Scientific Calculator Operation Guide

< EL-531TG >

SHARP

CONTENTS

How to Operate

Read Before Using

KEY LAYOUT 3
RESET SWITCH 3
DISPLAY PATTERN 4
DISPLAY FORMAT AND
DECIMAL SETTING FUNCTION 4
EXPONENT DISPLAY Exp 5
ANGULAR UNIT DRG $\stackrel{\text { DRG }}{ }$ 6
Function and Key Operation

Random RaNoom 9
Modify 10
Basic Arithmetic Keys, Parentheses $+-x \div=10$ 11
Percent 12
Inverse, Square, Cube, xth Power of y, Square Root, Cube Root, xth Root of $y \quad \stackrel{x^{-1}}{x^{2}} \sqrt[x^{3}]{y x} \sqrt{\sqrt[3]{2}} \sqrt{x_{r}}$ 13
10 to the Power of x, Common Logarithm $\log 10^{x}$ 14
e to the Power of x , Natural Logarithm $\quad \mathrm{m} e^{e^{x}}$ 15
Factorials $n!$ 16
Permutations, Combinations 17
Time Calculation 18
Fractional Calculations $a b / d / c$ 19
Memory Calculations 20
Last Answer Memory ANS 21
Trigonometric Functions $\sin \cos \tan$ 22
Arc Trigonometric Functions $\stackrel{\sin ^{-1}}{\boldsymbol{c o s}^{-1} \boldsymbol{t a n}^{-1}}$ 23
Hyperbolic Functions hyp arc hyp 24
Coordinate Conversion 25
Binary, Pental, Octal, Decimal, and Hexadecimal Operations (N-Base) *BIN \rightarrow PEN \rightarrow OCT \rightarrow HEX \rightarrow DEC 26
Statistics Function 27
DATA INPUT 27
"ANS" KEYS FOR 1-VARIABLE STATISTICS 28
DATA CORRECTION 29
"ANS" KEYS FOR 2-VARIABLE STATISTICS 32

How to Operate

\approx Read B efore Using \approx

This operation guide has been written based on the EL-531TG.
Some functions described here are not featured on other models. In addition, key operations and symbols on the display may differ according to the model.

KEY LAYOUT

RESET SWITCH

If the calculator fails to operate normally, press the reset switch on the front to initialise the unit. The display format and calculation mode will return to their initial settings.
NOTE:
Pressing the reset switch will erase any data stored in memory.

2nd function key

Pressing this key will enable the functions written above the calculator buttons.

HOME key

Pressing this key will return to NORMAL mode.

ON/C, OFF key
 Direct function

2nd function

Written in orange above the ON/C key
Mode key
This calculator can operate in three different modes as follows.

[STAT-0 mode]

MODE

[STAT-1-6 mode]

- Mode $=0$; normal mode for performing normal arithmetic and function calculations. - Mode $=1$; STAT- 0 mode for performing 1 -variable statistical calculations.
- Mode $=1$; STAT-1-6 mode for performing 2-variable statistical calculations.

When changing to the statistical sub-mode, press the corresponding number key after performing the operation to select the statistics mode (press MOOE 1).

1 (LINE): Linear regression calculation
2 (QUAD): Q uadratic regression calculation
3 (EXP): Exponential regression calculation
4 (LOG): Logarithmic regression calculation
5 (PW R): Power regression calculation
6 (INV): Inverse regression calculation

The actual display does not appear like this．
This illustration is for explanatory purposes only．

DISPLAY FORMAT AND
 DECIMAL SETTING FUNCTION

For convenient and easy operation，this model can be used in one of four display modes． The selected display status is shown in the upper part of the display（Format Indicator）． N ote：If more 0＇s（zeros）than needed are displayed when the ON／C key is pressed，check whether or not the calculator is set to a Special Display Format．
－Floating decimal point format（no symbol is displayed）
Valid values beyond the maximum range are displayed in the form of a［10－digit （mantissa）+2 －digit（exponent）］
－Fixed decimal point format（FIX is displayed）
Displays the fractional part of the calculation result according to the specified number of decimal places．
－Scientific notation（SCl is displayed）
Frequently used in science to handle extremely small or large numbers．
－Engineering scientific notation（ENG is displayed） Convenient for converting between different units．
＜Example＞Let＇s compare the display result of ［10000 $\div 8.1=$ ］in each display format．

