Steareth-100	Tonics, dressings and other hair grooming aids	2\%
Steareth-100	Hair dyes and colors (all types requiring caution statement and patch test)	0.3\%
Steareth-100	Other makeup preparations	3%
Steareth-100	Bath soaps and detergents	0.5\%
Steareth-100	Deodorants (underarm)	2-6\%
Steareth-100	Shaving cream (aerosol, brushless and lather)	0.5\%
Steareth-100	Face and neck creams, lotions and powders	0.4-1\%
Steareth-100	Body and hand creams, lotions and powders	1-3\%
Steareth-100	Moisturizing creams, lotions and powders	0.5\%
Steareth-100	Other skin care preparations	2-3\%
Steareth-200	Shaving cream (aerosol, brushless and lather)	1\%

*Ingredients included in the title of the table but not found in the table were included in the concentration of use survey, but no uses were reported.

Information collected in 2010
Table prepared July 9, 2010 Updated August 11, 2010

Memorandum

TO:
F. Alan Andersen, Ph.D. Director - COSMETIC INGREDIENT REVIEW (CIR)

FROM: John Bailey, Ph.D.
Industry Liaison to the CIR Expert Panel
DATE: June 21,2010
SUBJECT: Comments on the Draft Report on the Ethoxylated Alcohols for the June 28-29, 2010 CIR Expert Panel Meeting

