roxy:

WriteView

MODEL EL-W516T

OPERATION MANUAL

17ASC75E2

INTRODUCTION

About the calculation examples (including some formulas and tables), refer to the second half of this manual.

After reading this manual, store it in a convenient location for future

Note: Some of the models described in this manual may not be available in some countries.

Operational Notes

- . Do not carry the calculator around in your back pocket, as it may break when you sit down. The display is made of glass and is particularly fragile.
- Keep the calculator away from extreme heat such as on a car dashboard or near a heater, and avoid exposing it to excessively humid or dusty environments.
- Since this product is not waterproof, do not use it or store it where fluids, for example water, can splash onto it. Raindrops, water spray, juice, coffee, steam, perspiration, etc. will also cause malfunction.
- Clean with a soft, dry cloth. Do not use solvents or a wet cloth. Avoid using a rough cloth or anything else that may cause scratches.

- Do not drop it or apply excessive force.
 Never dispose of batteries in a fire.
 Keep batteries out of the reach of children.
- For the sake of your health, try not to use this product for long periods of time. If you need to use the product for an extended period, be sure to allow your eyes, hands, arms, and body adequate rest periods (about 10–15 minutes every hour).

If you experience any pain or fatigue while using this product, discontinue use immediately. If the discomfort continues, please consult a doctor.
This product, including accessories, may change due to upgrading

without prior notice.

- NOTICE

- SHARP strongly recommends that separate permanent written records be kept of all important data. Data may be lost or altered in virtually any electronic memory product under certain circumstances. Therefore, SHARP assumes no responsibility for data lost or otherwise rendered unusable whether as a result of improper use, repairs, defects, battery replacement, use after the specified battery life has expired, or any other cause.
 SHARP will not be liable nor responsible for any incidental or
- consequential economic or property damage caused by misuse and/or malfunctions of this product and its peripherals, unless such liability is acknowledged by law.
- Press the RESET switch (on the back), with the tip of a ball-point pen or similar object, only in the following cases. Do not use an object with a breakable or sharp tip. Note that pressing the RESET object with a breakable or sharp tip, Note that pressing the HESET switch erases all data stored in memory.

 When using for the first time

 After replacing the battery

 To clear all memory contents

 When an abnormal condition occurs and all keys are inoperative

- If service should be required on this calculator, have the calculator serviced in the region (country) where you purchased it.

Hard Case

DISPLAY

Dot

matrix display

- . During actual use, not all symbols are displayed at the same time Only the symbols required for the usage currently being explained
- are shown in the display and calculation examples

←/→: Indicates that some contents are hidden in the directions

↑/↓ 2ndF: Appears when 2ndF is pressed, indicating that the functions shown in the same color as (2ndF) are enabled. Indicates that (hyp) has been pressed and the hyperbolic

НҮР functions are enabled. If (2ndF) (arc hyp) is pressed, the symbols 2ndF HYP appear, indicating that inverse hyperbolic functions are enabled.

ALPHA: Appears when ALPHA is pressed, indicating that the functions shown in the same color as ALPHA are enabled.

Appears when STO or (RCL) is pressed, and entry (recall)

of memory contents can be performed. FIX/SCI/ENG/N1/N2: Indicates the notation used to display a value and changes by SET UP menu. N1 is displayed on-screen as "NORM1", and N2 as "NORM2". DEG/RAD/GRAD: Indicates angular units.

BUSY: Appears during the execution of a calculation. W-VIEW: Indicates that the WriteView editor is selected. BUSY:

Indicates that a numerical value is stored in the independent

memory (M).

Indicates the mode of expression for results in COMPLEX

BEFORE USING THE CALCULATOR

Press ONC to turn the calculator on. The data that was on-screen when the power was turned off will appear on the display. Press 2ndF OFF to turn the calculator off.

Key Notations Used in this Manual

e ^x E	To specify e^x :	2 ndF e^x
In	To specify In:	In
	To specify E:	ALPHA E

- · Functions that are printed in gray adjacent to the keys are effective in specific modes
- The multiplication operator "X" is differentiated from the letter "X" in this manual as follows:

To specify the multiplication operator: \times To specify the letter "X": (ALPHA) x

- In certain calculation examples, where you see the LINE symbol, the key operations and calculation results are shown as they would appear in the Line editor.
- In each example, press ONC to clear the display first. Unless otherwise specified, calculation examples are performed in the WriteView editor endF (SET UP) 2 0 0) with the default display settings ((2ndF)

Clearing the Entry and Memories

Entry

Operation	(Display)	M, X, Y	D1-D3	ANS	STAT*1	vectA-D
(ON/C)	0	Х	X	Х	X	Х
2ndF) CA	0	Х	X	Ο	Ο	0
Mode selection (MODE)	Ο	Х	X	Χ	X*2	0
2ndF M-CLR 0	Ο	Х	X	Χ	Х	Χ
2ndF M-CLR 1 0	Ο	0	Ο	0	Ο	0
2ndF)(M-CLR) 2 0 *3	Ο	0	Ο	0	Ο	0
RESET switch*3	0	0	0	0	0	0

O: Clear X· Retain

- Statistical data (entered data)
- Cleared when changing between sub-modes in STAT mode.
 The RESET operation will erase all data stored in memory and restore
- the calculator's default settings. The username you stored using the name display function will be cleared as well.

Memory clear kev

Press 2ndF M-CLR to display the menu.

- To initialize the display settings, press o. The parameters are set as follows:
- Angular unit: DEG Display notation: NORM1 N-base: DEC
- Recurring decimal: OFF

Mode Selection

NORMAL mode: MODE 0

Used to perform arithmetic operations and function calculations

STAT mode: MODE 1 Used to perform statistical operations.

TABLE mode: MODE 2

Used to illustrate the changes in values of one or two functions in table format.

COMPLEX mode: MODE 3 Used to perform complex number calculations EQUATION mode: MODE 4

Used to solve equations.

MATRIX mode: MODE 5

Used to perform matrix calculations VECTOR mode: MODE 6

Used to perform vector calculations.

DISTRIBUTION mode: MODE 7
Used to perform distribution calculations.

DRILL mode: MODE 8
Used to practice math and multiplication table drills.

HOME Key

Press (HOME) to return to NORMAL mode from other modes.

Note: Equations and values currently being entered will disappear, in the same way as when the mode is changed.

Press 2ndF (SET UP to display the SET UP menu.

Press ONC to exit the SET UP menu.

Note: You can press BS to return to the previously displayed parent

Determination of the angular unit (degrees, radians, and grades)

DEG (°): 2ndF SET UP 0	0 (
RAD (rad): 2ndF SET UP 0	1
GRAD (a): 2ndE SETUP 0	2

Selecting the display notation and decimal places

- (FIX), Scientific notation (SCI), and Engineering notation (ENG).

 When <code>?ndF</code> (SETUP 1 0 (FIX) or <code>?ndF</code> (SETUP 1 2 (ENG) is pressed, the number of decimal places (TAB) can be set to any value between 0 and 9.
- When 2ndF SETUP 1 1 (SCI) is pressed, the number of significant digits can be set to any value between 0 and 9. Entering 0

will set a 10-digit display.

Setting the floating point number system in scientific notation NORM1 (the default) and NORM2. A number is automatically displayed in

NORM1 (the defiability and Normal: A number is automatically displayed a scientific notation outside a preset range: NORM1 (2ndF)SETUP1 3): $0.000000001 \le |x| \le 9,999,999,999$ NORM2 (2ndF)SETUP1 4): $0.01 \le |x| \le 9,999,999,999$

Selecting the editor and setting the answer display

This calculator has the following two editors in NORMAL mode WriteView and Line.

Set the display format for numerical calculation results in WriteView editor The WriteView editor

Notes:

• When "EXACT(a/b, $\sqrt{\ },\pi$)" is set, results will appear in fraction format or

- irrational number format (including π and $\sqrt{\ }$) when display is possible. When "APPROX." is set, results will be decimal display or fraction display, and will be not shown in irrational number format (including $\boldsymbol{\pi}$
- and $\sqrt{\mbox{\iffill\endskip}}$. Press $\mbox{$\odot$}$ to change the calculation results to another format that can be displayed.

Adjusting the display contrast

 $\underline{\underline{\mathsf{Press}}} \ \underline{\underline{\mathsf{2ndF}}} \ \underline{\underline{\mathsf{SETUP}}} \ \underline{\underline{\mathsf{3}}} \ , \ \mathsf{then} \ \underline{\underline{\phantom{\mathsf{+}}}} \ \mathsf{or} \ \underline{\underline{\phantom{\mathsf{-}}}} \ \mathsf{to} \ \mathsf{adjust} \ \mathsf{the} \ \mathsf{contrast}. \ \mathsf{Press}$

Insert and overwrite entry methods

When using the Line editor, you can change the entry method from

"INSERT" (the default) to "OVERWRITE".

After you switch to the overwrite method (by pressing (2ndF) (SETUP) 4 1 1), the triangular cursor will change to a rectangular one, and the number of function underneath it will be overwritten as you make entries.

Setting the recurring decimal

decimal format

- Recurring decimal is OFF: 2ndF SETUP 5 0 (default)
 Recurring decimal is ON: 2ndF SETUP 5 1
 In the WriteView editor, the recurring part is indicated by "--". In the
 Line editor, the recurring part is indicated in parentheses.
- . If over 10 digits, including the recurring part, the result cannot be displayed in recurring decimal format.

Setting of the decimal point

You can show the decimal point in the calculation result as either a dot or a comma.

DOT: SETUP 6 0 (default)
COMMA: SETUP 6 1

During entry, the decimal point is only shown as a dot.

Name display function

You can save a username in this calculator. When you turn the power off, the saved username is displayed momentarily.

Up to 32 characters may be saved, split over two lines.

- Entering and editing the username:

 1. Press 2ndF SETUP 7. The editing screen appears with a flashing
 - Use ▲ and ▼ to scroll through the available characters.

 Pressing ◀ or ▶ moves the cursor to the left or right.

 To modify a character, use ◀ or ▶ to move the cursor to the
- character, then select another character using
 A or
 Repeat steps 2 and 3 above to continue entering characters.
- Press = to save and guit. Press 2ndF CA in the editing screen to clear all the characters

ENTERING, DISPLAYING, AND EDITING THE EQUATION

The WriteView Editor

Entry and display

In the WriteView editor, you can enter and display fractions or certain functions as you would write them

The WriteView editor can be used in NORMAL mode

Displaying calculation results (when EXACT is selected)

When possible, calculation results will be displayed using fractions, $\sqrt{\ }$, and π . When you press $(\overline{\mathbb{Q}})$, the display will cycle through the following display styles:

- Mixed fractions (with or without π) \rightarrow improper fractions (with or
- without π) \to decimal numbers Proper fractions (with or without π) \to decimal numbers
- Irrational numbers (square roots, fractions made using square roots) →

Notes: • In the following cases, calculation results may be displayed using $\sqrt{\;}$:

Arithmetic operations and memory calculations Trigonometric calculations
 In trigonometric calculations, when Entry value entering values such as those in the DEG multiples of 15 table to the right, results may be shown multiples of $\frac{1}{12}\pi$

RAD Improper/proper fractions will be GRAD converted to and displayed as decimal numbers if the number of digits used in

their expression is greater than nine. In the case of mixed fractions, the maximum number of displayable digits (including integers) is eight. If the number of digits in the denominator of a fractional result that uses

multiples of $\frac{50}{3}$

 π is greater than three, the result is converted to and displayed as a decimal number.

The Line Editor

Entry and display

In the Line editor, you can enter and display equations line by line. Notes:

- Up to three lines of text may be viewed on the screen at one time. . In the Line editor, calculation results are displayed in decimal form or line fraction notation if possible.
- Use (chains) to switch the display format to fractional form or decimal form (if possible).

Editing the Equation

Just after obtaining an answer, pressing brings you to the end of the equation and pressing brings you to the beginning. Press v. , , , , or v to move the cursor. Press 2ndF v. or 2ndF to jump the cursor to the beginning or the end of the equation.

Back space and delete key

To delete a number or function, move the cursor to the right of it, then press (BS). You can also delete a number or function that the cursor is

directly over by pressing (2ndF) DEL.

Note: In a multi-level menu, you can press BS to back to the previous menu level.

MATH Menu

Other functions may be available on this calculator besides those printed on the key pad. These functions are accessed using the MATH menu. The MATH menu has different contents for each mode. Press MATH to display the MATH menu.

Note: The MATH key cannot be used in the simulation calculations and

solver functions of NORMAL mode, or in the item and value input screens of other modes.

Multi-line Playback Function

This calculator is equipped with a function to recall previous equations and answers in NORMAL or COMPLEX modes. Pressing ... will display the previous equation. The number of characters that can be saved is limited. When the memory is full, stored equations will be deleted to make room, starting with the oldest.

• To edit an equation after recalling it, press

or

Priority Levels in Calculation

This calculator performs operations according to the following priority: ① Fractions (1 r 4, etc.) ② \angle , Engineering prefixes ③ Functions preceded by their argument ($\mathcal{X}^{-1}, \mathcal{X}^2, \mathrm{nl.}(\%)$, etc.) ④ $\mathcal{Y}^{\mathcal{X}}, \mathcal{X}^{\mathcal{X}}$ ⑤ Implied multiplication of a memory value (2Y, etc.)

