ENGLISH

+ - × ÷

SHARP

SCIENTIFIC CALCULATOR

MODEL EL-506TS

OPERATION MANUAL

17HSC87E1

INTRODUCTION

About the calculation examples (including some formulas and tables), refer to the second half of this manual. Refer to the number on the right of each title in the manual for use After reading this manual, store it in a convenient location for future reference.

Operational Notes

- Do not carry the calculator around in your back pocket, as it may break when you sit down. The display is made of glass and is particularly fragile.
- Keep the calculator away from extreme heat such as on a car dashboard or near a heater, and avoid exposing it to excessively humid or dusty environments.
- Since this product is not waterproof, do not use it or store it where fluids, for example water, can splash onto it. Raindrops, water spray, juice, coffee, steam, perspiration, etc. will also cause malfunction.
- Clean with a soft, dry cloth. Do not use solvents or a wet cloth. Avoid using a rough cloth or anything else that may cause scratches.
- Do not drop it or apply excessive force. Never dispose of batteries in a fire.
- Keep batteries out of the reach of children.
- This product, including accessories, may change due to upgrading without prior notice.

- NOTICE

- SHARP strongly recommends that separate permanent written records be kept of all important data. Data may be lost or altered in virtually any electronic memory product under certain circumstances. Therefore, SHARP assumes no responsibility for data lost or otherwise rendered unusable whether as a result of improper use, repairs, defects, battery replacement, use after the specified battery life has expired, or any other cause.
- SHARP will not be liable nor responsible for any incidental or consequential economic or property damage caused by misuse and/or malfunctions of this product and its peripherals, unless such liability is acknowledged by law.
- Press the RESET switch (on the front), with the tip of a ballpoint pen or similar object, only in the following cases. <u>Do not</u> use an object with a breakable or sharp tip. Note that pressing the RESET switch erases all data stored in memory.

 When using for the first time

 After replacing the battery
- To clear all memory contents When an abnormal condition occurs and all keys are inoperative. If service should be required on this calculator, use only a SHARP servicing dealer, SHARP approved service facility, or SHARP repair service where available.

Hard Case

DISPLAY

Display

Mantissa Exponent

- · During actual use, not all symbols are displayed at the same time. Certain inactive symbols may appear visible when viewed from
- Only the symbols required for the usage under instruction are shown in the display and calculation examples.
- : Appears when the entire equation cannot be displayed. Press / b to see the remaining (hidden) section. : Indicates the mode of expression of results in the comxylr6
- plex calculation mode. : Indicates that data can be visible above/below the screen. Press (*) ** to scroll up/down the view.
- 2ndF : Appears when 2ndF is pressed.

: Indicates that hyp has been pressed and the hyper-bolic functions are enabled. If landFlarchyp are pressed, HYP the symbols "2ndF HYP" appear, indicating that inverse hyperbolic functions are enabled.

ALPHA: Appears when (ALPHA) (STAT VAR), (STO) or (RCL) is pressed. FIX/SCI/ENG: Indicates the notation used to display a value. DEG/RAD/GRAD: Indicates angular units.

MAT : Appears when matrix mode is selected.

LIST : Appears when list mode is selected

STAT : Appears when statistics mode is selected. : Indicates that a value is stored in the independent memory.

- ? : Indicates that the calculator is waiting for a numerical value to be entered, such as during simulation calculation.
- 4 : Appears when the calculator shows an angle as the result in the complex calculation mode.
- : Indicates an imaginary number is being displayed in the complex calculation mode.

BEFORE USING THE CALCULATOR

Key Notation Used in this Manual

In this manual, key operations are described as follows:

To specify e^x : 2ndF e^x In ALPHA F To specify In In To specify F

Functions that are printed in orange above the key require (2ndF) to be pressed first before the key. When you specify the memory, press ALPHA first. Numbers for input value are not shown as keys, but as ordinary numbers.

Power On and Off

Press ON/C to turn the calculator on, and 2ndF OFF to turn it off.

Clearing the Entry and Memories

Operation	Entry (Display)	M F1-F4	A-F, X,Y ANS	STAT*1 STAT VAR*2	matA-D*3 L1-4*4
ON/C	0	×	×	×	×
2ndF CA	0	×	0	0	0
Mode selection	0	×	0	0	0
2ndF M-CLR 0 0 *5	0	0	0	0	0
2ndF M-CLR 1 0 *6	0	0	0	0	0
RESET switch	\circ	\circ	\circ	\circ	\circ

O: Clear × : Retain

- Statistical data (entered data).

- All variables are cleared.
- This key combination functions the same as the RESET switch.

[Memory clear key]

- MEM RESET Press 2ndF M-CLR to display the menu. 0 F1-F4, STAT VAR, matA-D, L1-4), press 0 0 or 0
- To RESET the calculator, press 1 0 or 1 ENT.
 The RESET operation will erase all data stored in memory, and restore the calculator's default setting.

Entering and Correcting the Equation

[Cursor keys]

- Press 4 or to move the cursor. You can also return to the equation after getting an answer by pressing (4).
- See the next section for using the A and V keys. See 'SET UP menu' for cursor use in the SET UP menu.

[Insert mode and Overwrite mode in the Equation display]

- Pressing 2ndF INS switches between the two editing modes: insert mode (default); and overwrite mode. A triangular cursor indicates that an entry will be inserted at the cursor, while the rectangular cursor indicates to overwrite preexisting data as you make entries.
- To insert a number in the insert mode, move the cursor to the place immediately after where you wish to insert, then make a desired entry. In the overwrite mode, data under the cursor will be overwritten by the number you enter.
- The mode set will be retained until the next RESET operation.

[Deletion key]

To delete a number/function, move the cursor to the number/ function you wish to delete, then press DEL. If the cursor is located at the right end of an equation, the $\overbrace{\ \ \ \ \ \ \ \ \ }$ key will function as a back space key

Multi-line Playback Function

Previous equations may be recalled in the normal mode. Equations also include calculation ending instructions such as "=" and a maximum of 142 characters can be stored in memory. When the memory is full, stored equations are deleted in the order of the oldest first. Pressing
will display the previous equation. Further pressing ▲ will display preceding equations (after returning to the previous equation, press ▼ to view equations in order). In addition, Ous equation, press ▼ to view equations in react; in addition, and be used to jump to the oldest equation.

The multi-line memory is cleared by the following operations:

2ndF CA, mode change, RESET, N-base conversion and memory clear (2ndF) (M-CLR)).

Priority Levels in Calculation

Operations are performed according to the following priority: ① Fractions (1_f-4, etc.) ② \angle , engineering prefixes ③ Functions preceded by their argument (x^1 , x^2 , n!, etc.) ④ Y^x , $\sqrt{}$ ⑤ Implied multiplication of a memory value (2Y, etc.) ⑥ Functions followed by their argument (sin, cos, etc.) \bigcirc Implied multiplication of a function (2sin30, etc.) \bigcirc $_{n}Cr$, $_{n}Pr$ \bigcirc \times , + \bigcirc \bigcirc +, - \bigcirc AND \bigcirc OR, XOR, XNOR \bigcirc =, M+, M-, \Rightarrow M, \blacktriangleright DEG, \blacktriangleright RAD, \blacktriangleright GRAD, DATA, CD, \rightarrow r Θ , \rightarrow xy and other calculation ending instructions

If parentheses are used, parenthesized calculations have precedence over any other calculations.

INITIAL SET UP

Mode Selection MODE 0: Normal mode (NORMAL) MODE 1 : Statistic mode (STAT) 2: Equation mode (EQN) MODE 3: Complex number mode (CPLX) MODE 4: Matrix mode (MAT)

HOME Key

Press HOME to return to NORMAL mode from other modes. Note: Equations and values currently being entered will disappear, in the same way as when the mode is changed.

SET UP menu Press SET UP to display the SET UP menu.

5 : List mode (LIST)

[2] DRG FSE TAB 0

A menu item can be selected by:
moving the flashing cursor by using
, then pressing ENT (= key), or

pressing the number key corresponding to the menu item number.
 If ▲ or ▼ is displayed on the screen, press ▲ or ▼ to

view the previous/next menu screen. Press (ON/C) to exit the SET UP menu.

[Determination of the Angular Unit] The following three angular units (degrees, radians, and grads) can

- be specified.
 PEG (°)
 : Press (SET UP)
 0
 0

 RAD (rad): Press (SET UP)
 0
 1
 1

 GRAD (g): Press (SET UP)
 0
 2
 2

[Selecting the Display Notation and Decimal Places]

Four display notation systems are used to display calculation results: Floating point; Fixed decimal point; Scientific notation; and

Engineering notation.

