

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-EMC179763

Page: 1 of 48

EMC Test Report

Application No. : TB210427871

Applicant : VEIKONG INDUSTRIAL CO., LTD/SHENZHEN VEIKONG

ELECTRIC. CO. LTD

Equipment Under Test (EUT)

EUT Name : Solar pump inverter

Model No. : VFD500-40T00400-PV

Series Model No. : Please see the general description of EUT.

Brand Name : VEIKONG

Receipt Date : 2024-04-13

Test Date : 2024-04-14 to 2024-04-19

Issue Date : 2024-04-19

Standard : EN IEC 61800-3: 2018

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above, The EUT

technically complies with the 2014/30/EU directive requirements.

Test/Witness Engineer

Engineer Supervisor

Engineer Manager

CE

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-075-3.0

Tel: +86 75526509301

Fax: +86 75526509195

Page:

TABLE OF CONTENTS

1.	GENERAL INFORMATION	5
	1.1. Client Information	5
	1.2. General Description of EUT (Equipment Under Test)	5
	1.3. Description of Operating Mode	
	1.4. Block Diagram Showing The Configuration of System Tested	
	1.5. Description of Support Units	
	1.6. Performance Criterion	
	1.7. Measurement Uncertainty	
	1.8. Test Facility	
2.	TEST RESULTS SUMMARY	
3.	TEST SOFTWARE	
4.	TEST EQUIPMENT USED	11
5.	CONDUCTED EMISSION TEST	13
	5.1. Test Standard and Limit	
	5.2. Test Setup	
	5.3. Test Procedure	13
	5.4. Deviation From Test Standard	13
	5.5. Test Data	
6.	RADIATED EMISSION TEST	sest)
	6.1 Test Standard and Limit	14
	6.2. Test Setup	14
	6.3. Test Procedure	
	6.4 Deviation From Test Standard	
	6.5 Test Data	
7	HARMONIC CURRENT EMISSION TEST	
	7.2 Test Setup	15
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	
	7.5 Test Data	
8	VOLTAGE FLUCTUATION AND FLICKER TEST	
	8.1 Test Standard and Limit	
	8.2 Test Setup	
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 Test Data	
9	HARMONICS AND HARMONICS SHORT TERM (<15S)	
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 Test Condition	
40	9.5 Test Data	
10	VOLTAGE DEVIATIONS, VOLTAGE DIPS AND INTERRUPTIONS	
	10.1 Test Requirements	
	10.2 Test Setup	
	10.3 Test Procedure	22

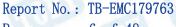
	10.4	Test Data	22
11	VOLT	AGE UNBALANCE, FREQUENCY VARIATIONS AND	23
FREC	UENC	Y RATE OF CHANGE	23
	11.1	Test Standard and Limit	
	11.2	Test Setup	
	11.3	Test Procedure	
	11.4	Test Condition	
	11.5	Test Data	
12	ELEC	TROSTATIC DISCHARGE IMMUNITY TEST	25
	12.1 T	est Requirements	25
	12.2	Test Setup	25
	12.3	Test Procedure	
	12.4	Test Data	26
13	RADIA	ATED ELECTROMAGNETIC FIELD IMMUNITY TEST	27
	13.1.	Test Requirements	27
	13.2	Test Setup	27
	13.3	Test Procedure	
	13.4 E	Deviation From Test Standard	28
	13.5	Test Data	28
14	ELEC	TRICAL FAST TRANSIENT/BURST TEST	29
	14.1.	Test Requirements	29
	14.2.	Test Setup	
	14.3.	Test Procedure	
	14.4	Deviation From Test Standard	30
	14.5	Test Data	
15	SURG	SE IMMUNITY TEST	
	15.1	Test Requirements	31
	15.2.	Test Setup	
	15.3.	Test Procedure	
	15.4.	Deviation From Test Standard	
	15.5.	Test Data	
16	CONE	DUCTED IMMUNITY TEST	
	16.1	Test Requirements	
	16.2	Test Setup	
	16.3		
		Deviation From Test Standard	
<u>~</u>	16.5	Test Data	
17		OGRAPHS - CONSTRUCTIONAL DETAILS	
ATTA	CHME	NT ACONDUCTED EMISSION DATA (AC MAINS)	37
ATTA	CHME	NT BRADIATED EMISSION TEST DATA (BELOW 1G)	40
		NT CELECTROSTATIC DISCHARGE TEST DATA	
		NT DRF FIELD STRENGTH SUSCEPTIBILITY TEST DATA	
		NT EELECTRICAL FAST TRANSIENT/BURST TEST DATA	
		NT FSURGE IMMUNITY TEST DATA	
AIIA	CHINE	NT GCONDUCTED IMMUNITY TEST DATA	48

Page: 4 of 48

Revision History

Ttoviolon metery					
Report No.	Version Description		Issued Date		
TB-EMC179763	Rev.01	Initial issue of report	2024-04-19		
W. TORY		D) TODA	A COLOR		
AT THE	MUBA	WORRY WITH			
	608	1000	TIVE		
1 the	UBA	WORK WORK	TO THE REAL PROPERTY.		
	mr BY	7000	MRY		
110	33	MORI MUDI			
	mn8 1	WORD WILL			
800		BIS			
	wu By	MORRE LINE	Yam		
	mOR		THOM		
	WBA.		The state of the s		

Page: 5 of 48


1. General Information

1.1. Client Information

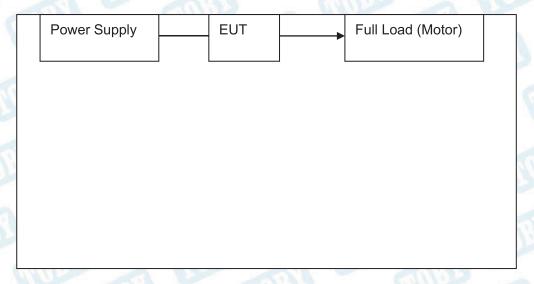
Applicant	Alp S	VEIKONG INDUSTRIAL CO., LTD/SHENZHEN VEIKONG
	18	ELECTRIC. CO. LTD
Address		Block E01, first industrical park lingbei 5 road, phoenix community,
		fuyong street, Bao'an District, Shenzhen, China
Manufacturer :		VEIKONG INDUSTRIAL CO., LTD/SHENZHEN VEIKONG
	No. of Lot	ELECTRIC. CO. LTD
Address :		Block E01, first industrical park lingbei 5 road, phoenix community,
	931	fuyong street, Bao'an District, Shenzhen, China

