

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202306-0050-171

Page: 1 of 65

TEST REPORT

Certificate No. : TBC-C-202306-0050-9

Applicant: Shenzhen ADDX Innovation Technology co., LTD.

Equipment Under Test (EUT)

EUT Name : IP Camera

Model No. : CK1

Series Model No. : EC01, F11, CK1A, GS-X20, CB1, VN-VK30

Brand Name : ----

Receipt Date : 2023-06-12

Test Date : 2023-06-12 to 2023-07-07

Issue Date : 2023-07-07

Standards : ETSI EN 301 489-1 V2.2.3:2019

ETSI EN 301 489-17 V3.2.4:2020

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above. The EUT technically complies with the Council Directive 2017 (S.I. 2017/1206) relating to radio equipment.

Test/Witness Engineer :

Engineer Supervisor : WW SV

Engineer Manager : Lyda.

UK CA

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-075-1.0

TABLE OF CONTENTS

1 🕥	GENERAL INFORMATION	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	
	1.5 Description of Operating Mode	
	1.6 Performance Criteria	
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2	TEST RESULTS SUMMARY	
3	TEST SOFTWARE	13
4	TEST EQUIPMENT	14
5	CONDUCTED DISTURBANCE TEST (AC PORT)	18
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	19
	5.5 Test Data	19
6	CONDUCTED EMISSIONS (WIRED NETWORK PORT)	20
	6.1 Test Standard and Limit	
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	22
	6.5 Test Data	22
7	RADIATED EMISSION TEST	23
	7.1 Test Standard and Limit	23
	7.2 Test Setup	
	7.3 Test Procedure	25
	7.4 Deviation From Test Standard	25
	7.5 Test Data	25
8	HARMONIC CURRENT EMISSION TEST	26
	8.1 Test Standard and Limit	26
	8.2 Test Setup	26
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 Test Data	
9	VOLTAGE FLUCTUATION AND FLICKER TEST	
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	
	9.5 Test Data	
10	ELECTROSTATIC DISCHARGE IMMUNITY TEST	
	10.1 Test Standard and Limit	
	10.2 Test Procedure	
	10.3 Deviation From Test Standard	30

Report No.: TBR-C-202306-0050-171 Page: 3 of 65

	10.4 Test Data	30
11	RADIATED ELECTROMAGNETIC FIELD IMMUNITY TEST	31
	11.1 Test Standard and Limit	31
	11.2 Test Setup	31
	11.3 Test Procedure	
	11.4 Deviation From Test Standard	
	11.5 Test Data	
12	ELECTRICAL FAST TRANSIENT/BURST TEST	
	12.1 Test Standard and Limit	
	12.2 Test Setup	
	12.3 Test Procedure	
	12.5 Test Data	
13	SURGE IMMUNITY TEST	
20	13.1 Test Standard and Limit	
	13.2 Test Setup	
	13.3 Test Procedure	
	13.4 Deviation From Test Standard	
	13.5 Test Data	
14	RF COMMON MODE	
	14.1 Test Standard and Limit	
	14.2 Test Setup	
	14.2 Test Procedure	
	14.3 Deviation From Test Standard	
	14.4 Test Data	
15	VOLTAGE DIPS AND INTERRUPTIONS IMMUNITY TEST	
	15.1 Test Standard and Limit	
	15.2 Test Setup	
	15.2 Test Procedure	
	15.4 Test Data	
16		
130		
17		
	ACHMENT ACONDUCTED EMISSION DATA (AC MAINS)	
ATT	ACHMENT BRADIATED EMISSION TEST DATA	54
ATT	ACHMENT CVOLTAGE FLUCTUATION AND FLICKER TEST DATA	58
ATT	ACHMENT DELECTROSTATIC DISCHARGE TEST DATA	59
ATT	ACHMENT ERF FIELD STRENGTH SUSCEPTIBILITY TEST DATA	61
	ACHMENT FELECTRICAL FAST TRANSIENT/BURST TEST DATA	
	ACHMENT GSURGE IMMUNITY TEST DATA	
ATT	ACHMENT HCONDUCTED IMMUNITY TEST DATA	64
ΔΤΤ	ACHMENT IVOLTAGE DIPS AND INTERRUPTIONS TEST DATA	65

Report No.: TBR-C-202306-0050-171 Page: 4 of 65

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202306-0050-171	Rev.01	Initial issue of report	2023-07-07
WUB?			and the second
MODIE	000		
TODA			
	MORP		WURR
	000	The same of the sa	WURI
TOD 3			
WORLD WILL			
(100)	400		won.
ABY AUD			

Page: 5 of 65

1 General Information

1.1 Client Information

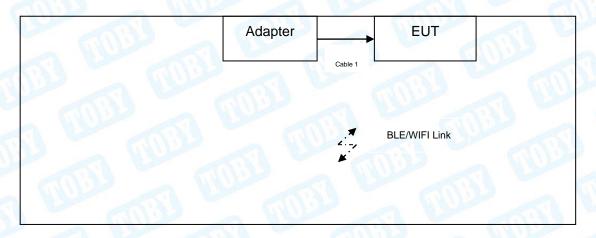
Applicant		Shenzhen ADDX Innovation Technology co., LTD.	
Address : NO.2902, Building 9A-1.St Nanshan District, Shenzhe		NO.2902, Building 9A-1.Shenzhen Bay Technology and Ecological Park, Nanshan District, Shenzhen, China	
Manufacturer	9	Shenzhen ADDX Innovation Technology co., LTD.	
Address : NO.2902, Bu Nanshan Dis		NO.2902, Building 9A-1.Shenzhen Bay Technology and Ecological Park, Nanshan District, Shenzhen, China	

1.2 General Description of EUT (Equipment Under Test)

EUT Name	H	IP Camera		
Model(s)		CK1, EC01, F11, CK1A, GS-X20, CB1, VN-VK30		
Model Difference		All these models are identical in the same PCB, layout and electrical circuit, the only difference is Different manufacturers have different names.		
Product Description	:	Operation Frequency: 2.4G WIFI: 2412MHz~2472MHz Bluetooth LE 5.0: 2402MHz~2480MHz		
Power Rating		USB Input: DC 5V/1A		
Software Version		V0.14.1		
Hardware Version	:			

Remark: The antenna gain provided by the applicant, adapter and the verified for the RF conduction test provided by TOBY test lab.

Note:


(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: TBR-C-202306-0050-171 Page: 6 of 65

1.3 Block Diagram Showing the Configuration of System Tested

1.4 Description of Support Units

Equipment Information							
Name	Model	S/N	Manufacturer	Used " √			
Adapter	W		HUAWEI	1			
		Cable Information					
Number	Shielded Type	Ferrite Core	Length	Note			
Cable 1	NO	NO	1.2m	Accessory			
Remark: The USB cable is provided by applicant and the adapter is provided by Toby test lab.							

Page: 7 of 65

1.5 Description of Operating Mode

To investigate the maximum EMI emission characteristics generated from EUT, the test system was pre-scanning tested based on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	Charging+ Camera Mode
Mode 2	Wi-Fi Link Mode
Mode 3	Bluetooth Link Mode

The EUT system operated these modes were found to be the worst case during the pre-scanning test as Following:

For EMI Test					
Final Test Mode Description Mode 1 Charging+ Camera Mode					
					For EMS Test
Final Test Mode	Final Test Mode Description				
Mode 1 Charging+ Camera Mode Mode 2 Wi-Fi Link Mode					
					Mode 3

Page: 8 of 65

1.6 Performance Criteria

ETSI EN 301 489-1

(1) Introduction

The performance criteria are used to take a decision on whether a radio equipment passes or fails immunity tests. For the purpose of the present document two categories of performance criteria apply:

- Performance criteria for continuous phenomena.
- Performance criteria for transient phenomena.

NOTE: Normally, the performance criteria depends upon the type of radio equipment and/or its intended application. Thus, the present document only contains general performance criteria commonly used for the assessment of radio equipment.

(2) Performance criteria for continuous phenomena

During the test, the equipment shall:

- continue to operate as intended;
- not unintentionally transmit;
- not unintentionally change its operating state;
- not unintentionally change critical stored data.

(3) Performance criteria for transient phenomena

For all ports and transient phenomena with the exception described below, the following applies:

- The application of the transient phenomena shall not result in a change of the mode of operation (e.g. unintended transmission) or the loss of critical stored data.
- After application of the transient phenomena, the equipment shall operate as intended.

For surges applied to symmetrically operated wired network ports intended to be connected directly to outdoor lines the following criteria applies:

- For products with only one symmetrical port intended for connection to outdoor lines, loss of function is allowed, provided the function is self-recoverable, or can be otherwise restored. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.
- For products with more than one symmetrical port intended for connection to outdoor lines, loss of function on the port under test is allowed, provided the function is self-recoverable. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

Page: 9 of 65

ETSI EN 301 489-17

(1) General performance criteria

The performance criteria are:

- performance criteria A for immunity tests with phenomena of a continuous nature;
- performance criteria B for immunity tests with phenomena of a transient nature;
- performance criteria C for immunity tests with power interruptions exceeding a certain time.

The equipment shall meet the minimum performance criteria as specified in the following clauses.

(2) Performance table

A. Performance criteria overview

	Table 1: Pe	rformance criteria		
Criterion	During Test	After test (i.e. as a result of the application of the test)		
Α	Shall operate as intended. (see note). Shall be no loss of function. Shall be no unintentional transmissions.	Shall operate as intended. Shall be no degradation of performance. Shall be no loss of function. Shall be no loss of critical stored data.		
В	May be loss of function.	Functions shall be self-recoverable. Shall operate as intended after recovering. Shall be no loss of critical stored data.		
CBY	May be loss of function.	Functions shall be recoverable by the operator. Shall operate as intended after recovering. Shall be no loss of critical stored data.		

NOTE: Operate as intended during the test allows a level of degradation in accordance with clause 6.2.2.

