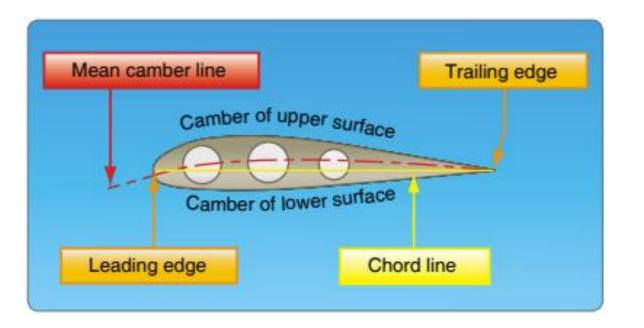


Overview

What

- Characteristic forces of flight
- Why and how the airplane performs the way it does

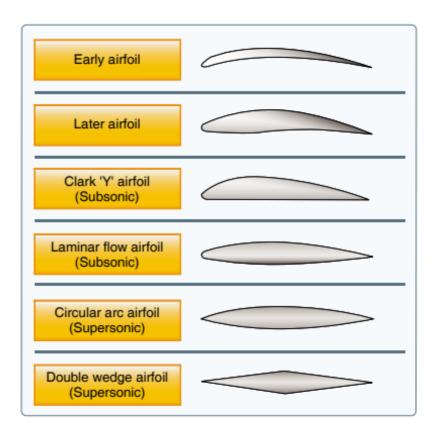
Why


 The competent pilot must have a well-founded concept of the forces which act on the airplane, the advantageous use of these forces, as well as the limitations of the particular airplane

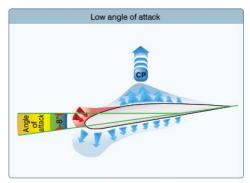
Content

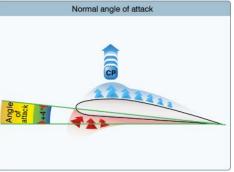
- Airfoil Design
- Wing Planform
- Stability and Controllability
- Left Turning Tendency
- Load Factors
- Wingtip Vortices

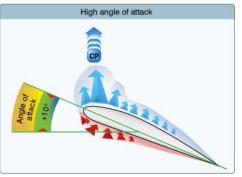
Airfoil Design: Basics


- Terminology
 - Camber
 - Leading / Trailing Edge
 - Chord Line
 - Mean Camber Line

Airfoil Design: Lift & Design Characteristics

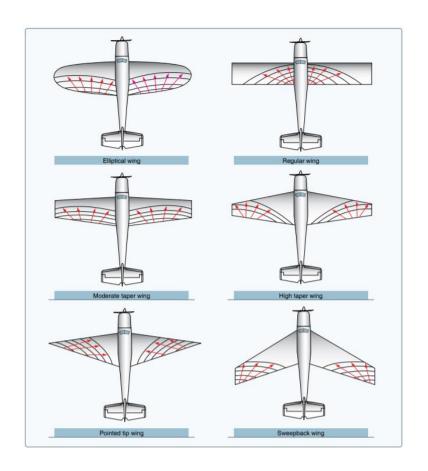

- Low Pressure Above
 - Faster moving air (Bernoulli)
 - Downwash (Newton's 3rd Law)
- High Pressure Below
 - Air Deflection (Newton's 3rd Law)
 - Stagnation Point (Bernoulli)

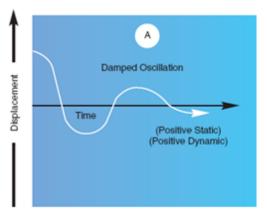

Aircraft weight, speed, and purpose dictate airfoil design

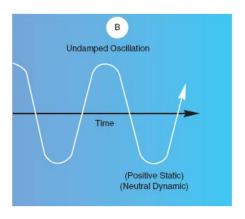


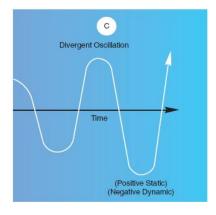
Airfoil Design: Pressure Distribution

- Pressure varies with AOA
- Center of Pressure
 - Average of the pressure variations at a given AOA
 - Higher AOAs: CP moves forward
 - Lower AOAs: CP moves aft
- Affects aerodynamic balance and controllability



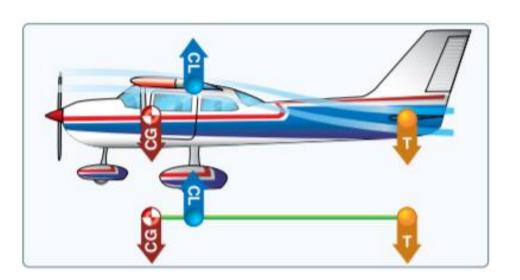

Wing Planform


- Planform: Outline of the wing from above
 - Varies with desired aerodynamic characteristics
 - Taper, Aspect Ratio & Sweepback affect planform
- Aspect Ratio (AR) Ratio of wing span to chord
 - Primary factor in determining lift / drag ratio
 - Increased AR decreases drag, and vice versa
- Taper Decrease of chord from root to tip
 - Generally decreases drag / increases lift
 - Reduces weight of wing
- Sweepback Rearward slant of the wing
 - Can also have forward sweep
 - Helps with lateral stability in low-speed planes



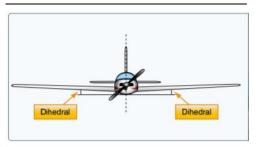
Stability & Controllability

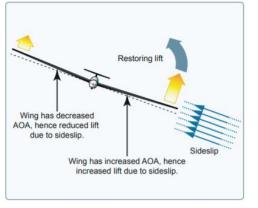
- Stability Inherent quality to correct for disturbances and return to the original flight path
 - Static Stability Aircraft's initial tendency when disturbed
 - Positive: Returns to original state
 Negative: Trends away from original state
 Neutral: Remains in new condition
 - Dynamic Stability Aircraft's response over time when disturbed
 - Positive, Negative, and Neutral same as Static Stability, but over time



