EXAMINED BY :		FILE NO . CAS-0007026
Vincent Uh	EMERGING DISPLAY	ISSUE : APR.02, 2010
APPROVED BY:	TECHNOLOGIES CORPORATION	TOTAL PAGE : 24
David Chang		VERSION : 2
CUSTOME	R ACCEPTANCE SPE	CIFICATIONS
CUSTOMER'S APPRO DATE : BY :	AODEL NO.: <u>ET0320A5DM9</u> (RoHS) R MESSRS: 	

EMERG	ING D	ISPLAY	MODEL NO.	VERSION	PAGE
TECHNO	LOGIES COR	RPORATION	E T 0 3 2 0 A 5 D M 9	2	0-1
			DOC . FIRST ISSUE		
RECORD	S OF R	EVISION		D	EC.25, 2009
D A T E	REVISED PAGE NO.		S U M M A R Y		
APR.02, 2010	3	4. ELECTRICAL (POWER SUPPLY	CHARACTERISTICS Y CURRENT : TYP.=(15) \rightarrow 10, MAX.=(2)	$20) \rightarrow 15$	(21)
	6	6.1 OPTICAL CHA	$\frac{1}{1} FOR LED BACKLIGHT \cdot 1YP.=(19.6) \cdot 14P.=(19.6) \cdot $	\rightarrow 21, MAX.=	$(21) \rightarrow -$
		I T E M SYMBOL $0x^+$ VIEWING ANGLE $0x^-$	CONDITION MIN. TYP MAX. UNIT REMARK 0y=0° (30) (55)		
		θy+ θy- CONTRAST RATIO CR RESPONSE TIME T	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		COLOR OF RED Rx	(18) (24) (025) (0.30) (0.35) (025) (0.33) (035) (0.53) (05) (0.53) (05) (0.54) (05) (0.54) (05) (0.55) (05) (0.5)		
		CUE COORDINATE BLUE Bv	II=20mA (0.239 (0.34) (0.39) (0.1615) NTSC=60% (0.559 (0.61) (0.65) (0.59) (0.1615) (0.59) (0.61) (0.65) (0.59) (0.14) (0.19) (0.15) (0.1615)		
		THE BRIGHTNESS OF B MODULE B I T E M SYMBOL	68 = 09 - 0° (300) (300) - cdm' NOTE (6) IF=20mA (300) 150 - cdm' NOTE (6) CONDITION MIN. TYP. MAX. UNIT REMARK.		
		VIEWING ANGLE	$ \begin{array}{c} CR210 \\ \hline 0x^{-0^{-}} & \frac{56}{63} & \frac{6}{3} & -\frac{-}{1} \\ \hline 0x^{-0^{-}} & \frac{58}{65} & \frac{6}{72} & -\frac{-}{1} \\ \hline 0x^{-0^{-}} & \frac{58}{65} & \frac{6}{72} & -\frac{-}{1} \\ \end{array} \end{array} \\ \begin{array}{c} NOTE (2) \\ NOTE (3) \\ \hline \end{array} $		
		CONTRAST RATIO CR RESPONSE TIME T _R WHITE WX	$0x = 0y = 0^{\circ}$ 225 450 NOTE (3) $0x = 0y = 0^{\circ}$ - 5 10 ns NOTE (4) 027 = 032 = 037		
		COLOR OF RED RX CUE COORDINATE GREEN GX	$0x = 0y = 0^{\circ}$ $0x = 0y = 0^{\circ}$ $10^{\circ} = 20mA$ 0.350		
		THE BRIGHTNESS OF MODULE B	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

EMERGING DISPLA	Y MODEL NO.	VERSION	PAGE
TECHNOLOGIES CORPORATION	E T 0 3 2 0 A 5 D M 9	2	0-2
<u>T A B L E</u>	OF CONTENTS		
NO. I T E M		PAGE	
			===
I. GENEKAL SPECIFICATION	NS		1
2. MECHANICAL SPECIFICA	TIONS		1
3. ABSOLUTE MAXIMUM R	ATINGS		2
4. ELECTRICAL CHARACTE	RISTICS		3
5. TIMING CHARACTERISTIC	CS	4	l, 5
6. OPTICAL CHARACTERIST	ICS	6	5,7
7. OUTLINE DIMENSIONS		8	8,9
8. BLOCK DIMENSIONS			10
9. DETAIL DRAWING OF DO	T MATRIX		11
10. INTERFACE SIGNALS		12	2,13
11. POWER SUPPLY			14
12. INSPECTION CRITERION		15	~ 24

EMERGING DISPLAY	MODEL NO.		VERSION	PAGE		
TECHNOLOGIES CORPORATION	E T 0 3	20A5DM9	2	1		
1. GENERAL SPECIFICATIONS 1.1 APPLICATION NOTES FOR PLEASE REFER TO :	CONTROL	LER/DRIVER				
ILITE	K ILI93	2 5 C				
1.2 MATERIAL SAFETY DESCR ASSEMBLIES SHALL COMP INCLUDING PROHIBITED M MERCURY, CADMIUM, HEX BIPHENYLS (PBB) AND POL	IPTION LY WITH EU IATERIALS/ (AVALENT (LYBROMIN/	JROPEAN ROHS RE COMPONENTS CON CHROMIUM, POLYI ATED DIPHENYL ET	QUIREME JTAINING 3ROMINA HERS (PI	ENTS, LEAD, TED BDE)		
2 MECHANICAL SPECIFICATION	JS					
(1) DIAGONALS		3.2 inch				
(2) NUMBER OF DOTS		240W * (RGB) * 320H I	DOTS			
(3) MODULE SIZE		55.14W * 76.8H * 6D(M	AX.) mm			
		(WITHOUT FPC)				
(4) EFFECTIVE AREA		50.6W * 66.8H mm				
(5) ACTIVE AREA		48.6W * 64.8H mm				
(6) DOT SIZE		0.0675W * 0.2025H mr	n			
(7) PIXEL SIZE		0.2025W * 0.2025H mr	n			
(8) LCD TYPE		TFT . TRANSMISSIVE	-			
(9) COLOR		262K				
(10) VIEWING DIRECTION		9 O'CLOCK				
(11) BACK LIGHT		LED , COLOR : WHITE	,			
(12) INTERFACE MODE		MPU 18/16/9/8 BIT PARA	ALLEL (i80 S	YSTEM)		
		/SERIAL PERIPHERAL	INTERFAC	E (SPI)		