Functions followed by their argument (sin, cos, (\neg), etc.) ⑦ Implied multiplication of a function (2sin 30, A_{-}^{+} , etc.) @ nCr, nPr, GCD, LCM, \rightarrow cv \otimes \vee , \neq , int+ \otimes \oplus , \vdash , \ominus 0 AND \otimes OR, XOR, XNOR \otimes , \rightarrow 4, \rightarrow 4, \rightarrow 4, \rightarrow 5, \rightarrow 6, \rightarrow 7, \rightarrow 8, \rightarrow 9, \rightarrow 9, \rightarrow 8, \rightarrow 9, \rightarrow 9, ending instructions

 If parentheses are used, parenthesized calculations have precedence over any other calculations

SCIENTIFIC CALCULATIONS

Arithmetic Operations

 The closing parenthesis just before or M+ may be omitted.

Constant Calculations

- In constant calculations, the addend becomes a constant.
 Subtraction and division are performed in the same manner. For
- multiplication, the multiplicand becomes a constant. In constant calculations, constants will be displayed as K
- · Constant calculations can be performed in NORMAL or STAT modes

Conversion to Engineering notation

You can use (ALPHA) (SENG) or (ALPHA) (ENG>) to convert the calculation result to engineering notation.

• Press (ALPHA) (ENG) to decrease the exponent. Press (ALPHA) (ENG) to

increase the exponent

The settings (FSE) in the SET UP menu do not change.

Functions

- · Refer to the calculation examples for each function.
- In the Line editor, the following symbols are used:
- Let v to indicate an expression's power. (v , v , v , v , v , v
- T: to separate integers, numerators, and denominators. (a/b) 2ndF (ab/c) When using (2ndF) (log_ax) or (2ndF) (abs) in the Line editor, values are
- entered in the following way:
- logn (base, value)

Integral/Differential Functions

Integral and differential calculations can be performed in NORMAL

Since integral and differential calculations are performed Note: based on the following equations, correct results may not be obtained, in certain rare cases, when performing special calculations that contain discontinuous points. Integral calculation (Simpson's rule):

$$\begin{split} \mathbf{S} &= \frac{1}{3} h\{f(a) + 4\{f(a+h) + f(a+3h) + \dots + f(a+(\mathsf{N}-1)h)\}\} \\ &+ 2\{f(a+2h) + f(a+4h) + \dots + f(a+(\mathsf{N}-2)h)\} + f(b)\} \\ & \mathbf{N} = 2n \\ &a \leq x \leq b \end{split}$$

Differential calculation:
$$f'(x) = \frac{f(x + \frac{dx}{2}) - f(x - \frac{dx}{2})}{dx}$$

Performing integral calculations

- Press (ALPHA) (fdx)
- Specify the following parameters: range of integral (initial value (a), end value (b)), function with variable x, and number of subintervals (n). You do not need to specify the number of subintervals. If the number of subintervals is not specified, the default value of n = 100 will be used.
- Press =

Notes:

 Parameters are entered in the following way: WriteView editor: Line editor: WriteView editor:

 \int_{a}^{b} function[, subintervals]dx $\int (function, a, b[, subintervals])$

 Integral calculations. depending on the integrands and subintervals included, y require longer calculation time During calculation, the BUSY symbol will be displayed. To cancel calculation, press ON/C Note that there will

be greater integral errors when there are large fluctuations in the integral values during minute shifting of the integral range and for periodic functions, etc., where positive and negative integral value exist depending on the interval

For the former case, divide integral intervals as small as possible. For the latter case, separate the positive and negative values. Following these tips will allow you to obtain results from calculations with greater accuracy and will also shorten the calculation time.

Performing differential calculations

- Specify the following parameters: function with variable x, value of x, and minute interval (dx). You do not need to specify the minute interval. If the minute interval

is not specified, it will automatically be set to 10^{-5} (while x = 0), or $|x| \times 10^{-5}$ (while $x \neq 0$).

6

Parameters are entered in the following way: WriteView editor:

d(function) dx $|_{X = \text{value of } X[, \text{ minute interval}]}$ editor: d/dx (function, value of X[, minute interval])

Σ Function

The \sum function returns the cumulative sum of a given expression from an initial value to an end value in NORMAL mode.

Performing ∑ calculations

- Press (ALPHA)
- Press (ALPHA) Σ . Specify the following parameters: initial value, end value, function with variable *X*, and increment (*n*).

 You do not need to specify the increment. If the increment is not
- specified, the default value of n = 1 will be used.

6

0

- Note: Parameters are entered in the following way:
 - WriteView editor:
 - end value Σ (function[, increment]) x=initial value

 - Σ(function, initial value, end value), increment)

□ Function

The Π function returns the product of a given expression from an initial value to an end value in NORMAL mode.

Performing Π calculations

- Press (ALPHA) \(\bar{\Pi}\).

 Specify the following parameters: initial value, end value, function with variable *X*, and increment (*n*).

 You do not need to specify the increment. If the increment is not
- specified, the default value of n = 1 will be used. Press =
- Parameters are entered in the following way:
 - WriteView editor:
 - end value Π (function[, increment]) $X=initial\ value$

 - Line editor: \prod (function, initial value, end value[, increment])

Random Function

The random function has four settings. (This function cannot be selected while using the N-base function.) To generate further random numbers in succession, press ENTER). Press ON/C to exit.

Random numbers

A pseudo-random number, with three significant digits from 0 up to 0.999, can be generated by pressing $\ensuremath{\mbox{2ndF}}$ (and the leaves) $\ensuremath{\mbox{0}}$ (and the leaves) $\ensuremath{\mbox{0}}$ (but in the leaves) $\ensuremath{\mbox{0}}$ (constant) $\ensuremath{\mbox{0}}$ (but in the leaves) $\ensuremath{\mbox{0}}$ (constant) $\ensuremath{\mbox{$ Note: In the WriteView editor, if the result is not 0 it can be shown as a fraction or decimal using CHANGE.

Random dice

Random coin

To simulate a coin flip, 0 (heads) or 1 (tails) can be randomly generated by pressing 2ndF (RANDOM) 2 (ENTER).

Random integer

You can specify a range for the random integer with "R.Int(" only. R.Int(minimum value, maximum value)
For example, if you enter (2ndF) (2NDER), a 1 (23) 99 (3) (ENTER), a

random integer from 1 to 99 will be generated

Angular Unit Conversions

Each time (2ndF) (DRG) is pressed, the angular unit changes in sequence

Memory Calculations

Temporary memories (A-F, X and Y)

Press (STO) and a variable key to store a value in memory. Press RCL and a variable key to recall the value from that memory. To place a variable in an equation, press (ALPHA) and a variable key.

Independent memory (M)

In addition to all the features of temporary memories, a value can be added to or subtracted from an existing memory value. Press ON/C STO M to clear the independent memory (M).

Last answer memory (ANS)

The calculation result obtained by pressing _ or any other calculation ending instruction is automatically stored in the last answer memory. When the calculation result is in matrix or vector form, the full matrix or vector is not stored into ANS memory. Only the value of the element covered by the cursor is stored. Notes

- Calculation results from the functions indicated below are automatically stored in the X or Y memories replacing any existing values
 - $\rightarrow r\theta$. $\rightarrow xy$: X memory (r or x). Y memory $(\theta \text{ or } y)$
- Two X' values from a quadratic regression calculation in STAT mode: X memory (1:), Y memory (2:)
- Use of RCL or ALPHA will recall the value stored in memory using up to 14 digits.
- . A F, X, Y memory cannot be used in COMPLEX mode

Definable memories (D1-D3)

You can store functions or operations in definable memories (D1-D3).

- To store a function or operation, press STO, followed by a definable memory key (D1), D2, or D3), followed by the operation you want to store. Menu-related operations, such as 2ndF (SET UP), cannot be stored. Press ONC to return to the previous display.
- To call a stored function or operation, press the corresponding memory key. Calling a stored function will not work if the function that is called would be unusable in the current context.
- Any functions or operations that are stored in a definable memory will be replaced when you save a new one into that memory.
- Functions cannot be saved in a definable memory from the simulation calculations and solver functions of NORMAL mode, or from the item and value input screens of other modes.

Memory List

Press ALPHA MEMORY to display a list of the values saved in memory The values are shown in a 9-character range.

Applicable memories: A, B, C, D, E, F, X, Y, M

In COMPLEX mode, only M memory is displayed.

Chain Calculations

The previous calculation result can be used in the subsequent calculation. However, it cannot be recalled after entering multiple instructions or when the calculation result is in matrix/vector format.

Fraction Calculations

Arithmetic operations and memory calculations can be performed using fractions. In NORMAL mode, conversion between a decimal number and a fraction can be performed by pressing (with a conversion).

B

1

- Improper/proper fractions will be converted to and displayed as decimal numbers if the number of digits used in their expression is greater than nine. In the case of mixed fractions, the maximum number of displayable digits (including integers) is eight.
- To convert a sexagesimal value to a fraction, first convert it by pressing 2ndF ++DEG

Binary, Pental, Octal, Decimal, and Hexadecimal Operations (N-base)

Conversions can be performed between N-base numbers in NORMAL mode. The four basic arithmetic operations, calculations with parentheses, and memory calculations can also be performed, along with the logical operations AND, OR, NOT, NEG, XOR, and XNOR on binary, pental, octal, and hexadecimal numbers.

Note: The hexadecimal numbers A–F are entered by pressing y^{ϵ} , y^{ϵ}

cannot be entered. When a decimal number having a fractional part is converted into a binary, pental, octal, or hexadecimal number, the fractional part will be truncated. Likewise, when the result of a binary, pental, octal, or hexadecimal calculation includes a fractional part, the fractional part will be truncated. In the binary, pental, octal, and

hexadecimal systems, negative numbers are displayed as a complement.

Time, Decimal, and Sexagesimal Calculations You can convert between decimal and sexagesimal numbers, and from sexagesimal numbers to seconds or minutes. In addition, the four basic arithmetic operations and memory calculations can be performed using the sexagesimal system. Notation for sexagesimal is as follows:

Coordinate Conversions

 Before performing a calculation, select the angular unit. The results of coordinate conversions will be displayed as decimal numbers even in the WriteView editor.

Physical Constants and Metric Conversions

Calculations using physical constants

To recall a constant, press [ALPHA] [CONST], then select a physical constant from the list. (Each item is labeled with a 2-digit number.)

- last page
- Enter the first digit of the 2-digit item number to jump to the page containing the number that begins with that digit.
- When you enter the second digit, the constant is displayed automatically according to the display and decimal placement settings.
- Physical constants can be recalled in NORMAL (excluding N-base), STAT, COMPLEX, MATRIX, VECTOR and EQUATION modes.

Physical constants and metric conversions are based on the 2014 CODATA recommended values, or on the 2008 Edition of the "Guide for the Use of the International System of Units (SI)" released by NIST (National Institute of Standards and Technology).

No.	Constant		Constant
01	Speed of light in vacuum	27	Stefan-Boltzmann constant
02	Newtonian constant of gravitation	28	Avogadro constant
03	Standard acceleration of gravity	29	Molar volume of ideal gas
04	Electron mass		(273.15 K, 101.325 kPa)
05	Proton mass	30	Molar gas constant
06	Neutron mass	31	Faraday constant
07	Muon mass	32	Von Klitzing constant
80	Atomic mass unit-kilogram	33	Electron charge to mass quotient
	relationship	34	Quantum of circulation
09	Elementary charge	35	Proton gyromagnetic ratio
10	Planck constant	36	Josephson constant
11	Boltzmann constant	37	Electron volt
12	Magnetic constant	38	Celsius Temperature
13	Electric constant	39	Astronomical unit
14	Classical electron radius	40	Parsec
15	Fine-structure constant	41	Molar mass of carbon-12
16	Bohr radius	42	Planck constant over 2 pi
17	Rydberg constant	43	Hartree energy
18	Magnetic flux quantum	44	Conductance quantum
19	Bohr magneton	45	Inverse fine-structure constant
20	Electron magnetic moment	46	Proton-electron mass ratio
21	Nuclear magneton	47	Molar mass constant
22	Proton magnetic moment	48	Neutron Compton wavelength
23	Neutron magnetic moment	49	First radiation constant
24	Muon magnetic moment	50	Second radiation constant
25	Compton wavelength	51	Characteristic impedance of vacuum
26	Proton Compton wavelength	52	Standard atmosphere

Metric conversions

Enter a value to be converted, then press (ALPHA) (CONV), and select a metric conversion by entering its 2-digit number.