（specifies normal mode）

N ote：The calculator has two settings for displaying a floating point number：NORM1（default setting）and NORM2．In each display setting，a number is automatically displayed in scientific notation outside a preset range：
－NORM1：0．000000001 x 9999999999
－NORM2： 0.01 x 9999999999

Initial display

10ロロロ $\div 8.1^{\text {Dte }}=$

（normal mode）

（FIX modeTAB $=3$ ）

（SCI mode）

$1.2355^{. \mathbf{n}^{3}}$
（ENG mode）

10ロロロ $\div 8.1=$
1234.567901
（normal mode）

EXPONENT DISPLAY

The distance from the earth to the sun is approx．150，000，000（ 1.5×10^{8} ） km ．Values such as this with many zeros are often used in scientific calculations，but entering the zeros one by one is a great deal of work and it＇s easy to make mistakes． In such a case，the numerical values are divided into mantissa and exponent portions， displayed and calculated．
＜Example＞W hat is the number of electronics flowing in a conductor when the electrical charge across a given cross－section is 0.32 cou－ lombs．（The charge on a single electron $=1.6 \times 10^{-19}$ coulombs）．

$$
0.32 \div
$$

0.

$$
\text { ロ. } 3 \text { R } \div
$$

$1.5^{\mathrm{wa}}{ }^{8}$

ANGULAR UNIT

Angular values are converted from DEG to RAD to GRAD with each push of the DRG key.This function is used when doing calculations related to trigonometric functions or coordinate geometry conversions.

Degrees (DEG is shown at the top of the display)
A commonly used unit of measure for angles. The angular measure of a circle is expressed as 360°.

Radians (RAD is shown at the top of the display) Radians are different than degrees and express angles based on the circumference of a circle. 180° is equivalent to π radians. Therefore, the angular measure of a circle is 2π radians.

Grads (GRAD is shown at the top of the display)

Grads are a unit of angular measure used in Europe, particularly in France. An angle of 90 degrees is equivalent to 100 grads.

The relationships between the three types of angular units can be expressed as right:

$$
90^{\circ}(\text { DEG })=
$$

$$
\pi / 2(\mathrm{RAD})=
$$ 100 (GRAD) $=$

<Example> Check to confirm 90 degrees equaling $\pi / 2$ radians equaling 100 grads. ($\pi=3.14159$...)

Angular indicator
Operation

ON/C DRG $\ldots \ldots . .$| DRG |
| :---: |
| (Select DEG mode) |

90 2ndF $\stackrel{\text { DRG }}{ }$

Display

9ロ・RAD

1.570795327
$(\pi / 2)$

ANSPGRAD ${ }^{\text {GRA }}$
190
1120

2ndF
DRG
ANSPDEG
90.

$\approx \mathrm{F}$ unction and Key Operation \approx

ON/OFF, Entry Correction Keys

ON/C OFF CA

$\Delta \square\langle\square$ DEL INS
on/C Turns the calculator on or clears the data. It also clears the contents of the calculator display and voids any calculator command; however, coefficients in 3-variable linear equations and statistics, as well as values stored in the independent memory in normal mode, are not erased.

OFF

Turns the calculator off.

CAClears all internal values, including coefficients in 3-variable linear equations and statistics. Values stored in M memory in normal mode are not erased.

These arrow keys are useful for Multi-Line playback, which lets you scroll through calculation steps one by one.

These keys are useful for editing equations. The \square key moves the cursor to the left, and the \square key moves the cursor to the right. The (DEL key deletes the symbol/number at the cursor.

INS
\qquad NS key inserts the symbol/number at the cursor.

0 to 9 Numeric keys for entering data values.
Decimal point key. Enters a decimal point.

Enters minus symbol or sign change key.
Changes positive numbers to negative and negative numbers to positive.
$\pi \quad$ Enters π (3.14159...).
The constant π, used frequently in function calculations, is the ratio of the circumference of a circle to its diameter.

Exp Pressing this key switches to scientific notation data entry.
<Example> Provided the earth is moving around the sun in a circular orbit, how many kilometers will it travel in a year?
*The average distance between the earth and the sun being $1.496 \times 10^{8} \mathrm{~km}$.

Circumference equals diameter $\times \pi$; therefore, $1.496 \times 10^{8} \times 2 \times \pi$

Operation

1

Display

 939964522.