MODEL NO. E T 0 3 2 0 A 5 D M 9

3. ABSOLUTE MAXIMUM RATINGS

3.1 ELECTRICAL ABSOLUTE MAXIMUM RATINGS.

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	REMARK
POWER SUPPLY FOR DIGITAL	IOVCC VSS	-0.3	4.6	V	
VOLTAGE	10 v CC- v 55	-0.5	4.0	v	
POWER SUPPLY FOR ANALOG	VCL VSS	0.2	16	V	
VOLTAGE	vCI-v55	-0.5	4.0	v	
INPUT VOLTAGE	VIN–VSS	-0.3	IOVCC+0.3	V	
STATIC ELECTRICITY		_		V	NOTE (1)
LED BACKLIGHT POWER	DD		620	mW	
DISSIPATION	FD		030	111 VV	
LED BACKLIGHT FORWARD	IE		20	mΛ	
CURRENT	ІГ		30	IIIA	
LED BACKLIGHT REVERSE	VD		20	V	
VOLTAGE	VK		50	v	

NOTE(1) : LCM SHOULD BE GROUNDED DURING HANDING LCM.

3.2 ENVIRONMENTAL ABSOLUTE MAXIMUM RATINGS.

LTEM	OPERATING		STORAGE		DEMADV	
	MIN.	MAX.	MIN.	MAX.	KEMAKK	
AMBIENT TEMPERATURE	-20°C	70°C	-30°C	80°C	NOTE (1), (2)	
	NOTI	E(3)	NOT	E(3)	WITHOUT	
	NOT	E(3)	NOT	E(3)	CONDENSATION	
VIBRATION		2.45m/S ² (0.25G)	_	11.76m/S ² (1.2 G)	5~20Hz , 1HR 20~500Hz(20Hz) , 1HR 20~500Hz(500Hz) , 1HR X,Y,Z TOTAL 3HRS	
SHOCK		29.4 m/S ² (3G)		490m/S ² (50 G)	10 mSECONDS XYZ DIRECTIONS 1 TIME EACH	
CORROSIVE GAS	NOT ACC	EPTABLE	NOT ACCEPTABLE			

NOTE (1) : Ta AT -30°C : 48HRS MAX.

80°C: 168HRS MAX.

NOTE (2) : BACKGROUND COLOR CHANGES SLIGHTLY DEPENDING ON AMBIENT TEMPERATURE THIS PHENOMENON IS REVERSIBLE .

NOTE (3) : $Ta \le 60^{\circ}C$: 90%RH (96HRS MAX.)

Ta > 60°C : ABSOLUTE HUMIDITY MUST BE LOWER THAN THE HUMIDITY OF 90%RH AT 60°C.(96 HRS MAX.)

E M E R G I N GD I S P L A YMODEL NO.VERSIONPAGETECHNOLOGIES CORPORATIONE T 0 3 2 0 A 5 D M 923

4. ELECTRICAL CHARACTERISTICS

					18	a = 25 °C
PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
POWER SUPPLY FOR DIGITAL	IOVCC-VSS		2.7	3.0	3.3	V
POWER SUPPLY FOR ANALOG	VCI-VSS		2.7	3.0	3.3	V
INPUT VOLTAGE	VIH	IOVCC-VSS =	0.7IOVCC		IOVCC	V
NOTE (1)	VIL	2.7~3.3V	0		0.3IOVCC	V
OUTPUT VOLTAGE	VOH	IOH = -0.1mA	0.8IOVCC			v
NOTE (2)	VOL	$IOVCC-VSS=2.7\sim3.3V$ $IOL=0.1mA$			0.2IOVCC	v
POWER SUPPLY CURRENT NOTE (3), (4)	ICC		—	10	15	mA
POWER SUPPLY FOR LED BACKLIGHT , NOTE (5)	VLED-VLSS	IF = 20mA		21		V
LED LIFE TIME			30000	40000		HRS

NOTE (1): APPLIED TO TERMINALS nCS, nRS, nWR/SCL, nRD, SDI, DB0~DB17, nRESET, IM3~IM1, IM0/ID. NOTE (2): APPLIED TO TERMINALS DB0~DB17.

NOTE (3): ICC : IIOVCC + IVCI

NOTE (4) : THE DISPLAY PATTERN IS ALL "WHITE".