B, Performance criteria overview

For equipment that supports a PER or FER, the minimum performance level shall be a PER or FER less than or equal to 10 %.

For equipment that does not support a PER or a FER, the minimum performance level shall be no loss of the wireless transmission function needed for the intended use of the equipment.

(3) Performance criteria for Continuous phenomena applied to Transmitters (CT)

The performance criteria A shall apply.

Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an ACKnowledgement (ACK) or Not ACKnowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission

resulting from the application of the test is correctly interpreted.

Page: 10 of 65

(4) Performance criteria for Transient phenomena applied to Transmitters (TT)

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration, for which performance criteria C shall apply.

Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an acknowledgement (ACK) or not-acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission

resulting from the application of the test is correctly interpreted.

(5) Performance criteria for Continuous phenomena applied to Receivers (CR)

The performance criteria A shall apply.

Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

(6) Performance criteria for Transient phenomena applied to Receivers (TR)

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration for which performance criteria C shall apply.

Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

Page: 11 of 65

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of

confidence of approximately 95 %.

Test Item	Expanded Uncertainty (U _{Lab})
Conducted Emission	±3.50 dB
Radiated Emission (9kHz to 30 MHz)	±4.60 dB
Radiated Emission (30MHz to 1000 MHz)	±4.60 dB
Radiated Emission (Above 1000MHz)	±4.50 dB
Temperature	±0.6℃
Humidity	±4%

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351.Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Report No.: TBR-C-202306-0050-171 Page: 12 of 65

2 Test Results Summary

Test procedures according to the technical standards:

Doguiromont Standard:	'SI EN 301 489-1 V2.2.3: 'SI EN 301 489-17 V3.2.4			
	EMC Emission			
Test Standard	Test Item	Limit	Result	Remark
EN 55032:2015/A11:2020	Conducted Emission	Class B	PASS	
EN IEC 61000-3-2:2019/A1:2021	Radiated Emission Harmonic Current Emission	Class B Class A	PASS N/A	Note(2)
EN 61000-3-3:2013/A2:2021	Voltage Fluctuations& Flicker	30	PASS	no.
	EMC Immunity	1		
Test Standard	Test Item	Performance Criteria	Result	Remark
EN 61000-4-2:2009	Electrostatic Discharge	B (TT,TR)	PASS	BRIDE
EN IEC 61000-4-3:2020	RF electromagnetic field	A (CT,CR)	PASS	
EN 61000-4-4:2012	Fast transients	B (TT,TR)	PASS	Militar
EN 61000-4-5:2014/A1:2017	Surges	B (TT,TR)	PASS	
EN 61000-4-6:2014	Injected Current	A (CT,CR)	PASS	
EN IEC 61000-4-11:2020	Volt. Interruptions Volt. Dips	B /B/ C / C NOTE (3)	PASS	
NOTE:				
(1) " N/A" denotes test is				
(2) The power consumption	on of EUT is less than 75	W and no Limits	apply.	N. N. S.
(3) Voltage dip: 0% resid	ual 0.5 cycle- Performan	ce Criteria B (TT	,TR)	
Voltage dip: 0% residu	ual 1 cycle- Performance	Criteria B (TT,TF	₹)	
Voltage dip: 70% resid	dual 25 cycles – Performa	ance Criteria C		MARIE
Voltage Interruption: 0	% residual votage 250 cy	ycles – Performai	nce Criteria C	Section 1
●in the case where the	ne equipment is fitted with	or connected to	a battery back	k-up, the
	or transient phenomena s			
	ne equipment is powered	TAIL THE DESCRIPTION OF THE PERSON OF THE PE		•
TO I TO I WAS A STATE OF THE PARTY OF THE PA	attery back-up) volatile us			
	nication link need not to l	be maintained an	d lost function	s should
be recoverable by use		mana ahall anab	(CT CD)	
(4) The performance crite		1 W 1 L		
(5) Monitoring of EUT for	eria for transient phenomerall immunity test:	ena snan appry (11,1K).	
Audio: The measure interference Visual: Monitor the o	e acoustic interference rate ratio during the test shall operating status via watch PER during the test sha	be -20dB or bette ning the monitor.	er.	cal

Report No.: TBR-C-202306-0050-171 Page: 13 of 65

3 Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Magnetic Emission	EZ-EMC	EZ	CDI-03A2
Disturbance Power	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	TS+(J32-RE)	Tonsced	3.0.0.4
Radiation Immunity	TS+(J32-RS)	Tonsced	3.0.0.5
Harmonic Current	CTS4	CI	4.24.0
Voltage Fluctuation and Flicker	CTS4	CI	4.24.0
Conducted Immunity	IEC/EN 61000-6-4 Application	FRANKONIA	1.1.1
Electrical Fast Transient	lec.control	Nemtest	5.1.1.0
Surge	lec.control	Nemtest	5.1.1.0
Voltage Dip and Interruption	lec.control	Nemtest	5.1.1.0

Report No.: TBR-C-202306-0050-171 Page: 14 of 65

4 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 23, 2022	Jun. 22, 2023
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 23, 2022	Jun. 22, 2023
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 22, 2022	Jun. 21, 2023
LISN	Rohde & Schwarz	ENV216	101131	Jun. 22, 2022	Jun. 21, 2023
Radiation Emis	sion Test (A Site)			•
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jun. 23, 2022	Jun. 22, 2023
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Feb. 27, 2022	Feb.26, 2024
Horn Antenna	ETS-LINDGREN	3117	00143207	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBEC K	BBHA 9170	1118	Feb. 26, 2022	Feb.25, 2024
Loop Antenna	SCHWARZBEC K	FMZB 1519 B	1519B-059	Feb. 26, 2022	Feb.25, 2024
Pre-amplifier	SONOMA	310N	185903	Feb. 23, 2023	Feb.22, 2024
Pre-amplifier	HP	8449B	3008A00849	Feb. 23, 2023	Feb.22, 2024
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep.01.2022	Aug. 31, 2023
Radiation Emiss	sion Test (B Site	•)			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep.01.2022	Aug. 31, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 24, 2023	Feb.23, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep.01.2022	Aug. 31, 2023

Report No.: TBR-C-202306-0050-171 Page: 15 of 65

Harmonic Currer	nt and Voltage I	Fluctuation an	d Flicker Test		
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Harmonic Flicker Test System	CI	5001ix-CTS-400	100321	Jun. 22, 2022	Jun. 21, 2023
AC Power Source	CI	500liX	59468	Jun. 22, 2022	Jun. 21, 2023
Discharge Immu	nity Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
ESD Tester	TESEQ	NSG437	304	Jun. 24, 2022	Jun. 23, 2023
Radiated Immun	ity Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Gestockte LogPerBreitband- antenna Stacked LogPerBroadband	SCHWARZBEC K	STLP 9129	162	N/A	N/A
Electric field probe	Narda	EP 601	811ZX01000	Feb. 24, 2023	Feb.23, 2024
Signal Generator	Agilent	N5181A	MY50141953	Sep.01.2022	Aug. 31, 2023
EPM Series Power Meter	KEYSIGT	N1914A	MY61180020	Jun. 22, 2022	Jun. 21, 2023
Power Sensor	KEYSIGT	E9301A	MY61130007	Jun. 22, 2022	Jun. 21, 2023
Power Sensor	KEYSIGT	E9301A	MY61130011	Jun. 22, 2022	Jun. 21, 2023
Radio Frequency Switch	Tonscend	JS0806s	21E8060428	N/A	N/A
Microwave Power amplifier	Micotop	MPA-80-1000- 250	MPA2105144	Jun. 23, 2022	Jun. 22, 2023
Microwave Power amplifier	Micotop	MPA-1000-600 0-100	MPA2105150	Jun. 23, 2022	Jun. 22, 2023
Electrical Fast T	ransient/ Surge	/ Voltage Dip a	and Interruption	n Test	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Simulator	EMTEST	UCS500N5	V0948105575	Jun. 23, 2022	Jun. 22, 2023
Auto-transformer	EMTEST	V4780S2	0109-41	Jun. 23, 2022	Jun. 22, 2023
Coupling Clamp	EMTEST	HFK	1109-04	Jun. 23, 2022	Jun. 22, 2023
Conducted Immu	unity Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
RF Generator	FRANKONIA	CIT-10/75	126B1126	Jun. 23, 2022	Jun. 22, 2023
Attenuator	FRANKONIA	59-6-33	A413	Jun. 22, 2022	Jun. 21, 2023
M-CDN	LUTHI	L-801 M2/M3	2599	Jun. 22, 2022	Jun. 21, 2023
AF2-CDN	LUTHI	L-801:AF2	2538	Feb. 23, 2023	Feb.22, 2024
EM Injection Clamp	LUTHI	EM101	35958	Jun. 22, 2022	Jun. 21, 2023

Report No.: TBR-C-202306-0050-171 Page: 16 of 65

Conducted Emis	sion Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 20, 2023	Jun. 19, 2024
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 20, 2023	Jun. 19, 2024
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 20, 2023	Jun. 19, 2024
LISN	Rohde & Schwarz	ENV216	101131	Jun. 20, 2023	Jun. 19, 2024
ISN	SCHWARZBECK	NTFM 8131	8131-193	Jun. 20, 2023	Jun. 19, 2024
ISN	SCHWARZBECK	CAT3 8158	cat3 5158-0094	Jun. 20, 2023	Jun. 19, 2024
ISN	SCHWARZBECK	NTFM5158	NTFM5158 0145	Jun. 20, 2023	Jun. 19, 2024
ISN	SCHWARZBECK	CAT 8158	cat5 8158-179	Jun. 20, 2023	Jun. 19, 2024
Radiation Emiss	ion Test (B Site	e)			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep.01.2022	Aug. 31, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 23, 2023	Feb.22, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep.01.2022	Aug. 31, 2023
Harmonic Curre	nt and Voltage	Fluctuation ar	nd Flicker Test		
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Harmonic Flicker Test System	CI	5001ix-CTS-400	100321	Jun. 20, 2023	Jun. 19, 2024
AC Power Source	CI	500liX	59468	Jun. 20, 2023	Jun. 19, 2024
Discharge Immu	nity Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
ESD Tester	TESEQ	NSG437	304	Jun. 21, 2023	Jun. 20, 2024