RANDOM Generates random numbers.
Random numbers are three-decimal-place values between 0.000 and 0.999 . Using this function enables the user to obtain unbiased sampling data derived from random values generated by the calculator.

<Example>

2ndF RANDOM 0 (A random number has been generated.)
[Random Dice]
To simulate a die-rolling a random integer between 1 and 6 can be generated by pressing 2ndF 1
[Random Coin]
To simulate a coin flip, 0 (heads) or 1 (tails) can be randomly generated by pressing

[Random Integer]
An integer between 0 and 99 can be generated randomly by pressing 2ndF random 3 EnTI To generate the next random integer, press EnTr .

[^0]MDF

MDF Function to round calculation results.

Even after setting the number of decimal places on the display, the calculator performs calculations using a larger number of decimal places than that which appears on the display. By using this function, internal calculations will be performed using only the displayed value.

<Example> FIX mode TAB = 1 (normal calculation)

$$
\begin{aligned}
5 & \div \\
\div & = \\
\times & =16 \text { (internally, 0.5555 } \ldots \text {) } \\
& =5.0
\end{aligned}
$$

Rounded calculation (MDF)

$$
\begin{aligned}
& 5 \div 0.6 \text { (internally, 0.5555 ...) } \\
& 2 \mathrm{ndF} \text { MDF (internally, 0.6) } \\
& \times 5=15
\end{aligned}
$$

[^1]
Basic Arithmetic $+-x$ \div Keys, Parentheses

The four basic operators. Each is used in the same way as a standard calculator:
$\times \div$ + (addition), - (subtraction), x (multiplication), and \div (division).

Finds the result in the same way as a standard calculator.

Used to specify calculations in which certain operations have precedence. You can make addition and subtraction operations have precedence over multiplication and division by enclosing them in parentheses.
\% For calculating percentages. Four methods of calculating percentages are presented as follows.

1) $\$ 125$ increased by $10 \% . .137 .5$

125+10\% 137.5
2) $\$ 125$ reduced by $20 \% \ldots 100$

125-2ロ\% ${ }^{\text {DEG }}$ 100.
3) 15% of $\$ 125 \ldots 18.75$

4) W hen $\$ 125$ equals 5% of X, X equals... 2500

$125 \div 5 \%$
2500.

Inverse, Square, Cube, Cube Root, xth Root of y

\boldsymbol{x}^{-1} Calculates the inverse of the value.
x^{2} Squares the value.
$\boldsymbol{x}^{\mathbf{3}} \quad$ Cubes the value.
Calculates exponential values.

Calculates the square root of the value.
$3 \sqrt{ } \quad$ Calculates the cube root of the value.

$x \sqrt{\square}$

Calculates the $x^{\text {th }}$ root of y.
<Example>

Operation
Display

$$
\begin{array}{r}
2 \boxed{x} 2 \boxed{x} 2 \square \text { 2x2x } \\
2 \sqrt{2 x} 4=\frac{2 \wedge 4=}{}
\end{array}
$$

$$
15 .
$$

$$
4 \longdiv { 2 n d F } \stackrel { x \sqrt { - } } { \leftrightarrows } 1 6 \quad 4 \times \sqrt { 1 6 } =
$$

2.

10 to the Power of x, Common Logarithm

10^{x} Calculates the value of 10 raised to the $x^{\text {th }}$ power.

log
Calculates logarithm, the exponent of the power to which 10 must be raised to equal the given value.
<Example>

Operation
$2 \mathrm{ndF}{\stackrel{10}{ }{ }^{x} 3=}^{\square}$

Display
1ロ^3= 1000.

e to the Power of x, Natural Logarithm in e^{x}

$e^{x} \quad$ Calculates powers based on the constant e (2.718281828).

In
C omputes the value of the natural logarithm, the exponent of the power to which e must be raised to equal the given value.
<Example>

Factorials

The product of a given positive integer n multiplied by all the lesser positive integers from 1 to $n-1$ is indicated by n ! and called the factorial of n.
<Example>

Operation

Display

c.f

$$
\mathrm{n}!=1 \times 2 \times 3 \times \ldots \times n
$$

「 APPLICATIONS:
I Used in statistics and mathematics. In statistics, this function is used
I in calculations involving combinations and per mutations.