NOTE (5): INTERNAL CIRCUIT DIAGRAM OF BACKLIGHT

NOTE (6): AMBIENT TEMP. VS. ALLOWABLE FORWARD CURRENT. (PER LED)

MODEL NO. E T 0 3 2 0 A 5 D M 9

9 2

PAGE 4

5. TIMING CHARACTERISTICS 5.1 i80-SYSTEM INTERFACE TIMING CHARACTERISTICS

ITEM		SYMBOL	MIN.	TYP.	MAX.	UNIT.
BUS CVCI E TIME	WRITE	t _{CYCW}	80			ns
BOSCICLE IIME	READ	t _{CYCR}	300			ns
WRITE LOW-LEVE	L PULSE WIDTH	$\mathrm{PW}_{\mathrm{LW}}$	50	_	500	ns
WRITE HIGH-LEVE	L PULSE WIDTH	$\mathrm{PW}_{\mathrm{HW}}$	15	_		ns
READ LOW-LEVEL	PULSE WIDTH	PW _{LR}	150	_		ns
READ HIGH-LEVEI	L PULSE WIDTH	PW _{HR}	150			ns
WRITE / READ RISI	E / FALL TIME	t_{WRr} / t_{WRf}			25	ns
SETUD TIME	WRITE (RS to nCS, nWR)	+	10			ns
SETUP TIME	READ (RS to nCS, nRD)	ι_{AS}	5			ns
ADDRESS HOLD TI	ME	$t_{\rm AH}$	5	_		ns
WRITE DATA SETUP TIME		t _{DSW}	10			ns
WRITE DATA HOLD TIME		t _H	15			ns
READ DATA DELAY TIME		t _{DDR}			100	ns
READ DATA HOLD TIME		t _{DHR}	5			ns

MODEL NO. E T 0 3 2 0 A 5 D M 9

VERSION PAGE

5

2

5.2 SERIAL DATA TRANSFER INTERFACE TIMING CHARACTERISTICS

IT	EM	SYMBOL	MIN.	TYP.	MAX.	UNIT.
SERIAL CLOCK CYCLE	WRITE (RECEIVED)	t _{SCYC}	50			μs
TIME	READ (TRANSMITTED)	t _{SCYC}	200			μs
SERIAL CLOCK HIGH –	WRITE (RECEIVED)	t _{SCH}	40			ns
LEVEL PULSE WIDTH	READ (TRANSMITTED)	t _{SCH}	100			ns
SERAL CLOCK LOW –	WRITE (RECEIVED)	t _{SCL}	40			ns
LEVEL PULSE WIDTH	READ (TRANSMITTED)	t _{SCL}	100			ns
SERAL CLOCK RISE / FA	ALL TIME	$t_{SCr,} t_{SCf}$			5	ns
CHIP SELECT SETUP TIN	ME	t_{CSU}	10			ns
CHIP SELECT HOLD TIM	ſΕ	$t_{\rm CH}$	50			ns
SERIAL INPUT DATA SETUP TIME		$t_{\rm SISU}$	20			ns
SERIAL INPUT DATA HOLD TIME		t _{SIH}	20			ns
SERIAL OUTPUT DATA SETUP TIME		t _{SOD}			100	ns
SERIAL OUTPUT DATA	HOLD TIME	t _{SOH}	5			ns

5.3 RESET TIMING CHARACTERISTICS

ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT.
RESET LOW-LEVEL WIDTH	t _{RES_L}	1	_		ms
RESET RISE TIME	t _{rRES}			10	μs
RESET HIGH-LEVEL WIDTH	t _{RES_H}	50			ms

E M E R G I N GD I S P L A Y
TECHNOLOGIES CORPORATIONMODEL NO.VERSIONPAGEC T 0 3 2 0 A 5 D M 926

6. OPTICAL CHARACTERISTICS (NOTE 1) 6.1 OPTICAL CHARACTERISTICS

									$Ta = 25 \circ C$	
ΙΤΕ	М	SYMBOL	COND	ITION	MIN.	TYP.	MAX.	UNIT	REMARK	
		$\theta x +$		008	56	63				
VIEWING ANGL	Б	θx-	CD>10	θy–0°	63	70		dag	NOTE (2)	
VIE WING ANGL	ιE	$\theta y +$	CK≥10	009	58	65		deg.	NOTE (3)	
		θу-		$\Theta X = 0^{-1}$	65	72				
CONTRAST RAT	TIO	CR	$\theta \mathbf{x} = \theta$	$y = 0^{\circ}$	325	450			NOTE (3)	
DESDONSE TIM	7	T _R	0 = 0	$ = 0^{\circ} $		5	10	100.0	NOTE (4)	
KESPOINSE I IIVII	2	T _F	$\Theta x - \Theta$	Jy – 0 ²		15	30	IIIS	NOTE (4)	
	WHITE	Wx			0.27	0.32	0.37			
	WIIIIE	Wy			0.30	0.35	0.40			
	DED	Rx	0 0	00	$ - 0^{\circ} $	0.58	0.63	0.68		
CULUK OF	KED	Ry	$\theta x = \theta y = 0^{\circ}$		0.30	0.35	0.40		NOTE (5)	
COORDINATE	GREEN	Gx	NTSC	0111A '=60%	0.30	0.35	0.40			
COORDINATE	UKEEN	Gy	NISC	/-0070	0.54	0.59	0.64			
	BLUE	Bx			0.10	0.15	0.20			
	DLUE	Ву			0.04	0.09	0.14			
THE BRIGHTNE MODULE	SS OF	В	$\theta_{\rm X} = \theta_{\rm Y} = 0^{\circ}$ IF=20mA		320	350		cd/m ²	NOTE (6)	
THE UNIFORMI MODULE	ГҮ OF	_			75	80		%	NUTE (6)	

NOTE (1): TEST EQUIPMENT SETUP:

AFTER STABILIZING AND LEAVING THE PANEL ALONE AT A GIVEN TEMPERATURE FOR 30 MINUTES, THE MEASUREMENT SHOULD BE EXECUTED. MEASUREMENT SHOULD BE EXECUTED IN A STABLE, WINDLESS, AND DARK ROOM. OPTICAL SPECIFICATIONS ARE MEASURED BY TOPCON BM-7 (FAST) WITH A VIEWING ANGLE OF 1° AT A DISTANCE OF 50cm AND NORMAL DIRECTION.