The metric conversion list is used in the same manner as the list of

- physical constants.
 Unit conversions can be performed in NORMAL (excluding N-base),
- STAT, MATRIX, VECTOR, and EQUATION modes

No.		Remarks	No.		Remarks
01	in	: inch	23	fl oz(US)	: fluid ounce (US)
02	cm	: centimeter	24	mL	: milliliter
03	ft	: foot	25	fl oz(UK)	: fluid ounce (UK)
04	m	: meter	26	mL	: milliliter
05	yd	: yard	27	cal _{th}	: calorie _{th}
06	m	: meter	28	J	: joule
07	mi	: mile	29	cal ₁₅	: calorie (15°C)
08	km	: kilometer	30	J	: joule
09	n mi	: nautical mile	31	cal _{IT}	: calorie _{IT}
10	m	: meter	32	J	: joule
11	acre	: acre*1	33	hp	: horsepower (UK)
12	m ²	: square meter	34	W	: watt
13	oz	: ounce (avoirdupois)	35	ps	: horsepower (metric)
14	g	: gram	36	W	: watt
15	lb	: pound (avoirdupois)	37	(kgf/cm ²)	
16	kg	: kilogram	38	Pa	: pascal
17	°F	: degree Fahrenheit	39	atm	: atmosphere
18	°C	: degree Celsius	40	Pa	: pascal
19	gal (US)	: gallon (US)	41	(1 mmHg	= 1 Torr)
20	L	: liter	42	Pa	: pascal
21	gal (UK)	: gallon (UK)	43	(kgf·m)	
22	L	: liter	44	N⋅m	: newton meter

^{*1} based on US survey foot

Calculations Using Engineering Prefixes

Calculation can be executed in NORMAL mode (excluding N-base) using the following 9 types of prefixes:

	Prefix	Unit	Prefix	Unit
k	(kilo)	10 ³	m (milli)	10-3
M	(Mega)	106	μ (micro)	10-6
G	(Giga)	10 ⁹	n (nano)	10-9
Т	(Tera)	1012	p (pico)	10-12
			f (femto)	10-15

Modify Function

Decimal calculation results are internally obtained in scientific notation. with up to 14 digits in the mantissa. However, since calculation results are displayed in the form designated by the display notation and the number of decimal places indicated, the internal calculation result may differ from that shown in the display. By using the modify function ((2ndF) MDF)), the internal value is converted to match that of the display, so that the displayed value can be used without change in subsequent operations

- When using the WriteView editor, if the calculation result is displayed using fractions or irrational numbers, press CHANGE to convert it to decimal form first.
- The modify function can be used in NORMAL, STAT, MATRIX, or VECTOR modes.

Various functions

· Refer to the calculation examples for each function

GCD (the Greatest Common Divisor)

What is the GCD of	ON/C) 2 4	_
24 and 36?	2ndF) GCD 36	
	=	12.

LCM (the Least Common Multiple)

What is the LCM of	ON/C) 15	
15 and 9?	2ndF LCM 9	
	=	45.

int÷

- "Q" indicates "Quotient", and "R" indicates "Remainder".
- Pressing 2ndF (int ÷) cannot be followed by pressing a key for
- another operation such as (+, -, ×, ÷), otherwise an error will result.

 The quotient and remainder are shown in "NORM1" format. If not all digits can be displayed in "NORM1" format, normal division is performed.

Returns only the integer part of a decimal number.

fpart

Returns only the fraction part of a decimal number.

Returns the highest integer value that does not exceed the value specified.

When specified immediately after a value, the value is treated as a percentage

For calculation using 2ndF %, refer to the calculation examples (No. 9). You can use 2ndF % to perform premium, Note: discount, and other calculations.

Prime Factorization

In NORMAL mode, the calculation result can be shown as a product of prime numbers

- A positive integer greater than 2 and no more than 10 digits can be factored into primes
- A number that cannot be factored into a prime number with 3 digits
- or shorter is shown in parentheses.

 The calculation result of prime factorization is displayed according to
- the editor setting (W-VIEW or LINE).
 The calculation result of prime factorization may extend off the edges of the screen. You can see those parts by pressing \(\bullet \) or To jump to the left end or right end, press 2ndF or 2ndF .

Simulation Calculation (ALGB)

If you have to find values consecutively using the same expression, such as plotting a curve line for $2x^2 + 1$, or finding the variable values for 2X + 2Y = 14, once you enter the expression, all you have to do is to specify the value for the variable in the equation.

Usable variables: A-F, M, X and Y
• Simulation calculations can only be executed in NORMAL mode.

Calculation ending instructions other than = cannot be used.

Performing calculations

- Press MODE 0
- Input an expression with at least one variable. Press (2ndF) (ALGB).
- 4. The variable entry screen will appear. Enter a value, then press
- After completing the calculation, press 2ndF (ALGB) to perform calculations using the same equation

Solver Function

The solver function finds the value for X that reduces the entered

- This function uses Newton's method to obtain an approximation. Depending on the function (e.g. periodic) or start value, an erro may occur (ERROR 02) due to there being no convergence to the solution for the equation
- The value obtained by this function may include a margin of error.
- Change the "Start" value (e.g. to a negative value) or dx value (e.g. to a smaller value) if:
- · no solution can be found (ERROR 02)
 - more than two solutions appear to be possible (e.g. a cubic equation).
- to improve arithmetic precision.
 The calculation result is automatically stored in the X memory.
- Press ONC to exit the solver function

Performing solver function

- Press MODE 0
- Input an expression with an x variable.
- Press 2ndF SOLVER.
- Enter a "Start" value and press ENTER. The default value is "0".
- Enter a dx value (minute interval).
- Press ENTER

STATISTICAL CALCULATIONS

Statistical calculations can be performed in STAT mode. There are eight sub-modes within STAT mode. Press [MODE] 1, then press the number key that corresponds to your choice:

- (SD): Single-variable statistics (a+bx): Linear regression
 (a+bx+cx²): Quadratic regression (a · e ^ b x): Euler exponential regression
 (a + b · l n x): Logarithmic regression 5 (a·x^b): Power regression 6 (a+b/x): Inverse regression
- 7 (a·b^x): General exponential regression The statistical data input screen appears

STAT menu (ALPHA STAT) and specify statistical variables.

After entering statistical data from the input screen, press DATA or ON/C and close the input table. You can then check statistical values from the

Data Entry and Correction

Data entry

Entry field

Single-variable data table

Two-variable data table

- After entering the data, press ENTER. The input is finalized and the cursor moves to the next line. If data was not entered in an x or y, 0 is entered, 1 is entered in FRQ (frequency), and the cursor moves to the next line
- You can use (x,y) to enter X and FRQ (or X, Y, and FRQ) at once In the input table, up to 6 digits are displayed for each value, including the sign and decimal point. Any values that exceed 6 digits
- in length are displayed in exponent notation. Up to 100 data items can be entered. With single-variable data,
- a data item with an assigned frequency of one is counted as one data item, while an item with an assigned frequency of 2 or higher is stored as a set of two data items. With two-variable data, a set of data items with an assigned frequency of one is counted as two data items, while a set of items with an assigned frequency of 2 or higher stored as a set of three data items
- To execute statistical calculation, press (DATA) or (ON/C) and close the input table.

Data correction

Use \P , \blacktriangleright , \blacktriangle , or \blacktriangledown to move the cursor and select the desired data. Press 2ndF \blacktriangle or 2ndF \blacktriangledown to jump the cursor to the beginning or end of the data.

Data correction

Move the cursor to the data that you want to correct, enter the numeric value, and press ENTER

Data insertion

To insert a line in front of the cursor position, press ALPHA INS-D The initial values entered in the inserted data are 0 in x and y, and 1 in FRQ.

Data deletion

23

To delete the entire line where cursor is positioned, press 2ndF DEL.

- In STAT mode, all statistical data will be erased if the submode is changed or 2ndF CA is pressed.

 In STAT mode, press DATA to display the input table.

Statistical Calculations and Variables

The following statistics can be obtained for each statistical calculation (refer to the table below):

Single-variable statistical calculation

Linear regression calculation

Statistics of $\textcircled{\scriptsize 1}, \textcircled{\scriptsize 3}$ and the value of the normal probability function.

Statistics of 1, 2 and 4. In addition, the estimate of y for a given x

(estimate y') and the estimate of x for a given y (estimate x'). Quadratic regression calculation

Statistics of 1, 2 and 4. And coefficients a,b,c in the quadratic regression formula ($v = a + bx + cx^2$), (For quadratic regression calculations, no correlation coefficient (r) can be obtained.) When there are two $x^{'}$ values, each value will be displayed with "1:" or

"2:", and stored separately in the X and Y memories You can also specify the 1st value (x1) and the 2nd value (x2) separately.

Euler exponential regression, logarithmic regression, power regression, inverse regression,

and general exponential regression calculations

Statistics of 1, 2 and 4. In addition, the estimate of y for a given $\it x$ and the estimate of $\it x$ for a given $\it y$. (Since the calculator converts each formula into a linear regression formula before actual calculation takes place, it obtains all statistics, except coefficients a and b, from converted data rather than entered data.)

	n	Number of samples
	\overline{x}	Mean of samples (x data)
	SX	Sample standard deviation (x data)
	S^2X	Sample variance (x data)
	σχ	Population standard deviation (χ data)
1	σ ² <i>X</i>	Population variance (x data)
	Σx	Sum of samples (x data)
	Σx^2	Sum of squares of samples (χ data)
	xmin	Minimum value of samples (x data)
	xmax	Maximum value of samples (x data)

	\bar{y}	Mean of samples (y data)
	sy	Sample standard deviation (y data)
	s²y	Sample variance (y data)
	σу	Population standard deviation (y data)
	σ²y	Population variance (y data)
	Σy	Sum of samples (y data)
2	Σy^2	Sum of squares of samples (y data)
	Σxy	Sum of products of samples (x, y)
	Σx^2y	Sum of products of samples (x², y)
	$\Sigma \chi^3$	Sum of 3rd powers of samples (x data)
	Σx^4	Sum of 4th powers of samples (x data)
	ymin	Minimum value of samples (y data)
ymax		Maximum value of samples (y data)
	Q_1	First quartile of sample (x data)
3	Med	Median of sample (x data)
	Q_3	Third quartile of sample (x data)
	r	Correlation coefficient (Except Quadratic regression)
	а	Coefficient of regression equation
_	b	Coefficient of regression equation
4	С	Coefficient of quadratic regression equation
	R ²	Coefficient of determination (Quadratic regression)
	r^2	Coefficient of determination (Except Quadratic regression)

STAT Menu

After closing the input table, you can view statistical values, view regression coefficient values, and specify statistical variables from the STAT menu (ALPHA STAT).

(ALPHA) (STAT) (0): Display statistical values
ALPHA STAT 1: Display regression coefficient values
ALPHA STAT 2: Specify statistical value variables
(ALPHA) (STAT) (3): Specify statistical value (Σ related) variables
ALPHA STAT 4: Specify max/min value variables
(ALPHA) (STAT) 5: Specify regression coefficient variables

- List display of regression coefficient values and specification of regression coefficient variables do not appear in single-variable statistical calculation.
- Estimated values x' and y' are specified with the keys (2ndF) x', 2ndF y'). If there are two x' values, you can specify x1' and x2' from the STAT menu (ALPHA) (STAT) (5)) to obtain the values separately
- In the statistical value and regression coefficient value lists, you cannot return to the menu by pressing (BS)

Statistical Calculation Formulas

An error will occur when

- The absolute value of the intermediate result or calculation result is equal to or greater than 1 × 10¹⁰⁰.
 The denominator is zero.
- An attempt is made to take the square root of a negative number. No solution exists in the quadratic regression calculation.

Normal Probability Calculations

In STAT mode, the three probability density functions can be accessed under the MATH menu, with a random number used as a normal $\,$ distribution variable.

- P(t), Q(t), and R(t) will always take positive values, even when t < 0. because these functions follow the same principle used when solving for an area.
- Values for P(t), Q(t), and R(t) are given to six decimal places.
- The standardization conversion formula is as follows:

$$t = \frac{x - \overline{x}}{\mathbf{O}x}$$

TABLE MODE

You can see the changes in values of one or two functions using TABLE mode

Setting a table

- 1. Press MODE 2 to enter TABLE mode.
- 2. Enter a function (Function1), and press (ENTER).
 3. If needed, enter the 2nd function (Function2) and press (ENTER)
- 4. Enter a starting value (X_Start:), and press ENTER The default starting value is 0.

 5. Enter a step value (X_Step:). The default step value is 1.
- You can use and to move the cursor between the starting value and step value.
- 6. Press ENTER when you finish entering a step value. A table with a variable X and the corresponding values (ANS column) appears, displaying 3 lines below the starting value.

 If you entered two functions, the ANS1 and ANS2 columns appear.
- You can use ▲ and ▼ to change the X value and see its corresponding values in table format.
- The table is for display only and you cannot edit the table.
- · The values are displayed up to 7 digits, including signs and a decimal
- Press or to move the cursor to ANS column (ANS1 and ANS2 columns if you entered two functions) or X column
- . Full digits of the value on the cursor are displayed on the bottom right. Notes:
- In a function, only "X" can be used as a variable, and other variables are all regarded as numbers (stored into the variables).
- Irrational numbers such as √ and π can also be entered into a starting value or a step value. You cannot enter 0 or a negative number as a step value
- You can use WriteView editor when inputting a function.
- The following features are not used in TABLE mode: coordinate conversions, conversion between decimal and sexagesimal numbers, and angular unit conversions.
- It may take time to make a table, or "-----" may be displayed, depending on the function entered or conditions specified for the variable X.
- Please note that when making a table, the values for variable X are rewritten.
- . Press (2ndF) CA or mode selection to return to the initial screen of the
- mode, and return to the default values for the starting value and step value.

COMPLEX NUMBER CALCULATIONS

To carry out addition, subtraction, multiplication, and division using complex numbers, press $\boxed{\text{MODE}} \boxed{3}$ to select COMPLEX mode. Results of complex number calculations are expressed using two

systems:
① (2ndF) →xy: Rectangular coordinate system (The **xy** symbol appears.) (2) (2ndF) →rθ; Polar coordinate system (The Pθ symbol appears.)