- Stability significantly affects Controllability and Maneuverability
 - Controllability Quality of the aircraft's response to control inputs
 - Maneuverability Quality allowing the airplane to be maneuvered easily and withstand stresses

Longitudinal Stability

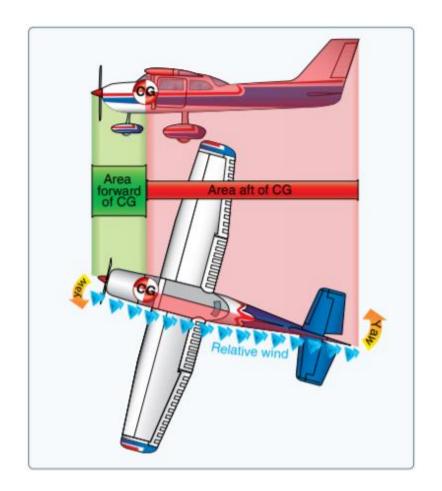

- About the lateral axis (pitch)
 - In a stable aircraft, if the plane is nosed down, the wing / tail moments will bring it back up, and vice versa
- Dependent on 3 factors
 - Location of the wing relative to the CG
 - Location of the horizontal tail relative to the CG
 - Size of the tail surfaces



Lateral Stability


- About the longitudinal axis (bank)
- 4 Factors
 - Dihedral
 - Upward angle of the wings from root to tip
 - Sweepback
 - Basically increases effects of dihedral
 - 10 degrees of sweepback = about 1-degree of dihedral
 - Keel Effect
 - Greater portion of the keel is above and behind the CG
 - Weight Distribution

Dihedral



Keel Effect

Directional Stability

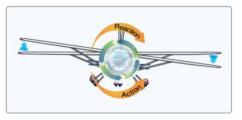
- About the vertical axis (yaw)
- Factors
 - Area of the fuselage aft of the CG
 - Vertical fin

Left Turning Tendency (torque effect)

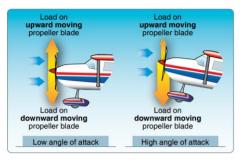
Torque Reaction

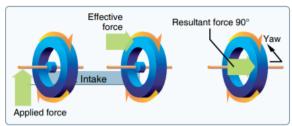
- Newton's 3rd Law
- Engine parts / propeller rotate right, equal force rotates the plane left

Corkscrew Effect


Prop rotation sends air spiraling aft, striking left side of vertical stab

P-Factor (asymmetric loading)


• Descending prop blade takes a bigger bite of air than ascending blade

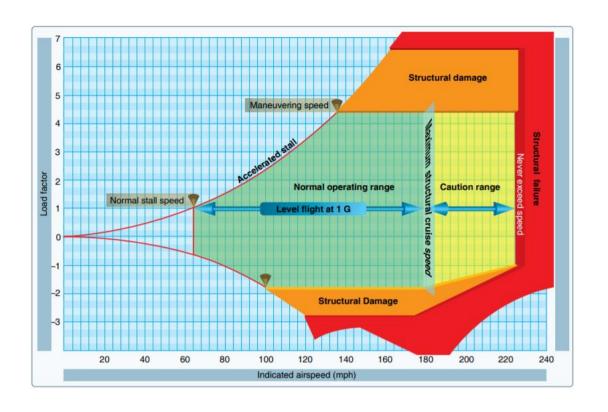

Gyroscopic Action

- Precession
- Most prominent in tail wheel aircraft when tail is raised for takeoff

Load Factors

Ratio of the total air load acting on a plane to the gross weight of the plane (measured in Gs)

Why it's important


- Possible to overload the aircraft structure
- Increasing load factor increases stall speed

Airplane Design

- Designed to operate within certain limits
- Categories: Normal (-1.52 to 3.8 Gs), Utility (-1.76 to 4.4 Gs), Acrobatic (-3 to 6 Gs)

Vg diagram

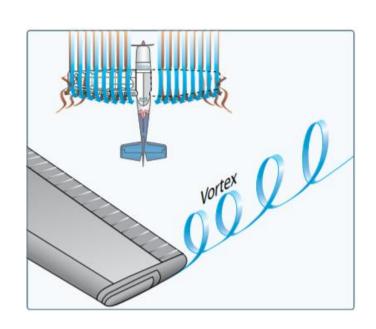
- Lines of Maximum Lift Capability
- Maneuvering Speed
- Intersection of Negative Limit Load Factor and Line of Maximum Negative Lift Capability
- Limit Speed

Wingtip Vortices

How they Work

- Occur whenever an airfoil is producing lift
- Difference in pressure above and below the wing results in fast spinning vortices spiraling off each wingtip
- Increase induced drag due to energy spent producing the turbulence

Strength


- Greater the angle of attack, the stronger the vortices
- Strongest vortices: Heavy, clean, and slow

Dangers

- Hazard to any aircraft significantly lighter than the generating aircraft
- · Can result in aggressive, uncontrollable rolling and structural damage

Avoidance

- Takeoff before a prior aircraft's rotation point, climb above their flight path
- Takeoff after a landing jet's touchdown point
- En Route: Avoid flying through another aircraft's flight path
- Land prior to a departing aircraft's takeoff point
- Stay above a preceding aircraft's path, land beyond their touchdown point
 - Applies to parallel and crossing runways as well

Questions?