MODEL NO . E T 0 3 2 0 A 5 D M 9

10. I	NTERFAC	CE SIGNALS
PIN NO	SYMBOL	FUNCTION
1	VCI	POWER SUPPLY FOR ANALOG CIRCUIT
2~4	VSS	GROUND
5	IOVCC	POWER SUPPLY FOR INTERFACE SIGNAL
6	NC	NON CONNECTION
		A CHIP SELECT SIGNAL.
7	nCS	LOW: THE ILI9325C IS SELECTED AND ACCESSIBLE.
/	lics	HIGH: THE IL19325C IS NOT SELECTED AND NOT ACCESSIBLE.
		FIX TO THE VSS LEVEL WHEN NOT IN USE.
		A REGISTER SELECT SIGNAL.
8	RS	LOW : SELECT AN INDEX OR STATUS REGISTER.
0	ito i	HIGH : SELECT A CONTROL REGISTER.
		FIX TO EITHER IOVCC OR VSS LEVEL WHEN NOT IN USE.
		A WRITE STROBE SIGNAL AND ENABLES AN OPERATION TO WRITE DATA
9	nWR/SCL	WHEN THE SIGNAL IS LOW.
-	IIIII IIII IIII	FIX TO EITHER IOVCC OR VSS LEVEL WHEN NOT IN USE.
		SPI MODE : SYNCHRONIZING CLOCK SIGNAL IN SPI MODE.
10	DD	A READ STROBE SIGNAL AND ENABLES AN OPERATION TO READ OUT DATA
10	nKD	EX TO EITHER IOVCC OR VSS LEVEL WHEN NOT IN USE
		SPI INTERFACE INPLIT PIN
		THE DATA IS LATCHED ON THE RISING EDGE OF THE SCL SIGNAL
11	SDI/SDA	IN THE 8/9-BIT SERIAL PERIPHERAL INTERFACE. THIS PIN IS USED AS
		BI-DIRECTIONAL DATA PIN.
		SPI INTERFACE OUTPUT PIN.
12	SDO	THE DATA IS OUTPUTTED ON THE FALLING EDGE OF THE SCL SIGNAL.
		LET SDO AS OPEN WHEN NOT IN USE.
13	DB0	
14	DB1	-
15	DB2	-
16	DB3	4
17	DB4	
18	DB5	AN 18-BIT PARALLEL BI-DIRECTIONAL DATA BUS FOR MPU SYSTEM
19	DB6	INTERFACE MODE.
20	DB7	8-BIT I/F : DB[17 : 10]IS USED.
21	DB8	9-BIT I/F : DB[17 : 9]IS USED.
22	DB9	16-BIT I/F : DB[17 : 10]AND DB[8 : 1]IS USED.
23	DB10	18-BIT I/F : DB[17 : 0]IS USED.
24	DB11	UNUSED PINS MUST BE FIXED VSS LEVEL.
25	DB12	
26	DB13	4
27	DB14	4
28	DB15	4
29	DB16	4
30	DB17	

E M E R G I N GD I S P L A YMODEL NO.TECHNOLOGIESCORPORATIONE T 0 3 2 0 A 5 D M 9

PIN NO	SYMBOL						FUNCTION						
31	nRESET	A E	RESI XECU	ESET PIN. INITIALIZES THE ILI9325C WITH A LOW INPUT.BE SURE TO ECUTE A POWER-ON RESET AFTER SUPPLYING POWER.									
32	IM3	S	ELEC	LECT THE MPU SYSTEM INTERFACE MODE									
33	IM2		IM3	IM2	IM1	IM0	MPU-INTERFACE MODE	DB PIN IN USE					
34	IM1		0	0	0	0	SETTING INVALID						
			0	0	0	1	SETTING INVALID						
			0	0	1	0	i80-SYSTEM 16-BIT INTERFACE	DB[17:10], DB[8:1]					
			0	0	1	1	DB[8:1] 1 i80-SYSTEM 8-BIT INTERFACE DB[17:10] D SERIAL PERIPHERAL INTERFACE (SPI) SDI, SDO 0 9-BIT 3 WIRES SERIAL PERIPHERAL INTERFACE SDA, SCL, nCS . 8-BIT 4 WIRES SERIAL PERIPHERAL SDA						
			0	1	0	ID	SERIAL PERIPHERAL INTERFACE (SPI)	BIT INTERFACE DB[17:10] IERAL INTERFACE (SPI) SDI, SDO SERIAL PERIPHERAL SDA, SCL, nCS SERIAL PERIPHERAL SDA					
			0	1	1	0	9-BIT 3 WIRES SERIAL PERIPHERAL INTERFACE						
35	5 IM0/ID	IM0/ID		0	1	1	1	8-BIT 4 WIRES SERIAL PERIPHERAL INTERFACE	SDA, SCL, nCS, RS				
			1	0	0	0	SETTING INVALID						
			1	0	0	1	SETTING INVALID						
			1	0	1	0	i80-SYSTEM 18-BIT INTERFACE	DB[17:0]					
			1	0	1	1	i80-SYSTEM 9-BIT INTERFACE	DB[17:9]					
			1	1	*	*	SETTING INVALID						
									WHE For	EN TH THE∶	E SEF	RIAL I CE CO	PERIPHERAL INTERFACE IS SELECTED, DDE ID SETTING
36	VLED	Р	OWEI	R SUP	PLY I	FOR L	LED BACKLIGHT (ANODE)						
37	VLSS	Р	OWEI	R SUP	PLY I	FOR L	LED BACKLIGHT (CATHODE)						
38	NC	N	ION C	ONNI	ECTIC	DN							
39	NC	N	ION C	ONNI	ECTIC	DN							
40	NC	N	ION C	ONNI	ECTIC	DN							
41	NC	N	ION C	ONNI	ECTIC)N							