1.2. General Description of EUT (Equipment Under Test)

TUNIO A		
EUT Name	:	Solar pump inverter
Model(s)	-	VFD500-40T00400-PV, VFD500-20T00075-PV,
	111	VFD500-20T00150-PV, VFD500-20T00220-PV,
		VFD500-20T00400-PV, VFD500-20S00150-PV,
Call Bar		VFD500-20S00220-PV, VFD500-20S00400-PV,
		VFD500-20S00550-PV, VFD500-20T00550-PV,
	1173	VFD500-20T00750-PV, VFD500-20T01100-PV,
		VFD500-20T01500-PV, VFD500-20T01850-PV,
	1	VFD500-20T02200-PV, VFD500-20T03000-PV,
		VFD500-20T03700-PV, VFD500-20T04500-PV,
		VFD500-20T05500-PV, VFD500-20T07500-PV,
VO		VFD500-40T00075-PV, VFD500-40T00150-PV,
MUDE		VFD500-40T00220-PV, VFD500-40T00400-PV,
OR	9	VFD500-40T00550-PV, VFD500-40T00750-PV,
A ANU		VFD500-40T01100-PV, VFD500-40T01500-PV,
100	6	VFD500-40T01850-PV, VFD500-40T02200-PV,
	10	VFD500-40T03000-PV, VFD500-40T03700-PV,
180		VFD500-40T04500-PV, VFD500-40T05500-PV,
	1	VFD500-40T07500-PV, VFD500-40T09000-PV,
DA 180	112	VFD500-40T11000-PV, VFD500-40T13200-PV,
		VFD500-40T16000-PV, VFD500-40T18500-PV,
46100	-	VFD500-40T20000-PV, VFD500-40T22000-PV,
		VFD500-40T25000-PV.
Model	1.3	All these models are identical in the same PCB layout and electrical
Difference		circuit, the only difference is model name for commercial. therefore,
		EMI and EMS testing was performed with VFD500-40T00400-PV only.
Brand Name		VEIKONG
Power Supply		Input: VDC: 250V-800V/380-480VAC 3PH 50/60Hz
081	6	Output: 0-480VAC 3PH 0-600Hz
W.		Power: 4.0KW/9.4A

Page: 6 of 48

1.3. Description of Operating Mode


To investigate the maximum EMI emission characteristics generated from EUT, the test system was pre-scanning tested based on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	Full Load Mode

The EUT system operated these modes were found to be the worst case during the pre-scanning test as Following:

For EMI Test								
Final Test Mode	Description							
Mode 1	Full Load Mode							
	For EMS Test							
Final Test Mode	Final Test Mode Description							
Mode 1	Full Load Mode							

1.4. Block Diagram Showing The Configuration of System Tested

1.5. Description of Support Units

The EUT has been tested with electromotor unit.

Page: 7 of 48

1.6. Performance Criterion

Criterion A: The equipment shall continue to operate as intended without operator intervention. No degradation of performance of loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended.

Criterion B: After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the equipment is used as intended.

Criterion C: Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions.

1.7. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test	Parameters	Expanded Uncertainty (U _{Lab})	Expanded Uncertainty (Uc _{ispr})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	$\pm 3.50~\mathrm{dB}$ $\pm 3.10~\mathrm{dB}$	$\pm 4.0~\mathrm{dB}$ $\pm 3.6~\mathrm{dB}$
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	\pm 4.60 dB	N/A
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB	\pm 5.2 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB	N/A
Mains Harmonic	Voltage	±3.11%	N/A
Voltage Fluctuations & Flicker	Voltage	±3.25%	N/A

Page: 8 of 48

1.8. Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

Page: 9 of 48

2. TEST Results Summary

EN IEC 61800-3: 2018 EMISSION						
Conducted disturbance at mains terminals	EN IEC 61800-3: 2018	Pass				
Radiated Disturbance	EN IEC 61800-3: 2018	Pass				
Harmonic current emissions	IEC 61000-3-2: 2018	Pass				
Voltage fluctuation and flicker	IEC 61000-3-3: 2017	Pass				
DE TOUR	IMMUNITY	roby				
Description of test items	Standards	Results				
Harmonics(THD and individual harmonic orders)	IEC 61000-2-2: 2002 + A1: 2017 +A2: 2018	Pass				
Harmonics short term (<15s)	IEC 61000-2-2: 2002 + A1: 2017 +A2: 2018	Pass				
Voltage deviations	IEC 61000-2-2: 2002 + A1: 2017 +A2: 2018	Pass				
Voltage dips and short interruptions	IEC/TR 61000-2-1:1990	Pass				
Voltage unbalance	IEC 61000-2-2: 2002 + A1: 2017 +A2: 2018	Pass				
Frequency variations	IEC 61000-2-2: 2002 + A1: 2017 +A2: 2018	Pass				
Frequency rate of change	IEC 61000-2-2: 2002 + A1: 2017 +A2: 2018	Pass				
Electrostatic Discharge (ESD)	IEC 61000-4-2: 2008	Pass				
Radio-frequency, Continuous radiated disturbance	IEC 61000-4-3: 2020	Pass				
EFT/B Immunity	IEC 61000-4-4: 2012	Pass				
Surge Immunity	IEC 61000-4-5: 2014 +A1: 2017	Pass				
Conducted RF Immunity	IEC 61000-4-6: 2013 Edition 2.0	Pass				

Page: 10 of 48

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Harmonic Current	CTS4	Cl	4.24.0
Voltage Fluctuation and Flicker	CTS4	CI	4.24.0
Conducted Immunity	IEC/EN 61000-6-4 Application	FRANKONIA	1.1.1
Electrical Fast Transient	lec.control	Nemtest	5.1.1.0
Surge	lec.control	Nemtest	5.1.1.0
Voltage Dip and Interruption	lec.control	Nemtest	5.1.1.0