Report No.: TBR-C-202306-0050-171 Page: 17 of 65

Radiated Immun	ity Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Gestockte LogPerBreitband- antenna Stacked LogPerBroadban d	SCHWARZBEC K	STLP 9129	162	N/A	N/A
Electric field probe	Narda	EP 601	811ZX01000	Feb. 24, 2023	Feb.23, 2024
Signal Generator	Agilent	N5181A	MY50141953	Sep.01.2022	Aug. 31, 2023
EPM Series Power Meter	KEYSIGHT	N1914A	MY61180020	Jun. 20, 2023	Jun. 19, 2024
Power Sensor	KEYSIGHT	E9301A	MY61130007	Jun. 20, 2023	Jun. 19, 2024
Power Sensor	KEYSIGHT	E9301A	MY61130011	Jun. 20, 2023	Jun. 19, 2024
Radio Frequency Switch	Tonscend	JS0806s	21E8060428	N/A	N/A
Microwave Power amplifier	Micotop	MPA-80-1000- 250	MPA2105144	Jun. 20, 2023	Jun. 19, 2024
Microwave Power amplifier	Micotop	MPA-1000-600 0-100	MPA2105150	Jun. 20, 2023	Jun. 19, 2024
Electrical Fast T	ransient/ Surg	e/ Voltage Dip	and Interruption	n Test	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Simulator	EMTEST	UCS500N5	V0948105575	Jun. 20, 2023	Jun. 19, 2024
Auto-transformer	EMTEST	V4780S2	0109-41	Jun. 20, 2023	Jun. 19, 2024
Coupling Clamp	EMTEST	HFK	1109-04	Jun. 20, 2023	Jun. 19, 2024
Combined wave surge simulator	3ctest	1000CM	ES05800192000 2	Sep.01.2022	Aug. 31, 2023
Combined wave surge simulator	3ctest	1000MM	ES05800202000 2	Sep.01.2022	Aug. 31, 2023
External 10KV single-phase coupling /decoupling network	3ctest	SPN2216S10	ES07100202000 1	Sep.01.2022	Aug. 31, 2023
CDN	3ctest	CDN405T8A1	ES2731916	Sep.01.2022	Aug. 31, 2023
CDN	3ctest	CDN405AF8	ES06400022000 8	Sep.01.2022	Aug. 31, 2023
Conducted Imm	unity Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
RF Generator	FRANKONIA	CIT-10/75	126B1126	Jun. 20, 2023	Jun. 19, 2024
Attenuator	FRANKONIA	59-6-33	A413	Jun. 20, 2023	Jun. 19, 2024
M-CDN	LUTHI	L-801 M2/M3	2599	Jun. 20, 2023	Jun. 19, 2024
AF2-CDN	LUTHI	L-801:AF2	2538	Feb. 23, 2023	Feb.22, 2024
EM Injection Clamp	LUTHI	EM101	35958	Jun. 20, 2023	Jun. 19, 2024

Page: 18 of 65

5 Conducted Disturbance Test (AC Port)

5.1 Test Standard and Limit

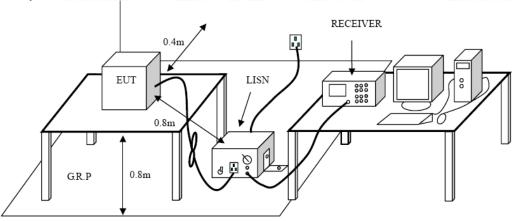
5.1.1 Test Standard

ETSI EN 301 489-1 Clause 8.4

ETSI EN 301 489-17

EN 55032:2015/A11:2020

5.1.2 Test Limit


Table A.9 – Requirements for conducted emissions from the AC mains power ports of Class A equipment

I. AC mai	ns power ports (3.1.1)			
Table clause	Frequency range MHz	Coupling device (see Table A.8)	Detector type / bandwidth	Class A limits dB(μV)
A9.1	0,15 to 0,5	AMN	Overi Beak / O kHz	79
	0,5 to 30		Quasi Peak / 9 kHz	73
A9.2	0,15 to 0,5	AMNI	Average / O kl la	66
	0,5 to 30	AMN	Average / 9 kHz	60

Table A.10 – Requirements for conducted emissions from the AC mains power ports of Class B equipment

. AC maii	ns power ports (3.1.1)			
Table clause	Frequency range MHz	Coupling device (see Table A.8)	Detector type / bandwidth	Class B limits dB(μV)
A10.1	0,15 to 0,5	0,15 to 0,5 0,5 to 5 AMN		66 to 56
	0,5 to 5		Quasi Peak / 9 kHz	56
	5 to 30			60
A10.2	0,15 to 0,5			56 to 46
	0,5 to 5	AMN	Average / 9 kHz	46
	5 to 30			50

5.2 Test Setup

Page: 19 of 65

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from the nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard No deviation

5.5 Test Data

Please refer to the Attachment A.

Page: 20 of 65

6 Conducted Emissions (Wired Network Port)

6.1 Test Standard and Limit

6.1.1 Test Standard

ETSI EN 301 489-1 Clause 8.7 ETSI EN 301 489-17 EN 55032:2015/A11:2020

6.1.2 Test Limit

Table A.11 – Requirements for asymmetric mode conducted emissions from Class A equipment

Applicable to

- 1. wired network ports (3.1.32)
- 2. optical fibre ports (3.1.25) with metallic shield or tension members
- 3. antenna ports (3.1.3)

Table clause	Frequency range MHz	Coupling device (see Table A.8)	Detector type / bandwidth	Class A voltage limits dB(μV)	Class A current limits dB(μA)	
A11.1	0,15 to 0,5	A A N I	Oursi Bask / O kHz	97 to 87		
	0,5 to 30	AAN	Quasi Peak / 9 kHz	87	2/2	
	0,15 to 0,5	A A N I	Average / 0 kHz	84 to 74	n/a	
	0,5 to 30	AAN	Average / 9 kHz	74		
A11.2	0,15 to 0,5	0,15 to 0,5 CVP and current probe Quasi Peak / 9 kHz		Ouesi Beek / O kHz	97 to 87	53 to 43
	0,5 to 30		Quasi Peak / 9 kH2	87	43	
	0,15 to 0,5	CVP	Average / O kHz	84 to 74	40 to 30	
	0,5 to 30	and current probe	Average / 9 kHz	74	30	
A11.3	0,15 to 0,5	Oursent Ducks	Oursi Bask / O kHz		53 to 43	
	0,5 to 30	Current Probe	Quasi Peak / 9 kHz	- /-	43	
	0,15 to 0,5	Owner of Ducks	A	- n/a	40 to 30	
	0,5 to 30	Current Probe	Average / 9 kHz		30	

The choice of coupling device and measurement procedure is defined in Annex C.

AC mains ports that also have the function of a wired network port shall meet the limits given in Table A.9.

The measurement shall cover the entire frequency range.

The application of the voltage and/or current limits is dependent on the measurement procedure used. Refer to Table C.1 for applicability.

Testing is required at only one EUT supply voltage and frequency.

Applicable to ports listed above and intended to connect to cables longer than 3 m.

21 of 65 Page:

Table A.12 – Requirements for asymmetric mode conducted emissions from Class B equipment

Applicable to

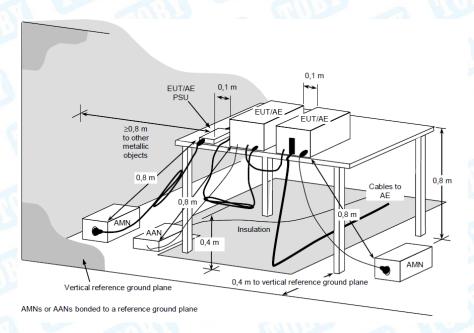
- 1. wired network ports (3.1.32)
- optical fibre ports (3.1.25) with metallic shield or tension members
 broadcast receiver tuner ports (3.1.8)
- 4. antenna ports (3.1.3)

Table clause	Frequency range MHz	Coupling device (see Table A.8)	Detector type / bandwidth	Class B voltage limits dB(μV)	Class B current limits dB(μA)
A12.1	0,15 to 0,5	A A N I	Oversi De ele / O lelle	84 to 74	
	0,5 to 30	AAN	Quasi Peak / 9 kHz	74	- /-
	0,15 to 0,5	A A N I	A	74 to 64	n/a
	0,5 to 30	AAN	AAN Average / 9 kHz		
A12.2	0,15 to 0,5	CVP and current probe	Oversi Dardy / O MIT	84 to 74	40 to 30
	0,5 to 30		Quasi Peak / 9 kHz	74	30
	0,15 to 0,5	CVP	Average / 0 kH=	74 to 64	30 to 20
	0,5 to 30	and current probe	Average / 9 kHz	64	20
A12.3	0,15 to 0,5	Command Duals	Overi Deek / O kHz		40 to 30
	0,5 to 30	Current Probe	Quasi Peak / 9 kHz	/ -	30
	0,15 to 0,5		A	n/a	30 to 20
	0,5 to 30	Current Probe	Average / 9 kHz		20

The choice of coupling device and measurement procedure is defined in Annex C.

Screened ports including TV broadcast receiver tuner ports are measured with a common-mode impedance of 150 Ω . This is typically accomplished with the screen terminated by 150 Ω to earth.

AC mains ports that also have the function of a wired network port shall meet the limits given in Table A.10.


The measurement shall cover the entire frequency range.

The application of the voltage and/or current limits is dependent on the measurement procedure used. Refer to Table C.1 for applicability.

Measurement is required at only one EUT supply voltage and frequency.

Applicable to ports listed above and intended to connect to cables longer than 3 m.