• When the FIX, SCI, or ENG symbol is displayed, the number of decimal places (TAB) can be set to any value between 0 and 9. Displayed values will be reduced to the corresponding number of digits.

[Setting the Floating Point Numbers System in Scientific Notation] Two settings are used to display a floating point number: NORM1 (default setting) and NORM2. A number is automatically displayed

SCIENTIFIC CALCULATIONS

- Press MODE 0 to select the normal mode.
- In each example, press ONC to clear the display. If the FIX, SCI, or ENG indicator is displayed, clear the indicator by selecting 'NORM1' from the SET UP menu.

[5]

Arithmetic Operations The closing parenthesis) just before = or M+ may be omitted.

Constant Calculations

- In constant calculations, the addend becomes a constant. Subtraction and division are performed in the same manner. For multiplication, the multiplicand becomes a constant.
- In the constants calculations, constants will be displayed as K.

Functions

- Refer to the calculation examples of each function
- Before starting calculations, specify the angular unit.

Differential/Integral Functions

Differential and integral calculations are only available in the normal mode. For calculation conditions such as the x value in differential calculation or the initial point in integral calculation, only numerical values can be entered and equations such as 2^2 cannot be specified. It is possible to reuse the same equation over and over again and to recalculate by only changing the conditions with-

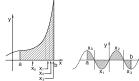
- out re-entering the equation.
- Performing a calculation will clear the value in the X memory.

 When performing a differential calculation, enter the formula first and then enter the x value in differential calculation and the minute interval (dx). If a numerical value is not specified for minute interval, $x\neq 0$ will be $|x|\times 10^{-5}$ and x=0 will be 10^{-5} from the value of the numeric derivative.
- When performing an integral calculation, enter the formula first and then enter a range of integral (a, b) and subintervals (n). If a numerical value is not specified for subintervals, calculation will be performed using n=100.

Since differential and integral calculations are performed based on the following equations, correct results may not be obtained, in certain rare cases, when performing special calculations that contain discontinuous points.

Integral calculation (Simpson's rule):

$$\begin{aligned} & S = \frac{1}{3} h\{f(a) + 4\{f(a+h) + f(a+3h) + \cdots + f(a+(N-1)h)\} \\ & + 2\{f(a+2h) + f(a+4h) + \cdots + f(a+(N-2)h)\} + f(b)\} \end{aligned} \begin{cases} h = \frac{b-a}{N} \\ h = 2n \\ a \le x \le b \end{cases}$$


 $f(x+\frac{dx}{2})-f(x-\frac{dx}{2})$ Differential calculation: f'(x) =

[When performing integral calculations]

Integral calculations, depending on the integrands and subintervals included, require longer calculation time. During calculation, "Calculating!" will be displayed. To cancel calculation, press ONC. Note that there will be greater integral errors when there are large fluctuations in

the integral values during minute shifting of the integral range and for periodic functions, etc., where posi-tive and negative integral values exist depending on

the interval. For the former case, divide integral intervals as small as possible. For the latter

case, separate the positive and negative values. Following these tips will allow results of calculations with greater accuracy and will also shorten the calculation time.

Random Function

The Random function has four settings for use in the normal, statistics, matrix and list modes. (This function cannot be selected while using the N-Base function.) To generate further random numbers in succession, press $\begin{tabular}{l} \begin{tabular}{l} \begin{tabul$

The generated pseudo-random number series is stored in memory Y. Each random number is based on a number series.

[Random Numbers]

A pseudo-random number, with three significant digits from 0 up to 0.999, can be generated by pressing 2ndF RANDOM 0 ENT

[Random Dice]

To simulate a die-rolling, a random integer between 1 and 6 can be generated by pressing 2ndF RANDOM 1 ENT

[Random Coin]

To simulate a coin flip, 0 (head) or 1 (tail) can be randomly generated by pressing (2ndF) (RANDOM) 2 (ENT).

[Random Integer]

An integer between 0 and 99 can be generated randomly by pressing 2ndF RANDOM 3 ENT.

Angular Unit Conversions

Each time (2ndF)(DRG) are pressed, the angular unit changes in sequence.

Memory Calculations [8]				
Mode	ANS	M, F1-F4	A-F, X,Y	
NORMAL	0	0		
STAT	0	×	×	
EQN	×	×	×	
CPLX	0	0	×	
MAT	0	×	0	
LIST	0	×	0	

O: Available × : Unavailable

[Temporary memories (A-F, X and Y)]

Press STO and a variable key to store a value in memory.

Press RCL and a variable key to recall a value from the memory. To place a variable in an equation, press ALPHA and a variable key.

[Independent memory (M)]

In addition to all the features of temporary memories, a value can be added to or subtracted from an existing memory value. Press ON/C STO M to clear the independent memory (M).

[Last answer memory (ANS)]

The calculation result obtained by pressing = or any other calculation ending instruction is automatically stored in the last answer memory. A Matrix/List format result is not stored.

[Formula memories (F1-F4)]

Formulas up to 256 characters in total can be stored in F1 - F4. (Functions such as sin, etc., will be counted as one letter.) Storing a new equation in each memory will automatically replace the existing equation. Note:

- Calculation results from the functions indicated below are automatically stored in memories X or Y replacing existing values.
- Random function Y memory
- up to 14 digits.

Chain Calculations

- The previous calculation result can be used in the subsequent calculation. However, it cannot be recalled after entering multiple instructions or when the calculation result is in Matrix/List format.
- When using postfix functions ($\sqrt{\cdot}$, sin, etc.), a chain calculation is possible even if the previous calculation result is cleared by the use of the ON/C key

Fraction Calculations

Arithmetic operations and memory calculations can be performed using fractions, and conversion between a decimal number and a

If the number of digits to be displayed is greater than 10, the number is converted to and displayed as a decimal number.

Binary, Pental, Octal, Decimal, and Hexadecimal Operations (N-Base)

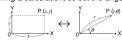
Conversions can be performed between N-base numbers. The four basic arithmetic operations, calculations with parentheses and memory calculations can also be performed, along with the logical operations AND, OR, NOT, NEG, XOR and XNOR on binary, pental, octal and hexadecimal numbers.

Conversion to each system is performed by the following keys: 2ndF →BIN ("h" appears.), 2ndF →PEN ("P" appears.), 2ndF →OCT (" \mathbf{o} " appears.), 2ndF \bullet HEX (" \mathbf{h} " appears.), 2ndF \bullet DEC (" \mathbf{b} ", " \mathbf{p} ", " \mathbf{o} " and "#" disappear.)

The hexadecimal numbers A - F are entered by pressing π , y^x , x^2 , x^3 , \log , and \ln , and displayed as follows:

$A \rightarrow f$, $B \rightarrow b$, $C \rightarrow f$, $D \rightarrow d$, $E \rightarrow f$, $F \rightarrow f$

In the binary, pental, octal, and hexadecimal systems, fractional parts cannot be entered. When a decimal number having a fractional part is converted into a binary, pental, octal, or hexadecimal number, the fractional part will be truncated. Likewise, when the result of a binary, pental, octal, or hexadecimal calculation includes a fractional part, the fractional part will be truncated. In the binary, pental, octal, and hexadecimal systems, negative numbers are displayed as a complement.


Time, Decimal and Sexagesimal Calculations [12]

Conversion between decimal and sexagesimal numbers can be performed, and, while using sexagesimal numbers, conversion to seconds and minutes notation. The four basic arithmetic operations and memory calculations can be performed using the sexagesimal system. Notation for sexagesimal is as follows:

Coordinate Conversions

Before performing a calculation, select the angular unit.

Rectangular coord. Polar coord. The calculation result is automatically stored in memories X and Y.

Value of r or x: X memory
 Value of θ or y: Y memory

Calculations Using Physical Constants

See the second half of this manual.

A constant is recalled by pressing <code>2ndF</code>(CNST) followed by the number of the physical constant designated by a 2-digit number. The recalled constant appears in the display mode selected with the designated number of decimal places.

Physical constants can be recalled in the normal mode (when not set to binary, pental, octal, or hexadecimal), statistics mode, equation mode, matrix mode and list mode.

Note: Physical constants and metric conversions are based either on the 2014 CODATA recommended values or 2008 Edition of the "Guide for the Use of the International System of Units (SI)" released by NIST (National Institute of Standards and Technology) or on ISO specifications.