Permutations, Combinations

$n \mathbf{P r} \quad$ This function finds the number of different possible orderings in selecting r objects from a set of n objects. For example, there are six different ways of ordering the letters $A B C$ in groups of three letters-ABC, $A C B$, $B A C, B C A, C A B$, and $C B A$.
The calculation equation is ${ }_{3} P_{3}=3 \times 2 \times 1=6$ (ways).

$n \mathrm{Cr}$

This function finds the number of ways of selecting r objects from a set of n objects. For example, from the three letters $A B C$, there are three ways we can extract groups of two different letters-AB, $A C$, and $C B$.
The calculation equation is ${ }_{3} C_{2}$.
<Example>

Operation

Display

6C4 = 15.

Time Calculation

Converts a sexagesimal value displayed in degrees，minutes，seconds to decimal notation．Also，converts a decimal value to sexagesimal notation（degrees，minutes，seconds）．

Inputs values in sexagesimal notation（degrees，minutes，seconds）．
＜Example＞Convert $24^{\circ} 28^{\prime} 35^{\prime \prime}$（24 degrees， 28 minutes， 35 sec－ onds）to decimal notation．Then convert 24.476° to sexagesimal notation．

Operation
24 DOMSS 28 DOMSS 35

C onvert to decimal notation

$24^{\circ} \mathbf{2 B}^{\circ} \mathbf{3 5}^{\text {060 }}=$ 24.49638089

Repeat last key operation to return to the previous display．
『ーーーール
IAPPLICATIONS：
IUsed in calculations of angles and angular velocity in physics，and
I latitude and longitude in geography．

Fractional Calculations

Inputs fractions and converts mutually between fractions and decimals. Converts between mixed numbers and improper fractions.
<Example> Add $3 \frac{1}{2}$ and $\frac{5}{7}$, and convert to decimal notation.

$$
2 \mathrm{ndF} \mathrm{~d} / \mathrm{c}
$$

$$
\begin{aligned}
3 r 1 r 2+5 r 7 i= \\
59 i
\end{aligned}
$$

Convert to an improper fraction
Press once to return to the previous display

$$
2 n d F \stackrel{d / c}{3} \quad \begin{array}{r}
3 r 1 r 2+5 r 76 \\
4 r 31 \\
414 .
\end{array}
$$

APPLICATIONS:
 There is a wide variety of applications for this function because fractions are such a basic part of mathematics. This function is useful for calculations involving electrical circuit resistance.

Memory Calculations

STO Stores displayed values in memories $A \sim F, X, Y, M$.
RCL Recalls values stored in $A \sim F, X, Y, M$.
M+ Adds the displayed value to the value in the independent memory M .
M- Subtracts the displayed value from the value in the independent memory M.
$\square \sim \square{ }^{\mathbf{A}} \quad \mathbf{X} \quad \mathbf{Y}$ Temporary memories
M Independent memory
<Example 1> Operation

(Enter 0 for M)

Display

$\mathbf{\square} \Rightarrow \mathbf{M}$	DEa
	п1.

<Example 2>
C alculates $\$ \not \approx$ at the designated exchange rate.
$\$ 1=¥ 110$
$¥ 26,510=\$$?
$\$ 2,750=¥ ?$

Operation Display
110 STO $\quad \mathbf{Y}$

$$
110 \Rightarrow Y \quad \text { oहa }
$$ 110.

2750

$2750 \times Y=$ 302500.
\square
<Example> Solve for x first and then solve for y using x .

$$
x=\sqrt{2}+3 \quad \text { and } \quad y=4 \div x
$$

Display

$$
\begin{aligned}
& \sqrt{2}+3=1 \\
& 4.414213562
\end{aligned}
$$

Trigonometric Functions

Trigonometric functions determine the ratio of three sides of a right triangle. The combinations of the three sides are sin, cos, and tan. Their relations are:

sin
Calculates the sine of an angle. $\quad \sin \theta=\frac{b}{a}$
cos Calculates the cosine of an angle. $\cos \theta=\frac{c}{a}$
\tan Calculates the tangent of an angle. $\tan \theta=\frac{\mathrm{b}}{\mathrm{c}}$

<Example>

The angle from a point 15 meters from a building to the highest floor of the building is 45°. How tall is the building?

[DEG mode]

Operation

Display

IAPPLICATIONS:
Trigonometric functions are useful in mathematics and various engineering calculations. They are often used in astronomical obser vations, civil engineering and in calculations involving electrical circuits, as well as in calculations for physics such as parabolic motion and wave motion.