6.2 Test Setup

Page: 22 of 65

6.3 Test Procedure

Detailed test procedure was following clause C.4.1 of EN 55032.

Frequency range 150kHz-30MHz was checked and EMI receiver measurement bandwidth was set to 9 kHz.

Data Port	Measurement type	Coupling device	No. of Pairs
Balanced Unscreened	Voltage	AAN	≤ 4
Balanced Unscreened	Voltage and Current	CVP & Current probe	>4 or unable to AAN
Screened or Coaxial	Voltage	AAN	N/A
Screened or Coaxial Voltage or Current		Current probe / "150Ω to 50Ω adaptor" / high impedance probe	N/A
Unbalanced cables	Voltage and Current	CVP & Current probe	N/A

6.4 Deviation From Test Standard
No deviation

6.5 Test Data Not applicable.

Page: 23 of 65

7 Radiated Emission Test

7.1 Test Standard and Limit

7.1.1 Test Standard

ETSI EN 301 489-1 Clause 8.2 ETSI EN 301 489-17

EN 55032:2015/A11:2020

7.1.2 Test Limit

Radiated Disturbance Test Limit

FREQUENCY (MHz)	Class A (at 3m) dBuV/m	Class B (at 3m) dBuV/m
30 – 230	50	40
230 – 1000	57	47

Notes:

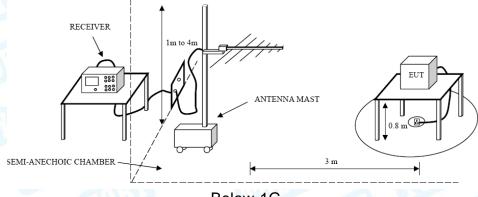
- (1) The limit for radiated test was performed according to as following: EN 55032
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Limits of Radiated Emission Measurement (Above 1000MHz)

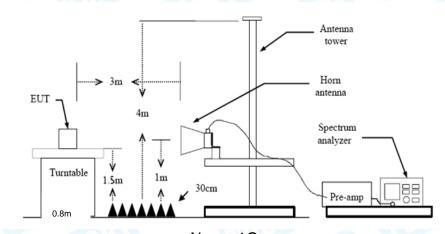
FREQUENCY	Class A (dBuV/m) (at 3m)		Class B (dBuV/m) (at 3m)	
(MHz)	PEAK	AVERAGE	PEAK	AVERAGE
1000-3000	76	56	70	50
3000-6000	80	60	74	54

Notes:

(1) The lower limit applies at the transition frequency.


Frequency Range of Radiated Measurement

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5th harmonic of the highest frequency or 6 GHz, whichever is lower



Page: 24 of 65

7.2 Test Setup

Below-1G

Above 1G

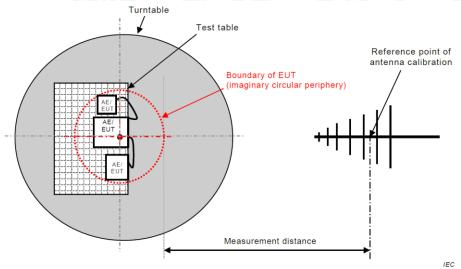


Figure C.1 - Measurement distance

Page: 25 of 65

7.3 Test Procedure

The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3m. The table was rotated 360 degrees to determine the position of the highest radiation.

The EUT and local AE shall be arranged in the most compact practical arrangement within the test volume, while respecting typical spacing and the requirements defined in Annex D. The central point of the arrangement shall be positioned at the centre of the turntable. The measurement distance is the shortest horizontal distance between an imaginary circular periphery just encompassing this arrangement and the calibration point of the antenna. See Figure C.1 and Figure C.2.

The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

The initial step in collecting radiated emission data is a spectrum Quasi Peak detector mode scanning the measurement frequency range.

If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.

- 7.4 Deviation From Test Standard No deviation
- 7.5 Test Data
 Please refer to the Attachment B.

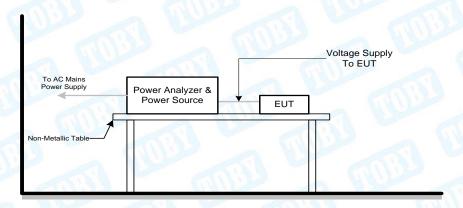
Page: 26 of 65

8 Harmonic Current Emission Test

8.1 Test Standard and Limit

8.1.1 Test Standard

ETSI EN 301 489-1 Clause 8.5


ETSI EN 301 489-17

EN IEC 61000-3-2:2019/A1:2021

8.1.2 Test Limit

Limits for Class A equipment			Limits for Class D equipment			
Odd H Harmonic Order (n)	maximum permissible harmonic Current (A)	Even H Harmonic Order (n)	Maximum permissible harmonic Current (A)	Harmonic Order (n)	Maximum Permissible Harmonic Current per watt (mA/W)	Maximum Permissible Harmonic Current (A)
3	2.30	2	1.08	3	3.4	2.30
5	1.14	4	0.43	5	1.9	1.14
7	0.77	6	0.30	7	1.0	0.77
9	0.40	8≤n≤40	0.23X8/n	9	0.5	0.40
11	0.33	A I S		11	0.35	0.33
13 15≤n≤39	0.21 0.15X15/n	1329	B m	15≤n≤39 (odd harmonics only)	3.85/n	0.15X15/n

8.2 Test Setup

8.3 Test Procedure

The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions.

The classification of EUT is according to section 5 of EN 61000-3-2. The EUT is classified as follows:

- Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.
- Class D: Equipment having a specified power less than or equal to600 W of the following types: Personal computers and personal computer monitors and television receivers.

8.4 Deviation From Test Standard No deviation

Page: 27 of 65

8.5 Test Data N/A

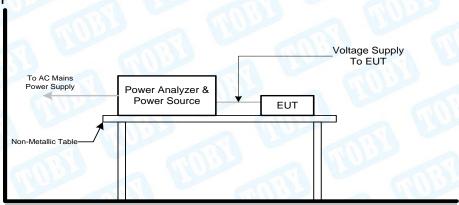
Page: 28 of 65

9 Voltage Fluctuation and Flicker Test

9.1 Test Standard and Limit

9.1.1 Test Standard

ETSI EN 301 489-1 Clause 8.6 ETSI EN 301 489-17


EN 61000-3-3:2013/A2:2021

9.1.2 Test Limit

Flicker Test Limit

Test Items	Limits
Pst	1.0
dc	3.3%
dmax	4.0%
dt	Not exceed 3.3% for 500ms

9.2 Test Setup

9.3 Test Procedure

Fluctuation and Flickers Test:

Tests was performed according to the Test Conditions/Assessment of Voltage Fluctuations specified in Clause 5.0/6.0 of IEC555-3 and/or Clause 6.0/4.0 of IEC/EN 61000-3-3 depend on which standard adopted for compliance measurement.

All types of harmonic current and/or voltage fluctuation in this report are assessed by direct measurement using flicker-meter.

For the actual test configuration, please refer to the related Item-Block Diagram of system tested.

9.4 Deviation From Test Standard No deviation

9.5 Test Data

Please refer to the Attachment C.

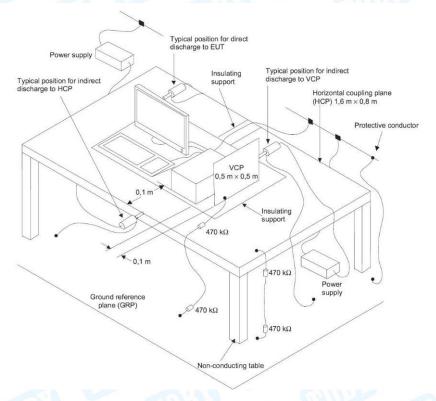
Page: 29 of 65

10 Electrostatic Discharge Immunity Test

10.1 Test Standard and Limit

10.1.1 Test Standard

ETSI EN 301 489-1 Clause 9.3


ETSI EN 301 489-17

EN 61000-4-2:2009

10.1.2 Test Level

Discharge Impedance:	330 ohm/ 150pF	
Discharge Voltage:	Air Discharge: 2kV/4kV/8kV(Direct) Contact Discharge: 2kV/4kV (Direct /Indirect)	
Polarity:	Positive& Negative	
Discharge Mode:	Single Discharge	
Discharge Period:	1 second minimum	

10.2 Test Setup

10.2 Test Procedure

The test method shall be in accordance with CENELEC EN 61000-4-2 [2], clauses 6, 7 and 8.

For radio equipment and ancillary equipment the following requirements and evaluation of test results shall apply.

The test severity level for contact discharge shall be ±4 kV and for air discharge ±8 kV. All other details, including intermediate test levels, are contained within CENELEC EN 61000-4-2 [2], clause 5.

Electrostatic discharges shall be applied to all exposed surfaces of the EUT except where the user documentation specifically indicates a requirement for appropriate

Page: 30 of 65

protective measures (as specified in CENELEC EN 61000-4-2 [2], clauses 8.3.2 and 8.3.3).

10.3 Deviation From Test Standard No deviation

10.4 Test Data

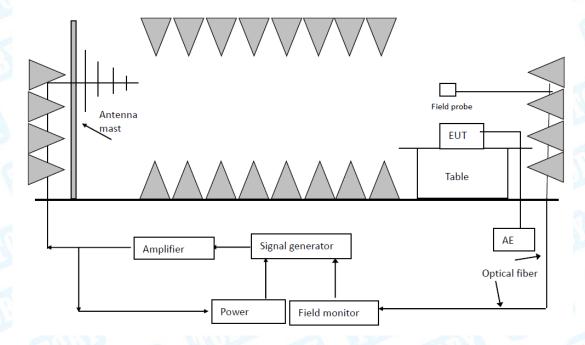
Please refer to the Attachment D.