Memo - In the future, it would be helpful if memos were dated with the date they were written. Please consider removing PEG-3 Methyl Ether, PEG-4 Methyl Ether, PEG-7 Methyl Ether, Methoxy PEG-7, Methoxy PEG-10, Methoxy PEG-16, Methoxy PEG-25, Methoxy PEG-40 and Methoxy PEG-100 from this report. As these ingredients are all defined as having an average number of ethylene oxide units they have the potential of containing Methoxyethanol and Methoxydiglycol (both in the Dictionary). Both Methoxyethanol and Methoxydiglycol are not permitted for use in cosmetics in Europe, and both are developmental toxicants. As indicated on p.6, the functions reported for the methyl ingredients (solvents, humectants) are different than the functions reported for the majority of the other ingredients included in this report.
If the methyl group ingredients are removed from the report, the CIR Expert Panel should be asked if a statement that extends the report conclusion to other Alkyl PEG Ethers (in the same families as in this report) added to the Dictionary in the future should be added to this report (similar to what has been done in the PPG report).
p. 1 - In the last paragraph of the Introduction, it is not clear what is meant by "chain length". The CAS numbers appear to be specific for alkyl group chain length, but not the number of units of ethylene oxide.
p. 5 - In the first sentence of this page, please indicate that the number of moles of ethylene oxide in each ingredient is an average number.
p. 6 - In the last paragraph, please change "do not function as surfactants" to "are not reported to function as surfactants".
p.7, 29 - The actual maximum use concentration of C12-13 Pareth-3 in a dermal leave-on preparation (perfume) was 25% not 23% as indicated in the report. When all of the concentration of use information is available, it would be helpful to include a list of ingredients for which no uses were reported in either the FDA VCRP information or the Council concentration of use survey.
p. 8 - If there was a vehicle in the methyl alcohol dermal penetration study, it should be stated.
p. 8 - As the size of these ingredients varies greatly, it would be helpful to state which alkyl PEG ethers were found to be readily absorbed through the skin of guinea pigs and rats and through the
intestinal mucosa of rats.
p. 3 - If the PEG Methyl ethers are left in the report, the purity of the compound used in studies of triethylene glycol monomethyl ether (PEG-3 Methyl Ether) (references 32, 38) needs to be stated.
p. 3 - In the dermal penetration study of PEG-3 Methyl Ether, what does the value $34 \pm 7.7 \mu \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{hr}$ represent? The material that entered the receptor fluid? Or does it also include the material in the skin?
p. 9 - Please provide the names of the drugs for which the penetration was enhanced by Laureth- 9 . What concentration of Laureth-9 damaged the nasal mucosa?
p. 9 - Please provide the names of the compounds for which the penetration was increased by Oleth ingredients.
p. 11 - Are g/kg the correct units for the 6-week inhalation study of methyl alcohol in rats?
p. 14 - In the 14-day dermal rat study, what compound was studied (reference 22)? In the second sentence it says "PEG-7".
p. 14 - The 90-day dermal study of PEG-7 Methyl Ether should be moved to the Subchronic Exposure section.
p. 15 - If available, please provide the purity of the PEG-3 Methyl Ether (called triethylene glycol monomethyl ether in the study title) used in the 13 week dermal toxicity study (reference 51).
p. 17 - What concentration of stearyl alcohol was not comedogenic to rabbit ears?
p. 20 - Please provide the species used in the studies of ocular irritation of behenyl alcohol and formulations containing oleyl alcohol.
p. 21 - How did the investigators (reference 54) determine that Laureth-9 had an anesthetic effect on the cornea of rabbit eyes?
p. 21 - What solvent was used to dilute C12-13 Pareth-3 in the ocular irritation study (reference 43).
p. 22 -The information under the heading on ethylene glycol is not about ethylene glycol at all. It is about metabolites of small ethylene glycol monoalkyl ethers, such as methoxyethanol. If this information is left in the report, it needs to be included in a separate section and made more specific as to which ethylene glycol monoalkyl ethers are reproductive and developmental toxicants. Methoxyethanol and Ethoxyethanol (CIR unsafe) are reproductive and developmental toxicants. Butoxyethanol (CIR safe with qualifications) is not a reproductive and developmental toxicant. Information about the lack of reproductive and developmental toxicity of ethylene glycol can be found in the NTP report on ethylene glycol at http://cerhr.niehs.nih.gov/chemicals/egpg/ethylene/eg.html that was completed in 2004.
p. 22 - It is not correct to state that ethylene glycol is a reproductive toxicant. See the NTP Center for the Evaluation of Risks to Human Reproduction (CERHR) report on ethylene glycol at http://cerhr.niehs.nih.gov/chemicals/egpg/ethylene/eg.html that was completed in 2004 (summary is on p.120-124). The ethylene glycol report includes the following conclusions. "The Expert Panel judges the likelihood of adverse developmental toxicity in the humans from such levels of exposure to be of negligible concern. The Panel concludes that the lack of reproductive toxicity in experimental animal studies indicates there is negligible concern for reproductive effects in humans."
p. 22 - The general statement that "monoalkyl ethers of ethylene glycol are reproductive toxins and teratogenic agents" under the Ceteareths, Ceteths, and Oleths subheading needs to be made
more specific as longer chain, e.g., butoxyethanol, are not reproductive and developmental toxicants.
p. 22 - In the cholesterol subsection, please give the time during gestation when subcutaneous administration of cholesterol to gravid dams results in palate anomalies (if given after the palate is developed, these anomalies will not be observed).
p. 23 - Did Leber et al. (1990) (reference 38), Chemical Manufacturers Association (reference 56) or Hoberman et al. (1996) provide any indication of the purity of the triethylene glycol monomethyl ether (PEG-3 Methyl Ether) tested?
p. 24 - What concentrations or doses of PEGs were tested in the genotoxicity assays? What concentration of cholesterol "was not active in a mammalian cell DNA synthesis inhibition test for mutagenic carcinogens."
p. 25 - What doses of PEG-8 and what species were used in the PEG-8 carcinogenicity studies? What doses/concentrations of cholesterol were used in studies examining its carcinogenicity potential?
p. 26 - What concentrations of PEG-6 and PEG-8 were associated with hypersensitivity? It should be mentioned that the dermal penetration study of PEG-4 with and without tape stripping was an in vitro study.
p. 27 - The information about oleyl alcohol needs to be deleted from the octyl dodecanol subsection. This information is already included in the oleyl alcohol subsection.
p. 28 - If available, please include the number of subjects and solvents used in the HRIPTs of C12-13 Pareth-7 and C12-15 Pareth-7.
p. 28 - It is not clear what is meant by "Laureth- 1 is the simplest"? Is it the only ingredient in the report with an average of only 1 ethylene oxide group?
p. 29 - Correct "Foe example.." to "For example..."
p. 29 - The statement: "In general, alkyl PEG ethers are readily absorbed through the skin of guinea pigs and rats...." is an over generalization. Only some of these compounds readily penetrate the skin.
p. 30 - Please indicate if $10,000 \mathrm{ppm}$ C14-15 Pareth-7 is a dietary or drinking water concentration.
p. 30 - What was the duration of the dermal study of C9-11 Pareth-6?
p. 30 - What duration and what species was tested in the dermal study of Laureth-9 (second complete paragraph on this page)?
p. 30 - The ingredients to which "Dilutions of these ingredients..." refers is not clear. What was the solvent in these dilutions?
p. 30 - What concentrations were used in the sensitization studies?
p. 30 - In the last paragraph, what compound at a dose of $3000 \mathrm{mg} / \mathrm{kg}$ resulted in increased length of gestation and increased maternal kidney weights?
p. 31 - What kind of effects did the case studies of the laureths report?