Arc trigonometric functions, the inverse of trigonometric functions, are used to determine an angle from ratios of a right triangle. The combinations of the three sides are $\sin ^{-1}, \cos ^{-1}$, and $\tan ^{-1}$. Their relations are;

$\mathbf{s i n}^{\mathbf{- 1}} \quad$ (arc sine) Determines an angle based on the ratio

$$
\theta=\sin ^{-1} \frac{b}{a}
$$

cos $^{-1} \quad$ (arc cosine) Determines an angle based on the ratio
$\theta=\cos ^{-1} \frac{c}{a}$ c/a for two sides of a right triangle.
$\boldsymbol{t a n}^{\mathbf{- 1}}$ (arc tangent) Determines an angle based on the ratio a/b for two sides of a right triangle.

$$
\theta=\tan ^{-1} \frac{\mathrm{~b}}{\mathrm{c}}
$$

<Example>

At what angle should an airplane climb in order to climb 80 meters in 100 meters?

[DEG mode]

Display
$\tan ^{-1}\left[8 \square \div 1\right.$ Dig $^{\text {DEG }}$ 38.65980825

Hyperbolic Functions

hyp The hyper bolic function is defined by using natural exponents in trigonometric functions.
arc hyp
Arc hyperbolic functions are defined by using natural logarithms in trigonometric functions.

Coordinate Conversion $\rightarrow r 9 \rightarrow+x y$

$\rightarrow r \theta$

Converts rectangular coordinates to polar coordinates $(\mathrm{x}, \mathrm{y} \rightarrow \mathrm{r}, \theta)$

Converts polar coordinates to rectangular coordinates $(r, \theta \rightarrow x, y)$

,

Splits data used for dual-variable data input.

Displays r, θ and $x, y .(x \rightleftarrows y$ or $r \rightleftarrows \theta)$

<Example> Determine the polar coordinates (r, θ) when the rectangular coordinates of Point P are $(x=7, y=3)$.
[DEG mode]

| APPLICATIONS:

I Coordinate conversion is often used in mathematics and engineering, espeI cially for impedance calculations in electronics and electrical engineering.

Binary, Pental, Octal, Decimal, and Hexadecimal \quad BIN PPEN +OCT Operations (N-Base)

This calculator can perform conversions between numbers expressed in binary, pental, octal, decimal, and hexadecimal systems. It can also perform the four basic arithmetic operations, calculations with parentheses and memory calculations using binary, pental, octal, decimal, and hexadecimal numbers. In addition, the calculator can carry out the logical operations AND, OR, NOT, NEG, XOR, and XNOR on binary, pental, octal, and hexadecimal numbers.
\rightarrow BIN
\rightarrow PEN
$\rightarrow O C T$
\rightarrow HEX

\rightarrow DEC
\square

$<$ Example $2>\underset{\text { Operation }}{1011 \text { AND } 101=(\mathrm{BIN}) \rightarrow \text { DEC }}$

Display

1011 AND_ ${ }^{\text {DEG }}$	
	If
1011 AND101 ${ }^{\text {DEG }}$	
	11^{6}
$1 \rightarrow$ DEC ${ }^{\text {DEG }}$	

Statistics Function

The statistics function is excellent for analyzing qualities of an event. Though primarily used for engineering and mathematics, the function is also applied to nearly all other fields including economics and medicine.

DATA INPUT

DATA
 Enters data for statistical calculations.

CD

C lears data input.

Splits data used for dual-variable data input.
(Used for dual-variable statistical calculations.)
<Example 1> Here is a table of examination results. Input this data for analysis.

Data table 1

No.	1	2	3	4	5	6	7	8
Score	30	40	50	60	70	80	90	100
No. of pupils	2	4	5	7	12	10	8	2

Operation

Select single-variable statistics mode

$\frac{100}{\text { Score }} \stackrel{\square}{(x, y)} \quad \frac{2}{\top} \stackrel{\text { DATA }}{\square}$

Display

DATA SET=
8.

"ANS" KEYS FOR 1-VARIABLE STATISTICS

Calculates the average value of the data (sample data x).

Calculates the standard deviation for the data (sample data x).

Calculates the standard deviation of a data population (sample data x).

Calculates the sum of the data (sample data x) raised to the second power.