Page: 31 of 65

11Radiated Electromagnetic Field Immunity test

11.1 Test Standard and Limit

11.1.1 Test Standard


ETSI EN 301 489-1 Clause 9.2 ETSI EN 301 489-17 EN IEC 61000-4-3:2020

11.1.2 Test Level

Test Level for Radiated Electromagnetic Field Immunity Test

Port	Test Specification
Enclosure Port	80-6000MHz
	3 V/m
	80 % AM (1kHz)

11.2 Test Setup

Page: 32 of 65

11.3 Test Procedure

The test method shall be in accordance with CENELEC EN 61000-4-3 [3], clauses 6, 7 and 8.

The following requirements and evaluation of test results shall apply:

• the test level shall be 3 V/m (measured unmodulated). The test signal shall be amplitude modulated to a depth of 80 % by a sinusoidal audio signal of 1 000 Hz.

If the wanted signal is modulated at 1 000 Hz, then an audio signal of 400 Hz shall be used;

- the test shall be performed over the frequency range 80 MHz to 6 000 MHz with the exception of the exclusion band for transmitters, receivers and duplex transceivers (see clause 4.3), as appropriate;
- for receivers and transmitters the stepped frequency increments shall be 1 % frequency increment of the momentary used frequency;
- the dwell time of the test phenomena at each frequency shall not be less than the time necessary for the EUT to be exercised and to be able to respond;

NOTE: Dwell time is product dependent.

the frequencies selected and used during the test shall be recorded.

All the scanning conditions are as following:

Condition of Test	Remark	
Fielded Strength	3V/m	
Radiated Signal	80%AM,1kHz Since Wave	
Scanning Frequency	80-6000MHz	

Note:

The exclusion band for immunity testing of equipment operating in the 2,4 GHz band shall be:

- lower limit of exclusion band = lowest allocated band edge frequency -120 MHz, i.e. 2 280 MHz;
- upper limit of exclusion band = highest allocated band edge frequency +120 MHz, i.e. 2 603,5MHz.

The exclusion band for immunity testing of equipment operating in the 5 GHz Wi-Fi band shall be:

- lower limit of exclusion band = lowest allocated band edge frequency -270 MHz, i.e. 4 880 MHz;
- upper limit of exclusion band = highest allocated band edge frequency +270 MHz, i.e. 5 995 MHz.

11.4 Deviation From Test Standard

No deviation

11.5 Test Data

Please refer to the Attachment E.

Page: 33 of 65

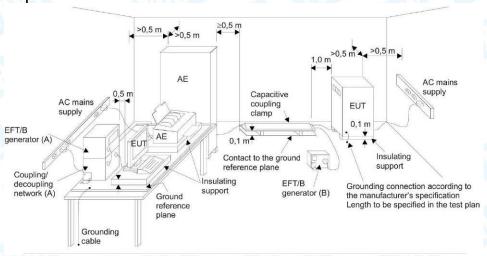
12 Electrical Fast Transient/Burst Test

12.1 Test Standard and Limit

12.1.1 Test Standard

ETSI EN 301 489-1 Clause 9.4

ETSI EN 301 489-17


EN 61000-4-4:2012

12.1.2 Test Level

Test Level for Electrical Fast Transient Test

60033	On Switching Adapter Lines	On I/O (Input/Output) Signal data and control lines
Test Voltage:	1 KV	0.5 KV
Polarity:	Posit	tive& Negative
Impulse Wave Shape:		5/50ns
Burst Duration:		15ms
Burst Period:	Mary A	300ms
Test Duration:	Not less than 1 min	

12.2 Test Setup

12.3 Test Procedure

The test method shall be in accordance with CENELEC EN 61000-4-4 [4], clauses 7 and 8.

The following requirements and evaluation of test results shall apply:

- the test level for signal ports, wired network ports (excluding xDSL), and control ports shall be 0,5 kV open circuit voltage at a repetition rate of 5 kHz as given in CENELEC EN 61000-4-4 [4], clause 5;
- the test level for xDSL wired network ports shall be 0,5 kV open circuit voltage at a repetition rate of 100 kHz as given in CENELEC EN 61000-4-4 [4], clause 5;
- the test level for DC power input ports shall be 0,5 kV open circuit voltage at a repetition rate of 5 kHz as given CENELEC EN 61000-4-4 [4], clause 5;
- the test level for AC mains power input ports shall be 1 kV open circuit voltage at a repetition rate of 5 kHz as given CENELEC EN 61000-4-4 [4], clause 5.

Page: 34 of 65

12.4 Deviation From Test Standard
No deviation

12.5 Test Data
Please refer to the Attachment F.

Page: 35 of 65

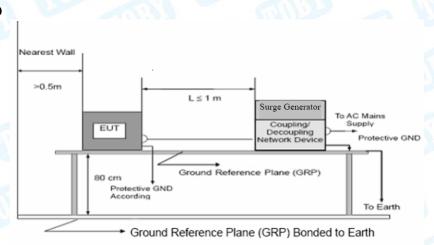
13 Surge Immunity Test

13.1 Test Standard and Limit

13.1.1 Test Standard

ETSI EN 301 489-1 Clause 9.8

ETSI EN 301 489-17


EN 61000-4-5:2014/A1:2017

13.1.2 Test Level

Test Level for Surge Immunity Test

Basic Standard:	EN 61000-4-5	
	Analogue/digital data ports: 1KV (see a)	
Test Requirement:	DC network power ports: 0.5KV	
	AC mains power ports: 1KV(Line-Line), 2KV(Line-earth)	
T _r /T _h	1.2/50us, 10/700us	
Polarity:	Positive/Negative	
Phase Angle: 0/90/180/270		
Pulse Repetition Rate: 1 time/min.(maximum)		
Number of Tests: 5 positive and 5 negative at selected points		
a: Port type: coaxial or shie	ded. Apply: shield to ground.	

13.2 Test Setup

13.3 Test Procedure

- 1) Set the parameters of the CW generator and interference generator as shown in tables 4.2.9.2-1 and 4.2.9.2-2.
- 2) Set the power level of the UE according to tables 4.2.9.2-1 and 4.2.9.2-2 with a ±1 dB tolerance.
- 3) Measure the BER of DCH received from the UE at the SS.

Details of initial conditions for UEs supporting UTRA FDD can be found in ETSI TS 134 121-1 [1], clause 6.7.

13.4 Deviation From Test Standard No deviation

13.5 Test Data

Please refer to the Attachment G.

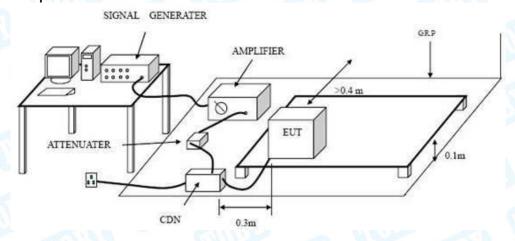
Page: 36 of 65

14 RF Common Mode

14.1 Test Standard and Limit

14.1.1 Test Standard

ETSI EN 301 489-1 Clause 9.5


ETSI EN 301 489-17 EN 61000-4-6:2014

14.1.2 Test Level

Test Level for RF Common Mode

Port	Test Specification	
Input AC power port	0.15MHz~80MHz	
THE CHILD	3V(r.m.s.) (unmodulated)	

14.2 Test Setup

14.2 Test Procedure

The following requirements and evaluation of test results shall apply:

- the test level shall be severity level 2 as given in CENELEC EN 61000-4-6 [6], clause 5 corresponding to 3 V rms unmodulated. The test signal shall then be amplitude modulated to a depth of 80 % by a sinusoidal audio signal of 1 000 Hz. If the wanted signal is modulated at 1 000 Hz, then the test signal of 400 Hz shall be used;
- the test shall be performed over the frequency range 150 kHz to 80 MHz with the exception of an exclusion band for transmitters, and for receivers and duplex transceivers, (see clause 4.3);
- for receivers and transmitters the stepped frequency increments shall be 1 % frequency increment of the momentary frequency in the frequency range 150 kHz to 80 MHz:
- the injection method to be used shall be selected according to the basic standard CENELEC EN 61000-4-6 [6], clause 7;
- responses on receivers or receiver parts of transceivers occurring at discrete frequencies which are narrow band responses (spurious responses), are disregarded from the test (as specified in clause 4); the dwell time of the test phenomena at each frequency shall not be less than the time necessary for the EUT to be exercised and to be able to respond;
- the frequencies of the immunity test signal selected and used during the test shall be recorded.

Page: 37 of 65

14.3 Deviation From Test Standard
No deviation

14.4 Test Data
Please refer to the Attachment H.

Page: 38 of 65

15 Voltage Dips and Interruptions Immunity Test

15.1 Test Standard and Limit

15.1.1 Test Standard

ETSI EN 301 489-1 Clause 9.7

ETSI EN 301 489-17

EN IEC 61000-4-11:2020

15.1.2 Test Level

Test Level for Voltage Dips and Interruptions

Basic Standard:	EN IEC 61000-4-11
Required Performance:	B(For 100% Voltage Dips)
Win Min	B(For 100% Voltage Dips)
	C(For 30% Voltage Dips)
	C(For 100% Voltage Interruptions)
Test Duration Time:	Minimum three test events in sequence
Interval Between Event:	Minimum ten seconds
Phase Angle:	0°/45°/90°/135°/180°/225°/270°/315°/360°
Test Cycle:	3 times

15.2 Test Setup

15.2 Test Procedure

The following requirements and evaluation of test results shall apply. The test method shall be in accordance with CENELEC EN 61000-4-11 The test levels shall be:

- voltage dip: 0 % residual voltage for 0,5 cycle;
- · voltage dip: 0 % residual voltage for 1 cycle;
- voltage dip: 70 % residual voltage for 25 cycles (at 50 Hz);
- voltage interruption: 0 % residual voltage for 250 cycles (at 50 Hz).

15.3 Deviation From Test Standard

No deviation

15.4 Test Data

Please refer to the Attachment I.