Page: 11 of 48

4. Test Equipment Used

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Mar.01,2024	Feb.24,2024
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Mar.01,2024	Feb.24,2024
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Mar.01,2024	Feb.24,2024
LISN	Rohde & Schwarz	ENV216	101131	Mar.01,2024	Feb.24,2024
Radiation Em	ission Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar.01,2024	Feb.24,2024
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Mar.01,2024	Feb.24,2024
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01,2024	Feb.24,2024
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.01,2024	Feb.24,2024
Pre-amplifier	HP	11909A	185903	Mar.01,2024	Feb.24,2024
Pre-amplifier	HP	8449B	3008A00849	Mar.01,2024	Feb.24,2024
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.01,2024	Feb.24,2024
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Harmonic Cur	rent and Voltag	e Fluctuatio	n and Flicke	r Test	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Harmonic Flicker Test System	CI	5001ix-CTS- 400	100321	Mar.01,2024	Feb.24,2024
5K VA	CI	500liX	59468	Mar.01,2024	Feb.24,2024
Discharge Im	nunity Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
ESD Tester	TESEQ	NSG437	304	Mar.01,2024	Feb.24,2024
Radiated Imm	unity Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Vector Signal Generator	Agilent	E4438C	US44271917	Mar.01,2024	Feb.24,2024
Power meter	Agilent	E4419B	GB40202122	Mar.01,2024	Feb.24,2024
Power Sensor	Agilent	E9300A	MY41496625	Mar.01,2024	Feb.24,2024
Power Sensor	Agilent	E9300A	MY41496628	Mar.01,2024	Feb.24,2024
RF power Amplifier	OPHIR	5225R	1045	Mar.01,2024	Feb.24,2024
RF power	OPHIR	5273R	1018	Mar.01,2024	Feb.24,2024

Page: 12 of 48

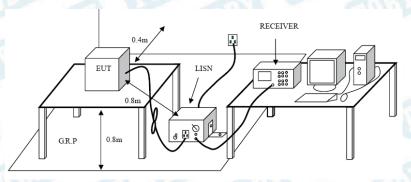
Antenna	SCHWARZBECK	STLP9128E- special	STLP9128E s#139	Mar.01,2024	Feb.24,2024
Antenna	SCHWARZBECK	STLP 9149	STLP 9149 #456	Mar.01,2024	Feb.24,2024
Electrical Fas	t Transient/ Sur	ge/ Voltage	Dip and Inte	rruption Test	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Simulator	EMTEST	UCS500N5	V0948105575	Mar.01,2024	Feb.24,2024
Auto-transformer	EMTEST	V4780S2	0109-41	Mar.01,2024	Feb.24,2024
Coupling Clamp	EMTEST	HFK	1109-04	Mar.01,2024	Feb.24,2024
Conducted In	nmunity Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
RF Generator	FRANKONIA	CIT-10/75	126B1126	Mar.01,2024	Feb.24,2024
Attenuator	FRANKONIA	59-6-33	A413	Mar.01,2024	Feb.24,2024
M-CDN	LUTHI	L-801 M2/M3	2599	Mar.01,2024	Feb.24,2024
EM Injection Clamp	LUTHI	EM101	35958	Mar.01,2024	Feb.24,2024

Page: 13 of 48

5. Conducted Emission Test

5.1. Test Standard and Limit

5.1.1. Test Standard


EN IEC 61800-3: 2018

5.1.2. Test Limit

Conducted Disturbance Test Limit (Category C3)

Fraguency	Maximum RF Line Voltage (DbμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	130 *	120*	
500kHz~5MHz	125	115	
5MHz~30MHz	115	105	

5.2. Test Setup

5.3. Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4. Deviation From Test Standard

No deviation

5.5. Test Data

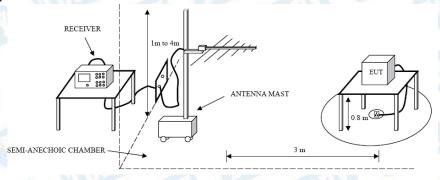
Please refer to the Attachment A.

Page: 14 of 48

6. Radiated Emission Test

6.1 Test Standard and Limit

6.1.1. Test Standard


EN IEC 61800-3: 2018

6.1.2. Test Limit

Radiated Disturbance Test Limit (Category C3)

TO THE PARTY OF TH	Limit (DbμV/m)	
Frequency	Quasi-peak Level	
30MHz~230MHz	60	
230MHz~1000MHz	70	

6.2. Test Setup

6.3. Test Procedure

The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3m. The table was rotated 360 degrees to determine the position of the highest radiation.

The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

The initial step in collecting radiated emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range.

If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.

6.4 Deviation From Test Standard

No deviation

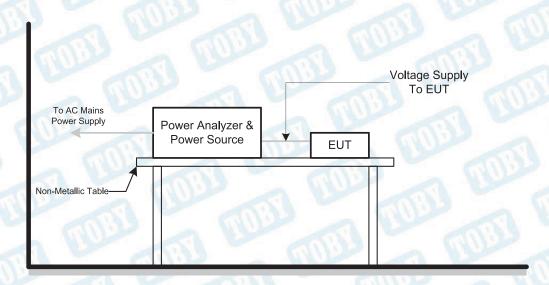
6.5 Test Data

Please refer to the Attachment B.

Page: 15 of 48

7 Harmonic Current Emission Test

7.1.1. Test Standard


IEC 61000-3-2: 2018

7.1.2. Limits

Harmonic Current Test Limit (Class A)

Harmonic order (n)	Maximum permissible harmonic current (A)	
	Odd harmonics	
3	2.30	
5	1.14	
7	0.77	
9	0.40	
11	0.33	
13	0.21	
15≤n≤39	0.15×15/n	
	Even harmonics	
2	1.08	
4	0.43	
6	0.30	
8≤n≤40	0.23×8/n	

7.2 Test Setup

Page: 16 of 48

7.3 Test Procedure

The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions.

The classification of EUT is according to section 5 of EN 61000-3-2. The EUT is classified as follows:

Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.

Class B: Portable tools. Arc welding equipment which is not professional equipment.

Class C: Lighting equipment.

Class D: Equipment having a specified power less than or equal to 600W of the following types: Personal computers and personal computer monitors and television receivers.