NOTE:

1. Sample data refers to data selected randomly from the population.
2. Standard deviation of samples is determined by the sample data shift from an average value.
3. Standard deviation for the population is standard deviation when the sample data is deemed a population (full data).

Let's check the results based on the previous data.
RCL $\bar{x} \quad 69$ (average value)
RCL $\quad \boldsymbol{S X} \quad 17.75686128$ (standard deviation)
RCL $\quad \sigma x \quad 17.57839583$ (standard deviation of the population)
RCL $\quad 50$ (total count of data)
RCL $\sum x \quad 3450$ (total)

DATA CORRECTION

Correction prior to pressing даАА immediately after a data entry: Delete incorrect data with owcc, then enter the correct data.

Correction after pressing DATA :
Use $\triangle \square$ to display the data previously entered.
Press \square to display data items in ascending (oldest first) order. To reverse the display order to descending (latest first), press the Δ key. Each item is displayed with ' $\mathrm{X} n=$ ', ' $\mathrm{Y} n=$ ', or ' $\mathrm{N} n=$ ' (n is the sequential number of the data set).
Display the data item to modify, input the correct value, then press $\underset{\text { Data }}{ }$. Using $\overparen{x, y, y}$, you can correct the values of the data set all at once.
-W hen $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ appears, more data items can be browsed by pressing Δ or ∇.

- To delete a data set, display an item of the data set to delete, then press 2nff $\underset{\text { co }}{ }$. The data set will be deleted.
- To add a new data set, press owd and input the values, then press oatar

<Example 2>

Data table 2

Operation

MODE

Select single-variable statistics mode

$40 \underset{(x, y)}{\leftrightarrows} 2 \underset{\text { DATA }}{\leftrightarrows}$
$50 \stackrel{\leftrightarrows}{\text { DATA }}$

Display

DATA SET= 3.

Operation

Display

APPLICATIONS:
Single-variable statistical calculations are used in a broad range of fields,
including engineering, business, and economics. They are most often applied to analysis in atmospheric observations and physics experiments, as well as for quality control in factories.
<Example 3> The table below summarizes the dates in April when cherry blossoms bloom, and the average temperature for March in that same area. Determine basic statistical quantities for data X and data Y based on the data table.

Data table 3

	Year	2010	2011	2012	2013	2014	2015	2016	2017
	Average temperature	6.2	7.0	6.8	8.7	7.9	6.5	6.1	8.2
y	Date blossoms bloom	13	9	11	5	7	12	15	7

Operation
Display

Stat 1	
	17.

Select dual-variable statistics mode and linear regression calculation in sub-mode.
6
2$\varlimsup_{(x, y)} 13 \underset{\text { DATA }}{ }$DATA SET=DEG STAT i.

"ANS" KEYS FOR 2-VARIABLE STATISTICS

In addition to the 1-variable statistic keys, the following keys have been added for calculating 2 -variable statistics.
$\Sigma x y$ Calculates the sum of the product for sample data x and sample data y.

Σy

Σy^{2}
\bar{y}
$\boldsymbol{s} \boldsymbol{y}$ Calculates the standard deviation for the data (sample datay).
$\sigma \boldsymbol{y}$ Calculates the standard deviation of a data population (sample datay).
NOTE:
The codes for basic statistical quantities of sample data x and their meanings are the same as those for single-variable statistical calculations.
Let' s check the results based on the previous data.

$$
7.175
$$

(Average for data x)

0.973579551 (Standard deviation for data x)

0.91070028 (Standar d deviation of the population for data x)

9.875
(Average for data y)
RCL ${ }^{\boldsymbol{S y} \boldsymbol{y}} 3.440826313$ (Standard deviation for datay)
RCL ${ }^{\sigma \boldsymbol{y}} 3.218598297$ (Standard deviation of the population for datay)

8
(Total count of data)

57.4
(Sum of data x)

418.48
(Sum of data x raised to the second power)
RCL $\stackrel{\sum x y}{ } 544$
(Sum of the product of data x and data y)
RCL
Σy

RCL $\stackrel{\Sigma y^{2}}{\square} 863$

SHARP

SHARP CORPORATION

[^0]: - APPLICATIONS:

 I Building sample sets for statistics or research.

[^1]: - APPLICATIONS:

 I Frequently used in scientific and technical fields, as well as business, I when performing chained calculations.