Page: 39 of 65

16 Photographs - Constructional Details

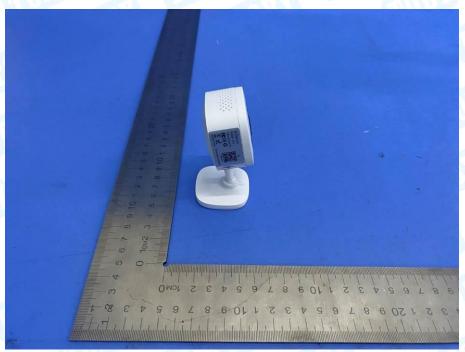
Photo 1 Appearance of EUT

Photo 2 Appearance of EUT

Page: 40 of 65

Photo 3 Appearance of EUT

Photo 4 Appearance of EUT



Page: 41 of 65

Photo 5 Appearance of EUT

Photo 6 Appearance of EUT

Page: 42 of 65

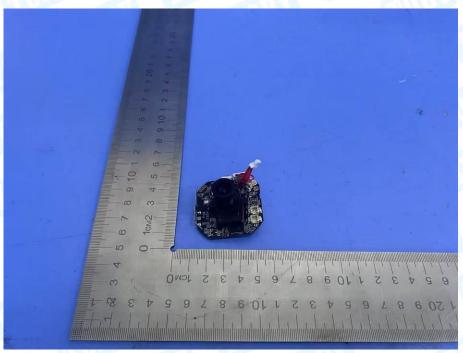
Photo 7 Internal of EUT

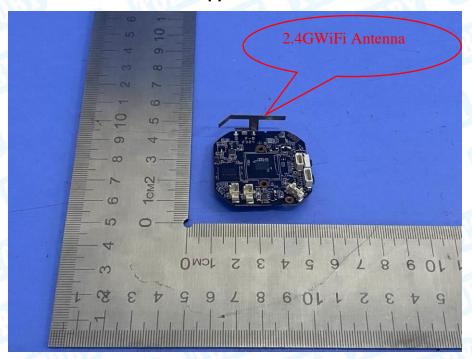
Photo 8 Internal of EUT

Page: 43 of 65

Photo 9 Internal of EUT

Photo 10 Internal of EUT

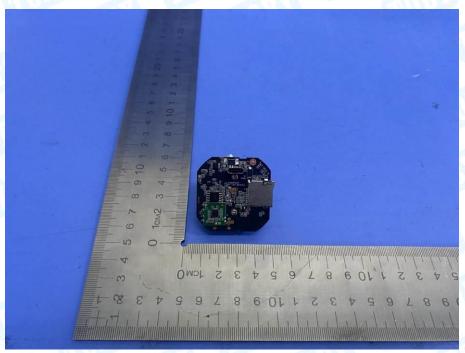


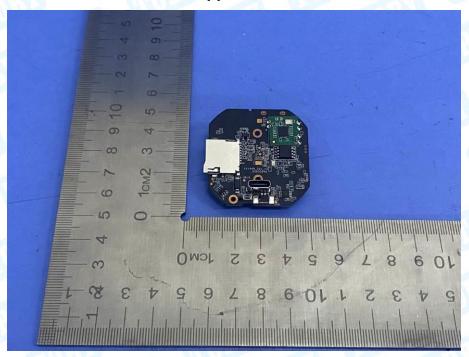


Page: 44 of 65

Photo 11 Appearance of PCB

Photo 12 Appearance of PCB

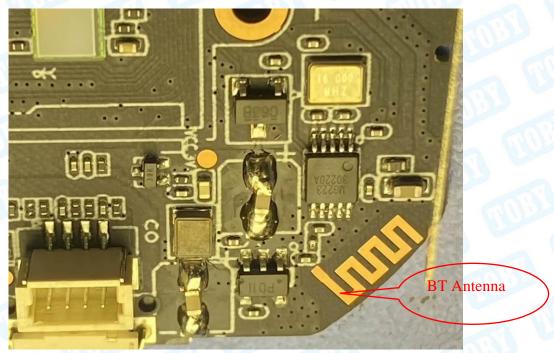




Page: 45 of 65

Photo 13 Appearance of PCB

Photo 14 Appearance of PCB

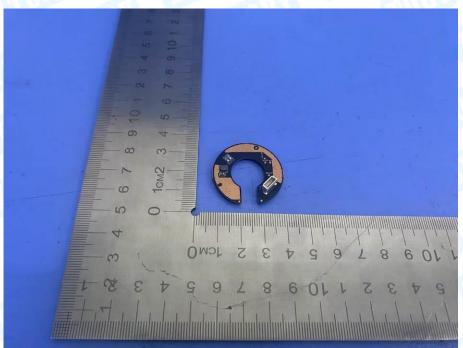




Page: 46 of 65

Photo 15 Appearance of PCB

Photo 16 Appearance of PCB



Page: 47 of 65

Photo 17 Appearance of PCB

Photo 18 Appearance of PCB

Page: 48 of 65

17 Photographs -Test Setup

Conducted Emission Test Setup

Radiated Emission Test Setup-Below 1G

Page: 49 of 65

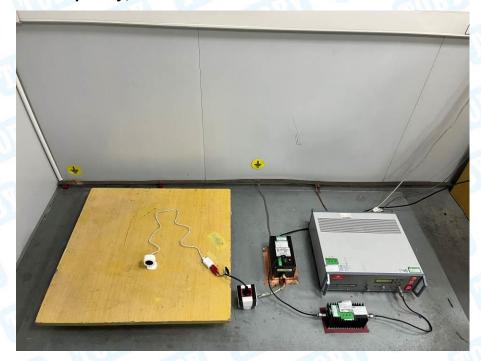
Radiated Emission Test Setup-Above 1G

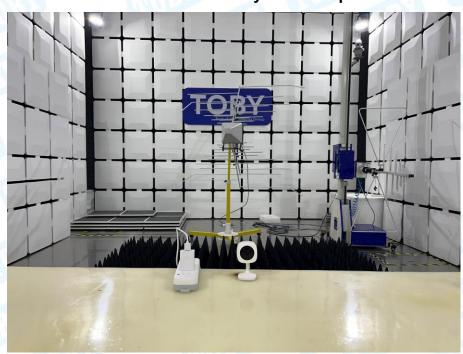
Voltage fluctuations & flicker Test Setup

Page: 50 of 65

Electrostatic Discharge Test Setup

EFT, Surge, Voltage Dips Test Setup

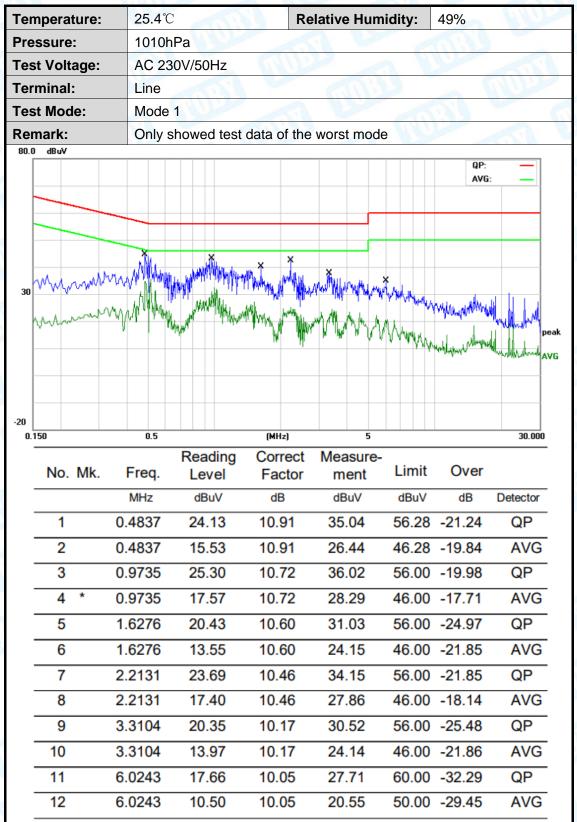




Page: 51 of 65

Radio-frequency, Continuous Conducted Disturbance Test Setup

Radiated Immunity Test Setup



Page: 52 of 65

Attachment A--Conducted Emission Data (AC Mains)

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)
- 3. Note: For conducted emission a power supply of 230VAC and 110VAC was used for testing respectively, and only recorded the worst case of 230VAC.