EMERGI	ING DISH	PLAY	MODEL NO.		VERSION	PAGE
TECHNOL	OGIES CORPORA	ATION	E T 0 3 2 0 A	5 D M 9	2	14
11. POW	ER SUPPLY					
11.1 PC	OWER SUPPLY I	FOR LCD	MODULE			
		l				
	IOUGO					
	IOVEC					
	VCI			1		
	LCM)V	
			-	3 0V		
				5.0 1		
	VSS					

11.2 POWER SUPPLY FOR LED BACKLIGHT

EMERGING DISP	LAY	MODEL	NO.	VERSION	PAGE		
TECHNOLOGIES CORPORA	ATION	ЕТ	0 3 2 0 A 5 D M 9	2	15		
12. INSPECTION CRITER 12.1 APPLICATION	ION						
THIS INSPECTION STA DELIVERED FROM EN CUSTOMERS	ANDARD IS MERGING I	S TO BE DISPLAY	APPLIED TO THE LCD TECHNOLOGIES COR	MODULE P.(E.D.T)	ТО		
12.2 INSPECTION CON	DITIONS						
12.2.1 (1)OBSERVATIO (2)VIEW ANGLE NON-OPERATIO OPERATION CO	ON DISTAN E : ON CONDITION ONDITION : ±	NCE : 350 ON : ±5°(F :45° (PERF	em±5cm ERPENDICULAR TO LCD P. ENDICULAR TO LCD PANE	ANEL SURF EL SURFACE	ACE) E)		
€ Non-opera	Non-operation Condition						
		45° 5°	30cm~40cm				
-		<u> </u>					
12.2.2 ENVIRONME	NT CONDI	TIONS :	_				
AMBIENT TE	MPERATU	RE	20°C~25°C				
AMBIENT I	HUMIDITY	r	65±20%RH				
AMBIENT	COSME INSPEC	ETIC TION	MORE THAN 600Lu	IX			
ILLUMINATION	FUNCTION INSPEC	ONAL TION	300~500 Lux				
12.2.3 INSPECTION QUANTITY F	LOT PER DELIV	ERY LO	T FOR EACH MODEL				
12.2.4 INSPECTION A SAMPLING FOLLOWING	METHOD GINSPECT PROVISIO	ION SHA NS TO Л	ALL BE MADE ACCORE JDGE THE ACCEPTABI	DING TO T LITY	ΉE		
(A)APPLICA	BLE STAN	DARD :	MIL-STD-105E				

NORMAL INSPECTION, SINGLE SAMPLING LEVEL II

(B)AQL : MAJOR DEFECT : AQL 0.65 MINOR DEFECT : AQL 1.0

EMERGING DISPLAY	MODEL NO.	VERSION	PAGE
TECHNOLOGIES CORPORATION	E T 0 3 2 0 A 5 D M 9	2	16

12.3 INSPECTION STANDARDS

12.3.1 VISUAL DEFECTS CLASSIFICATION

TYPE OF DEFECT	INSPECTION ITEM	DEFECT FEATURE	AQL
	1.DISPLAY ON	• DEFECT TO MISS SPECIFIED DISPLAY FUNCTION, FOR ALL AND SPECIFIED DOTS EX: DISCONNECTION, SHORT CIRCUIT ETC	
MAJOR DEFECT	2.BACKLIGHT	 NO LIGHT FLICKERING AND OTHER ABNORMAL ILLUMINATION 	0.65
	3.DIMENSIONS	• SUBJECT TO INDIVIDUAL ACCEPTANCE SPECIFICATIONS	
	1.DISPLAY ZONE	 BLACK/WHITE SPOT BUBBLES ON POLARIZER NEWTON RING BLACK/WHITE LINE SCRATCH CONTAMINATION LEVER COLOR SPREED 	
MINOR DEFECT	2.BEZEL ZONE	STAINS SCRATCHES FOREIGN MATTER	
	3.SOLDERING	 INSUFFICIENT SOLDER SOLDERED IN INCORRECT POSITION CONVEX SOLDERING SPOT SOLDER BALLS SOLDER SCRAPS 	
	4.DISPLAY ON (ALL ON)	• LIGHT LINE	

E M E R G I N GD I S P L A YMODEL NO.TECHNOLOGIESCORPORATIONE T 0 3 2 0 A 5 D M 9

NO.	ITEM		CRI	TERIA			
1.	DISPLAY ON INSPECTION	(1)INCORRECT P (2)MISSING SEGI (3)DIM SEGMEN (4)OPERATING V	 (1)INCORRECT PATTERN (2)MISSING SEGMENT (3)DIM SEGMENT (4)OPERATING VOLTAGE BEYOND SPEC 				
2.	OVERALL DIMENSIONS	(1)OVERALL DIMENSION BEYOND SPEC					
		(1) INSPECTION P AND BLUE SC (2)	PATTERN: FULL W REENS.	HITE, FULL BLACK,	RED, GREE		
			TEMS	ACCEPTABLE COU	NT		
		BRIGHT DOT		$N \le 2$			
		DARK DOT		N ≤ 3			
		TOAL BRIGHT	AND DARK DOTS	N ≤ 4			
3.	DOT DEFECT	NOTE : 1. THE DEFINITION OF DOT : THE SIZE OF A DEFECTIVE DOT OVER 1/2 OF WHOLE DOT IS REGARDED AS ONE DEFECTIVE DOT. 2. BRIGHT DOT : DOTS APPEAR BRIGHT AND UNCHANGED IN SIZE IN WHICH LCD PANEL IS DISPLAYING UNDER BLACK PATTERN. 3. DARK DOT :					
		PANEL IS DISPLAYING UNDER PURE RED, GREEN, BLUE PICTURE.					
	FOREIGN BLACK/WHITE/	LENGTH : L	WIDTH : W	PERMISSIBLE NO.			
		L ≤ 0.3	$W \le 0.05$	IGNORE			
4.	BRIGHT LINE/	$0.3 < L \leq 2.5$	$0.05 < W \leq 0.1$	4			
	SCRATCH	2.5 < L	0.1 < W	NONE			
	OF VIEWING AREA	WIDTH : W mm, LENGH : L mm					
		AVERAGE DIA	METER (mm): D	NUMBER OF PIECES	PERMITTEI		
		D <	≤ 0.1	IGNORE			
	FOREIGN MATTER \	0.1 < 1	$D \le 0.4$	4			
	BLACK SPOTS \	0.4	< D	NONE			
5	WHITE SPOTS \ DENT	NOTE : DIAME	TER D= $(a+b)/2$				
5.	(INCLUDING LIGHT LEAKAGE DUE TO POLARIZING PLATES PINHOLES, ETC.)	a	b				

