Flight Principles -Engine Inoperative THE BACKSEAT PILOT

Overview

What

- Critical engine, or which engine has the most adverse effect on control & performance
- Minimum controllable airspeeds
- Managing an engine failure

Why

 Essential to understand the elements involved in an engine failure in order to maintain control and safety

Content

- Critical Engine
- V_{MC}
- V_{MC} and the Loss of Control
- V_{MC} and Stall Speed
- Engine Failure during / after Lift-off

Critical Engine

- Engine whose failure most adversely affects control & performance
 - LEFT ENGINE
- 4 Factors (PAST)
 - P-Factor
 - Accelerated Slipstream
 - Spiraling Slipstream
 - Torque

P-Factor

Spiraling Slipstream

Accelerated Slipstream

Torque

Minimum Controllable Airspeed – V_{MC}

- Minimum controllable airspeed with the critical engine inoperative
- V_{MC} Factors
 - Critical Engine Windmilling
 - Maximum Takeoff Power
 - Sea Level Conditions
 - Most Unfavorable Weight
 - Most Unfavorable CG
 - Landing Gear Retracted

- Flaps in Takeoff Position
- Cowl Flaps in Takeoff Position
- Trimmed for Takeoff
- Out of Ground Effect
- Maximum 5° of bank

Aircraft Control, V_{MC} and Performance

Factor	Control	V _{MC}	Performance
Windmilling Propeller	+	†	+
Max Takeoff Power	+	†	†
Sea Level (Low DA)	↓	†	†
Light Weight	+	†	†
Aft CG	+	†	†
Gear Up	+	†	†
T/O Flaps (Up)	↓	†	†
T/O Cowl Flaps (Open)	†	†	↓
Trimmed for Takeoff	?	?	?
Out of Ground Effect	+	†	\
Bank Angle (Max 5°)	†	+	†

V_{MC} and the Loss of Control

- Control is lost when
 - Thrust arm moment (T x X) > Rudder arm moment (R x Y)
- Recovery
 - Reduce operating engine power
 - Decrease pitch attitude

V_{MC} and Stall Speed

- V_{MC} decreases with altitude, while stall speed remains the same
- Altitude where $V_{MC} = V_{S}$ and above is extremely dangerous

V_{YSE}

- Single engine best rate of climb speed
 - Blue line

- ≥ V_{YSE} at all times when single engine
 - Exception: V_{XSE}

Source: Airplane Flying Handbook, FAA

Engine Failure During / After Lift-Off

- Most critical time to suffer engine loss: Takeoff and Go-Around
 - Maintain Control
 - Pitch for V_{YSE}
 - Engine Failure Procedures
- Engine Failure Scenarios
 - Gear Down
 - Gear Up, Inadequate Climb
 - Gear Up, Adequate Climb

Engine Failure: Gear Down

Land on the remaining runway

Engine Failure: Gear Up, Inadequate Climb

Landing must be accomplished

Engine Failure: Gear Up, Adequate Climb

Return to land

Engine Failure During / After Lift-Off

Plan Ahead

- Engine Failure on the Roll: Reduce power, maintain directional control
- Engine Failure Airborne, Gear Down: Maintain directional control, land straight ahead
- Engine Failure Airborne, Gear Up: Maintain directional control, configure to return for landing

Questions?