Complex Number Entry

- Rectangular coordinates x-coordinate + y-coordinate i
 or x-coordinate + i y-coordinate ② Polar coordinates $r(2ndF) \angle \theta$
 - r: absolute value $\theta \text{: argument}$
- On selecting another mode, the imaginary part of any complex number stored in the independent memory (M) and the last answer memory (ANS) will be cleared.
- A complex number expressed in rectangular coordinates with the y-value equal to zero, or expressed in polar coordinates with the angle
- equal to zero, is treated as a real number.
 From the MATH menu, you can obtain the complex conjugate (conj(), the argument of a complex number (arg(), the real part of a complex number (real(), and the imaginary part of a complex number (img().

EQUATION SOLVERS

The results obtained by these functions may include a margin of error.

Simultaneous Linear Equations

Simultaneous linear equations with two unknowns (2-VLE) or with three unknowns (3-VLE) may be solved using the following functions 1 2-VLE: MODE 4 0

$$\begin{bmatrix} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \\ a_3x + b_3y + c_3z = d_3 \end{bmatrix} \hspace{-0.5cm} \begin{array}{c} |D| = \\ a_1 \, b_1 \, c_1 \\ a_2 \, b_2 \, c_2 \\ a_3 \, b_3 \, c_3 \end{array}$$

- If the determinant D = 0, an error occurs.
- If the absolute value of an intermediate result or calculation result is 1

Solving simultaneous linear equations

- Press (MODE) 4 0 or (MODE) 4 1. Enter the value for each coefficient (a_1 , etc.).

 Coefficients can be entered using ordinary arithmetic operations.
- To clear the entered coefficient, press ONC.

 Press or to move the cursor up or down through the
- coefficients. Press 2ndF ▲ or 2ndF ▼ to jump to the first or 3. When all coefficients have been entered, press ENTER to solve the
- While the solution is displayed, press ENTER or ONC to return to the coefficient entry display. To clear all the coefficients, press (2ndF) CA).

Quadratic and Cubic Equations

Quadratic $(ax^2 + bx + c = 0)$ or cubic $(ax^3 + bx^2 + cx + d = 0)$ Quadratic (txx + txx + c = 0) of cubic (txx + c = 0) of cubic (txx

- If there are two or more solutions, those solutions are also shown
- If calculable, you can also obtain the minimum value (when a > 0) and the maximum value (when a < 0) of a quadratic function ($y = ax^2 + bx$

Solving quadratic and cubic equations

- Press MODE 4 2 or MODE 4 3.
 Coefficients for these equations can be entered in the same manner as
- those for simultaneous linear equations.

 When using the QUADRATIC equation solver, continue by pressing [ENTER] (or (▼)) to display the minimum value or maximum value. To return to the solution, press with the minimum value or maximum value displayed.
- To return to the coefficient entry screen when the solution (or minimum/maximum value) is displayed, press (ENTER) or (ON/C).

 • To clear all the coefficients, press (2ndF) (CA).

MATRIX CALCULATIONS

You can store and calculate up to four matrices

- **Entering and Storing Matrices**
- Press MODE 5 to enter MATRIX mode.
 Press MATH 1 to bring up the matrix entry screen.
- Any matrix data remaining in the buffer, along with any previously entered, loaded, or calculated matrix data, will be displayed.
- Define the matrix dimensions (up to four rows by four columns) by entering the required dimensions using the number keys and pressing

Matrix entry screen (example)

- 4. Enter each element in the matrix by entering a value in the entry field and pressing (ENTER).
 - Each matrix element can display up to seven digits (the decimal) point counts as one digit). If an element exceeds seven digits in length, it may be displayed in exponent notation within the matrix.
 - A maximum of three rows by three columns can be displayed at one time. Use , , , , and b to move the cursor through the matrix.
- 5. When you have entered a value for each element, press ONC to exit the matrix entry screen.

 6. Press (MATH) 3 and select a memory (matA-matD) to store the
- newly-created matrix in.

Modifying a stored matrix

- 1. To load a stored matrix into the matrix entry screen, press MATH 2 , then select the memory (matA-matD) that you wish to modify.
 - Loading new data into the screen will automatically replace any data that may already exist there.
- Modify the values of elements in the matrix, and press ENTER after
 - each one. If you wish to modify the number of rows or columns, first press
 ONC MATH
 1. You can then enter new values for the matrix
- dimensions When you have finished making changes, press ONC to exit the
- matrix entry screen.

 Press MATH 3 and select a memory (matA-matD) to store the newly-created matrix in

Using Matrices in Calculations

Matrices stored in memories (matA-matD) can be used in arithmetic calculations (with the exception of division between matrices) and calculations that use X^3 , X^2 , and X^{-1} . You can also use the following matrix-specific functions that are available in the MATH menu.

det matrix name	Returns the determinant of a square matrix.
trans matrix name	Returns the matrix with the columns transposed to rows and the rows transposed to columns.
identity value	Returns the identity matrix with specified value of rows and columns.
dim (matrix name, row, column)	Returns a matrix with dimensions changed as specified.
fill (value, row, column)	Fills each element with a specified value.
rand_mat (row, column)	Returns a random matrix with specified values of rows and columns.
ref(matrix name)	Transform to row echelon form.
rref(matrix name)	Transform to reduced row echelon form.

3

- · When the matrix entry screen is displayed, you cannot perform matrix calculations because the MATH menu is not available.
- If the calculation result is a matrix, it will be displayed in the matrix entry screen (note that this replaces any existing data in the buffer). To store the calculation result, first press ONC to exit the matrix entry screen. Press MATH 3 and select a memory (matA-matD) to store the newly-created matrix in.
- When the calculation results are in matrix form, pressing neither
 nor will bring you back to the original expression.

VECTOR CALCULATIONS

You can store and calculate up to four vectors of two or three dimension in VECTOR mode

Entering and Storing Vectors

Before performing vector calculations, a vector must be created. Follow the steps below to enter and store vectors.

- Press MODE 6 to enter VECTOR mode.
 Press MATH 1 to bring up the vector entry screen.
- Any vector data remaining in the buffer, along with any previously entered, loaded, or calculated vector data, will be displayed.
- Define the vector dimensions (2 dimensions or 3 dimensions) by using the number keys and pressing (ENTER).
 - Enter each element in the vector by entering a value in the entry field and pressing ENTER. Each vector element can display up to seven digits (the decimal
 - point counts as one digit). If an element exceeds seven digits in length, it may be displayed in exponent notation within the vector.

 When you have finished entering a value for each element, press
- ONC to exit the vector entry screen.

 Press MATH 3 and select a memory (vectA-vectD) to store the newly-created vector in.

Modifying a stored vector

- To load a stored vector into the vector entry screen, press MATH 2 , then select the memory (vectA-vectD) that you wish to
- Loading new data into the screen will automatically replace any data that may already exist in the vector entry screen.
- Modify the values of elements in the vector, and press ENTER after each one. If you wish to modify the number of dimensions, first press ON/C MATH 1. You can then enter new values for the vector
- dimensions. When you have finished making changes, press ONC to exit the
- vector entry screen.

 Press (MATH) 3 and select a memory (vectA-vectD) to store the newly-created vector in.

Using Vectors in Calculations

vectors stored in memories (vectA-vectD) can be used in arithmetic calculations (with the exception of division between vectors). You can also use the following vector-specific functions that are available in the

DotPro(vector name, vector name)	Returns the dot product.
CrossPro(vector name, vector name)	Returns the cross product.
Angl(vector name, vector name)	Returns the angle.
Unit(vector name)	Returns the unit vector.

- You can use "abs" function (abs vector name) for the absolute value.
- When multiplying vectors, the cross product is calculated
- When the vector entry screen is displayed, press ONC and then you perform vector calculations.
- If the calculation result is a vector, it will be displayed in the vector entry screen. To store the calculation result, first press ONC to exit the vector entry screen. Press MATH 3 and select a memory (vectA-vectD)
- to store the newly-created vector in. When the calculation results are in vector form, pressing neither
- nor will bring you back to the original expression.

DISTRIBUTION FUNCTIONS

The calculator has distribution features to find statistical calculations. Press MODE 7, and select the type (NORMAL, BINOMINAL, POISSON), and then select the desired distribution function. Note: Calculation results are stored in ANS memory.

Normal Distribution

Normal pdf

Calculates the probability density of the specified value x for the normal distribution with the specified mean (μ) and standard deviation (σ).

Normal cdf

Calculates the probability of a specified intervals x1-x2 for the normal distribution with the specified mean (μ) and standard deviation (σ).

Calculates the inverse cumulative normal distribution function for a given area (a) under the normal distribution curve specified by mean (μ) and standard deviation (σ).

Binomial Distribution

Binomial pdf

Calculates a probability density at x for the discrete binomial distribution with the specified trial number (n) and probability of success (p) on each trial.

Binomial cdf

Calculates a cumulative probability at x for the discrete binomial distribution with the specified trial number (n) and probability of success (p) on each trial.

Poisson Distribution

Poisson pdf

Calculates a probability at x for the Poisson distribution with the specified mean (µ)

Poisson cdf

Calculates a cumulative probability at x for the Poisson distribution

with the specified mean (
Find the nominal distribution probability density for x = 65 when the normal distribution of the test score averages is 60 with a standard deviation of 6.	0 65 ENTER 60	Normal pdf x : μ : σ : 6_	65. 60.
	ENTER	ANS = 0.04698	35312
Calculate the probability of range x = 54 to 66 in the	MODE 7 0 1 5 4 ENTER 6 6	Normal cdf	54.
above sample.	ENTER 60 ENTER 6	x2: μ:	66. 60.
		σ:6_	
	ENTER	ANS =	
		0.68268	39492
Find the value of x for the	MODE 7 0	Inverse Norma	al
probability of 0.8 in the above sample.	2 0.8 ENTER 60	a:	0.8
	ENTER 6	μ :	60.
		σ:6_	
	ENTER	ANS =	
		65.049	7274
Find the probability density	MODE 7 1	Binomial pdf	
for 15 trials with x = 7, for the binomial distribution with	0 7 ENTER 15	x:	7.
success probability of 30%.	ENTER 0.3	n:	15.
		p:0.3_	
	ENTER	ANS =	
		0.08113	30033
Calculate the probability of	MODE 7 1	Binomial cdf	
range up to x = 7 (success number) in the above	1 7 ENTER 15	x:	7.
sample.	ENTER 0.3	n:	15.
		p:0.3_	
	(ENTER)	p:0.3_ ANS=	
	(ENTER)		
Find the probability density	MODE 7 2	ANS = 0.94998 Poisson pdf	37459
Find the probability density of x = 4, for the mean of a Poisson distribution of 3.6.		ANS = 0.94998 Poisson pdf x :	
of $x = 4$, for the mean of a	MODE 7 2 0 4 ENTER 3.6	ANS = 0.94998 Poisson pdf x : $\mu:3.6$	37459
of $x = 4$, for the mean of a	MODE 7 2	ANS = 0.94998 Poisson pdf x : μ : 3.6 - ANS =	4.
of x = 4, for the mean of a Poisson distribution of 3.6.	MODE 7 2 0 4 ENTER 3.6	ANS = 0.94998 Poisson pdf x : μ : 3.6 - ANS = 0.19122	4.
of $x = 4$, for the mean of a	MODE 7 2 0 4 ENTER 3.6	ANS = 0.94998 Poisson pdf x : μ : 3.6 - ANS =	4.

(ENTER)

DRILL MODE

Math Drill: MODE 8 0

Math operation questions with positive integers and 0 are displayed randomly. It is possible to select the number of questions and operator

Multiplication Table (X Table): MODE 8 1 Questions from each row of the multiplication table (1 to 12) are displayed serially or randomly.

To exit DRILL mode, press [MODE] and select another mode

Using Math Drill and X Table

- Press MODE 8 0 for Math Drill or MODE 8 1 for X Table. **Math Drill:** Use and to select the number of questions (25,
 - X Table: Use ▲ and ▼ to select a row in the multiplication table (1 to 12)
- Math Drill: Use ◀ and ▶ to select the operator type for questions $(+, -, \times, \div, \text{ or } +-\times \div)$

X Table: Use ◀ and ▶ to select the order type ("Serial" or

- When using Math Drill or X Table (random order only), questions are randomly selected and will not repeat except by chance.

 Enter your answer. If you make a mistake, press ONC or BS to clear
- any entered numbers, and enter your answer again
- 6. Press (ENTER).
 - If the answer is correct, "appears and the next question is displayed.
 - If the answer is wrong, "

 " appears and the same question is displayed. This will be counted as an incorrect answer.
 - If you press ENTER without entering an answer, the correct answer is displayed and then the next question is displayed. This will be counted as an incorrect answer
- Continue answering the series of questions by entering the answer and pressing ENTER
- After you finish, press ENTER and the number and percentage of correct answers are displayed.
- Press ENTER to return to the initial screen for your current drill

Ranges of Math Drill Questions

The range of questions for each operator type is as follows

- Addition operator: "0 + 0" to "20 + 20" Subtraction operator: "0 0" to "20 20"; answers are
- positive integers and 0.
- Multiplication operator: "1 \times 0" or "0 \times 1" to "12 \times 12"
- **Division operator**: "0 ÷ 1" to "144 ÷ 12"; answers are positive integers from 1 to 12 and 0, dividends of up to 144, and divisors of up to 12.
- Mixed operators: Questions within all the above ranges are

ERRORS AND CALCULATION RANGES

An error will occur if an operation exceeds the calculation ranges, or if a mathematically illegal operation is attempted. When an error occurs, pressing
or
automatically moves the cursor back to the place in the equation where the error occurred. Edit the equation or press ONC or (2ndF) CA to clear the equation.