Page: 53 of 65

Temperature:	25.4℃		Re	elative Hum	idity:	49%	
Pressure:	1010h	ıPa	2 W	A STATE OF THE PARTY OF THE PAR		1	
Test Voltage:	AC 23	30V/50Hz					
Terminal:	Neutra	al		11	6	UP F	
Test Mode:	Mode	1	AHIT:		1 1		
Remark:	Only s	showed test	data of the	worst mod	е		AHOR
30 MMMM	www.ma	Statent Control of Statents	Make we find the first	www.levanyora	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	QP:	
0.150 No. Mk.	0.5	Reading	(MHz) Correct	Measure- ment	Limit	Over	30.000
	0.5 Freq.	Reading Level			Limit	Over	30.000
0.150	Freq.	Level	Correct Factor	Measure- ment	dBuV		
No. Mk.	Freq. MHz 0.4837	Level dBuV 24.28	Correct Factor dB 10.91	Measure- ment dBuV 35.19	dBuV 56.28	dB -21.09	Detector QP
No. Mk.	Freq. MHz 0.4837 0.4837	Level dBuV 24.28 15.20	Correct Factor dB 10.91 10.91	Measure- ment dBuV 35.19 26.11	dBuV 56.28 46.28	dB -21.09 -20.17	Detector QP AVG
No. Mk. 1 2 3	Freq. MHz 0.4837 0.4837 1.0596	Level dBuV 24.28 15.20 26.73	Correct Factor dB 10.91 10.91 10.69	Measure- ment dBuV 35.19 26.11 37.42	dBuV 56.28 46.28 56.00	dB -21.09 -20.17 -18.58	Detector QP AVG QP
No. Mk. 1 2 3 4 *	Freq. MHz 0.4837 0.4837 1.0596	Level dBuV 24.28 15.20 26.73 20.64	Correct Factor dB 10.91 10.91 10.69 10.69	Measure- ment dBuV 35.19 26.11 37.42 31.33	dBuV 56.28 46.28 56.00 46.00	dB -21.09 -20.17 -18.58 -14.67	Detector QP AVG QP AVG
No. Mk. 1 2 3 4 *	Freq. MHz 0.4837 0.4837 1.0596 1.0596 2.2845	Level dBuV 24.28 15.20 26.73 20.64 23.42	Correct Factor dB 10.91 10.91 10.69 10.69 10.44	Measure- ment dBuV 35.19 26.11 37.42 31.33 33.86	dBuV 56.28 46.28 56.00 46.00 56.00	dB -21.09 -20.17 -18.58 -14.67 -22.14	Detector QP AVG QP AVG
No. Mk. 1 2 3 4 * 5 6	Freq. MHz 0.4837 0.4837 1.0596 1.0596 2.2845 2.2845	Level dBuV 24.28 15.20 26.73 20.64 23.42 17.22	Correct Factor dB 10.91 10.91 10.69 10.69 10.44 10.44	Measure- ment dBuV 35.19 26.11 37.42 31.33 33.86 27.66	dBuV 56.28 46.28 56.00 46.00 56.00	dB -21.09 -20.17 -18.58 -14.67 -22.14 -18.34	Detector QP AVG QP AVG QP AVG
No. Mk. 1 2 3 4 * 5 6 7	Freq. MHz 0.4837 0.4837 1.0596 1.0596 2.2845 2.2845 3.3814	Level dBuV 24.28 15.20 26.73 20.64 23.42 17.22 22.59	Correct Factor dB 10.91 10.91 10.69 10.69 10.44 10.44 10.16	Measure- ment dBuV 35.19 26.11 37.42 31.33 33.86 27.66 32.75	dBuV 56.28 46.28 56.00 46.00 56.00	dB -21.09 -20.17 -18.58 -14.67 -22.14 -18.34 -23.25	Detector QP AVG QP AVG QP AVG QP
No. Mk. 1 2 3 4 * 5 6	Freq. MHz 0.4837 0.4837 1.0596 1.0596 2.2845 2.2845 3.3814 3.3814	Level dBuV 24.28 15.20 26.73 20.64 23.42 17.22	Correct Factor dB 10.91 10.91 10.69 10.69 10.44 10.44	Measure- ment dBuV 35.19 26.11 37.42 31.33 33.86 27.66	dBuV 56.28 46.28 56.00 46.00 56.00 46.00	dB -21.09 -20.17 -18.58 -14.67 -22.14 -18.34 -23.25 -20.18	Detector QP AVG QP AVG QP AVG AVG
No. Mk. 1 2 3 4 * 5 6 7	Freq. MHz 0.4837 0.4837 1.0596 1.0596 2.2845 2.2845 3.3814	Level dBuV 24.28 15.20 26.73 20.64 23.42 17.22 22.59	Correct Factor dB 10.91 10.91 10.69 10.69 10.44 10.44 10.16	Measure- ment dBuV 35.19 26.11 37.42 31.33 33.86 27.66 32.75	dBuV 56.28 46.28 56.00 46.00 56.00 46.00	dB -21.09 -20.17 -18.58 -14.67 -22.14 -18.34 -23.25	Detector QP AVG QP AVG QP AVG QP
No. Mk. 1 2 3 4 * 5 6 7 8	Freq. MHz 0.4837 0.4837 1.0596 1.0596 2.2845 2.2845 3.3814 3.3814	Level dBuV 24.28 15.20 26.73 20.64 23.42 17.22 22.59 15.66	Correct Factor dB 10.91 10.91 10.69 10.69 10.44 10.16 10.16	Measure- ment dBuV 35.19 26.11 37.42 31.33 33.86 27.66 32.75 25.82	dBuV 56.28 46.28 56.00 46.00 56.00 46.00 60.00	dB -21.09 -20.17 -18.58 -14.67 -22.14 -18.34 -23.25 -20.18	Detector QP AVG QP AVG QP AVG AVG
No. Mk. 1 2 3 4 * 5 6 7 8 9	Freq. MHz 0.4837 0.4837 1.0596 1.0596 2.2845 2.2845 3.3814 3.3814 6.0562	Level dBuV 24.28 15.20 26.73 20.64 23.42 17.22 22.59 15.66 17.33	Correct Factor dB 10.91 10.91 10.69 10.69 10.44 10.16 10.16	Measure- ment dBuV 35.19 26.11 37.42 31.33 33.86 27.66 32.75 25.82 27.38	dBuV 56.28 46.28 56.00 46.00 56.00 46.00 60.00 50.00	dB -21.09 -20.17 -18.58 -14.67 -22.14 -18.34 -23.25 -20.18 -32.62	Detector QP AVG QP AVG QP AVG QP AVG

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)
- 3. Note: For conducted emission a power supply of 230VAC and 110VAC was used for testing respectively, and only recorded the worst case of 230VAC.

Page: 54 of 65

Attachment B--Radiated Emission Test Data

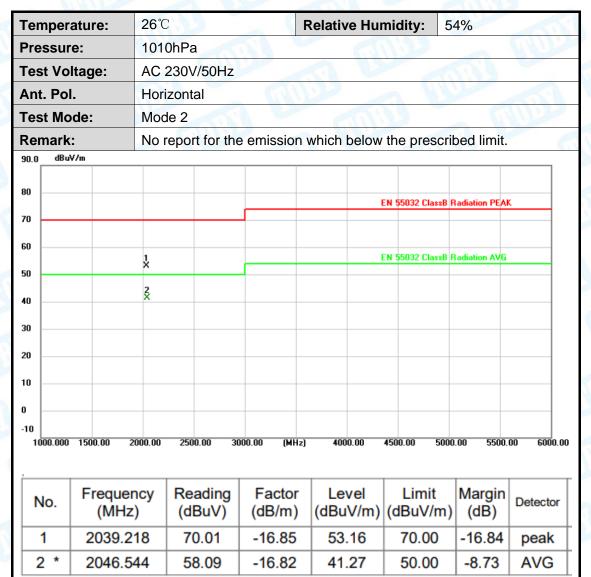
----Below 1G

1 61	mpera	ature:	24.3	3°C	100	F	Relative Hur	midity:	15%	
Pre	essur	e:	101	0hPa		1 100				M'S
Tes	st Vo	tage:	AC :	230V/	50Hz	7	UND.		a V	
An	t. Pol		Hori	izonta				an i	33	
Tes	st Mo	de:	Mod	de 1		Aller				
Rei	mark		Only	y show	wed te	st data of th	e worst mod	de	Miles	
80.0	dBu'	V/m								
70										
60										
50								EN55032 Clas	sB 3M Radiation	n
40								Margin -6 dB		
30								4 5		6 X
20							3	3 Å.	manger and the state of the sta	nt A
10	P Spolosower	maryle / sperrough property for the same	-e-V-powerby	Whaters	Mark Market	1 Daniel March Mary	2 Mal Market Mar	Prosperies		
0										
4.0										
-10										
-20	0.000		60.00			(MHz)	300	.00		1000.000
-20	No.	Frequer (MHz	псу		ading BuV)	Factor (dB/m)		Limit	Margin (dB)	1000.000 Detector
-20 3			ncy)	(dB		Factor	Level	Limit		
-20 3	No.	(MHz	ncy) 91	(dE	BuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m) (dB)	Detector
-20 3	No.	(MHz 120.69	ncy) 91 55	(dE 38 42	.32	Factor (dB/m) -23.77	Level (dBuV/m) 14.55	Limit (dBuV/m 40.00	(dB) -25.45	Detector peak
-20 3	No. 1 2	(MHz 120.69 199.28	91 55	(dB 38 42 41	.32 .68	Factor (dB/m) -23.77 -24.87	Level (dBuV/m) 14.55 17.81	Limit (dBuV/m 40.00 40.00	(dB) -25.45 -22.19	Detector peak peak
-20 3	No. 1 2 3	120.69 199.28 324.45	91 55 60	(dB 38 42 41 42	.32 .68 .81	Factor (dB/m) -23.77 -24.87 -20.26	Level (dBuV/m) 14.55 17.81 21.55	Limit (dBuV/m 40.00 40.00 47.00	(dB) -25.45 -22.19 -25.45	Detector peak peak peak

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 55 of 65

Temperature: 24.3℃ Relative Humidity: 45%	
Pressure: 1010hPa	
Test Voltage: AC 230V/50Hz	
Ant. Pol. Vertical	
Test Mode: Mode 1	
Remark: Only showed test data of the worst mode	
80.0 dBuV/m	
70	
60	
50 EN55032 ClassB 3M	Radiation
40 Margin -6 dB	
30 2 3 4 5	peakپیران
30 20 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	and the same of th
20 Car and January and Marketter Comment Control of the Comment of	
10	
0	
-10	
-20 30.000 60.00 (MHz) 300.00	1000.000
	argin (dB)
1 35.3750 48.85 -22.91 25.94 40.00 -1	14.06 peak
2 * 45.0583 51.28 -22.72 28.56 40.00 -1	I1.44 peak
3 58.8185 48.88 -23.52 25.36 40.00 -1	14.64 peak
4 66.7325 49.07 -24.17 24.90 40.00 -1	I5.10 peak
5 104.9030 49.08 -25.22 23.86 40.00 -1	16.14 peak


- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. QuasiPeak (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Page: 56 of 65