MODEL NO.
E T 0 3 2 0 A 5 D M 9

NO.	ITEM		CRITERIA				
			AVERAGE DIAMETER (mm): D	NUMBER OF PIECES PERMITTED			
			D ≤ 0.25	IGNORE			
		BUBBLE ON THE	$0.25 < D \le 0.5$	N ≤ 5			
		POLARIZER	0.5 < D	NOTE			
			D < 0.1 mm	IGNORE			
		SURFACE STATUS	$0.1 < D \le 0.3$ mm	N ≤ 3			
			D < 0.1 mm	IGNORE			
		CF FAIL / SPOT	$0.1 < D \le 0.3$ mm	N ≤ 3			
6.	POLARIZER /DIRT/CF FAIL /SURFACE STAINS	ON ACTIVE DISPLAY AREA. THE DEFECT OF POLARIZER BUBBLE SHALL BE IGNORED IF THE POLARIZER BUBBLE APPEARS ON THE OUTSIDE OF ACTIVE DISPLAY AREA. (2)THE EXTRANEOUS SUBSTANCE IS DEFINED AS IT CAN BE OBSERVED WHEN THE MODULE IS POWER ON. (3)THE DEFINITION OF AVERAGE DIAMETER, D IS DEFINED AS FOLLOWING. AVERAGE DIAMETER (D)=(a+b)/2 b					
7.	LINE DEFECT ON DISPLAY	OBVIOUS VERTICAL OR HORIZONTAL LINE DEFECT IS NOT ALLOW					
8.	MURA ON DISPLAY	IT'S OK IF MURA IS	SLIGHT VISIBLE THROU	NG 6% ND FILTER			
9.	UNEVEN COLOR SPREAD, COLORATION	(1)TO BE DETERMINED BASED UPON THE STANDARD SAMPLE.					
	DEZEL	(1)BEZEL MAY NOT	HAVE RUST, BE DEFORM	AED OR HAVE FINGER			
7.LINI DISI8.MUI9.SPR COL10.BEZ APP	ADDEADANCE	PRINTS STAINS C	OF OTHER CONTAMINATI	ON.			
	ALLEARANCE	(2)BEZEL MUST COMPLY WITH JOB SPECIFICATIONS.					
11	РСВ	 (1)THERE MAY NOT THE SEAL AREA THAN THREE PLA (2)NO OXIDATION C (3)PARTS ON PCB M CHARACTERISTIC THERE SHOULD F PARTS. (4)THE JUMPER ON CHARACTERISTIC (5)IF SOLDER GETS SCREW HOLD PA 	⁷ BE MORE THAN 2mm OF ON THE PCB, AND THERE ACES. DR CONTAMINATION PCE UST BE THE SAME AS ON C CHART. BE NO WRONG PARTS, ME THE PCB SHOULD CONFO C CHART. ON BEZEL TAB PADS, LE D; MAKE SURE IT IS SMO	SEALANT OUTSIDE E SHOULD BE NO MORE B TERMINALS N THE PRODUCTION SSING PARTS OR EXCE DRM TO THE PRODUCT D PAD, ZEBRA PAD OR OTHED DOWN.			

MODEL NO . E T 0 3 2 0 A 5 D M 9

NO.	ITEM	CRITERIA
		(1)NO SOLDERING FOUND ON THE SPECIFIED PLACE (2)INSUFFICENT SOLDER (a)LSI, IC A POOR WETTING OF SOLDER IS BETWEEN LOWER BEND OR "HEEL" OF LEAD AND PAD
		SOLDER FILLET
		(b)CHIP COMPONENT • SOLDER IS LESS THAN 50% OF SIDES AND FRONT FACE WETTING
		SOLDER FILLET
12.	SOLDERING	• SOLDER WETS 3 SIDES OF TERMINAL, BUT LESS THAN 25% OF SIDES AND FRONT SURFACE AREA ARE COVERED
		SOLDER
		(3)PARTS ALIGMENT (a)LSI, IC LEAD WIDTH IS MORE THAN 50% BEYOND PAD OUTLINE

EMERGING DISPLAY MODEL NO.