7.4 Deviation From Test Standard

No deviation

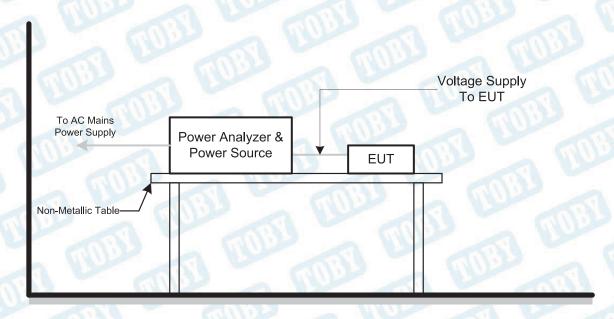
7.5 Test Data

Test Result: PASS

Page: 17 of 48

8 Voltage Fluctuation and Flicker Test

8.1 Test Standard and Limit


8.1.1. Test Standard IEC 61000-3-3:2017

8.1.2. Limit

Voltage Fluctuation and Flicker Test Limit

Test Items	Limits
Pst	1.0
dc	3.3%
dmax	4.0%
dt	Not exceed 3.3% for 500ms

8.2 Test Setup

8.3 Test Procedure

8.3.1 Harmonic Current Test

Test was performed according to the procedures specified in Clause 5.0 of IEC555-2 and/or Sub-clause 6.2 of IEC/EN 61000-3-2 depend on which standard adopted for compliance measurement.

8.3.2 Fluctuation and Flickers Test:

Tests was performed according to the Test Conditions/Assessment of Voltage Fluctuations specified in Clause 5.0/6.0 of IEC555-3 and/or Clause 6.0/4.0 of IEC/EN 61000-3-3 depend on which standard adopted for compliance measurement.

Page: 18 of 48

All types of harmonic current and/or voltage fluctuation in this report are assessed by direct measurement using flicker-meter.

For the actual test configuration, please refer to the related Item -Block Diagram of system tested (please refer to 1.3).

8.4 Deviation From Test Standard

No deviation

8.5 Test Data

Test Result: PASS

Page: 19 of 48

9 Harmonics and Harmonics short term (<15s)

9.1 Test Standard and Limit

9.1.1. Test Standard

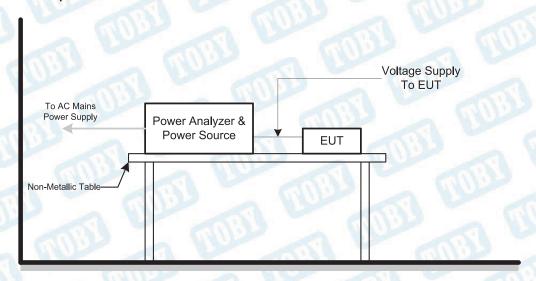
IEC 61000-2-2: 2002 + A1: 2017 +A2: 2018

9.1.2. Limit

	narmonics nultiple of 3		rmonics le of 3 ^a	Even	harmonics
Harmonic order (n)	Harmonic Voltage %	Harmonic order (n)	Harmonic Voltage %	Harmonic order (n)	Harmonic Voltage %
5	6	3	5	2	2
7	5	9	1.5	4	1
11	3.5	15	0.4	6	0.5
13	3	21	0.3	8	0.5
17≤n≤49	2.27×(17/n)-0.27	21≤n≤45	0.2	10≤n≤50	0.25×(10/n)+0.25

a: the levels given for odd harmonics that are multiples of three apply to zero sequence harmonics. Also, on a three-phase network without a neutral conductor or without load connected between line and ground. The values of the 3rd and 9th harmonics may be much lower than the compatibility levels, depending on the unbalance of the system.

The corresponding compatibility level for the total harmonic distortion is THD=8%


The corresponding compatibility level is 1.5 times the value of the permanent compatibility levels

The corresponding compatibility level for the total harmonic distortion is THD=11%

9.1.3. Performance criterion: 1. Harmonic: A

2. Harmonic short term (<15s): B

9.2 Test Setup

Page: 20 of 48

9.3 Test Procedure

The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the 8.1.2 operating conditions.

9.4 Test Condition

Temperature	9	23℃
Relative Humidity		52%
Pressure		1010 hPa
Test Power		AC 380V/50Hz

9.5 Test Data

Test Result: 1. Harmonic: PASS

2. Harmonic short term (<15s): PASS

Page: 21 of 48

10 Voltage Deviations, Voltage Dips and Interruptions

10.1 Test Requirements

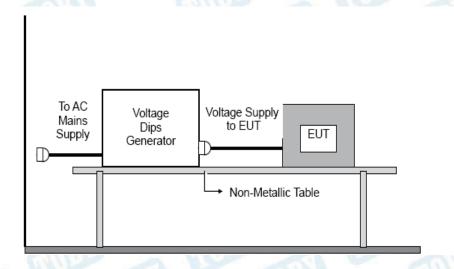
10.1.1. Test Standard

IEC 61000-2-2: 2002 + A1: 2017 +A2: 2018; IEC/TR 61000-2-1:1990

10.1.2. Level

1. Voltage deviations: the corresponding compatibility level for the nominal voltage \pm 10% of EUT

2. Test Level for Voltage Dips and Interruptions: see the following table


Voltage dip and short interruptions %U⊤	Duration (in period)
0 0 8 1	0.5
W0870 W087	TUP TO
40	10
70 70	25
80	250
100	250

Remark: U_T is the nominal voltage for the equipment.

10.1.3. Performance criterion: 1. Voltage deviations: A

2. Test Level for Voltage Dips and Interruptions: C

10.2 Test Setup

Page: 22 of 48

10.3 Test Procedure

Set up the EUT and test generator as shown above, and operated to produce the 9.1.2 operating conditions.