No.	Constant	No.	Constant
01	Speed of light in vacuum	28	Avogadro constant
02	Newtonian constant of gravitation	29	Molar volume of ideal gas
03	Standard acceleration of gravity		(273.15 K, 101.325 kPa)
04	Electron mass	30	Molar gas constant
05	Proton mass	31	Faraday constant
06	Neutron mass	32	Von Klitzing constant
07	Muon mass	33	Electron charge to mass quotient
80	Atomic mass unit-kilogram	34	Quantum of circulation
	relationship	35	Proton gyromagnetic ratio
09	Elementary charge	36	Josephson constant
10	Planck constant	37	Electron volt
11	Boltzmann constant	38	Celsius Temperature
12	Magnetic constant	39	Astronomical unit
13	Electric constant	40	Parsec
14	Classical electron radius	41	Molar mass of carbon-12
15	Fine-structure constant	42	Planck constant over 2 pi
16	Bohr radius	43	Hartree energy
17	Rydberg constant	44	Conductance quantum
18	Magnetic flux quantum	45	Inverse fine-structure constant
19	Bohr magneton	46	Proton-electron mass ratio
20	Electron magnetic moment	47	Molar mass constant
21	Nuclear magneton	48	Neutron Compton wavelength
22	Proton magnetic moment	49	First radiation constant
23	Neutron magnetic moment	50	Second radiation constant
24	Muon magnetic moment	51	Characteristic impedance of
25	Compton wavelength		vacuum
26	Proton Compton wavelength	52	Standard atmosphere
27	Stefan-Boltzmann constant	i	

Metric Conversions

See the second half of this manual.

Unit conversions can be performed in the normal mode (when not set to binary, pental, octal, or hexadecimal), statistics mode, equation mode, matrix mode and list mode.

No.		Remarks	No.		Remarks
1	in	: inch	23	fl oz(US): fluid ounce(US)
2	cm	: centimeter	24	mℓ	: milliliter
3	ft	: foot	25	fl oz(UK): fluid ounce(UK)
4	m	: meter	26	mℓ	: milliliter
5	yd	: yard	27	J	: Joule
6	m	: meter	28	cal	: calorie
7	mile	: mile	29	J	: Joule
8	km	: kilometer	30	cal ₁₅	: Calorie (15n°C)
9	n mile	: nautical mile	31	J	: Joule
10	m	: meter	32	саІіт	: I.T. calorie
11	acre	: acre	33	hp	: horsepower
12	m ²	: square meter	34	W	: watt
13	OZ	: ounce	35	ps	: French horsepower
14	g	: gram	36	W	: watt
15	lb	: pound	37	(kgf/cm ²)
16	kg	: kilogram	38	Pa	: Pascal
17	°F	: Degree Fahrenheit	39	atm	: atmosphere
18	°C	: Degree Celsius	40	Pa	: Pascal
19	gal (US)	: gallon (US)	41	(1 mmH	g = 1 Torr)
20	ℓ	: liter	42	Pa	: Pascal
21	gal (UK)	: gallon (UK)	43	(kgf·m)	
22	0	· litor	11	1 1	· loule

Calculations Using Engineering Prefixes

Calculation can be executed in the normal mode (excluding Nbase) using the following 9 types of prefixes.

	Prefix	Operation	Unit
k	(kilo)	MATH 1 0	10³
M	(Mega)	MATH 1 1	10 ⁶
G	(Giga)	MATH 1 2	10 ⁹
Т	(Tera)	MATH 1 3	10 ¹²
m	(milli)	MATH 1 4	10⁻³
μ	(micro)	MATH 1 5	10⁻6
n	(nano)	MATH 1 6	10 ⁻⁹
р	(pico)	MATH 1 7	10-12
f	(femto)	MATH 1 8	10-15

Modify Function

[13]

[18]

Calculation results are internally obtained in scientific notation with up to 14 digits for the mantissa. However, since calculation results are displayed in the form designated by the display notation and the number of decimal places indicated, the internal calculation result may differ from that shown in the display. By using the modify function, the internal value is converted to match that of the display, so that the displayed value can be used without change in subsequent operations.

Solver Function

- The x value can be found that reduces an entered equation to "0".

 This function uses Newton's method to obtain an approximation. Depending on the function (e.g. periodic) or start value, an error may occur (Error 2) due to there being no convergence to
- the solution for the equation.

 The value obtained by this function may include a margin of error. If it is larger than acceptable, recalculate the solution
- after changing 'Start' and dx values. Change the 'Start' value (e.g. to a negative value) or dx value
 - (e.g. to a smaller value) if:
 no solution can be found (Error 2).
 - more than two solutions appear to be possible (e.g. a cubic equation).
- to improve the arithmetic precision.
- The calculation result is automatically stored in the X memory.

[Performing Solver function]

- 1) Press MODE 0
- 2 Input a formula with an x variable.
- 3 Press MATH 0
- Input 'Start' value and press ENT. The default value is "0".
- ⑤ Input dx value (minute interval).
- 6 Press ENT

SIMULATION CALCULATION (ALGB) [19]

If you have to find a value consecutively using the same formula, such as plotting a curve line for $2x^2 + 1$, or finding the variable for 2x + 2y = 14, once you enter the equation, all you have to do is to specify the value for the variable in the formula. Usable variables: A-F, M, X and Y

Unusable functions: Random function

- Simulation calculations can only be executed in the normal
- Calculation ending instructions other than = cannot be used

Performing Calculations

- 1) Press MODE 0
- Input a formula with at least one variable.
- 3 Press (2ndF) (ALGB).
- 4 Variable input screen will appear. Input the value of the flashing variable, then press ENT to confirm. The calculation result will be displayed after entering the value for all used variables
- Only numerical values are allowed as variables. Input of formulas is not permitted.

 Upon completing the calculation, press 2ndF (ALGB) to per-
- form calculations using the same formula.
- Variables and numerical values stored in the memories will be displayed in the variable input screen. To change a numerical value, input the new value and press ENT Performing simulation calculation will cause memory loca-
- tions to be overwritten with new values.

STATISTICAL CALCULATIONS

[20]

Press [MODE] 1 to select the statistics mode. The seven statistical calculations listed below can be performed. After selecting the statistics mode, select the desired sub-mode by pressing the number key corresponding to your choice.

To change statistical sub-mode, reselect statistics mode (press MODE 1), then select the required sub-mode

0	(SD)	:	Single-variable statistics
1	(LINE)	:	Linear regression calculation
2	(QUAD)		Quadratic regression calculation
3	(EXP)		Exponential regression calculation
_4	(LOG)	:	Logarithmic regression calculation
5	(PWR)	:	Power regression calculation
6	(INV)	:	Inverse regression calculation

The following statistics can be obtained for each statistical calculation (refer to the table below):

Single-variable statistical calculation

Statistics of ① and value of the normal probability function

Linear regression calculation

Statistics of 1 and 2 and, in addition, estimate of y for a given x (estimate y') and estimate of x for a given y (estimate x')

Exponential regression, Logarithmic regression,

Power regression, and Inverse regression calculation

Statistics of \bigcirc and \bigcirc . In addition, estimate of v for a given x and estimate of x for a given y. (Since the calculator converts each formula into a linear regression formula before actual calculation takes place, it obtains all statistics, except coefficients a and b. from converted data rather than entered data.)

Quadratic regression calculation

Statistics of $\widehat{\ \ }$ and $\widehat{\ \ }$ and coefficients $a,\ b,\ c$ in the quadratic regression formula $(y = a + bx + cx^2)$. (For quadratic regression calculations, no correlation coefficient (r) can be obtained.) When

there are two x' values, press [2ndF] \xrightarrow{c} . When performing calculations using a, b and c, only one numeric value can be held

	$\bar{\chi}$	Mean of samples (x data)
	SX	Sample standard deviation (x data)
	σx	Population standard deviation (x data)
1	n	Number of samples
Σx Sum of samples (x data)	Sum of samples (x data)	
	Σx^2	Sum of squares of samples (x data)
	\bar{y}	Mean of samples (y data)
	sy	Sample standard deviation (y data)
	σ_y	Population standard deviation (y data)
	Σy	Sum of samples (y data)
2	Σy^2	Sum of squares of samples (y data)
	Σxy	Sum of products of samples (x, y)
	r	Correlation coefficient
	а	Coefficient of regression equation
	b	Coefficient of regression equation
	с	Coefficient of quadratic regression equation

Use (ALPHA) and (RCL) to perform a STAT variable calculation.

Data Entry and Correction

Entered data are kept in memory until 2ndF CA or mode selection. Before entering new data, clear the memory contents.

[Data Entry] Single-variable data Data DATA

Data (LXX) frequency (DATA) (To enter multiples of the same data) Two-variable data

Data x (xx) Data y (DATA)
Data x (xx) Data y (xx) frequency (DATA) (To enter multiples

of the same data x and y.)

Up to 100 data items can be entered. With the single-variable data, a data item without frequency assignment is counted as one data item, while an item assigned with frequency is stored as a set of two data items. With the two-variable data, a set of data items without frequency assignment is counted as two data items, while a set of items assigned with frequency is stored as a set of three data items.