E	ΜE	RGING DIS	PLAY	MODEL NO.	VERSION	PAGE
	TEC	CHNOLOGIES CORPO	ORATION	E T 0 3 2 0 A 5 D M 9	2	20
	NO.	ITEM		CRITERIA		
			(b)CHIP COM COMPON LEADS IS	IPONENT ENT IS OFF CENTER, AND MORE THA OFF THE PAD OUTLINE	AN 50% OF 7	ГНЕ
	12.	SOLDERING				
			(4)NO UNMELT ON THE PCE (5)NO COLD SC CONNECTIO (6)NO RESIDUE (7)NO SHORT C	ED SOLDER PASTE MAY BE PRESEN 3. DIDER JOINTS, MISSING SOLDER DNS, OXIDATION OR ICICLE. E OR SOLDER BALLS ON PCB. EIRCUITS IN COMPONENTS ON PCB.	Т	
	13.	BACKLIGHT	(1)NO LIGHT (2)FLICKERING (3)SPOTS OR SC JUDGED USI STANDARDS (4)BACKLIGHT	G AND OTHER ABNORMAL ILLUMIN CRATCHES THAT APPEAR WHEN LIT NG LCD SPOT, LINES AND CONTAMI S. DOESN'T LIGHT OR COLOR IS WRO	ATION MUST BE NATION NG.	
	14.	GENERAL APPEARANCE	 (1)NO OXIDATI INTERFACE 1 (2)NO CRACKS (3)NO CONTAM ON PRODUC (4)THE IC ON T (5)THE UPPERM INTERFACE (5)THE UPPERACE (6)THE RESIDU (COMPONEN BROWN OR H (7)SEALANT OI (8)PIN TYPE MU (9)LCD PIN LOO (10)PRODUCT F PACKAGING (11)PRODUCT I PRODUCT S (12)THE APPEA DIRT AND F 	ON, CONTAMINATION, CURVES OR, PIN (OLB) OF TCP. ON INTERFACE PIN (OLB) OF TCP. IINATION, SOLDER RESIDUE OR SOL F. HE TCP MAY NOT BE DAMAGED, CII AOST EDGE OF THE PROTECTIVE STI PIN MUST BE PRESENT OR LOOK AS PIN TO SEVER. AL ROSIN OR TIN OIL OF SOLDERIN T OR CHIP COMPONENT) IS NOT BUI BLACK COLOR. N TOP OF THE ITO CIRCUIT HAS NOT UST MATCH TYPE IN SPECIFICATION DSE OR MISSING PINS. PACKAGING MUST THE SAME AS SPI G SPECIFICATION SHEET. DIMENSION AND STRUCTURE MUST SPECIFICATION SHEET. RANCE OF HEAT SEAL SHOULD NOT BREAK.	BENDS ON DER BALL RCUITS. RIP ON THE FIF IT CAUS G RNED INTO HARDENE SHEET. ECIFIED ON CONFORM F ADMIT A	S SE THE D. J TO NY

EMERGING DISPLAY TECHNOLOGIES CORPORATION

MODEL NO. E T 0 3 2 0 A 5 D M 9 VERSION PAGE 2

•	1	1	0	1
	-	2	1	

NO.	ITEM		CRITERIA		
		THE LCD WITH EXTENSIVE	CRACK IS NOT	ACCEPTABLE	<u> </u>
		GENERAL GLASS CHIP :	$ \begin{array}{c} a \\ \leq t/2 \\ t/2 > , \leq 2t \end{array} $ *W=DISTANCI SEALANT PANEL EE X = LCD SIDI t = GLASS T	b <viewing area<br="">≤W/2 E BETWEEN AREA AND LO OGE E LENGTH HICKNESS</viewing>	c ≤ 1/8X ≤ 1/8X
		CORNER PART:	a < t/2	b	c < 1/8¥
		\ b	$> t/2$, $\leq 2t$	\leq W/2	$\leq 1/\delta X$ $\leq 1/8X$
15. 0	CRACKED GLASS	c a	*W=DISTANCI SEALANT PANEL EE X = LCD SIDI t = GLASS TI	E BETWEEN AREA AND LO OGE E LENGTH HICKNESS	CD
		CHIP ON ELECTRODE PAD	a	b	с
			≤t * X=LCD SIDE t=GLASS TH	≤0.5mm WIDTH HICKNESS	≤ 1/8X
			a	b	с
			$\frac{\leq t}{X=LCD SIDE}$ $t = GLASS TH$ $L=ELECTROI$ $\bigcirc IE GLASS CH$	≤ 1/8X WIDTH HICKNESS DE PAD LENGT HIPPING THE I	≤L TH
		c a	 IF GLASS CHIPPING THE ITO TERMINAL, OVER 2/3 OF THE ITO MU REMAIN AND BE, INSPECTED ACCORDING TO ELECTRODE TERMINAL SPECIFICATIONS IF THE PRODUCT WILL BE HEAT SEALED BY THE CUSTOMER, THE ALIGNMENT MARK MUST NOT BE DEMAGED 		

MODEL NO.	VERSION	PAGE
E T 0 3 2 0 A 5 D M 9	2	22

12.4 RELIABILITY TEST

12.4.1 STANDARD SPECIFICATIONS FOR RELIABILITY OF LCD MODULE

NO	ITEM	DESCRIPTION
1	HIGH TEMPERATURE OPERATION	THE SAMPLE SHOULD BE ALLOWED TO STAND AT +70°C FOR 240 HRS
2	LOW TEMPERATURE OPERATION	THE SAMPLE SHOULD BE ALLOWED TO STAND AT -20°C FOR 240 HRS
3	HIGH TEMPERATURE STORAGE	THE SAMPLE SHOULD BE ALLOWED TO STAND AT +80°C FOR 240 HRS
4	LOW TEMPERATURE STORAGE	THE SAMPLE SHOULD BE ALLOWED TO STAND AT -30°C FOR 240 HRS
5	HIGH TEMPERATURE / HIGH HUMIDITY STORAGE	THE SAMPLE SHOULD BE ALLOWED TO STAND AT 60°C, 90% RH 240 HRS
6	THERMAL SHOCK	THE SAMPLE SHOULD BE ALLOWED TO STAND THE FOLLOWING 10 CYCLES OF OPERATION :
0	(NOT OPERATED)	-40°C FOR 30 MINUTES +85°C FOR 30 MINUTES
7	ESD	
	(ELECTROSTATIC DISCHARGE)	AIR DISCHARGE ± 12KV CONTACT DISCHARGE ± 8KV
	(NOT OPERATED)	

NOTE (1) : THE TEST SAMPLES HAVE RECOVERY TIME FOR 2 HOURS AT ROOM TEMPERATURE BEFORE THE FUNCTION CHECK. IN THE STANDARD CONDITIONS, THERE IS NO DISPLAY FUNCTION NG ISSUE OCCURRED.