10.4 Test Data

Test result: 1. Voltage deviations: PASS

2. Test Level for Voltage Dips and Interruptions: PASS

TOBY

Report No.: TB-EMC179763

Page: 23 of 48

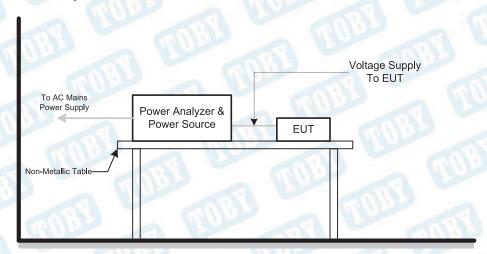
11 Voltage unbalance, Frequency variations and Frequency rate of change

11.1 Test Standard and Limit

11.1.1. Test Standard

IEC 61000-2-2: 2002 + A1: 2017 +A2: 2018

11.1.2. Limit


- 1. Voltage unbalance: the corresponding compatibility level is 2% negative sequence component.(Not relevant for single phase PDSs)
- 2. Frequency variations: the corresponding compatibility level is the nominal Frequency $\pm 2\%$ of EUT.
- 3. Frequency rate of change: the corresponding compatibility level is 1%/second.

11.1.3. Performance criterion: 1. Voltage unbalance: A

2. Frequency variations: A

3. Frequency rate of change: A

11.2 Test Setup

11.3 Test Procedure

The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the 10.1.2 operating conditions.

11.4 Test Condition

Temperature	M.	23℃
Relative Humidity		52%
Pressure		1010 hPa
Test Power	97	AC 380V/50Hz

Page: 24 of 48

11.5 Test Data

Test result:

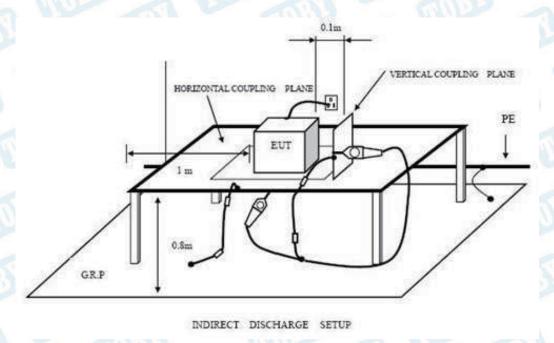
Voltage unbalance: PASS
 Frequency variations: PASS
 Frequency rate of change: PASS

Page: 25 of 48

12 Electrostatic Discharge Immunity Test

12.1 Test Requirements

12.1.1 Test Standard


IEC 61000-4-2: 2008

12.1.2. Test Level

Discharge Impedance:	330 ohm/ 150pF	
Discharge Voltage:	Air Discharge: 8kV(Direct) Contact Discharge: 4kV (Direct /Indirect)	
Polarity:	Positive& Negative	
Number of Discharge:	Air Discharge: min.20 times at each test point Contact Discharge: min.200 times in total	
Discharge Mode:	Single Discharge	
Discharge Period:	1 second minimum	

12.1.3. Performance criterion: B

12.2 Test Setup

12.3 Test Procedure

12.3.1 Air Discharge:

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge,

Page: 26 of 48

the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

12.3.2 Contact Discharge:

All the procedure shall be same as air discharge. Except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

12.3.3 Indirect discharge for horizontal coupling plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

12.3.4 Indirect discharge for vertical coupling plane

At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

12.4 Test Data

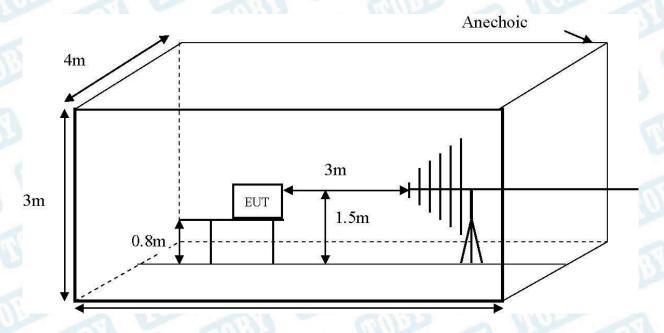
Please refer to the Attachment C.

Page: 27 of 48

13 Radiated Electromagnetic Field Immunity Test

13.1. Test Requirements

13.1.1. Test Standard


IEC 61000-4-3: 2020

13.1.2. Test Level

Port	Test Specification
UR3 - UO	80-1000MHz
Enclosure Port	10 V/m
	80 AM (1kHz)

13.1.3. Performance criterion: A

13.2 Test Setup

13.3 Test Procedure

The EUT are placed on a table, which is 0.8 meter high above the ground. The EUT is set 3 meters away from the transmitting antenna, which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna is set on test. Each of the four sides of the EUT must be faced this transmitting antenna and measured individually.

In order to judge the EUT performance, a camera is used to monitor its screen.

All the scanning conditions are as following:

Page: 28 of 48

Condition of Test	Remark
Fielded strength	10V/m
Radiated signal	Modulated
Scanning frequency	80-1000MHz
Dwell time	2Sec.

13.4 Deviation From Test Standard

No deviation

13.5 Test Data

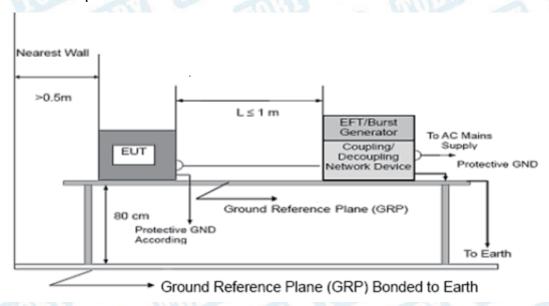
Please refer to the Attachment D.

Page: 29 of 48

14 Electrical Fast Transient/Burst Test

14.1. Test Requirements

14.1.1. Test Standard


IEC 61000-4-4:2012

14.1.2. Level

	On Switching Adapter Lines	On I/O (Input/Output) Signal data and DC Port	
Test Voltage:	2 KV	1 KV	
Polarity:	Positive&Negative		
Impulse Wave Shape:	5/50ns		
Burst Duration:	15ms		
Burst Period:	300ms		
Test Duration:	Not less than 1 min		

14.1.3. Performance criterion: B

14.2. Test Setup

14.3. Test Procedure

14.3.1 For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 1 minute.

Page: 30 of 48

14.3.2 For signal lines and control lines ports:

A coupling clamp is use to couple the EFT interference signal to the signal and control lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 1 minute.

14.3.3 For DC input and DC output power ports:

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 1 minute.