[Data Correction]

Correction prior to pressing DATA immediately after a data entry: Delete incorrect data with ON/C, then enter the correct data.

Correction after pressing (DATA):

Use (A) v to display the data previously entered.

Press v to display data items in ascending (oldest first) Press v to display data items in ascending (latest first), order. To reverse the display order to descending (latest first),

press the \blacktriangle key. Each item is displayed with 'Xn=', 'Yn=', or 'Nn=' (n is the sequential number of the data set).

Display the data item to modify, input the correct value, then press (DATA). Using ((x,y)), you can correct the values of the data set all at once.

- To delete a data set, display an item of the data set to delete,
- then press <code>[2ndF] CD</code>. The data set will be deleted.

 To add a new data set, press <code>[ON/C]</code> and input the values, then

[22] Statistical Calculation Formulas

Type	Regression formula
Linear	y = a + bx
Exponential	$y = a \cdot e^{bx}$
Logarithmic	$y = a + b \cdot \ln x$
Power	$y = a \cdot x^b$
Inverse	$y = a + b \frac{1}{x}$
Quadratic	$y = a + bx + cx^2$

In the statistical calculation formulas, an error will occur when:

- The absolute value of the intermediate result or calculation result is equal to or greater than 1×10^{100} . The denominator is zero.
- An attempt is made to take the square root of a negative number. No solution exists in the quadratic regression calculation

Normal Probability Calculations

[20] [23]

P(t), Q(t), and R(t) will always take positive values, even when t<0, because these functions follow the same principle used when solving for an area. Values for P(t), Q(t), and R(t) are given to six decimal places

SIMULTANEOUS LINEAR EQUATIONS [24] [25]

Simultaneous linear equation with two unknowns (2-VLE) or with three unknowns (3-VLE) may be solved using this function.

U	2-VLE:	MODE	2	0
2	3-V/I F:	(MODE)	2	1

- If the determinant D = 0, an error occurs.
- If the absolute value of an intermediate result or calculation result is 1×10^{100} or more, an error occurs.
- Coefficients (a1, etc.) can be entered using ordinary arithmetic operations.

To clear the entered coefficients, press 2ndF CA

Pressing ENT when the determinant D is in the display recalls the coefficients. Each time ENT is pressed, a coefficient is displayed in the order of input, allowing the entered coefficients to be verified (by pressing and ENT), coefficients are displayed in reverse order.) To correct a particular coefficient being displayed, enter the correct value and then press ENT

QUADRATIC AND CUBIC EQUATION SOLVERS [26]

Quadratic $(ax^2 + bx + c = 0)$ or cubic $(ax^2 + bx^2 + cx + d = 0)$ equation may be solved using this function.

- Quadratic equation solver: MODE 2 2
 Cubic equation solver: MODE 2 3
 Press ENT after entering each coefficient.
- The result will be displayed by pressing ENT after entering all coefficients. When there are more than 2 results, the next solution will be displayed.
- When the result is an imaginary number, "xy" symbol will appear. The display can be switched between imaginary and real parts by pressing [2ndF] +
- The results obtained by this function may include a margin of error.

COMPLEX NUMBER CALCULATIONS

To carry out addition, subtraction, multiplication, and division using complex numbers, press MODE 3 to select the complex number mode. Results of complex number calculations are expressed in two modes:

 $\boxed{\text{2ndF}}$: Rectangular coordinate mode (xy appears.) $\boxed{\text{2ndF}}$ $\boxed{\rightarrow r9}$: Polar coordinate mode ($r\theta$ appears.)

Complex number entry

 Rectangular coordinates x-coordinate + y-coordinate i or x-coordinate + i y-coordinate

Polar coordinates

- r: absolute value θ : argument
 On selecting another mode, the imaginary part of any complex
- number stored in the independent memory (M) will be cleared. A complex number expressed in rectangular coordinates with the y-value equal to zero, or expressed in polar coordinates with the
- angle equal to zero, is treated as a real number.

 Press MATH 0 to return the complex conjugate of the specified complex number.

MATRIX CALCULATIONS

- This function enables the saving of up to 4 matrices (4 rows x 4 columns) for calculations. Press MODE 4 to enter the matrix mode. Matrix data must be entered prior to making calculations. Pressing Matrix data must be entered prior to making calculations. Pressing Matrix data must be entered prior to making calculations. Pressing Matrix edit buffer along with \(\sigma \rightarrow \) will display the matrix edit buffer along with \(\sigma \rightarrow \). Enter the value of each item ("ROW", "COLUMN", and then each element, e.g. "MAT1,1") and press (DATA) after each. After entering all items, press (DATA), then press (MATH) 2 and specify
- matA-D to save the data.

 To edit data saved in matA-D, press MATH 1 and specify matA-D to recall the data to the matrix edit buffer. After editing, press ONC, then press MATH 2 and specify matA-D to save the data. Before performing calculations, press ONC to close the matrix
- edit buffer.
- When results of calculations are in the matrix format, the matrix edit buffer with those results will be displayed. (At this time, you cannot return to the equation.) To save the result in matA-D, press [ONC], then press [MATH] 2 and specify matA-D. Since there is only one matrix edit buffer, the previous data will
- be overwritten by the new calculation.
- In addition to the 4 arithmetic functions (excluding divisions between matrices), x^3 , x^2 , and x^{-1} , the following commands are available:

dim(matrix name, row,column)	Returns a matrix with dimensions changed as specified.
fill(value,row,column)	Fills each element with a specified value.
cumul matrix name	Returns the cumulative matrix.
aug(matrix name, matrix name)	Appends the second matrix to the first matrix as new columns. The first and second matrices must have the same number of rows.
identity value	Returns the identity matrix with specified value of rows and columns.
rnd_mat(row,column)	Returns a random matrix with specified values of rows and columns.
det matrix name	Returns the determinant of a square matrix.
trans matrix name	Returns the matrix with the columns transposed to rows and the rows transposed to columns.
mat→list (MATH 5)	Creates lists with elements from the left column of each matrix. (matA \rightarrow L1, matB \rightarrow L2, matC \rightarrow L3, matD \rightarrow L4) Mode changes from matrix mode to list mode.
matA→list (MATH 6)	Creates lists with elements from each column of the matrix. (matA \rightarrow L1, L2, L3, L4) Mode changes from matrix mode to list mode.

LIST CALCULATIONS

[29]

This function enables the saving of up to 4 lists of 16 elements for calculations. Press MODE 5 to enter the list mode.

List data must be entered prior to making calculations. Pressing ▲//▼ will display the list edit buffer along with ▲/▼. Enter the value of each item ('SIZE', and then each element, e.g. LIST') and press ○ATA after each. After entering all items, press ○NC, then press ○ATE 2 and specify L1-4 to save the data.

- To edit data saved in L1-4, press MATH 1 and specify L1-4 to recall the data to the list edit buffer. After editing, press owc, then press wath 2 and specify L1-4 to save the data.

 Before performing calculations, press owc to close the list edit
- When results of calculations are in the list format, the list edit buffer with those results will be displayed. (At this time, you cannot return to the equation.) To save the result in L1-4, press
- ONIO, then press (MATH) 2 and specify L1-4. Since there is only one list edit buffer, the previous data will be overwritten by the new calculation.
- In addition to the 4 arithmetic functions, x^3 , x^2 , and x^{-1} , the following commands are available:

sortA list name	Sorts list in ascending order.
sortD list name	Sorts list in descending order.
dim(list name,size)	Returns a list with size changed as specified.
fill(value,size)	Enter the specified value for all items.
cumul list name	Sequentially cumulates each item in the list.
df_list list name	Returns a new list using the difference between adjacent items in the list.
aug(list name,list name)	Returns a list appending the specified lists.
min list name	Returns the minimum value in the list.
max list name	Returns the maximum value in the list.
mean list name	Returns the mean value of items in the list.
med list name	Returns the median value of items in the list.
sum list name	Returns the sum of items in the list.
prod list name	Returns the multiplication of items in the list.
stdDv list name	Returns the standard deviation of the list.
vari list name	Returns the variance of the list.
o_prod(list name,list name)	Returns the outer product of 2 lists (vectors).
i_prod(list name,list name)	Returns the inner product of 2 lists (vectors).
abs list name	Returns the absolute value of the list (vector).
list→mat ((MATH) 5))	Creates matrices with left column data from each list. (L1→matA, L2→matB, L3→matC, L4→matD) Mode changes from list mode to matrix mode.
list→matA ((MATH) 6)	Creates a matrix with column data from each list. (L1, L2, L3, L4→matA) Mode changes from list mode to matrix mode.