Table 2 - Please update the conclusion for the Ceteareths with the new conclusion from the PEG report.
Table 3 - As metabolites of larger ethylene glycol monoalkyl ethers are not reproductive and developmental toxicants, please be more specific in the conclusion for the special report on ethylene glycol ethers.
CIR Panel Book Page 77-100 - Is the information on these pages considered to be Table 4? Although it is presented on p. 4 of the report, it would be helpful to repeat the reference for the physical
and chemical properties in the Table, and based on the reference (EPI Suite), it would be helpful to indicate that the values were calculated (if this is correct). The definitions for these ingredients in the Dictionary say when n is an average of the number in the name, rather than when $n=$ the number as indicated in Table 4.
Table 7 - The information in the row for PEG-7 Methyl Ether is not complete, as only the "Animals" column contains information.
Table 8 - If available, please include the vehicle with which the compounds were diluted. Under C1213, what is meant by "(cunspec.)"?
Table 10 - Searching the internet indicates amerchol L 101 is a trade name for lanolin alcohol. Please check this table as it includes numerous typographical errors.
Table 11 - The heading of the last entry should not be ethylene glycol. Ethylene glycol is not a reproductive or developmental toxicant (see discussion under p. 22). Metabolites of some smaller ethylene glycol monoalkyl ethers, e.g., methoxyethanol and ethoxyethanol are reproductive toxicants.

Memorandum

TO:
F. Alan Andersen, Ph.D. Director - COSMETIC INGREDIENT REVIEW (CIR)

FROM:

DATE: September 17, 2010
SUBJECT: Comments on the Tentative Amended Report on Alkyl PEG Ethers as Used in Cosmetics