14.4 Deviation From Test Standard

No deviation

14.5 Test Data

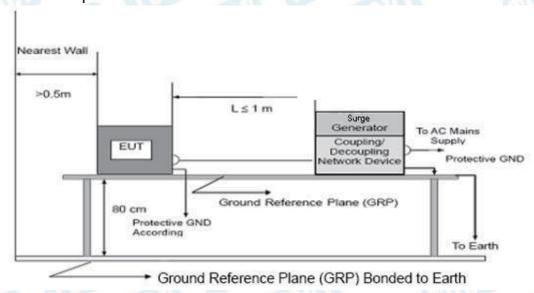
Please refer to the Attachment E.

Page: 31 of 48

15 Surge Immunity Test

15.1 Test Requirements

15.1.1. Test Standard


IEC 61000-4-5: 2014 +A1: 2017

15.1.2. Level

	Surge test for DC	power ports	
Characteristics Wave-shape data		Test Level 1.2/50 (8/20) us	
Line to earth or ground	±1 kV		
	Surge test for AC	power ports	
Characteristics		Test Level	
Wave-shape data		1.2/50 (8/20) us	
Injected Level	Line to line	±1 kV	
	Line to earth or ground	±2 kV	

15.1.3. Performance criterion: B

15.2. Test Setup

Page: 32 of 48

15.3. Test Procedure

- 15.3.1. Set up the EUT and test generator as shown on Section 11.1.2.
- 15.3.2. For line to line coupling mode, provide a 1.0 KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.
- 15.3.3. At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.
- 15.3.4. Different phase angles are done individually.
- 15.3.5. Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

15.4. Deviation From Test Standard

No deviation

15.5. Test Data

Please refer to the Attachment F.

Page: 33 of 48

16 Conducted Immunity Test

- 16.1 Test Requirements
- 16.1.1 Test Standard IEC 61000-4-6:2013
- 16.1.2 Level

Kadio-il'equeli	cy continuous conducted	illilliumly test
Signal and Control lines	DC Power Ports	AC Power Ports
YOU	0.15 MHz to 80 MHz	MUP
10V r	0.15 MHZ to 80 MHZ .m.s 1 kHz, 80% AM, since	wave

16.1.3 Performance criterion: A

16.2 Test Setup

- 16.3 Test Procedure
- 16.3.1 Set up the EUT, CDN and test generators.
- 16.3.2 Let the EUT work in test mode and test it.
- 16.3.3 The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- 16.3.4 The disturbance signal description below is injected to EUT through CDN.

Page: 34 of 48

16.3.5 The EUT operates within its operational mode(s) under intended climatic conditions after power on.

- 16.3.6 The frequency range is swept from 0.150MHz to 80MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1KHz sine wave.
- 16.3.7 The rate of sweep shall not exceed 1.5*10-3decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- 16.3.8 Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.
- 16.4 Deviation From Test Standard

No deviation

16.5 Test Data

Please refer to the Attachment G.

Page: 35 of 48

17 Photographs - Constructional Details

Photo 1 Appearance of EUT

Photo 2 Appearance of EUT

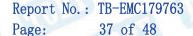
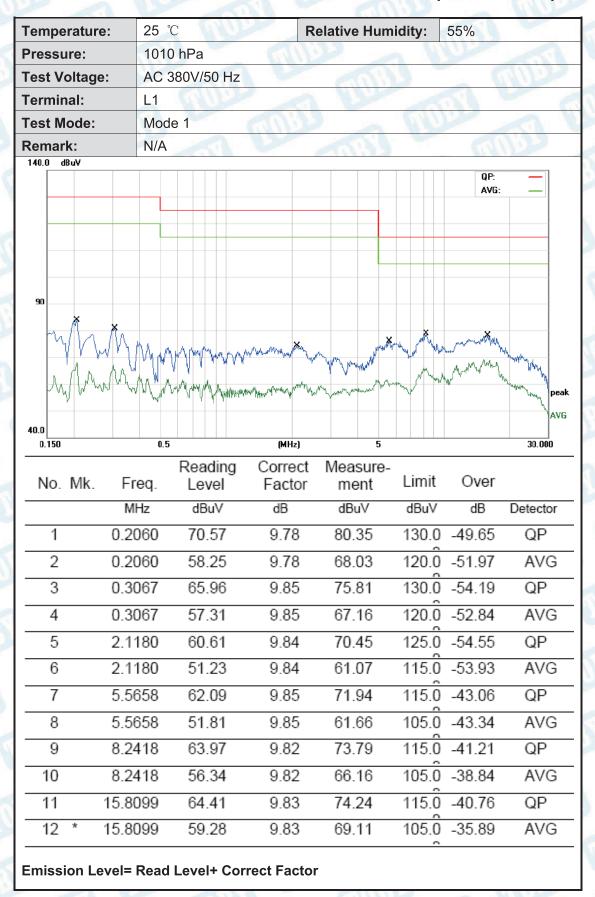
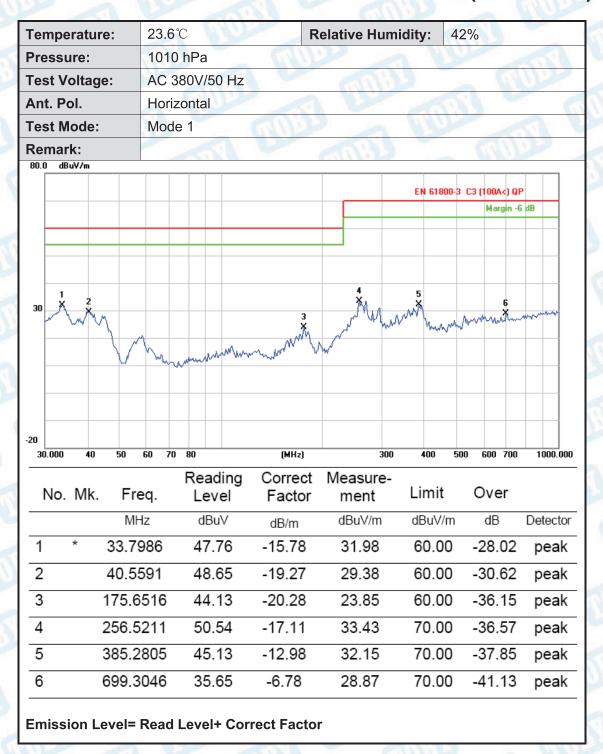