ERROR AND CALCULATION RANGES

An error will occur if an operation exceeds the calculation ranges. or if a mathematically illegal operation is attempted. When an error occurs, pressing (or) automatically moves the cursor back to the place in the equation where the error occurred. Edit the equation or press ON/C to clear the equation.

Error Codes and Error Types

Syntax error (Error 1):

• An attempt was made to perform an invalid operation.

Ex. 2 (2ndF) (→rθ

- Calculation error (Error 2):
 The absolute value of an intermediate or final calculation result equals or exceeds 10100
- An attempt was made to divide by 0 (or an intermediate calculation resulted in zero).

 The calculation ranges were exceeded while performing calculations.

- Depth error (Error 3):
 The available number of buffers was exceeded. (There are 10 buffers* for numeric values and 24 buffers for calculation instructions in the normal mode).
- *5 buffers in other modes, and 1 buffer for Matrix/List data. Data items exceeded 100 in the statistics mode.

Equation too long (Error 4):

• The equation exceeded its maximum input buffer (142 characters).

An equation must be shorter than 142 characters.

Equation recall error (Error 5):

The stored equation contains a function not available in the mode used to recall the equation. For example, if a numerical value with numbers other than 0 and 1 is stored as a decimal, etc., it cannot be recalled when the calculator is set to binary

Memory over error (Error 6):

• Equation exceeded the formula memory buffer (256 characters in total in F1 - F4).

Invalid error (Error 7):

• Matrix/list definition error or entering an invalid value. Dimension error (Error 8):

Matrix/list dimensions inconsistent while calculation.

Invalid DIM error (Error 9):

• Size of matrix/list exceeds calculation range.

No define error (Error 10): Undefined matrix/list used in calculation.

Calculation Ranges

[30]

Within the ranges specified, this calculator is accurate to ±1 of the least significant digit of the mantissa. However, a calculation error increases in continuous calculations due to accumulation of each calculation error. (This is the same for y^x , $\sqrt[x]{}$, n!, e^x , ln, Matrix/List calculations, etc., where continuous calculations are performed internally.)

Additionally, a calculation error will accumulate and become larger in the vicinity of inflection points and singular points

of functions.

• Calculation ranges $\pm 10^{-99} \sim \pm 9.99999999 \times 10^{99}$ and 0. If the absolute value of an entry or a final or intermediate result of a calculation is less than 10^{-99} , the value is considered to be 0 in calculations and in the display.

BATTERY REPLACEMENT

Notes on Battery Replacement

Improper handling of batteries can cause electrolyte leakage or explosion. Be sure to observe the following handling rules:

- Make sure the new battery is the correct type.
- When installing, orient the battery properly as indicated in the calculator.
- The battery is factory-installed before shipment, and may be exhausted before it reaches the service life stated in the speci-

Notes on erasure of memory contents

When the battery is replaced, the memory contents are erased. Erasure can also occur if the calculator is defective or when it is repaired. Make a note of all important memory contents in case accidental erasure occurs.

When to Replace the Battery

If the display has poor contrast or nothing appears on the display even when <code>ONC</code> is pressed in dim lighting, it is time to replace the battery

Cautions

- Fluid from a leaking battery accidentally entering an eye could result in serious injury. Should this occur, wash with clean water and immediately consult a doctor. Should fluid from a leaking battery come in contact with your
- skin or clothes, immediately wash with clean water.

 If the product is not to be used for some time, to avoid damage to the unit from leaking batteries, remove them and store in a safe place.
- Do not leave exhausted batteries inside the product.
- Keep batteries out of the reach of children. Exhausted batteries left in the calculator may leak and damage the calculator.
 Explosion risk may be caused by incorrect handling.
- Do not throw batteries into a fire as they may explode

Replacement Procedure

- Turn the power off by pressing 2ndF OFF.
- 2. Remove one screws. (Fig 1)3. Lift the battery cover to remove
- Remove the used battery by prying it out with a ball-point pen or other similar pointed device. (Fig. 2)
 Install one new battery. Make sure the "+" side is facing up.
- Replace the cover and screws.
- Press the RESET switch (on the front) with the tip of a ball-point pen or similar object.
- Make sure that the display appears as shown below. If the display does not appear as shown, remove the battery, reinstall it, and check the display once again.

Automatic Power Off Function

This calculator will turn itself off to save battery power if no key is pressed for approximately 10 minutes.

SPECIFICATIONS

Calculations: Scientific calculations, complex number

calculations, equation solvers, statistical calculations, etc.

Internal calculations: Mantissas of up to 14 digits 24 calculations 10 numeric values in the Pending operations:

normal mode (5 numeric values in other modes, and 1 numeric value for Matrix/

List data.)

Power source:

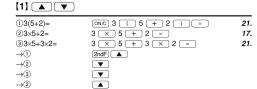
Built-in solar cells 1.5V == (DC): Backup battery

(Alkaline battery (LR44 or equivalent) × 1) Approx. 5000 hours when continuously

Operating time: (varies according to

displaying 55555 at 25°C (77°F), using

use and other factors) the alkaline battery only Operating temperature: 0°C–40°C (32°F–104°F)


External dimensions: 80 mm (W) × 161 mm (D) × 15 mm (H)

3-5/32" (W) × 6-11/32" (D) × 19/32" (H) Weight: Approx. 105 g (0.24lb) (including battery) **ENGLISH** + - × ÷

EL-506TS

[2] (SET UP)

CALCULATION EXAMPLES ESEMPI DI CALCOLO

ON/C 100000 ÷ 3 =	33'333.33333
SET UP 1 0	33'333.33333
SET UP 2 2	33'333.33
SET UP 1 1	3.33 ×10 ⁰⁴
SET UP 1 2	33.33 ×10 ⁰³
SET UP 1 3	33'333.33333
ON/C 3 ÷ 1000 =	0.003
SET UP 1 4	3.×10 ⁻⁰³
SET UP 1 3	0.003
	SETUP 1 0 0 SETUP 2 2 SETUP 1 1 SETUP 1 2 SETUP 1 3 ONC 3 ÷ 1000 = SETUP 1 4

[3] + -	X ÷ () +/- Exp	D .
45+285÷3=	ON/C 45 + 285 ÷ 3 =	140.
$\frac{18+6}{15-8}$ =	(18 + 6) ÷ (15 - 8 =	3.428571429
42×(-5)+120=	42 × +/- 5 + 120 = *1 (5 +/-) *1	-90.
$(5\times10^3)\div(4\times10^{-3})=$	5 Exp 3 ÷ 4 Exp +/- 3 =	1'250'000.

[4]		
34 <u>+57</u> = 45 <u>+57</u> =	34 + 57 = 45 =	91 102
68×25= 68×40=	68 × 25 = 40 =	1'700 2'720

sin60[°]=	ON/C sin 60 =	0.866025403
$\cos \frac{\pi}{4} [rad] =$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.707106781
tan-11=[g]	SET UP 0 2 (2ndF) (tan-1) 1 = SET UP 0 0	50.
(cosh 1.5 + sinh 1.5) ² =	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.08553692
$\tanh^{-1}\frac{5}{7} =$	2ndF arc hyp) tan (5 ÷ 7) =	0.895879734
In 20 =	In 20 =	2.995732274
log 50 =	log 50 =	1.698970004
e ³ =	2ndF (e ^x) 3 =	20.08553692
101.7 =	2ndF 10 ^x 1.7 =	50.11872336
$\frac{1}{6} + \frac{1}{7} =$	6 $(2ndF)(X^{-1})$ + 7 $(2ndF)$	0.309523809
$8^{-2} - 3^4 \times 5^2 =$	8 y ^x +/- 2 - 3 y ^x 4 × 5 x ² =	-2'024.984375
$(12^3)^{\frac{1}{4}} =$	12 y^x 3 y^x 4 $2ndF(x^{-1}) =$	6.447419591
83 =	8 X³ =	512.
$\sqrt{49} - 4\sqrt{81} =$	2ndF	4.
3√27 =	(2ndF)(∜√ 27 (=	3.
4! =	4 (2ndF) n! =	24.
₁₀ P ₃ =	10 (2ndF) (nPr) 3 =	720.
₅ C ₂ =	5 (2ndF) (nCr) 2 =	10.
500×25%=	500 × 25 (2ndF) %	125.
120÷400=?%	120 ÷ 400 (2ndF) %	30.
500+(500×25%)=	500 + 25 (2ndF) %	625.
400-(400×30%)=	400 - 30 (2ndF) %	280.