Error codes and error types

ERROR 01: Syntax error

An attempt was made to perform an invalid operation Ex. 2 + - 5 =

FRBOR 02: Calculation error

- The absolute value of an intermediate or final calculation result equals or exceeds 10¹⁰⁰.
- · An attempt was made to divide by zero (or an intermediate calculation resulted in zero).
- The calculation ranges were exceeded while performing calculations.
 0 or a negative number was entered as a step value in TABLE mode.
- The absolute value of a starting value or a step value equals of exceeds 10100 in TABLE mode.
- When the number to be factored into primes is greater than 2 and other than a 10-digit positive integer, or when the result of prime factorization is a negative number, decimal, fraction, $\sqrt{\ }$, or π

ERROR 03: Nesting error

- The available number of buffers was exceeded. (There are 10 buffers for numeric values and 64 buffers for calculation instructions).
- 5 buffers in COMPLEX mode, and 1 buffer for matrix/vector data

ERROR 04: Data over error

Data items exceeded 100 in STAT mode

ERROR 07: Definition error

Matrix definition error or the attempted entering of an invalid value

ERROR 08: DIM unmatched error

Matrix/vector dimensions inconsistent while calculating.

ERROR 10: Undefined error

Undefined matrix/vector used in calculation

Alert Messages

Cannot deletel

 $\mu : 3.6_{-}$

0.706438449

The selected item cannot be deleted by pressing BS or 2ndF DEL

parentheses.

· The function or operation stored in definable memory (D1 to D3)

Ex. An attempt was made to recall a statistical variable from within NORMAL mode

 The equation (including any calculation ending instructions) exceeded its maximum input buffer (159 characters in the WriteView editor or 161 characters in the Line editor). An equation may not exceed its maximum input buffer.

Calculation Ranges

Within the ranges specified, this calculator is accurate to ± 1 of the 10th digit of the mantissa. However, a calculation error increases in continuous calculations due to accumulation of each calculation error. (This is the same for $\mathcal{V}^{\mathcal{X}}$, $\mathcal{X}_{\sqrt{1}}$, $\mathcal{X$ Vector calculations, Π , etc., where continuous calculations are performed internally.)

Additionally, a calculation error will accumulate and become larger in the vicinity of inflection points and singular points of

- functions. Calculation ranges

 $\pm 10^{-99}$ to $\pm 9.999999999 \times 10^{99}$ and 0. If the absolute value of an entry or a final or intermediate result of a calculation is less than 10^{-99} , the value is considered to be 0 in calculations and in the display.

Display of results using $\sqrt{}$ (when EXACT is selected)

Calculation results may be displayed using $\sqrt{}$ when all of the following

When intermediate and final calculation results are displayed in the following form:

$$\pm \frac{a\sqrt{b}}{e} \pm \frac{c\sqrt{d}}{f}$$

- When each coefficient falls into the following ranges: $1 \le a < 100$; 1 < b < 1,000; $0 \le c < 100$; $1 \le d < 1,000$; $1 \le e < 100$; $1 \le f < 100$
- When the number of terms in the intermediate and final calculation results is one or two.

The result of two fractional terms that include $\sqrt{\ }$ will be reduced to a common denominator

BATTERY REPLACEMENT

Notes on Battery Replacement

Improper handling of batteries can cause electrolyte leakage or explosion

- Be sure to observe the following handling rules:

 Make sure the new battery is the correct type.
- · When installing, orient the battery properly as indicated in the calculator.
- · The battery is factory-installed before shipment, and may be exhausted before it reaches the service life stated in the specifications.

Notes on erasure of memory contents

When the battery is replaced, the memory contents are erased Erasure can also occur if the calculator is defective or when it is repaired. Make a note of all important memory contents in case accidental erasure occurs.

When to Replace the Battery

If the display has poor contrast or nothing appears on the display when ONC is pressed in dim lighting, even after adjusting the display contrast, it is time to replace the battery.

Cautions

- · An exhausted battery left in the calculator may leak and damage the
- Fluid from a leaking battery accidentally entering an eye could result in serious injury. Should this occur, wash with clean water and immediately consult a doctor
- Should fluid from a leaking battery come in contact with your skin or clothes, immediately wash with clean water.
- If the product is not to be used for some time, to avoid damage to the unit from a leaking battery, remove it and store in a safe place. Do not leave an exhausted battery inside the product.
- Keep batteries out of the reach of children.
- Explosion risk may be caused by incorrect handling. · Do not throw batteries into a fire as they may explode
- Replacement Procedure
- 1. Turn the power off by pressing 2ndF OFF. 2. Remove two screws. (Fig. 1)
- Lift the battery cover to remove.
 Remove the used battery by prying it out with a ball-point pen or other similar pointed device.
- (Fig. 2) Install one new battery. Make sure the "+" side is facing up.
- 6. Replace the cover and screws
- 7. Press the RESET switch (on the back) with the
- tip of a ball-point pen or similar object.

 8. Adjust the display contrast. See "Adjusting the display contrast". And then press (ONC).

 Make sure that the display appears as shown
- below. If the display does not appear as shown, remove the battery, reinstall it, and check the display once again.

Automatic Power Off Function

This calculator will turn itself off to save battery power if no key is pressed for approximately 10 minutes.

SPECIFICATIONS

Display: 96 × 32 dot matrix liquid crystal display

Display of calculation results:

Mantissa: 10 digits Exponent: 2 digits

Internal calculations: Mantissas of up to 14 digits

Pending operations:

64 calculations 10 numeric values (5 numeric values in COMPLEX mode, and 1 numeric value for Matrix/Vector data.)

Built-in solar cells

1.5 V ... (DC): Backup battery (Alkaline battery (LR44 or equivalent) × 1)

Approx. 3,000 hours when continuously

Operating time: displaying 55555 at 25°C (77°F), using the (varies according to use and other factors) alkaline battery only

Operating temperature: 0°C-40°C (32°F-104°F)

External dimensions: 80 mm (W) × 166 mm (D) × 15 mm (H) 3-5/32" (W) × 6-17/32" (D) × 19/32" (H)

Weight: Approx. 113 g (0.25 lb) (including battery)

SHARP

CALCULATION EXAMPLES EXEMPLES DE CALCUL EJEMPLOS DE CÁLCULO

WriteView **EL-W516T**

6 • **v**

,,,,,,	<i></i>	
• (50)	_,	
SET UP (FSI	E) 	
100000 ÷ 3 =	ON/C 100000 ÷ 3	
[NORM1]	= CHANGE CHANGE	33'333.33333
→ [FIX: TAB 2]	2ndF (SET UP) 1 0 2	33'333.33
→ [SCI: SIG 2]	2ndF (SET UP) 1 1 2	3.3 E 04
→ [ENG: TAB 2]	2ndF (SET UP) 1 2 2	33.33 €03
→ [NORM1]	2ndF (SET UP) 1 3	33'333.33333
SET UP (ED	ITOR)	
→ [APPROX.]	ON/C 2ndF SET UP 2	0 1 0.
1 ÷ 2 =	1 ÷ 2 =	0.5
→ [EXACT(a/b,√,π	ON/C 2ndF SET UP 2	0 0 0.
1 ÷ 2 =	1 ÷ 2 =	1 2
3 (SET UP) (RE	CURRING DECIMAL)	,
→ [ON]	ON/C 2ndF SET UP 5	0.
611 ÷ 495 =	611 ÷ 495 =	1 116
311 ÷ 1 03 =	CHÂNGE	<u>611</u>
	CHANGE	1,234
	(CHÂNGE)	1.23434343434 $1\frac{116}{495}$
	(CHÂNGE)	495
LINE	611 ÷ 495 =	1.2(34)
	CHANGE	1.234343434
	CHANGE	1г116г495
	CHANGE	611-495
	CHANGE	1.2(34)
→ [OFF]	ON/C 2ndF (SET UP) 5	0.
4 CHANGE		
$\frac{2}{5} + \frac{3}{4} =$	ON/C 2 (a/b) 5 (b)	
5 4	+ a/b 3 • 4	$1\frac{3}{26}$
	CHANGE	23 20
	CHANGE	1.15
	CHANGE	1 3/20
$\sqrt{3} \times \sqrt{5} =$	√ 3 ► × √	5
	CHANGE	√15 3.872983346
sin 45 =	sin) 45 (=)	√2
		2