Page: 36 of 48

Photo 3 Appearance of EUT


Photo 4 Internal of EUT

Attachment A--Conducted Emission Data (AC Mains)

emperature:	25 ℃		Re	lative Hum	idity:	55%	11/10/2
Pressure:	1010	hPa				THE REAL PROPERTY.	
Test Voltage:	AC 3	80V/50 Hz	MAR		2 81	Dr	
Terminal:	L2	707					11105
Test Mode:	Mode	1		MAN	1	$A \cap A$	
Remark:	N/A		WILL THE		TU I		
140.0 dBuV						QP: AVG:	
90		randay homens	Market and the second of the s	Wangalandah Kan	or when the second	the first of the f	ped problem AV
40.0 0.150	0.5		(MHz)	5			30.000
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1 (0.1980	67.21	9.78	76.99	130.0	-53.01	QP
2 (0.1980	52.75	9.78	62.53	120.0	-57.47	AVG
3 (0.2740	63.55	9.82	73.37	130.0	-56.63	QP
4 (0.2740	53.73	9.82	63.55	120.0	-56.45	AVG
5 2	2.1179	61.01	9.84	70.85	125.0	-54.15	QP
	2.1179	40.00	9.84	58.07	115.0	-56.93	AVG
6 2	2.11/0	48.23	0.01				
	5.2058	58.81	9.86	68.67	115.0	-46.33	QP
7 :				68.67 56.57	0	-46.33 -48.43	QP AVG
7 5	5.2058	58.81	9.86		105.0		
7 5 8 5 9 9	5.2058 5.2058	58.81 46.71	9.86 9.86	56.57	105.0	-48.43	AVG
7 8 8 9 9 9 10 * 9	5.2058 5.2058 9.7018	58.81 46.71 62.71	9.86 9.86 9.82	56.57 72.53	105.0 115.0 105.0	-48.43 -42.47	AVG QP



25 °C Temperature: **Relative Humidity:** 55% Pressure: 1010 hPa **Test Voltage:** AC 380V/50 Hz Terminal: L3 **Test Mode:** Mode 1 Remark: N/A 140.0 dBuV QP: AVG: 20.0 0.150 0.5 (MHz) 30.000 Reading Correct Measure-Limit Over Freq. No. Mk. Level Factor ment MHz dBuV dB dBuV dBuV dB Detector 0.1980 65.50 9.56 75.06 130.0 -54.94 QΡ 1 2 0.198046.78 9.56 56.34 120.0 -63.66 AVG 3 0.2300 60.37 9.64 70.01 130.0 -59.99 QΡ 0.2300 43.85 53.49 120.0 -66.51 AVG 9.64 4 0.3060 60.27 9.70 69.97 130.0 -60.03 QΡ 5 6 0.3060 42.92 9.70 52.62 120.0 -67.38 AVG 125.0 -59.61 7 55.53 QP 2.0260 9.86 65.39 8 2.0260 37.01 9.86 46.87 115.0 -68.13 AVG 6.0658 58.57 68.41 115.0 -46.59 QΡ 9 9.84 10 6.0658 58.57 9.84 68.41 105.0 -36.59 AVG 12.9900 52.08 115.0 -53.06 QΡ 11 9.86 61.94 12 12.9900 41.26 9.86 51.12 105.0 -53.88 AVG **Emission Level= Read Level+ Correct Factor**

Attachment B--Radiated Emission Test Data (Below 1G)

Report No.: TB-EMC179763
Page: 41 of 48

Гетре	rature	:	23.	.6℃		111		Relat	tive Hur	nidity	: 4	42%	0	1		
Pressu	re:		101	10 h	ıPa		700					11		١.		à
Γest Vo	oltage	:	AC	; 38	0V/5	0 Hz	1 17	25	40		1		-	M	10	j
Ant. Po	ol.		Ve	rtica	al	NO	2	A 1	MAR			(1)				4
Γest M	ode:		Мо	de	1		MA	3		6		3	9		1	N
Remarl						2	ART			1				1	13	
80.0 dB	uV/m															
										EN	61800	-3 C	-	_	-	
													Ma	rgin -6	dB	
	1	+														
.~~	~ \\			-					5	6						
30		2	3								444	wh.			L a du	
		7/	~×	1		4 ×			w My W	Mar.		1	hh	m	Agran Sa	
				m	~w~	Man	WAY AWA	MWM	M							
			-	\vdash	7"		- 14 - 144 I					-	+			
20																
30.000	40	50	60	70 8	80		(MHz)		30	0 4	00	500	600	700	1000.	00
					Rea	ding	Correc	t M	easure-	-						_
No.	Mk.	Fre	eq.		Lev	_	Facto	r	ment	Lir	nit		Ove	er		
		MH	lz		dB	uV	dB/m	-	dBuV/m	dB	uV/n	n	dE	3	Detec	to
1	* 4	40.27	757		61.	.11	-19.13		41.98	60	0.00)	-18	.02	pea	ak
2		52.94	153		51.	56	-23.39		28.17	60	0.00)	-31	83	pea	
3		65.80			50.		-23.74		27.12		0.00					
													-32		pea	
4		12.1			44.	.16	-22.27		21.89		0.00		-38		pea	ık
5	2	82.9	852	2	49.	.81	-16.60		33.21	70	0.00)	-36	79	pea	ık
6			047			.56	-13.74		35.82		0.00		-34	40	pea	-

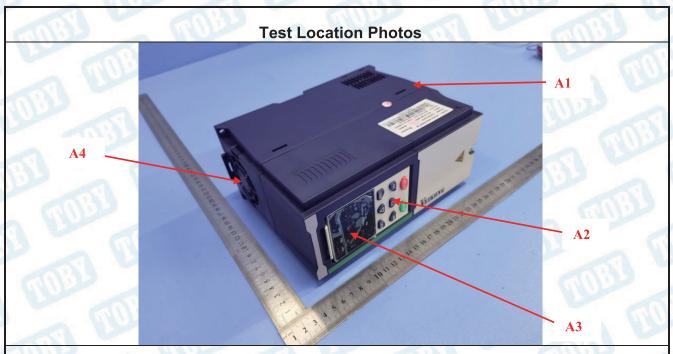
Page: 42 of 48

Attachment C--Electrostatic Discharge Test Data

Temperature : 22°C Humidity : 50%

Power supply: AC 380V/50Hz Test Mode: Mode 1

Required Performance Criteria: B


Air Discharge:±8kV Contact Discharge:±4kV

			1 2 4
Location	Test Level (kV)	Judgment	Result
A1		A	4081
A2	THE PARTY OF THE P	Α	3
А3	±8kV	A	0.00
A4	THE WAY	A	0 0
		81 - 1 100	PASS
THE PARTY OF THE P	±4kV	408	The Contract of the Contract o
	TOBY TOBY	1,400	
НСР	±4kV	A	Miller
VCP	±4kV	A	100

Note: "/" Representative the test not applicable

Page: 43 of 48

Note:

- 1) Criteria A: There was no change operated with initial operating during the test.
- 2) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 3) Criteria C: The system shut down during the test.