- The range of the results of inverse trigonometric functions
- · La gamma dei risultati di funzioni trigonometriche inverse

	$\theta = \sin^{-1} x, \ \theta = \tan^{-1} x$	$\theta = \cos^{-1} x$
DEG	-90 ≤ θ ≤ 90	$0 \leq \theta \leq 180$
RAD	$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$	$0 \leq \theta \leq \pi$
GRAD	$-100 \le \theta \le 100$	$0 \leq \theta \leq 200$

[6] $\left(\frac{d}{dx}\right)\left(\int dx\right)$

$d/dx \ (x^4 - 0.5x^3 + 6x^2)$	ON/C ALPHA x y^x 4 $-$ 0.5	ALPHA
x=2	X X^3 + 6 ALPHA X X^2)
dx=0.00002	2ndF d/dx 2 ENT ENT	50.
x=3	ENT 3 ENT 0.001 ENT	130.5000029
dx = 0.001		
$\int_{2}^{8} (x^2 - 5) dx$	ON/C (ALPHA) x x2 - 5	_
n=100	Jdx 2 ENT 8 ENT ENT	138.
n=10	(ENT)(ENT) 10 (ENT)	138.

[7] (DRG▶

1.570796327	ON/C 90 (2ndF) DRG▶	90°→ [rad]
100.	2ndF DRG▶	→ [g]
90.	2ndF DRG▶	→ [°]
53.13010235	2ndF) sin-1 0.8 =	sin-10.8 = [°]
0.927295218	(2ndF)(DRG▶)	\rightarrow [rad]
59.03344706	2ndF DRG▶	\rightarrow [g]
53.13010235	(2ndF)(DRG▶)	→ [°]

$\begin{array}{c} \textbf{[5]} \quad \text{sin} \quad \text{cos} \quad \text{tan} \quad \text{sin}^{-1} \quad \text{cos}^{-1} \quad \text{tan}^{-1} \quad \pi \quad \text{hyp} \quad \text{archyp} \\ \quad \text{ln} \quad \text{log} \quad \mathcal{C}^x \quad \text{10}^x \quad X^{-1} \quad X^2 \quad X^3 \quad \sqrt{} \quad y^x \\ \quad \sqrt[4] \quad \text{n!} \quad nP_r \quad nCr \quad \% \end{array}$

sin60[°]=	ON/C sin 60 =	0.866025403
$\cos \frac{\pi}{4} [rad] =$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.707106781
tan-11=[g]	(SET UP) 0 2 (2ndF) (tan-1) 1 = (SET UP) 0 0	50.
(cosh 1.5 + sinh 1.5) ² =	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.08553692
$ \frac{1}{\tanh^{-1}\frac{5}{7}} = \frac{1}{\pi} $	2ndF (arc hyp) (tan) (5 ÷ 7) =	0.895879734
In 20 =	In 20 =	2.995732274
log 50 =	log 50 =	1.698970004
e ³ =	2ndF) (e ^x) 3 =	20.08553692
101.7 =	2ndF (10 ^x) 1.7 =	50.11872336
$\frac{1}{6} + \frac{1}{7} =$	6 (2ndF) (X^{-1}) + 7 (2ndF) (X^{-1}) =	0.309523809
$8^{-2} - 3^4 \times 5^2 =$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-2'024.984375
$(12^3)^{\frac{1}{4}}$ =	12 y^x 3 y^x 4 $2ndF(x^{-1}) =$	6.447419591
83 =	8 (X3) =	512.
$\sqrt{49} - 4\sqrt{81} =$	2ndF	4.
3√27 =	2ndF (∛√ 27 =	3.
4! =	4 (2ndF) n! =	24.
₁₀ P ₃ =	10 (2ndF) (nPr) 3 =	720.
₅ C ₂ =	5 (2ndF) (nCr) 2 =	10.
500×25%=	500 × 25 (2ndF) %	125.
120÷400=?%	120 ÷ 400 (2ndF) %	30.
500+(500×25%)=	500 + 25 (2ndF) %	625.
400-(400×30%)=	400 — 30 (2ndF) %	280.

- The range of the results of inverse trigonometric functions
- La gamma dei risultati di funzioni trigonometriche inverse

	$\theta = \sin^{-1} x, \theta = \tan^{-1} x$	$\theta = \cos^{-1} x$
DEG	- 90 ≤ θ ≤ 90	$0 \leq \theta \leq 180$
RAD	$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$	$0 \leq \theta \leq \pi$
GRAD	$-100 \le \theta \le 100$	$0 \le \theta \le 200$

[6] d/dx $\int dx$

$\frac{d/dx (x^4 - 0.5x^3 + 6x^2)}{(x=2)}$	ON/C ALPHA X y^{x} 4 $-$ 0.5 X X^{3} $+$ 6 ALPHA X X	
dx = 0.00002	2ndF (d/d.x) 2 ENT (ENT) ENT 3 ENT 0.001 (ENT)	
dx=0.001	<u> </u>	
$\int_{2}^{8} (x^{2} - 5) dx$	ON/C (ALPHA) (X (X ²) - 5	
n=100	Jdx 2 ENT 8 ENT ENT	138.
n=10	ENT ENT ENT 10 ENT	138.

[7] DRG>

90°→ [rad]	(ON/C) 90 (2ndF)(DRG►)	1.570796327
\rightarrow [g]	2ndF) DRG▶	100.
\rightarrow [°]	2ndF) DRG▶	90.
sin-10.8 = [°]	2ndF sin-1 0.8 =	53.13010235
\rightarrow [rad]	2ndF DRG▶	0.927295218
\rightarrow [g]	2ndF DRG▶	59.03344706
→ [°]	2ndF) DRG▶	53.13010235

	ON/C 8 × 2 STO M	16.
24÷(<u>8×2</u>)=	24 ÷ (ALPHA) M =	1.5
(<u>8×2</u>)×5=	(ALPHA) M × 5 =	80.
	(ON/C) (STO) M	0.
\$150×3:M₁	150 × 3 M+	450.
+)\$250:M ₂ =M ₁ +250	250 M+	250.
<u>−)M₂×5%</u>	RCL M × 5 (2ndF) %	35.
М	2ndF M- RCL M	665.
\$1=¥110	110 STO Y	110.
¥26,510=\$?	26510 ÷ RCL Y =	241.
\$2,750=¥?	2750 X RCL Y =	302'500.
r=3cm (r→Y)	3 STO Y	3.
$\pi r^2 = ?$	π ALPHA Y χ^2 =	28.27433388
$\frac{24}{4+6} = 2.4(A)$	24 ÷ (4 + 6) =	2.4
	3 × ALPHA ANS + 60 ÷	
$3 \times (A) + 60 \div (A) =$	(ALPHA) (ANS) =	32.2
$\pi r^2 \Rightarrow F1$	π (ALPHA) Y (X ²)	
\wedge	STO F1	F1
	3 STO Y	3.
V = ?	RCL F1 X 4 ÷ 3 =	37.69911184

[9] ON/C 6 + 4 = + 5 = 6+4=ANS 10. ANS+5 15. 8 × 2 = 8×2=ANS 16. ANS² 256. 44+37=ANS 44 + 37 = 81.

2ndF (=

[10] $a^{b/c}$ d/c

 $\sqrt{ANS} =$

	ON/C 3 (ab/c) 1 (ab/c) 2 (+)	$3\frac{1}{2} + \frac{4}{3} = [a\frac{b}{c}]$
4 - 5 - 6 *	4 (ab/c) 3 (=)	2 3 -[40]
4.833333333	a ^{b/c}	→[a.xxx]
29	(2ndF) (d/c)	→[d/c]
4.641588834	2ndF) 10 ^x 2 (a ^b /c) 3 =	10 3 =
16807 - 3125	7 (a ^{b/c}) 5 (y ^x) 5 (=	$\left(\frac{7}{5}\right)^5 =$
	1 (ab/c) 8 (yx) 1 (ab/c) 3	$\left(\frac{1}{8}\right)^{\frac{1}{3}}=$
1 -2	=	(8)
8 ₋ 15	2ndF)	$\sqrt{\frac{64}{225}} =$
	(2) ^x 3) (a ^b /c)	$\frac{2^3}{3^4} =$
8 ₋ 81	(3 y ^x 4) =	
12 - 23	1.2 ab 2.3 =	$\frac{1.2}{2.3}$ =
0°31'1.5"	1 (D'M'S) 2 (D'M'S) 3 (ab/c) 2 (=	$\frac{1^{\circ}2'3''}{2} =$
1,2	1 (Exp) 3 (ab/c) 2 (Exp) 3 (=)	$\frac{1\times10^3}{2\times10^3} =$
7.	ON/C 7 STO A	A = 7
4 - 7	$4 \left(a^{b/c}\right) \left(ALPHA\right) \left(A\right) =$	$\frac{4}{A}$ =
1.65	1.25 + 2 ab/c 5 =	$\frac{7}{1.25 + \frac{2}{5}} = [a.xxx]$ $\rightarrow [a\frac{b}{c}]$
1 ₋ 13 ₋ 20	a ^b /c	$\rightarrow [a\frac{b}{c}]^{5}$