CHANGE

0.707106781

LINE		8 yx (-) 3 yx 4 >	12 <u> </u>	
		<u>X²</u> =	-2'0	124.984375
		(CHANGE)		024r63r64
-2		(CHANGE)		129599 - 64
83 =	_	8 (2ndF) (x ³	- 4 (2nd	512. ====================================
$\sqrt{49} - \sqrt[4]{81}$	=	¥9 1 81 =		<u> </u>
LINE		2ndF × 8	1 =	4.
$3\sqrt{27} =$		2ndF) (∛) 2	7 =	3.
4! =		4 (2ndF) (n!) =	24.
10P3 =		10 (2ndF) (nF	<i>r</i> 3 =	720.
5C ₂ =		5 2ndF nCr	2 =	10.
500 × 25% :	=	500 × 2	5 (2ndF) (%)	125.
120 ÷ 400 =	= ?%	120 ÷ 4	00 (2ndF) (%	30.
500 + (500 >	× 25%) =	500 + 2	5 (2ndF) (%)	625.
400 – (400 >	× 30%) =	400 _ 3	0 (2ndF) (%)	280.
5 – 9 =		2ndF abs 5	<u> </u>	4.
	$\theta = \sin^{-1}$	x , $\theta = \tan^{-1} x$	$\theta = c$	os ⁻¹ x
DEG	-90	≤ θ ≤ 90	0 ≤ θ	≤ 180
RAD	$-\frac{\pi}{2}$	$\leq \theta \leq \frac{\pi}{2}$	0 ≤ ($\theta \leq \pi$
GRAD		<u>∠</u> ≤ θ ≤ 100	0 ≤ θ	≤ 200
	1/1			
_		ON/C) (ALPHA) (fd.		<u> </u>
$\int_{2}^{8} (x^2 - 5) dx$	ı _x	DN/C ALPHA (d.	2 🛕 8 (2)	
$\int_{2}^{8} (x^2 - 5)d$ $n = 100$	ı _x	DN/C ALPHA fd.	2 🛕 8 (2) - 5	138.
$\int_{2}^{8} (x^{2} - 5)dx$ $n = 100$ $n = 10$	/x (f	= (x, x)	10 =	138.
	/x (f	= \(\big(\alpha \) \(\alpha	$\begin{array}{c} 2 - 5 \\ \hline \end{array}$	138.
$\int_{2}^{8} (x^{2} - 5)dx$ $n = 100$ $n = 10$ $\frac{d(x^{4} - 0.5x^{3})}{dx}$ $\int x = 2$	$\frac{1}{2}$	= (x2)	$\begin{array}{c} 2 - 5 \\ \hline \end{array}$	138. 138.
$\int_{2}^{8} (x^{2} - 5)dx$ $n = 100$ $n = 10$ $\frac{d(x^{4} - 0.5x^{2})}{dx}$	$\frac{1}{2}$	= \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{c} 2 - 5 \\ \hline \end{array}$	138. 138.
$\int_{2}^{8} (x^{2} - 5)dx$ $n = 100$ $n = 10$ $\frac{d(x^{4} - 0.5x^{2})}{dx}$ $\left(\begin{array}{c} x = 2 \\ dx = 0.000 \end{array}\right)$	$\begin{cases} x & \begin{cases} \frac{1}{6} \\ \frac{1}{6} \\ \frac{1}{6} \\ \frac{1}{6} \end{cases} \end{cases}$	=	10 = 10 x y ^x 10 x 2ndF 10 x 2x	138. 138. 4 \(\brace X^3 \) 50.
$\int_{2}^{8} (x^{2} - 5)dx$ $n = 100$ $n = 10$ $\frac{d(x^{4} - 0.5x^{2})}{dx}$ $\left(\begin{array}{c} x = 2 \\ dx = 0.000 \end{array}\right)$	$\begin{cases} x & \begin{cases} \frac{1}{6} \\ \frac{1}{6} \\ \frac{1}{6} \\ \frac{1}{6} \end{cases} \end{cases}$	□	10 = 10 (x) (x) (2ndf) (x) (x²)	138. 138. 4 \(\brace X^3 \) 50.
$\int_{2}^{8} (x^{2} - 5)dx$ $n = 100$ $n = 10$ $\frac{d(x^{4} - 0.5x^{5})}{dx}$ $\begin{cases} x = 2 \\ dx = 0.000 \end{cases}$	$\begin{cases} x & \begin{cases} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2$	□	10 = 10 (x) (x) (2ndf) (x) (x²)	138. 138. 138.
$\int_{2}^{8} (x^{2} - 5) dx$ $n = 100$ $n = 10$ $\frac{d(x^{4} - 0.5x^{5})}{dx}$ $\begin{cases} x = 2 \\ dx = 0.000 \end{cases}$ $\sum_{x=1}^{5} (x + 2)$	$\begin{cases} x & \begin{cases} \begin{cases} \frac{3}{6} \\ \frac{3}{6} \end{cases} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases} \\ = \begin{cases} \frac{3}{6} + 6x^2 \\ \frac{3}{6} \end{cases}$		10 = 10 (x) (x) (2ndf) (x) (x²)	138. 138. 4 \(\bar{X}^3 \) 50.
$\int_{2}^{8} (x^{2} - 5)dx$ $n = 100$ $n = 10$ $\frac{d(x^{4} - 0.5x^{2})}{dx}$ $\left(\begin{array}{c} x = 2 \\ dx = 0.000 \end{array} \right)$ $\sum_{x=1}^{5} (x + 2)$ $n = 1$	$\begin{cases} x & \begin{cases} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2$		10 = 10 x yx x (2ndf) x (x²)	138. 138. 4 • • • 50.
$\int_{2}^{8} (x^{2} - 5)dx$ $n = 100$ $n = 10$ $\frac{d(x^{4} - 0.5x^{2})}{dx}$ $\left(\begin{array}{c} x = 2 \\ dx = 0.000 \end{array} \right)$ $\sum_{x=1}^{5} (x + 2)$ $n = 1$ $n = 2$	$\begin{cases} x & \begin{cases} \frac{1}{2} \\ \frac{1}{2$	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	10 = 10 x yx x 2ndf x x x ² 1 > 5 > 2 = 1 > 5	138. 138. 4
$\int_{2}^{8} (x^{2} - 5) dx$ $n = 100$ $n = 10$ $\frac{d(x^{4} - 0.5x^{5})}{dx}$ $\left(\begin{array}{c} x = 2 \\ dx = 0.000 \end{array} \right)$ $\sum_{x=1}^{5} (x + 2)$ $n = 1$ $n = 2$	$\begin{cases} x & \begin{cases} \frac{1}{6} \\ \frac{1}{6$	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	10 = 4	138. 138. 4
$\int_{2}^{8} (x^{2} - 5)dx$ $n = 100$ $n = 10$ $\frac{d(x^{4} - 0.5x^{5})}{dx}$ $\left(\begin{array}{c} x = 2 \\ dx = 0.000 \end{array} \right)$ $\sum_{x=1}^{5} (x + 2)$ $n = 1$ $n = 2$	$\begin{cases} x & \begin{cases} \frac{3}{6} \\ \frac{3}{6$	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	10 = M X yx X 2ndF X X² 1	138. 138. 4
$\int_{2}^{8} (x^{2} - 5)dx$ $n = 100$ $n = 10$ $d(x^{4} - 0.5x^{5})$ dx $\int_{x=2}^{x=2} (x + 2)$ $n = 1$ $n = 2$ $\prod_{x=1}^{5} (x + 2)$ $n = 1$ $n = 2$	$\begin{cases} x & \begin{cases} \frac{3}{2} \\ \frac{3}{2$		10 = M X yx X 2ndF X X² 1	138. 138. 138. 50. 25. 15.
$\int_{2}^{8} (x^{2} - 5) dx$ $n = 100$ $n = 10$ $\frac{d(x^{4} - 0.5x^{5})}{dx}$ $\left(\begin{array}{c} x = 2 \\ dx = 0.000 \end{array} \right)$ $m = 1$ $m = 2$	$\begin{cases} x & \begin{cases} \frac{3}{6} \\ \frac{3}{6$	□PHA	10 = WA X yx yx 2ndF X X2 2 = 1	138. 138. 4
$\int_{2}^{8} (x^{2} - 5)dx$ $n = 100$ $n = 10$ $\frac{d(x^{4} - 0.5x^{3})}{dx}$ $\begin{cases} x = 2 \\ dx = 0.000 \end{cases}$ $\sum_{x=1}^{5} (x + 2)$ $n = 1$ $n = 2$	$\begin{cases} x & \begin{cases} \frac{3}{2} \\ \frac{3}{2$	LIPHA X X X	10 = WA X yx yx 2ndF X X2 2 = 1	$ \begin{array}{c c} & 138. \\ \hline & 138. \\ \hline & 25. \\ \hline & 25. \\ \hline & 15. \\ \hline & 25. \\ \hline & 105. \\ \hline & \frac{1}{2}\pi \end{array} $
$\int_{2}^{8} (x^{2} - 5)dx$ $n = 100$ $n = 10$ $\frac{d(x^{4} - 0.5x^{5})}{dx}$ $\left(\begin{array}{c} x = 2 \\ dx = 0.000 \end{array}\right)$ $m = 1$ $m = 1$ $m = 2$	ON/ ON/ ON/ ON/ ON/ ON/ ON/ ON/	LPHA X X	10 = WA X yx yx 2ndF X X2 2 = 1	$ \begin{array}{c c} & 138. \\ \hline & 138. \\ \hline & 25. \\ \hline & 25. \\ \hline & 15. \\ \hline & 25. \\ \hline & 100. \\ \hline & 100. \\ \hline \end{array} $
$\int_{2}^{8} (x^{2} - 5)dx$ $n = 100$ $n = 10$ $\frac{d(x^{4} - 0.5x^{3})}{dx}$ $\begin{cases} x = 2 \\ dx = 0.000 \end{cases}$ $\sum_{x=1}^{5} (x + 2)$ $n = 1$ $n = 2$	ON/ ON/ ON/ ON/ ON/ ON/ ON/ ON/	LIPHA X X X	10 = WA X yx yx 2ndF X X2 2 = 1	$ \begin{array}{c c} & 138. \\ \hline & 138. \\ \hline & 25. \\ \hline & 25. \\ \hline & 15. \\ \hline & 25. \\ \hline & 100. \\ \hline & 100. \\ \hline \end{array} $
$\int_{2}^{8} (x^{2} - 5)dx$ $n = 100$ $n = 10$ $\frac{d(x^{4} - 0.5x^{5})}{dx}$ $\left(\begin{array}{c} x = 2 \\ dx = 0.000 \end{array}\right)$ $m = 1$ $m = 1$ $m = 2$	ON/ ALPP- ALPP	LPHA X X	10 = M X yx X 2ndF X x ² 1	$ \begin{array}{c c} & 138. \\ \hline & 138. \\ \hline & 25. \\ \hline & 25. \\ \hline & 15. \\ \hline & 25. \\ \hline & 100. \\ \hline & 100. \\ \hline \end{array} $
$\int_{2}^{8} (x^{2} - 5)dx$ $n = 100$ $n = 10$ $\frac{d(x^{4} - 0.5x^{3})}{dx}$ $\left(\begin{array}{c} x = 2 \\ dx = 0.000 \end{array}\right)$ $\sum_{x=1}^{5} (x + 2)$ $n = 1$ $n = 2$ $\sum_{x=1}^{5} (x + 2)$ $n = 1$ $n = 2$ $\sum_{x=1}^{6} (x + 2)$ $n = 1$ $n = 2$ $\sum_{x=1}^{6} (x + 2)$ $n = 1$ $n = 2$ $\sum_{x=1}^{6} (x + 2)$ $n = 1$ $n = 2$ $\sum_{x=1}^{6} (x + 2)$ $n = 1$ $n = 2$ $\sum_{x=1}^{6} (x + 2)$ $n = 1$ $n = 2$ $\sum_{x=1}^{6} (x + 2)$ $n = 1$ $n = 2$ $\sum_{x=1}^{6} (x + 2)$ $n = 1$ $n = 2$	ON/ ALPP- ALPP	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	10 = M X yx X 2ndF X x ² 1	$ \begin{array}{c} 138. \\ 138. \\ 4 \\ \hline{x^3} \end{array} $ 50. $ \begin{array}{c} 25. \\ 15. \\ \hline \end{array} $ 100. 90.
$\int_{2}^{8} (x^{2} - 5) dx$ $n = 100$ $n = 10$ $d(x^{4} - 0.5x^{5}) dx$ $\begin{cases} x = 2 \\ dx = 0.000 \end{cases}$ $\sum_{x=1}^{5} (x + 2)$ $n = 1$ $n = 2$ $n = 1$ $n = 3$	(x) (€ (€ (€ (€ (€ (€ (€ (€ (€ (€ (€ (€ (€	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	10 = (A) X yx (X 2ndf) (X X²) 1	$ \begin{array}{c} 138. \\ 138. \\ 4 \\ \hline{x^3} \end{array} $ 50. $ \begin{array}{c} 25. \\ 15. \\ \hline \end{array} $ 100. 90.

0 ⇒ M		ON/C STO	M	0
\$150 × 3 =	⇒ M ₁	150 ×	3 M+	450
+) \$250: M ₁ -	+ 250 ⇒ M	² 250 M+		250
–) M ₂ × 5%		RCL M 2ndF M-	× 5 2	2ndF % 35
M =		RCL M		665
$\frac{24}{4+6} = 2\frac{2}{5}$	(A)	24 ÷	(4 +	2 6 2 <u>2</u> 5
3 × (A) + 60	÷ (A) =		HA ANS (
sinh ⁻¹ ⇒ D1		STO D1		
sinh ⁻¹ 0.5 =		D1 0.5 (=	0.481211825
5				
6+4=ANS	ON	/C 6 + 4	=	10
ANS + 5 =	+	5 =		15
$8 \times 2 = ANS$	8 (× 2 =		16
ANS ² =	X	2 =		256
a /b	ab/c			
$3\frac{1}{2} + \frac{4}{3} =$	ON/C 3	2ndF (ab/c) 1 + (a/b) 4 (1	V 2	$4\frac{5}{6}$
	CHANGE			<u>29</u>
	CHANGE			4.833333333
LINE		1 a/b 2		
		(a/b) 3 (=)		4 - 5 - 6
	CHANGE			29 - 6
	CHANGE			4.833333333
4г5г6 = 4				4.833333333
_	5 6 ►PEN (►00	T) (◆HEX) (◆DEC) (NEG) (N	4.833333333 OT (AND OR)
XOR X	5 6 ►PEN (►00 NOR)	T HEX DEC		
P BIN (XOR (X DEC (25) →	5 6 ►PEN ←000 (NOR) BIN (ON/ 2nd	C 2ndF DEC	25	OT)(AND)(OR)
DEC (25) → HEX (1AC)	5 6 ►PEN ←OC NOR BIN ON/ 2nd	C) (2ndF) (*DEC)	25	OT)(AND)(OR)
DEC (25) → HEX (1AC) → BIN	5 6 PPEN (**OCCINOR) BIN (ON/2nd) (2nd) (2nd)	C) (2ndF) (*DEC) F) (*BIN)	BIN BIN PEN	OT (AND OR)
DEC (25) → HEX (1AC) → BIN → PEN	5 6	C (2ndF) (→DEC) F) (→BIN) F) (→HEX) 1 A C F) (→BIN)	BIN PEN OCT	OT (AND) (OR) 11001 110101100 3203
DEC (25) → HEX (1AC) → BIN → PEN → OCT	5 6	C (2ndF) *DEC F) *BIN F) *HEX 1 A C F) *BIN F) *PEN	BIN PEN OCT	OT (AND) (OR) 11001 110101100 3203
DEC (25) → HEX (1AC) → BIN → PEN → OCT → DEC	5 6 PEN ←OC NOR BIN ON 2nd	C) 2ndF DEC F DEN F HEX 1 A C F DEN F DEN F DEN F DEN	BIN PEN OCT	11001 110101100 3203
DEC (25) → HEX (1AC) → BIN → PEN → OCT → DEC BIN (111) →	5 6	C 2ndF DEC F DEN F DEN F DEN F DEN F DEN F DEC F DEC F DEC F DEC F DEC F DEC	BIN PEN OCT	11001 110101100 3203 654 428
DEC (25) → HEX (1AC) → BIN → PEN → OCT → DEC BIN (111) → 1011 AND 11 [BIN] 5A OR C3 =	5 6 PEN ←OCC NOR BIN ON/ 2nd 2nd 2nd 2nd 2nd NEG 2nd NEG 2nd ANC NEG ANC NEC 2nd ANC ANC ANC ANC ANC ANC ANC AN	C 2ndF DEC F DEN F DEX 1 A C F DEN F DEC F DEN F DEC F DEC F DEC F DEC F DEN 101 = F DEN 101 = F DEN 5 A C	BIN BIN PEN OCT BIN BIN	11001 110101100 3203 654 428 1111111001
DEC (25) → HEX (1AC) → BIN → PEN → OCT → DEC BIN (111) → 1011 AND 11 [BIN] 5A OR C3 = [HEX] NOT 10110 :	5 6	C 2ndF DEC F DEN F DEN F DEN F DEN F DEN F DEC F DEN F DEC F DEC F DEN T	BIN PEN OCT BIN BIN	11001 110101100 3203 654 428 1111111001
PEN (XOR) (X XOR) (X	5 6	© (2ndF) (DEC) (P DEC)	BIN BIN PEN OCT BIN BIN BIN BIN BIN	11001 110101100 3203 654 428 1111111001 1
XOR X DEC (25) \rightarrow HEX $(1AC)$ \rightarrow BIN \rightarrow PEN \rightarrow OCT \rightarrow DEC BIN (111) \rightarrow	5 6	© (2ndF) (DEC) F (DEC)	BIN BIN PEN OCT BIN BIN BIN BIN OR HEX BIN ORT	OT AND OR 11001 110101100 3203 654 428 1111111001 1 DE 1111101001
DEC (25) → HEX (1AC) → BIN → PEN → OCT → DEC BIN (111) → 1011 AND 11 (BIN) 5A OR C3 = (HEX) NOT 10110 :: (BIN) 24 XOR 4 = (OCT) B3 XNOR 25 (HEX)	5 6 8 PPEN	© (2ndF) (DEC) F (DEC)	BIN PEN OCT BIN BIN BIN OR HEX BIN OCT	11001 110101100 3203 654 428 1111111001 1
DEC (25) → HEX (1AC) → BIN → PEN → OCT → DEC BIN (111) → 1011 AND 11 BIN NOT 10110: BIN 24 XOR 4 = (OCT) BIS XNOR 2E HEX] → DEC	5 6 8 PEN	© (2ndF) *DEC F *BIN F *HEX 1 A C F *BIN F *PEN F *	BIN PEN OCT BIN BIN BIN PEX BIN OCT	11001 110101100 3203 654 428 11111111001 1 DE 11111101001 20
DEC (25) → HEX (1AC) → BIN → PEN → OCT → DEC BIN (111) → 1011 AND 11 (BIN) 5A OR C3 = (HEX) NOT 10110 : (BIN) 24 XOR 4 = (OCT) B3 XNOR 25 (HEX) → DEC	5 6 8 PEN	© 2ndF (DEC) F	BIN PEN OCT BIN BIN PEN OCT	11001 110101100 3203 654 428 11111110001 1 DE 11111101001 20 FFFFFFFF61 -159
DEC (25) → HEX (1AC) → BIN → PEN → OCT → DEC BIN (111) → 1011 AND 11 (BIN) 5A OR C3 = (HEX) NOT 10110 : (BIN) 24 XOR 4 = (OCT) B3 XNOR 25 (HEX) → DEC	5 6	© 2ndF (DEC) F	BIN BIN PEN OCT BIN BIN OCT OR HEX In) DIMES	11001 110101100 3203 654 428 11111110001 1 DE 11111101001 20 FFFFFFF61 -159
DEC (25) → HEX (1AC) → BIN → PEN → OCT → DEC BIN (111) → 1011 AND 11 [BIN] 5A OR C3 = [HEX] NOT 10110: [BIN] 24 XOR 4 = [OCT] B3 XNOR 26 [HEX] → DEC DEC DEC DEC DEC DEC DEC DEC	5 6 PPEN ← OCI NOR BIN ON/ 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd	C 2ndF (DEC) F	BIN BIN PEN OCT BIN BIN BIN OCT OCT OCT OCT OCT OCT OCT OC	11001 110101100 3203 654 428 11111110001 1 DE 11111101001 20 FFFFFFF61 -159
DEC (25) → HEX (1AC) → BIN → PEN → OCT → DEC BIN (111) → 1011 AND 11 BIN] 5A OR C3 = [HEX] NOT 10110 : [BIN] 24 XOR 4 = [OCT] B3 XNOR 2E [HEX] → DEC DEC DEC DEC DEC DEC DEC DEC	5 6 6	© 2ndF DEC F DEC F DEC F DEC P	BIN BIN PEN OCT BIN BIN BIN OCT OCT OCT OCT OCT OCT OCT OC	11001 110101100 3203 654 428 11111110001 1 DE 11111101001 20 FFFFFFFF61 -159
DEC (25) → HEX (1AC) → BIN → PEN → OCT → DEC BIN (111) → 1011 AND 11 BIN] 5A OR C3 = HEX] NOT 10110: BIN] 24 XOR 4 = OCT] 33 XNOR 26 HEX] → DEC DEC DEC DEMS ← C3 HEX] 34 XOR 4 = OCT] 35 XNOR 27 HEX] 36 AND 26 HEX] 37 XNOR 27 HEX] 38 XNOR 27 HEX] 39 DEC	5 6 PPEN ← OC NOR BIN ON/ 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd	C 2ndF DEC F DEN 1 A C T DEN 1	BIN BIN PEN OCT BIN BIN PEX BIN OCT OFF HEX IN) OFF HEX OCT OFF OFF OCT OFF OCT OFF OCT OFF OCT OCT	11001 110101100 3203 654 428 1111111001 1 DE 11111101001 20 FFFFFFFF61 -159