Page: 44 of 48

Attachment D--RF Field Strength Susceptibility Test Data

Temperature : 22°C Humidity : 50%

Power supply : AC 380V/50Hz Test Mode : Mode 1

Required Performance Criteria: A

	Frequency	Range 1	Frequency	Range 2	Frequency	/ Range 3		
Position	80~100	00MHz	1400~20	00MHz	2000~2700MHz		Result	
	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical		
Front	А	A	А	Α	A	Α	O W	
Right	A	A	А	A	Α	Α	DACC	
Rear	A	Α	A	Α	Α	A	PASS	
Left	А	Α	А	Α	A	Α		

Remark:

- 1) Criteria A: There was no change operated with initial operating during the test.
- 2) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 3) Criteria C: The system shut down during the test.

Page: 45 of 48

Attachment E--Electrical Fast Transient/Burst Test Data

Temperature	: 22 °C	3 100	Humidit	ty : 50%	MORA	a C
Power supply	: AC 380\	//50Hz	Test Mo	ode : Mod	e 1	mn!
Required Per	rformance Cr	iteria: B	annis.	B. W	mOP	
Line:	AC Mains	Coupling:	Direct			
Line: S	Signal 🗌	I/O Cable	Coupling:	□ Сара	citive	
Line	Voltage(kV)		Performance riteria		rformance teria	Result
Line	Voltage(KV)	(+)	(-)	(+)	(-)	Result
L1	2.0	В	В	Α	Α	PASS
L2	2.0	В	В	Α	A	PASS
L3	2.0	В	В	Α	A	PASS
PE (MI)	2.0	В	В	Α	A	PASS
L1-PE	2.0	В	В	A	Α	PASS
L2-PE	2.0	В	В	Α	Α	PASS
L3-PE	2.0	В	В	A	Α	PASS
L1-L2	2.0	В	В	Α	A	PASS
L1-L3	2.0	В	В	A	Α	PASS
L2-L3	2.0	В	В	Α	Α	PASS
L1-L2-L3	2.0	В	В	Α	A	PASS
L1-L2-L3-PE	2.0	В	В	Α	A	PASS
DC Port	1.0	В	В	1	BV	
Signal Port	1.0	В	В	1		

Remark:

- 1) Criteria A: There was no change operated with initial operating during the test.
- 2) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 3) Criteria C: The system shut down during the test.

Page: 46 of 48

Attachment F--Surge Immunity Test Data

Temperature : 22° Humidity : 50%

Power supply: AC 380V/50Hz Test Mode: Mode 1

Required Performance Criteria: B

Injected Line	Voltage (kV)	Phase		ual mance eria	Result		
	mOB3		(+)	(-)	(+)	(-)	
OR T		0°	A	Α	PASS	PASS	
L1-L2	1.0	90°	Α	A	PASS	PASS	
L I-LZ	1.0	180°	Α	Α	PASS	PASS	
		270°	Α	Α	PASS	PASS	
100		0°	Α	Α	PASS	PASS	
1412	1.0	90°	Α	A	PASS	PASS	
L1-L3		180°	Α	A	PASS	PASS	
		270°	Α	Α	PASS	PASS	
NOT V	1.0	0°	Α	Α	PASS	PASS	
L2-L3		90°	Α	A	PASS	PASS	
LZ-L3		180°	Α	A	PASS	PASS	
		270°	Α	A	PASS	PASS	
		0°	A	Α	PASS	PASS	
L1-GND	2.0	90°	Α	A	PASS	PASS	
		180°	Α	Α	PASS	PASS	
		270°	Α	Α	PASS	PASS	
100		0°	A	Α	PASS	PASS	
L2-GND	2.0	90°	A	Α	PASS	PASS	
LZ-GND	2.0	180°	Α	A	PASS	PASS	
		270°	Α	Α	PASS	PASS	

47 of 48 Page:

TOBY	wUB.	0°	Α	Α	PASS	PASS
		90°	Α	A	PASS	PASS
L3-GND	2.0	180°	Α	A	PASS	PASS
	4000	270°	Α	A	PASS	PASS
DC Port (Line-Line)	0.5	+/-			1	An
DC Port (Line- Earth)	1.0	+/-	1		doll	1
Signal Port (Line-Earth)	1.0	+/-	1,000	100		WBB A

Remark:

- Criteria A: There was no change operated with initial operating during the test.
 Criteria B: The EUT function loss during the test, but self-recoverable after the
- 3) Criteria C: The system shut down during the test.

Page: 48 of 48

Attachment G--Conducted Immunity Test Data

Temperature : 22[°]C Humidity : 50%

Power supply : AC 380V/50Hz Test Mode : Mode 1

Required Performance Criteria: A

Frequency Range (MHz)	Injected Position	Voltage Level (e.m.f.)	Required Performance Criteria	Actual Performance Criteria	Result
0.15 ~ 80	AC Mains	10V(rms), AM 80% Modulated with 1 kHz	A	A	PASS
0.15 ~ 80	DC Mains	10V(rms), AM 80% Modulated with 1 kHz	A	IBY /	
0.15 ~ 80	Signal Line	10V(rms), AM 80% Modulated with 1 kHz	A		TOBY

Remark:

- 1) Criteria A: There was no change operated with initial operating during the test.
- 2) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 3) Criteria C: The system shut down during the test.

----END OF REPORT----