It would be helpful to include the abstract in the tentative report so the public has the opportunity to read the abstract and provide comments.
p. 5 - As BHA, BHT, citric acid and α-tocopherol are specifically added to the ingredients, they should not be discussed in the Impurities section.
p. 6 - Since PEG Methyl Ethers and Methoxy PEGs are two names for the same types of ingredients is it really necessary to have two headings?
p. 6 - The CIR Expert Panel has concluded that Formaldehyde is safe in cosmetic products up to 0.2%, and that BHA and BHT are safe as used in cosmetic products. Therefore, the following sentence is not correct. "The Panel has stated that cosmetic preparations should not contain these impurities, nor should they contain peroxides, formaldehyde, BHT, or BHA." The information about impurities for all of the ingredients should not be under the Methoxy PEGs heading. The opinions of the CIR Expert Panel should be presented in the Discussion section of the report.
p. 7 - Either in a table or in the text, it would be helpful to state which ingredients had no uses reported to either the VCRP or the Council concentration of use surveys.
p.8, 32 - PEG-Cetyl Stearyl Diether is included in the EU Cosmetic Inventory as Polyoxyethylene Cetyl Stearyl Diether. Both the INCI name and the Cosing name are designated as Japan names.
p. 9 - As the Dictionary defines PEG-3 Methyl Ether containing an average of 3 moles of ethylene glycol, it would be helpful to be more specific when stating the purity of PEG-3 Methyl Ether. Was this material 98.7% triethylene glycol monomethyl ether (TGME)? Was the material studied in the dermal penetration study of PEG-3 Methyl Ether 99.9% TGME?
p. 9 - Please present the dermal penetration study of PEG-3 Methyl Ether in the Percutaneous Absorption section.
p. 10 - Please provide a reference for the human percutaneous absorption study. What was measured in the blood and urine, e.g., did the compound have a some type of label?
p. 12 - In the description of Methyl Alcohol, does ocular toxicity refer to blindness that can result from systemic exposure to Methyl Alcohol? Or is this referring to a direct effect on the eyes?
p. 15 - Please provide the concentration of TGME used in the dermal toxicity study of PEG-3 Methyl Ether.
p. 17 - Please provided the vehicle used in the 13-week dermal study of the Laureth compound.
p. 17 - Please provide the concentration of TGME used in the 13-week dermal toxicity study of PEG-3 Methyl Ether.
p. 18 - Either provide the number of animals used in the Chronic Oral Exposure section, or indicate that additional details regarding these studies are presented in the Carcinogenicity section.
p.18-9 - The Dermal Irritation heading should be changed to Dermal Irritation and Sensitization or the information about the sensitization potential of the previously reviewed ingredients should be removed from this section.
p.20-21, 23, 24, 31 - If available please provide the vehicle used for all the studies in which the ingredients were diluted, e.g., references $44,45,56,40$.
p. 24 - When describing the Cholesterol developmental effects, it would be helpful to note that palate anomalies are observed when the dams are treated while the palate is being formed.
p. 16 - Please provide the concentration of TGME used in the developmental toxicity (references 38,58 and 36) of PEG-3 Methyl Ether.
p. 28 - Please define MNNG, DMA, MNU and DMBA.
p. 29 - What is meant by "essentially non- to non-irritating"?
p. 32 - As discussed above, it is not correct to state that BHT and BHA are possible impurities. These ingredients are intentionally added to some ingredients as antioxidants. Both BHT and BHA have been reviewed by the CIR Expert Panel and found safe as used in cosmetic products.
p. 33 - In the Summary, please provide the $\mathrm{mg} / \mathrm{kg} /$ day doses rather than the dietary concentrations for the short-term oral study of the Laureth compound.
p. 34 - At what dose was localized erythema observed in the 13-week study of the Laureth compound?
p. 34 - What was the route of exposure used in the PEG-3 Methyl Ether study?
p. 35 - The meaning of the following sentence is not clear. "Compounds analogous to laureth- 9 were not mutagenic in a Ames test of clastogenic in in vitro or in vivo chromosomal aberration study."
p. 36 - As stated above, it is not consistent with previous CIR Expert Panel conclusions to state that Formaldehyde, BHT and BHA should not be present in alkyl PEG ether ingredients.
p. 36 - The paragraph concerning potential transmission of BSE and viruses in inconsistent with current FDA policy. The Federal Register: September 7, 2005 (Volume 70, Number 172) states:
"The exemption of tallow derivatives from the definition of "prohibited cattle materials" does not depend on the source tallow for the derivatives. For the reasons discussed in the preamble to the interim final rule, tallow derivatives present a negligible risk of transmitting the agent that causes BSE regardless of the source tallow. Therefore, all tallow derivatives are exempt from the ban on the use of prohibited cattle materials in human food and cosmetics."
The paragraph is also inconsistent with international guidelines. The 2010 Terrestrial Animal Health Code of the World Organization for Animal Health (OiE) at http://www.oie.int/eng/normes/mcode/en chapitre 1.11.5.htm lists "tallow with maximum level of insoluble impurities of 0.15% in weight and derivatives made from this tallow" under the heading "Safe Commodities" that "should not require any BSE
related conditions, regardless of the BSE risk status of the cattle population of the exporting country, zone or compartment".

Based on this code, it would be appropriate to state that tallow derivatives which may be used to make some of the ingredients included in this report must be made from tallow containing a maximum level of insoluble impurities of 0.15% in weight.

The paragraph as currently written implies that some of these ingredients may be derived from humans, which is not correct. Please do not include "human" or "Human Immunodeficiency Virus (HIV)" when discussing these ingredients.
Table 4 - Please provide the meaning of "**" at either the beginning or end of the table.
Table 7, Table 8 - For those studies in which diluted material was studied, it would be helpful if the vehicle was included.
Table 10 - What is the purpose of this table? If it is strictly a tool for the CIR Expert Panel, no changes are necessary. If it is intended for publication, some discussion items need to be edited. For example "inhalation boiler plate" needs to be changed.

[^0]: *The CIR Staff notifies of the public of the decision not to re-open the report and prepares a draft statement for review by the Panel. After Panel review, the statement is issued to the Public.
 ** If Draft Amended Report (DAR) is available, the Panel may choose to review; if not, CIR staff prepares DAR for Panel Review.

 ## Expert Panel Decision

 Document for Panel Review
 Option for Re-review