* 4 _F 5 _F 6 = 4 5 6

[11] DEIN PEN DOCT HEX DEC NEG NOT AND OR XOR XNOR

DEC(25)→BIN	ON/C 2ndF DEC 25 2ndF BIN	11001 º
HEX(1AC)	2ndF) ◆HEX 1AC	
\rightarrow BIN	2ndF →BIN	110101100 b
\rightarrow PEN	2ndF ←PEN	3203 [₽]
→OCT	2ndF (◆0CT)	654°
\rightarrow DEC	2ndF (◆DEC)	428.
BIN(1010-100)	(2ndF) → BIN (1010 - 100 (
×11 =	× 11 =	10010 b
BIN(111)→NEG	NEG 111 =	11111111001 b
HEX(1FF)+	(2ndF) (◆HEX) 1FF (2ndF) (◆OCT) (+	
OCT(512)=	512 =	1511°
HEX(?)	2ndF → HEX	349 H
2FEC-	(ON/C) (STO) M (2ndF) → HEX) 2FEC	
2C9E=(A)	2C9E (M+)	34E H
+)2000-	2000	
1901=(B)	1901 M+	6FF ^н
(C)	RCL M	A4d [⊢]

-···		
1011 AND 101 = (BIN)	ON/C) (2ndF) (◆BIN) 1011 (AND) 101 (=	1 b
5A OR C3 = (HEX)	2ndF HEX 5A OR C3 =	db [⊢]
NOT 10110 = (BIN)	2ndF) → BIN NOT 10110 =	1111101001 b
24 XOR 4 = (OCT)	2ndF) → 0CT) 24 (XOR) 4 (=	20°
B3 XNOR 2D = (HEX) →DEC	2ndF) ◆HEX B3 (XNOR) 2D = 2ndF) ◆DEC	FFFFFFF61 ^H -159.

[12] D™S ←DEG MATH (→sec, →min)		
12°39'18.05" →[10]	(ON/C) 12 (D™S) 39 (D™S) 18.05 (2ndF) (++DEG)	12.65501389
123.678→[60]	123.678 (2ndF) (++DEG)	123°40'40.8"
3h30m45s + 6h45m36s = [60]	3 DMS 30 DMS 45 + 6 DMS 45 DMS 36 =	10°16'21."

3h30m45s + 6h45m36s = [60]	3 (DYMS) 30 (DYMS) 45 (+ 6 (DYMS) 45 (-) 6 (DYMS) 36 (-)	10°16'21."
1234°56'12" + 0°0'34.567" = [60]	1234 DMS 56 DMS 12 + 0 DMS 0 DMS 34.567 =	1234°56'47."
3h45m – 1.69h = [60]	3 DM/S 45 - 1.69 = 2ndF ++DEG	2°3'36."
sin62°12'24" = [10]	sin 62 (D°MS) 12 (D°MS) 24 =	0.884635235
24°→["]	24 (D°M'S)(MATH) 2	86'400.

[13] $\rightarrow r\theta$ $\rightarrow xy$, $\leftarrow \rightarrow$

x = 0 $r =$	2ndF) (=+/+)[/]	7.211102551
$\begin{pmatrix} x = 6 \\ y = 4 \end{pmatrix} \rightarrow \begin{pmatrix} r = \\ \theta = [^{\circ}] \end{pmatrix}$	$2ndF$ $\leftarrow \rightarrow [\theta]$	33.69006753
	$2ndF$ \longleftrightarrow $[r]$	7.211102551
	14 (2ndF) , 36	
r = 14 $x = 1$	$2ndF$ $\rightarrow xy$ $[x]$	11.32623792
$\begin{pmatrix} r = 14 \\ \theta = 36[^{\circ}] \rightarrow \begin{pmatrix} x = \\ y = \end{pmatrix}$	[2ndF] ←→[y]	8.228993532
` `	$[2ndF] \leftarrow \rightarrow [x]$	11.32623792

ON/C 6 2ndF , 4

[14] (CNST)

9.

V ₀ = 15.3m/s	(ON/C) 15.3 \times 10 + 2 (2ndF) x^{-1} \times
t = 10s	2ndF CNST 03 \times 10 x^2 = 643.3325
$V_0 t + \frac{1}{2} g t^2 = ?m$	

[15]

100m×10k=

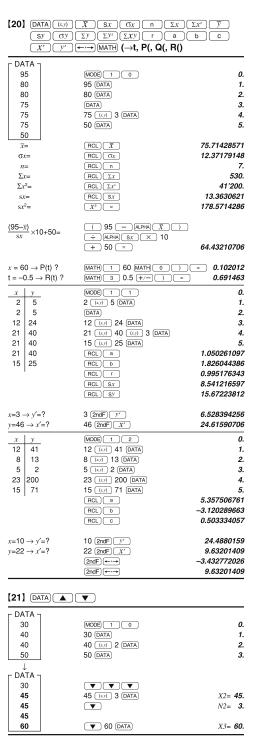
[15] CONV		
125yd = ?m	ON/C 125 (2ndF) (CONV) 5 =	114.

[16] MATH (k, M, G, T, m, μ , n, p, f)

	10 (MATH) 1 0 =	1'000.
[17] MDF SET UP		
5÷9=ANS	ON/C SET UP 1 0 SET UP 2 1	

100 MATH 1 4 X

5÷9=ANS	ON/C SET UP 1 0 SET UP 2 1	
ANS×9=	5 ÷ 9 =	0.6
[FIX,TAB=1]	× 9 = *1	5.0
	5 ÷ 9 = 2ndF MDF	0.6
	× 9 = *2	5.4
	SET UP 1 3	


^{*1 5.55555555555555510&}lt;sup>-1</sup>×9 *2 0.6×9

[18] MATH (SOLV)

sin x-0.5	(ON/C) $\sin \left(\text{ALPHA} \right) \left(x \right) - 0.5$	
Start= 0	MATH 0 0 ENT ENT	30.
Start= 180	ENT 180 ENT ENT	150.

[19] (ALGB)

	(MODE) 0	
$f(x) = x^3 - 3x^2 + 2$	$(ALPHA)$ (x) (y^x) (3) $(-)$ (3) $(ALPHA)$	
	X X2 + 2 (2ndF) (ALGB)	
x = -1	1 +/- ENT	-2.
x = -0.5	2ndF ALGB 0.5 +/- ENT	1.125
$\sqrt{A^2+B^2}$	2ndF (ALPHA A X²	+
	$(ALPHA)$ (B) (X^2) $()$ $(2ndF)$ $(ALGB)$	
A = 2, B = 3	2 ENT 3 ENT	3.605551275
A = 2, B = 5	(2ndF)(ALGB)(ENT) 5 (ENT)	5.385164807

[22] $\bar{x} = \frac{\sum x}{n}$		$\sigma x = \sqrt{\frac{\sum x^2 - n\overline{x}^2}{n}}$ $\sum x = x_1 + x_2 + \dots + x_n$
$sx = \sqrt{\frac{2}{}}$	$\frac{2x^2 - n\bar{x}^2}{n-1}$	$\sum x^2 = x_1^2 + x_2^2 + \dots + x_n^2$
$\bar{y} = \frac{\sum y}{n}$		$\sigma y = \sqrt{\frac{\Sigma y^2 - n\overline{y}^2}{n}}$
$sy = \sqrt{\frac{\Sigma}{2}}$	$\frac{\Sigma y^2 - n\overline{y}^2}{n-1}$	$\Sigma xy = x_1y_1 + x_2y_2 + \dots + x_ny_n$ $\Sigma y = y_1 + y_2 + \dots + y_n$ $\Sigma y^2 = y_1^2 + y_2^2 + \dots + y_n^2$