EMERGING DISPLAY	MODEL NO.	VERSION	PAGE
TECHNOLOGIES CORPORATION	E T 0 3 2 0 A 5 D M 9	2	23

12.5 TESTING CONDITIONS AND INSPECTION CRITERIA

FOR THE FINAL TEST THE TESTING SAMPLE MUST BE STORED AT ROOM TEMPERATURE FOR 24 HOURS, AFTER THE TESTS LISTED IN TABLE 12.5, STANDARD SPECIFICATIONS FOR RELIABILITY HAVE BEEN EXECUTED IN ORDER TO ENSURE STABILITY.

NO	ITEM	TEST MODEL	INSPECTION CRITERIA
1	CURRENT CONSUMPTIO N	REFER TO SPECIFICATION	THE CURRENT CONSUMPTION SHOULD CONFORM TO THE PRODUCT SPECIFICATION
2	CONTRAST	REFER TO SPECIFICATION	AFTER THE TESTS HAVE BEEN EXECUTED, THE CONTRAST MUST BE LARGER THAN HALF OF ITS INITIAL VALUE PRIOR TO THE TESTS.
3	APPEARANCE	VISUAL INSPECTION	DEFECT FREE

12.6 OPERATION

- 12.6.1 DO NOT CONNECT OR DISCONNECT MODULES TO OR FROM THE MAIN SYSTEM WHILE POWER IS BEING SUPPLIED .
- 12.6.2 USE THE MODULE WITHIN SPECIFIED TEMPERATURE ; LOWER TEMPERATURE CAUSES THE RETARDATION OF BLINKING SPEED OF THE DISPLAY ; HIGHER TEMPERATURE MAKES OVERALL DISPLAY DISCOLOR . WHEN THE TEMPERATURE RETURNS TO NORMALITY , THE DISPLAY WILL OPERATE NORMALLY .
- 12.6.3 ADJUST THE LC DRIVING VOLTAGE TO OBTAIN THE OPTIMUM CONTRAST .
- 12.6.4 POWER ON SEQUENCE INPUT SIGNALS SHOULD NOT BE SUPPLIED TO LCD MODULE BEFORE POWER SUPPLY VOLTAGE IS APPLIED AND REACHES THE SPECIFIED VALUE. IF ABOVE SEQUENCE IS NOT FOLLOWED, CMOS LSIS OF LCD MODULES MAY BE DAMAGED DUE TO LATCH - UP PROBLEM.
- 12.6.5 NOT ALLOWED TO INFLICT ANY EXTERNAL STRESS AND TO CAUSE ANY MECHANICAL INTERFERENCE ON THE BENDING AREA OF FPC DURING THE TAIL BENDING BACKWARDS! DO NOT STRESS FPC AND IC ON THE MODULE!

EMERGING DISPLAY	MODEL NO.	VERSION	PAGE
TECHNOLOGIES CORPORATION	E T 0 3 2 0 A 5 D M 9	2	24
12.7 NOTICE			
12.7.1 USE A GROUNDED S	OLDERING IRON WHEN SOLDI	ERING	

- CONNECTOR I/O TERMINALS . FOR SOLDERING OR REPAIRING , TAKE PRECAUTION AGAINST THE TEMPERATURE OF THE SOLDERING IRON AND THE SOLDERING TIME TO PREVENT PEELING OFF THE THROUGH-HOLE-PAD .
- 12.7.2 DO NOT DISASSEMBLE . EDT SHALL NOT BE HELD RESPONSIBLE IF THE MODULE IS DISASSEMBLED AND UPON THE REASSEMBLY THE MODULE FAILED .
- 12.7.3 DO NOT CHARGE STATIC ELECTRICITY , AS THE CIRCUIT OF THIS MODULE CONTAINS CMOS LSIS. A WORKMAN'S BODY SHOULD ALWAYS BE STATIC-PROTECTED BY USE OF AN ESD STRAP . WORKING CLOTHES FOR SUCH PERSONNAL SHOULD BE OF STATIC-PROTECTED MATERIAL .
- 12.7.4 ALWAYS GROUND THE ELECTRICALLY-POWERED DRIVER BEFORE USING IT TO INSTALL THE LCD MODULE. WHILE CLEANING THE WORK STATION BY VACUUM CLEANER, DO NOT BRING THE SUCKING MOUTH NEAR THE MODULE ; STATIC ELECTRICITY OF THE ELECTRICALLY-POWERED DRIVER OR THE VACUUM CLEANER MAY DESTROY THE MODULE .
- 12.7.5 DON'T GIVE EXTERNAL SHOCK.
- 12.7.6 DON'T APPLY EXCESSIVE FORCE ON THE SURFACE.
- 12.7.7 LIQUID IN LCD IS HAZARDOUS SUBSTANCE. MUST NOT LICK AND SWALLOW. WHEN THE LIQUID IS ATTACH TO YOUR, SKIN, CLOTH ETC.WASH IT OUT THOROUGHLY AND IMMEDIATELY.
- 12.7.8 DON'T OPERATE IT ABOVE THE ABSOLUTE MAXIMUM RATING.
- 12.7.9 STORAGE IN A CLEAN ENVIRONMENT, FREE FROM DUST, ACTIVE GAS, AND SOLVENT.
- 12.7.10 STORE WITHOUT ANY PHYSICAL LOAD.
- 12.7.11 REWIRING : NO MORE THAN 3 TIMES .