3h 45m - 1.69h	3 (PMS) 45 (-) 1.69 (=
= [60] sin 62°12'24"	(2ndF) ← DEG (sin) 62 (D°M'S) 12 (D°M'S)	2°3'36.
= [10]	24 =	0.88463523
24° → ["]	2 4 (D°M'S) (MATH) 1	86'406
1500" → [']	0 DMS 0 DMS 1500 MATH 2	25
	(x,y)	
$\begin{pmatrix} x = 6 \\ y = 4 \end{pmatrix} \rightarrow \begin{pmatrix} r = \\ \theta = \end{pmatrix}$	ON/C 6 (x,y) 4 r : [°] 2ndF $\rightarrow r\theta$ θ :	7.21110255 33.6900675
	x = 14 (x,y) 36 (x,y) 36 (x,y) (x,y) (x,y) (x,y) (x,y) (x,y)	11.3262379 8.22899353
CONST CON	v)	
V ₀ = 15.3 m/s	ON/C 15.3 \times 10 \times 2ndF \times 1.0 \times ALPHA (C	
t = 10 s $V_0 t + \frac{1}{2} g t^2 = ?$		643.332
125 yd = ? m	ON/C 125 (ALPHA) CONV 0	5 = 114.
MATH (EN	G.SYMBOL)	
100 m × 10 k =	<u> </u>	X
	10 (MATH) (0) (0) (1'006
MDF MDF		
\rightarrow [FIX, TAB = 1 $5 \div 9 = ANS$	-	0 1 0.
5 + 9 = AINS	5 (÷ 9 (=)	0.
$ANS \times 9 =$	× 9 = *1	5.
	5 ÷ 9 =	_!
[MDE]	CHANGE	0.
→ [MDF]	(2ndF) (MDF)	
$ANS \times 9 =$	× 9 = *2	5 <u>-</u> 5.
→ [NORM1]	CHANGE CHANGE (2ndF) (SET UP) 1 3	5.
$^{*1}\frac{5}{2} \times 9 = 5.55$	555555555555555555555555555555555555	
$*2 \frac{3}{5} \times 9 = 0.6$		
Ü		
(int÷) (MATI	ON/C 23 (2ndF) (int ÷ 5	0.5
23 ÷ 5 =	=	Q: 4 R: 3
	9.5 (2ndF) (int÷) 4	_
9.5 ÷ 4 =		
9.5 ÷ 4 = -32 ÷ (-5) =	(-) 32 (2ndF) (int÷)	R: 1.
-32 ÷ (-5) =	= (-) 32 (2ndF) (int÷) (-) 5 = (MATH) 3 42 195	R: 1. Q: 6 R: -2
-32 ÷ (-5) = 42.195 → [ipart		R: 1. Q: 6 R: -2
$-32 \div (-5) =$ $42.195 → [ipart]$ $\sqrt{2} → [fpart]$	= 32 2ndF int÷ (-) 5 = (-) 342.195 = (-) 442.195	R: 1. q: 6 R: -7 42
$-32 \div (-5) =$ $42.195 \rightarrow [ipart]$ $√2 \rightarrow [fpart]$ $-34.5 \rightarrow [int]$	=	R: 1. q: 6 R: -7 42
$-32 \div (-5) =$ $42.195 → [ipart]$ $\sqrt{2} → [fpart]$	=	R: 1. q: 6 R: -7 47 0.41421356
$-32 \div (-5) =$ $42.195 \rightarrow [ipart]$ $√2 \rightarrow [fpart]$ $-34.5 \rightarrow [int]$ $50 \times 8(%)$	= 32 2mdF int÷ (-) 5 = 42.195 MATH 3 42.195 MATH 4 7 2 = 42.195 MATH 5 (-) 34.5 = 50 × 8 MATH 6	R: 1. q: 6 R: -7 47 0.41421356
$-32 \div (-5) =$ 42.195 → [ipart] $\sqrt{2}$ → [fpart] -34.5 → [int] $50 \times 8(\%)$ $+200 =$ ② [PFACT] 12210 =	= 32 2ndF int÷ (-) 5 = 5 = 6 = 6 = 6 = 6 = 6 = 6 = 6 = 6 =	R: 1. q: 6 R: -6 0.41421356 -39 204
$-32 \div (-5) =$ 42.195 → [ipart] $\sqrt{2}$ → [fpart] -34.5 → [int] $50 \times 8(\%)$ + 200 = 2 PFACT 12210 =	= 32 2ndF int÷ (-) 5 = 50 × 8 (MATH 6 + 200 = 52 2ndF)	R: 1. q: 6 R: -2 0.41421356 -35 204
$-32 \div (-5) =$ 42.195 → [ipart] $\sqrt{2}$ → [fpart] -34.5 → [int] 50 × 8(%) + 200 =	= 32 2ndF int÷ (-) 5 = 5 = 6	R: 1. Q: 6 R: -4 0.41421356 -3! 204
$-32 \div (-5) =$ 42.195 → [ipart] $\sqrt{2}$ → [fpart] -34.5 → [int] $50 \times 8(\%)$ $+200 =$ 2 PFACT 12210 = (1234567 =	=	R: 1. Q: 6 R: -6 0.41421356 -3! 204 12'210 2×3×5×11×3

2ndF P.FACT

127×(9721)

MODE (STAT) INS-D

MODE (STAT) (DATA) (STAT) (x') (y')

5 5

MATH (→t, P(, Q(, R())

	5 (ENTER)					
C4==4. 4	1 ===	1	X	ANS1	ANS2	
	1 ENTER	1		2	6	1
_Step: 1	1 ENTER	2		5	7	
		↓ 3	-	10	8	1
						1.

 $real(15 \angle 30)$

 $img(15 \angle 30)$

Χ

-3.432772026

MATH 2 15 (2ndF)

Z 30 () =

MATH 3 15 2ndF

12 99038106

7.5

$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \Rightarrow matA$	MODE 5 MATH 1 2 2 ENTER 1 ENTER 2 ENTER 3 ENTER 4 ENTER ON/C MATH 3 0
$\begin{bmatrix} 3 & 1 \\ 2 & 6 \end{bmatrix} \Rightarrow matB$	MATH 1 ENTER 3 ENTER 1 ENTER 2 ENTER 6 ENTER ON/C MATH 3 1
$matA \times matB =$	ON/C MATH 0 0 X [7 13] MATH 0 1 = [7 27]

ON/C MATH 7 MATH
0 0 (x,y) 3 (x,y) 3
) =

2 0

3 4 0 0 0 0

€	MODE (VECTOR)

dim (matA, 3, 3) =

MODE (MATRIX)

$\begin{bmatrix} 5 \\ 6 \end{bmatrix} \Rightarrow \text{vectA}$	MODE 6 MATH 1 2 ENTER 5 ENTER 6 ENTER ONIC MATH 3 0	
$\begin{bmatrix} 7 \\ 8 \end{bmatrix} \Rightarrow \text{vectB}$	MATH 1 2 ENTER 7 ENTER 8 ENTER ON/C MATH 3 1	
vectA + vectB =	ON/C MATH 0 0 + MATH 0 1 =	[12] [14]
DotPro (vectA, vectB) =	ON/C MATH 4 MATH 0 0 (x,y) MATH 0 1	83.

35

<u> </u>	
Function Fonction Función	Dynamic range Plage dynamique Rango dinámico
$\sin x$, $\cos x$, $\tan x$	DEG: $ x < 10^{10}$ $(\tan x: x \neq 90(2n-1))^*$ RAD: $ x < \frac{\pi}{180} \times 10^{10}$ $(\tan x: x \neq \frac{\pi}{2}(2n-1))^*$ GRAD: $ x < \frac{10}{9} \times 10^{10}$ $(\tan x: x \neq 100(2n-1))^*$
$\sin^{-1} x$, $\cos^{-1} x$	$ x \le 1$
$\tan^{-1} x$, $\sqrt[3]{x}$	$ x < 10^{100}$
ln_X , log_X , log_{aX}	$10^{-99} \le x < 10^{100}, \ 10^{-99} \le a < 10^{100} \ (a \ne 1)$
y,x	• $y > 0$: $-10^{100} < x \log y < 100$ • $y = 0$: $0 < x < 10^{100}$ • $y < 0$: $x = n$ • $(0 < x < 1$: $\frac{1}{x} = 2n - 1, x \ne 0)^*,$ • $-10^{100} < x \log y < 100$