----Above 1G

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 57 of 65

Ten	npera	ature:	26°0		1 6		R	elativ	e Hur	nidity:	5	4%		
Pre	ssure	e:	101	0hPa	ì									
Tes	t Vol	tage:	AC	230V	//50Hz	133			CA.				A A A	A SE
Ant	. Pol.		Ver	tical	A Brown		1	2.0	6		AII	133		
Tes	t Mo	de:	Mod	de 2		I DA	18	S ALIE		A				
Ren	nark:		No	repor	t for the	e emissio	n b	elow t	he pr	escribe	ed lim	nit.	MAR	9
90.0	dBu∀	7/m												_
80										EN 55032 (ClaceR I	Radiation PE	A.K	-
70										-N 33032 V	CidssDi	radiador r C	nik .	_
60													_	
50			1 X							EN 55032	ClassB	Radiation AV	G	_
40			2 X											
30														-
20														-
10														-
0														+
-10 10	00.000	1500.00	2000.00	250	0.00 3	000.00 (M	IHz)	400	0.00	4500.00	5000) NN 55N	0.00 6	.000.0
							,							
N	lo.	Frequ (MI	iency Hz)		ading BuV)	Facto (dB/m		Lev (dBu)		Lim (dBu\		Margir (dB)	Dete	ctor

51.16

40.02

-18.84

-9.98

peak

AVG

70.00

50.00

Remark:

1

2 *

1945.218

1946.544

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

68.34

57.20

-17.18

-17.18

Page: 58 of 65

Attachment C--Voltage Fluctuation and Flicker Test Data

Temperature: 26.3℃ **Relative Humidity:** 55% 1010hPa Pressure: **Test Voltage:** AC 230V/50Hz **Test Mode:** Mode 1 Remark: Only showed test data of the worst mode Flicker Test Summary per EN/IEC61000-3-3 (Run time) **Test Result: Pass** Status: Test Completed Pst_i and limit line European Limits 1.00 ~0.75 °0 .5 0 0.25 Plt and limit line _0 .5 0 _ 0.25 Parameter values recorded during the test: Vrms at the end of test (Volt): 227.29 Vrms at the end of test (Volt): Highest dt (%): Test limit (%): 500.0 T-max (mS): Test limit (mS): **Pass** Highest dc (%):
Highest dmax (%):
Highest Pst (10 min. period):
Highest Plt (2 hr. period): 0.00 Test limit (%): 3.30 **Pass** 0.00 Test limit (%): 4.00 **Pass** Test limit: 1.000 0.261 Pass Test limit: 0.650 **Pass**

Page: 59 of 65

Attachment D--Electrostatic Discharge Test Data

Temperature:	26	26.3℃					F	Humidity: 55%				ó	A PHO					
Pressure(hpa):	10	08							1	l)	9			6	W)		3	C. M.
Power supply:	AC	23	80/5	0Hz	2	a		11	VIS.	T	est	Мо	de:	I	Mod	de '	1/2/3	
	Test Level(kV) and Result						A	1										
Location			4ir	Dis	cha	rge				Co	ntac	t D	isc	hai	ge		Criteria	Result
Location	2	2	- 4	4		3	1	5	2	2	7	4	6	3	8	3	Ontena	Result
	+	-	+	-	+) -	+	ā	+	14	+	_	+	-	+	-/		ANI
A1	Α	Α	Α	Α	Α	Α	1	1	/	/	/	1	1	1	1	/	В	PASS
A2	Α	Α	Α	Α	Α	Α	1	1	1	1	1	/	1	/	1	1	В	PASS
A3	Α	Α	Α	Α	Α	Α	/	/	/	1	1	1	1	/	/	1	В	PASS
A4	Α	Α	Α	Α	Α	Α	1	/	/	/	/	1	/	1	/	1	В	PASS
A5	Α	Α	Α	Α	Α	Α	1	/	1	1	/	1	/	/	1	1	В	PASS
	/	1	1	/	/	/	/	1	/	/	/	1	/	/	/	1	1	1
1	/	/	1	/	1	1	/	1	/	/	1	1	/	/	/	/	1	1
1000	/	/	/	/	1	1	/	1	/	/	1	1	/	1	/	1	1	1
	1	/	/	/	/	/	/	1	/	/	1	1	/	1	1	1		1
					1		10	23-20			M'	70					THE PARTY OF	
			1	M.	Tes	t Le	eve	l(k\	V) a	nd	Res	sult		1	11)		anb)
	1	8,0	, Y	HC	P		(1)					VC	P	Ŋ,				
Location	2	2	-	4		6	8	3		2		4	6	3	8	3	Criteria	Result
	+	- (+) <u>-</u> }	+	-	+	-	+		+	-59	+	-	+		6.11	1:33
Front	/	/	Α	Α	1	1	1	1	/	1	Α	Α	1	1	/	1	В	PASS
Back	/	/	Α	Α	/	1	/	1	/	1	Α	Α	/	/	1	1	В	PASS

Note: "/" Representative the test not applicable

Left

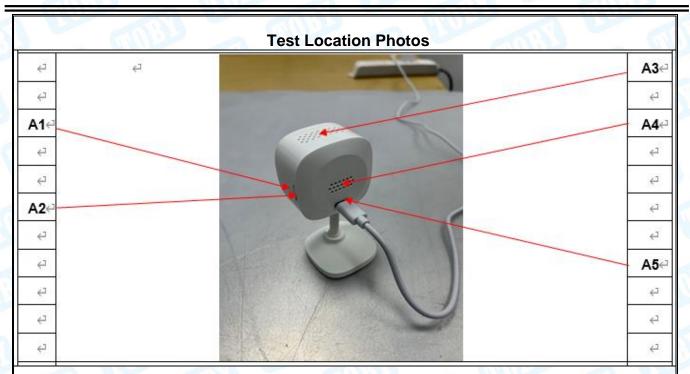
Right

Criteria A: There was no change operated with initial operating during the test.

Criteria B: The EUT function loss during the test, but self-recoverable after the test.

Criteria C: The system shut down during the test.

PASS


PASS

В

В

Page: 60 of 65

Note:

- 1) Criteria A: There was no change operated with initial operating during the test.
- 2) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 3) Criteria C: The system shut down during the test.

Page: 61 of 65

Attachment E--RF Field Strength Susceptibility Test Data

Temperature : 27°C Humidity : 54%

Pressure(hpa): 1008

Power supply : AC 230V/50Hz Test Mode: Mode 1/2/3

Required Performance Criteria: A

	Ac	a			
EUT Position	Frequency 80~100	THE RESIDENCE OF THE PERSON NAMED IN	Frequency 1000~60	Judgment	
	Horizontal	Vertical	Horizontal	Vertical	
Front	A	A	A	A	PASS
Right	Α	A	A	A	PASS
Rear	Α	A	A	Α	PASS
Left	Α	A	A	Α	PASS

Page: 62 of 65

Attachment F--Electrical Fast Transient/Burst Test Data

Temperature : 26.3°C Humidity : 55%

Pressure(hpa) : 1008

Power supply : AC 230V/50Hz Test Mode : Mode 1/2/3

Required Performance Criteria: B

Line		Voltage(kV)	Required Pe		Actual Per Crit	Judgment	
Um		romge(m)	(+)	(-)	(+)	(-)	oudgmone
	L	1.0	В	В	Α	Α	PASS
	N	1.0	В	В	Α	Α	PASS
	L-N	1.0	В	В	Α	Α	PASS
AC LINE	PE	1.0	1 60	1	1	1	1
	L-PE	1.0		1	1	V	
	N-PE	1.0		1	100	1	WAP.
	L-N-PE	1.0	1	1	1		1
RJ 45 F	Port	0.5	1	(V)	1	1	1

- 1) Criteria A: There was no change operated with initial operating during the test.
- 2) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 3) Criteria C: The system shut down during the test.

Page: 63 of 65

Attachment G--Surge Immunity Test Data

Temperature : 26.3°C Humidity : 55%

Pressure(hpa): 1008

Power supply : AC 230V/50Hz Test Mode : Mode 1/2/3

Required Performance Criteria: B

(Tr/Th: 1.2/50us for AC Power Port; Tr/Th: 10/700us for signal lines)

Injected Line	Voltage (kV)	Phase	Perfor	tual mance teria	Res	ult
	(KV)		(+)	(-)	(+)	(-)
400		0°	A	Α	PASS	PASS
	1.0	90°	A	Α	PASS	PASS
L-N	1.0	180°	Α	Α	PASS	PASS
	A W	270°	Α	Α	PASS	PASS
3	1000	0°	1	1		1
OL DE	2.0	90°	1		1	1
L-PE		180°	1	1		1
		270°		1		1
W. D.	J. China	0°	1	1	1	1
N. DE	2.0	90°	1	1		1,000
N-PE	2.0	180°		1	1	1
	ARC	270°	1	181	MILL	1
RJ 45Port	1.0	+/-		1		

Page: 64 of 65

Attachment H--Conducted Immunity Test Data

Temperature : 26.3° C Humidity : 55%

Pressure(hpa): 1008

Power supply : AC 230V/50Hz Test Mode : Mode 1/2/3

Required Performance Criteria: A

Frequency Range (MHz)	Injected Position	Voltage Level (e.m.f.)	Required Performance Criteria	Actual Performance Criteria	Result
0.15 ~ 80	AC Mains	3V(rms), AM 80% Modulated with 1 kHz	Α	A	PASS
0.15 ~ 80	RJ 11	3V(rms), AM 80% Modulated with 1 kHz	A	1	V
0.15 ~ 80	Wired Network Port	3V(rms), AM 80% Modulated with 1 kHz	A	3 /2	TOAY

Page: 65 of 65

Attachment I--Voltage Dips and Interruptions Test Data

Temperature :	26.3℃	Humidity:	55%	
Pressure(hpa):	1008			
Power Supply :	AC 230V/50	Hz Test Mode :	Mode 1/2/3	
Required Performand				
Voltage Reduction	st Results Description /oltage Reduction Cycles		Judgment	
Voltage dip 100%	0.5	В	PASS	
Voltage dip 100%	1	В	PASS	
Voltage dip 30%	25	C	PASS	
Voltage Interruption100%			PASS	

----END OF THE REPORT-----

