Forces of Flight

THE BACKSEAT PILOT

All content is © 2022 The Backseat Pilot LLC

Overview

What

- The four forces of flight are in essence the fundamental principles that govern flight
- They are what make the airplane fly

• Why

- How a pilot performs in flight depends on the ability to plan and coordinate the use of power and flight controls to change the forces of lift, thrust, weight, and drag
- The pilot must always control a balance between these forces
- The better the understanding of the forces, the greater the pilot's skill

Content

- Basics
- Lift
- Weight
- Thrust
- Drag
- Ground Effect
- Climbs
- Descents
- Turns
- Stalls

Basics

• Four Forces

- Lift Upward force created by the effect of airflow over / under the wing
- Weight Opposes lift, caused by the downward pull of gravity
- Thrust Forward force propelling the aircraft through the air
- Drag Opposes thrust, backward force limiting the speed of the airplane

Terminology

- Chord Line: Imaginary straight line joining the leading and trailing edges of an airfoil
- Relative Wind: Direction of movement of the wind relative to the aircraft's flight path
- Angle of Attack: Angle between the chord line and the relative wind

Lift

Principles of Lift

- Bernoulli's Principle: As the velocity of a fluid (air) increases, its pressure decreases
 - Curvature of the upper portion of the wing
- Newton's 3rd Law: Every action has an equal and opposite reaction
 - Downwash / Air striking the lower surface of the wing
- Pilot Control of Lift
 - Lift = $\frac{1}{2}pC_LV^2S$
 - Pilot can control:
 - Angle of Attack (C_L) Changing pitch changes AOA and therefore lift
 - Airspeed (V^2) Lift is proportional to the square of airspeed
 - Surface Area (S) Flaps and slats can increase surface area, otherwise S is constant during cruise

Weight

- Force of gravity acts vertically through the CG of the plane toward the center of the earth
 - Pulls the airplane down
- When lift equals weight, the plane is in equilibrium and doesn't gain or lose altitude
 - If weight is greater than lift, the airplane descends
 - If lift is greater than weight, the airplane climbs

Thrust

- Forward force which opposes drag
 - Force = Mass x Acceleration
- Airplane will continue to accelerate until thrust is equal to drag
 - If thrust is greater than drag, the airplane accelerates until thrust and drag are equal
 - If thrust is less than drag, the airplane decelerates until thrust and drag are equal

Drag

- Rearward force opposing thrust
- Types of Drag
 - Parasite Drag Aircraft surfaces interfering with the smooth airflow over the plane
 - Form Size and shape of the aircraft
 - Interference Varied currents of air meeting / interacting
 - Skin Friction Roughness of the airplane's surface
 - Induced Drag Byproduct of lift
 - Caused by creation of wingtip vortices
- Total Drag: Parasitic Drag + Induced Drag
 - Region of Normal Command
 - As airspeed decreases, total drag decreases to a point (L/D Max)
 - Region of Reversed Command
 - Slower speeds require higher power settings

Ground Effect

- Reduces induced drag
 - · Vertical component of the airflow around the wing is restricted by the ground
- Effects on Flight
 - Takeoff: Capable of lifting off at a lower-than-normal speed
 - Drag increases when out of ground effect
 - Landing: Airplane seems to float in ground effect

Climbs

• In a steady climb, lift is the same as in level flight at the same airspeed

- Raising the airplane's nose increase AOA and momentarily increases lift
- Once the climb is established, AOA and lift return to level flight values

Airspeed in a Climb

- With no change in power, airspeed will decrease in a climb
- When inclined upward, a component of weight acts rearward and has the same effect as drag
 - The steeper the climb, the greater the effect
- Additional power is required to maintain airspeed

Descents

Lowering the nose reduces AOA and lift momentarily

- Lift is momentarily less than weight, changing the flight path
- Once stabilized in the descent, AOA and lift return to level flight values

• With no change in power, airspeed will increase in a descent

- A component of weight acts forward and has the same effect as thrust
 - The steeper the descent, the greater the effect
- Power must be reduced to maintain airspeed

Turns

• Lift is divided into a Horizontal and Vertical component

- Vertical Acts vertically, opposite weight
- Horizontal Makes the plane turn (centripetal force)

• AOA in a Turn

- Vertical lift is reduced while weight remains the same
- AOA must be increased so the vertical component of lift equals weight
- Increased AOA increases drag. Power is required to maintain speed

LEFT BANK, NO BACK PRESSURE

Turns

Turn Rate and Radius

- Rate of Turn Varies with horizontal component of lift (bank angle)
- Turn Radius Varies with airspeed and bank angle

Coordination

- Coordinated Turn: Horizontal component of lift = Centrifugal force
- Slipping Turn: Rate of turn is too slow for the bank angle
 - Horizontal component of lift is greater than centrifugal force
- Skidding Turn: Rate of turn is too great for the bank angle
 - Centrifugal force is greater than the horizontal component of lift

Stalls

• Direct cause of all stalls is an excessive angle of attack

- Stall speed varies
- Stall AOA is always the same (generally, 16-20 degrees)
- Stalls can occur in any phase of flight
 - Low Speed
 - As airspeed decreases, AOA must be increased to maintain altitude
 - High Speed
 - High speed dive with a sudden increase in back pressure
 - The plane cannot immediately change its flight path, AOA increases rapidly
 - Turning
 - Stall speeds are higher in a level turn than in straight-and-level flight
 - Wing must produce additional lift to counter the load imposed in a turn

Questions?