$ \begin{array}{c} *y > 0: -10^{100} < \frac{1}{x} \log y < 100 \ (x \neq 0) \\ *y = 0: \ 0 < x < 10^{100} \\ *y = 0: \ 0 < x < 10^{100} \\ *y = 0: \ 0 < x < 10^{100} \\ *y < 0: \ x = 2n - 1 \\ (0 < x < 1: \frac{1}{x} = n, x \neq 0)^*, \\ -10^{100} < \frac{1}{x} \log y < 100 \\ \end{array} $		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<i>x</i> √ <i>y</i>	• $y = 0$: $0 < x < 10^{100}$ • $y < 0$: $x = 2n - 1$ $(0 < x < 1: \frac{1}{x} = n, x \ne 0)^*$,
$\begin{array}{llllllllllllllllllllllllllllllllllll$	e ^x	$-10^{100} < x \le 230.2585092$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	10 ^x	$-10^{100} < x < 100$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	sinh x, cosh x, tanh x	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c} x^{-1} & x < 10^{100} (x \neq 0) \\ n! & 0 \leq n \leq 69^* \\ nPr & 0 \leq r \leq n \leq 9999999999^* \\ \frac{n!}{(n-r)!} < 10^{100} \\ 0 \leq r \leq n \leq 99999999999^* \\ 0 \leq r \leq 69 \\ \frac{n!}{(n-r)!} < 10^{100} \\ \end{array} $ $ \begin{array}{c} 0 \leq r \leq n \leq 99999999999999999999999999999$		
n! 0 ≤ n ≤ 69* 0 ≤ r ≤ n ≤ 9999999999* nPr		
$ \begin{array}{c} {}_{n} P_{r} & 0 \leq r \leq n \leq 9999999999^{*} \\ \frac{n}{(n-r)!} < 10^{100} \\ 0 \leq r \leq n \leq 9999999999^{*} \\ 0 \leq r \leq 69 \\ \frac{n!}{(n-r)!} < 10^{100} \\ \end{array} \\ \begin{array}{c} {}_{0} \triangle r \leq n \leq 99999999999^{*} \\ 0 \leq r \leq 69 \\ \frac{n!}{(n-r)!} < 10^{100} \\ \end{array} \\ \begin{array}{c} {}_{0} \triangle r \leq n \leq 9999999999999999999999999999999$		
nPr $ \frac{n!}{(n-r)!} < 10^{100} $ nCr $ 0 \le r \le n \le 9999999999^* $ $ 0 \le r \le 69 $ $ \frac{n!}{(n-r)!} < 10^{100} $ $ DEG, D^oM'S 0^{o0}0.00001" \le x < 10000^o $ $ x, y \to r, \theta $	n!	
nCr	nPr	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	nCr	0 < r < 69
$r, \theta \rightarrow x, y \qquad \begin{array}{c} 0 \leq r < 10^{100} \\ \text{DEG:} \ \theta < 10^{10} \\ \text{RAD:} \ \theta < \frac{10}{8} \times 10^{10} \\ \text{GRAD:} \theta < \frac{10}{9} \times 10^{10} \\ \text{DRG} \\ \end{array}$ $DRG $	↔DEG, D°M'S	$0^{\circ}0'0.00001" \le x < 10000^{\circ}$
$r, \theta \rightarrow x, y \qquad \begin{array}{l} 0 \leq r < 10^{100} \\ \text{DEG:} \theta < 10^{10} \\ \text{RAD:} \theta < \frac{\pi}{180} \times 10^{10} \\ \text{GRAD:} \theta < \frac{\pi}{180} \times 10^{10} \\ \text{DRG} \qquad \begin{array}{l} \text{DEG} \rightarrow \text{RAD, GRAD} \rightarrow \text{DEG:} x < 10^{100} \\ \text{RAD} \rightarrow \text{GRAD:} x < \frac{\pi}{2} \times 10^{98} \\ \text{nGCDn, nLCMn} \qquad 0 < n < 10^{10} * \\ \text{RAD} \rightarrow \text{GRAD:} x < \frac{\pi}{2} \times 10^{98} \\ \text{nGCDn, nLCMn} \qquad 0 < n < 10^{10} * \\ \text{RAD} \rightarrow \text{GRAD:} x < \frac{\pi}{2} \times 10^{98} \\ \text{nGCDn, nLCMn} \qquad 0 < n < 10^{10} * \\ \text{RAD} \rightarrow \text{GRAD:} x < \frac{\pi}{2} \times 10^{98} \\ \text{nGCDn, nLCMn} \qquad 0 < n < 10^{10} * \\ \text{Im} \mid \leq 99999999999 \\ \text{m} < n, n - m < 10^{10} \\ \text{Im} \mid \leq 999999999999 \\ \text{m} < n, n - m < 10^{10} \\ \text{Im} \mid \leq 9999999999999999999999999999999999$	$x, y \rightarrow r, \theta$	$\sqrt{x^2 + y^2}$ < 10 ¹⁰⁰
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		DEG: $ \theta < 10^{10}$ RAD: $ \theta < \frac{\pi}{180} \times 10^{10}$
$ \mathbf{m} \leq 9999999999^* \\ \mathbf{n} \leq 9999999999^* \\ \mathbf{m} < \mathbf{n}, \ \mathbf{n} - \mathbf{m} < 10^{10} \\ (A + Bi) + (C + Di) & A + C < 10^{100}, B + D < 10^{100} \\ (A + Bi) - (C + Di) & A - C < 10^{100}, B - D < 10^{100} \\ (A + Bi) \times (C + Di) & A - C < 10^{100}, B - D < 10^{100} \\ (AD + BC) < 10^{100} & AD + BC < 10^{100} \\ (A + Bi) \div (C + Di) & BC - AD \\ C^2 + D^2 < 10^{100} & C^2 + D^2 < 10^{100} \\ C^2 + D^2 \neq 0 & C^2 + D^2 < 10^{100} \\ OC^2 + D^2 \neq 0 & DEC x \leq 999999999 \\ OCT & AD + BC & AD + BC & AD + BC \\ OCT & AD + BC \\ OCT & AD + BC & AD +$	DRG►	DEG \rightarrow RAD, GRAD \rightarrow DEG: $ x < 10^{100}$ RAD \rightarrow GRAD: $ x < \frac{\pi}{2} \times 10^{98}$
$\begin{array}{lll} \text{R.Int}(m,n) & & n \leq 9999999999 \\ & m < n, \; n - m < 10^{10} \\ \hline \\ (A + Bi) + (C + Di) & A + C < 10^{100}, B + D < 10^{100} \\ \hline \\ (A + Bi) - (C + Di) & A - C < 10^{100}, B - D < 10^{100} \\ \hline \\ (A + Bi) \times (C + Di) & A - C < 10^{100}, B - D < 10^{100} \\ \hline \\ (A + Bi) \times (C + Di) & A - C < 10^{100} \\ \hline \\ & \frac{AC + BD}{C^2 + D^2} < 10^{100} \\ \hline \\ & \frac{C^2 + D^2}{C^2 + D^2} < 10^{100} \\ \hline \\ & \frac{C^2 + D^2}{C^2 + D^2} < 0 \\ \hline \\ & \to DEC \\ & \to BIN \\ & \to PEN \\ & \to CT \\ & \to HEX \\ & \to CT \\ & \to HEX \\ & AND \\ & OCT \\ & PEN \\ & 2222222223 \leq x \leq 44444444444 \\ & 0 \leq x \leq 22222222222 \\ AND \\ & OCT \\ & 4000000000 \leq x \leq 7777777777 \\ NOR \\ & HEX \\ & FDABF41C01 \leq x \leq FFFFFFFFFF \\ \\ & NOT \\ \\ & NOT \\ & NEG \\ \\ & Int(C + Di) \\ & A + C < 10^{100} \\ & A - C < 10^{100} \\ & A - C < 10^{100} \\ & C^2 + D^2 \leq 10^{100} \\ & C^2 + D^2 \leq 0 \\ & D - C^2 + D^2 \leq 0 \\ & D - C^2 + D^2 \leq 0 \\ & D - C^2 + D^2 \leq 0 \\ & D - C^2 + D^2 \leq 0 \\ & D - C^2 + D^2 \leq 0 \\ & D - C^2 + D^2 \leq 0 \\ & D - C^2 + D^2 \leq 0 \\ & D - C^2 + D^2 \leq 0 \\ & D - C^2 + D^2 \leq 0 \\ & D - C^2 + D^2 \leq 0 \\ & D - C^2 + D^2 \leq 0 \\ & D - C^2 + D^2 \leq 0 \\ & D - D - D^2 \leq 0 \\ & D - D - D^2 \leq 0 \\ & D - D - D^2 \leq 0 \\ & D - D - D^2 \leq 0 \\ & D - D - D^2 \leq 0 \\ & D - D - D^2 \leq 0 \\ & D - D - D^2 \leq 0 \\ & D - D - D^2 \leq 0 \\ & D - D - D^2 \leq 0 \\ & D - D - D^2 \leq 0 \\ & D - D - D^2 \leq 0 \\ & D - D - D^2 \leq 0 \\ & D - D - D^2 \leq 0 \\ & D - D - D^2 \leq 0 \\ & D - D - $	nGCDn, nLCMn	0 < n < 10 ¹⁰ *
$(A+Bi)-(C+Di) \qquad A-C <10^{100}, B-D <10^{100} \\ (A+Bi)\times(C+Di) \qquad (AC-BD)<10^{100} \\ (AD+BC)<10^{100} \\ (A+Bi)\div(C+Di) \qquad \frac{AC+BD}{C^2+D^2}<10^{100} \\ C^2+D^2<10^{100} \\ C^2+D^2\neq 0 \\ DEC \qquad DEC \qquad DEC: x \leq 999999999 \\ BIN: 1000000000 \leq x \leq 11111111111 \\ D \in X \in$	R.Int(m, n)	n ≤ 999999999*
$(A+Bi)\times(C+Di) (AC-BD) < 10^{100} \\ (AD+BC) < 10^{100} \\ \hline \\ (A+Bi) \div(C+Di) \frac{AC+BD}{C^2+D^2} < 10^{100} \\ \hline \\ C^2+D^2 < 10^{100} \\ \hline \\ C^2+D$	(A + Bi) + (C + Di)	A + C < 10 ¹⁰⁰ , B + D < 10 ¹⁰⁰
$(A+Bi)\times(C+Di) (AC-BD) < 10^{100} \\ (AD+BC) < 10^{100} \\ \hline \\ (A+Bi) \div(C+Di) \frac{AC+BD}{C^2+D^2} < 10^{100} \\ \hline \\ C^2+D^2 < 10^{100} \\ \hline \\ C^2+D$	(A + Bi) - (C + Di)	A - C < 10 ¹⁰⁰ , B - D < 10 ¹⁰⁰
$(A+Bi) \div (C+Di) \begin{tabular}{ll} BC-AD \\ \hline $C^2+D^2 < 10^{100}$ \\ \hline $C^2+D^2 \ne 0$ \\ \hline \end{tabular} \begin{tabular}{ll} BC-AD \\ \hline $C^2+D^2 \ne 0$ \\ \hline \end{tabular} \begin{tabular}{ll} BC-AD \\ \hline $C^2+D^2 \ne 0$ \\ \hline \end{tabular} \begin{tabular}{ll} BC-AD \\ \hline $C^2+D^2 \ne 0$ \\ \hline \end{tabular} \begin{tabular}{ll} BC-AD \\ \hline $C^2+D^2 \ne 0$ \\ \hline \end{tabular} \begin{tabular}{ll} BC-AD \\ \hline $C^2+D^2 \ne 0$ \\ \hline \end{tabular} \begin{tabular}{ll} BC-AD \\ \hline $C^2+D^2 \ne 0$ \\ \hline \end{tabular} \begin{tabular}{ll} BIN: 1000000000 \le x \le 1111111111111111111111$		$(AC - BD) < 10^{100}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(A + Bi) \div (C + Di)$	$\frac{BC - AD}{C^2 + D^2} < 10^{100}$
NOT $0 \le x \le 111111111$ PEN: 222222223 $\le x \le 44444444444$ $0 \le x \le 2222222221$ OCT: $4000000000 \le x \le 777777777$ $0 \le x \le 377777777$ HEX: FDABF41C01 $\le x \le FFFFFFFFFF$ $0 \le x \le 2540BE3FE$ BIN: $1000000001 \le x \le 1111111111$ PEN: $22222222223 \le x \le 4444444444$ $0 \le x \le 2222222222$ OCT: $4000000001 \le x \le 777777777$ $0 \le x \le 377777777$ HEX: FDABF41C01 $\le x \le FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF$	→ BIN → PEN → OCT → HEX AND OR XOR	BIN: $1000000000 \le x \le 11111111111$ $0 \le x \le 111111111$ PEN: $2222222223 \le x \le 4444444444$ $0 \le x \le 2222222222$ OCT: $4000000000 \le x \le 7777777777$ $0 \le x \le 3777777777$ HEX: FDABF41C01 $\le x \le$ FFFFFFFFFF
$\begin{tabular}{llll} $0 \le x \le 111111111 \\ $PEN: 222222223 \le x \le 4444444444 \\ $0 \le x \le 22222222222 \\ $OCT: 4000000001 \le x \le 7777777777 \\ $0 \le x \le 3777777777 \\ $HEX: FDABF41C01 \le x \le FFFFFFFFFF \\ \end{tabular}$	NOT	$0 \le x \le 111111111$ PEN: $2222222223 \le x \le 4444444444$ $0 \le x \le 22222222221$ OCT: $4000000000 \le x \le 7777777777$ $0 \le x \le 3777777777$ HEX: FDABF41C01 $\le x \le$ FFFFFFFFFF
	NEG	$0 \le x \le 111111111$ PEN: 222222223 $\le x \le 4444444444$ $0 \le x \le 2222222222$ OCT: $4000000001 \le x \le 7777777777$ $0 \le x \le 3777777777$ HEX: FDABF41C01 $\le x \le$ FFFFFFFFFF

Normal pdf Normal cdf	0 < σ
Inverse Normal	0 < <i>a</i> < 1 0 < σ
Binomial pdf Binomial cdf	0 < n 0 ≤ p ≤ 1
Poisson pdf Poisson cdf	$0 \le x$ (integer / entier / entero) $0 < \mu$

^{*} m, n, r: integer / entier / entero