/ool		
[23] $P(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{X^{2}}{2}} dx$	(t≥0)	(t < 0)
√2π J-∞ -		t 0 ~
$Q(t) = \frac{1}{\sqrt{2\pi}} \int_0^t e^{-\frac{x^2}{2}} dx$	(t≥0)	(t < 0)
$R(t) = \frac{1}{\sqrt{2\pi}} \int_{t}^{\infty} e^{-\frac{x^2}{2}} dx$	$-\infty$ 0 t ∞ $-\infty$ $(t \ge 0)$	t 0 ∞ (t < 0)
$K(t) = \frac{1}{\sqrt{2\pi}} \int_{t}^{t} e^{-t} dt$		
	lization conversion formula di conversione della standardi:	zzazione
[24] MODE (2-VL) $a_1x + b_1y = c_1$		
$a_2x + b_2y = c_2$	$ D = \left \begin{array}{c} a_1 b_1 \\ a_2 b_2 \end{array} \right $	
$\begin{cases} 2x + 3y = 4 \\ 5x + 6y = 7 \end{cases}$	MODE 2 0 2 ENT 3 ENT 4 ENT 5 ENT 6 ENT 7	
x = ? $y = ?$	ENT [x] ENT [y]	-1. 2.
det(D) = ?	ENT [det(D)]	-3 .
[25] MODE (3-VL) $\begin{bmatrix} a_1x + b_1y + c_1 \\ a_2x + b_2y + c_2 \\ a_3x + b_3y + c_3 \end{bmatrix}$	$z = d_1$ $z = d_2$ $ D = $ $\begin{vmatrix} a_1 b_1 c_1 \\ a_2 b_2 c_2 \end{vmatrix}$	
$\begin{cases} x + y - z = 9 \\ 6x + 6y - z = 17 \\ 14x - 7y + 2z = 42 \\ x = ? \\ y = ? \\ z = ? \\ det(D) = ? \end{cases}$	(MODE) 2 1 1 +/ (ENT) 9 6 (ENT) 6 (ENT) 1 +/ (ENT) 1 14 (ENT) 7 +/ (ENT) 2 (ENT) (ENT) [x] (ENT) [x] (ENT) [x] (ENT) [x] (ENT) [c] (ENT) [det(D)]	7 ENT
[26] MODE (QUAI	D, CUBIC)	
$3x^2 + 4x - 95 = 0$ $x1 = ?$ $x2 = ?$	MODE 2 2 3 ENT 4 ENT +/- 95 ENT ENT ENT 2ndF ENT	5. -6.333333333 5.
$5x^3 + 4x^2 + 3x + 7 = 0$	MODE 2 3 5 (ENT) 4 (ENT) 3 (ENT) 7	
x1 = ? $x2 = ?$	ENT ENT	-1.233600307 0.216800153
x3 = ?	2ndF ←·→ ENT 2ndF ←·→	+ 1.043018296 ; 0.216800153 - 1.043018296 ;
[27] MODE (CPL)	()	
(12-6i) + (7+15i) - (11+4i) =	MODE 3 12 — 6 i + 7 + (11 + 4 i) 2ndF ←	
6×(7–9 <i>i</i>) × (–5+8 <i>i</i>) =	6 × (7 - 9 i (5+/-+ 8 i) 2ndF - [y]	
16×(sin30°+ icos30°)÷(sin60°+ icos60°)=	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	sin 60 + 13.85640646 + 8. i
y	(2ndF(→rθ) 8 ∠ 70 + 12	

(1 + i)	2ndF) →xy 1 + i =
· ↓ ·	2ndF ←→ [θ] 1.41421356
	2ndF → xy (2 − 3 i) X²
	$ = [x] $ $2ndF) \leftarrow \rightarrow [y] $ -12
	(1 + i) (2ndF) (x-1) = [x] 0.
	2ndF (←)→ [y] - 0 .
	MATH 0 (5 + 2 i) = [x]
	2ndF) ←→ [y] -2
[28] MODE (MAT)	
	(MODE) 4
$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \rightarrow matA$	▼ 2 (DATA) 2 (DATA) 1 (DATA) 2 (DATA) 3 (DATA) 4 (DATA)
	ON/C MATH 2 0
$\begin{bmatrix} 3 & 1 \\ 2 & 6 \end{bmatrix} \rightarrow matB$	2 (DATA) 2 (DATA) 3 (DATA) 1 (DATA) 2 (DATA) 6 (DATA)
	ON/C MATH 2 1
$matA \times matB = \begin{bmatrix} 7 & 13 \\ 17 & 27 \end{bmatrix}$	ONIC MATH 0 0 X MATH 0 1 =
$matA^{-1} = \begin{bmatrix} -2 & 1\\ 1.5 & -0.5 \end{bmatrix}$	ON/C MATH 0 0 (2ndF) (X-1) =
$dim(matA,3,3) = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	ON/C MATH 3 0 MATH 0 0
$fill(5,3,3) = \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix}$	ON/C (MATH) 3 1 5 (2ndF), 3 (2ndF), 3) =
cumul matA = $\begin{bmatrix} 1 & 2 \\ 4 & 6 \end{bmatrix}$	ON/C MATH 3 2 MATH 0 0 =
	231 ON/C MATH 3 3 MATH 0 0 4 26 2ndF , MATH 0 1) =
identity $3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	ON/C MATH 3 4 3 =
rnd_mat(2,3)	ON/C MATH 3 5 2 2ndF , 3) =
det matA = -2	ON/C MATH 4 0 MATH 0 0 =
trans matB = $\begin{bmatrix} 3 & 2 \\ 1 & 6 \end{bmatrix}$	ON/C (MATH) 4 1 (MATH) 0 1 =
L1: {1 3}	
mat → list L2: {3 2}	ON/C MATH 5
mat → list L2: {3 2}	ONC MATH 5
mat → list L2: {3 2} [29] MODE (LIST)	(MODE) 5
mat → list L2: $\{32\}$ [29] MODE (LIST) 2, 7, 4 → L1	(MODE 5 ▼ 3 (DATA 2 (DATA 7 (DATA) 4 (DATA) ONC (MATH) 2 0
mat → list L2: {3 2} [29] MODE (LIST)	(MODE) 5
mat → list L2: $\{32\}$ [29] MODE (LIST) 2, 7, 4 → L1	(MODE) 5
mat → list L2: $\{32\}$ [29] MODE (LIST) 2, 7, 4 → L1	MODE 5
mat → list L2: $\{32\}$ [29] MODE (LIST) 2, 7, 4 → L1 -3, -1, -4 → L2	MODE 5
mat → list L2: $\{32\}$ [29] MODE (LIST) 2, 7, 4 → L1 -3, -1, -4 → L2 L1+L2 = $\{-160\}$ sortA L1 = $\{247\}$	MODE 5
mat \rightarrow list L2: (3 2) [29] MODE (LIST) 2, 7, 4 \rightarrow L1 -3, -1, -4 \rightarrow L2 L1+L2 = {-1 6 0} sortA L1 = {2 4 7} sortD L1 = {7 4 2}	MODE 5
mat \rightarrow list L2: {3 2} [29] MODE (LIST) 2, 7, 4 \rightarrow L1 -3, -1, -4 \rightarrow L2 L1+L2 = {-1 6 0} sortA L1 = {2 4 7} sortD L1 = {7 4 2} dim(L1,5) = {2 7 4 0 0} fill(5,5) = {5 5 5 5}	MODE 5
mat \rightarrow list L2: $\{3\ 2\}$ [29] MODE (LIST) 2, 7, 4 \rightarrow L1 -3, -1, -4 \rightarrow L2 L1+L2 = $\{-1\ 6\ 0\}$ sortA L1 = $\{2\ 4\ 7\}$ sortD L1 = $\{7\ 4\ 2\}$ dim(L1,5) = $\{2\ 7\ 4\ 0\ 0\}$ fill(5,5) = $\{5\ 5\ 5\ 5\}$ cumul L1 = $\{2\ 9\ 13\}$	(MODE 5 **** 3 (DATA 2 DATA 7 DATA 4 DATA ONC (MATH) 2 0 **** 3 (DATA +/-) 1 (DATA +/-) 4 DATA +/-/ 3 (DATA +/-) 1 (DATA +/-) 4 DATA (NIC) (MATH) 2 1 ****ONC (MATH) 2 0 (MATH) 0 0 = 0 (NIC) (MATH) 3 0 (MATH) 0 0 = 0 (NIC) (MATH) 3 1 (MATH) 0 0 = 0 (NIC) (MATH) 3 2 (MATH) 0 0 (NIC) (MATH) 3 2 (MATH) 0 0 (NIC) (MATH) 3 2 (MATH) 0 0 (NIC) (MATH) 3 3 5 (
mat \rightarrow list L2: $\{3\ 2\}$ [29] MODE (LIST) 2, 7, 4 \rightarrow L1 -3, -1, -4 \rightarrow L2 L1+L2 = $\{-1\ 6\ 0\}$ sortA L1 = $\{2\ 4\ 7\}$ sortD L1 = $\{7\ 4\ 2\}$ dim(L1,5) = $\{2\ 7\ 4\ 0\ 0\}$ fill(5,5) = $\{5\ 5\ 5\ 5\}$ cumul L1 = $\{2\ 9\ 13\}$ df_list L1 = $\{5\ -3\}$	MODE 5 V 3 (DATA 2 DATA 7 DATA 4 DATA ONCO MATH) 2 0 V 3 (DATA +/-) 1 (DATA +/-) 4 DATA +/-) 3 (DATA +/-) 1 (DATA +/-) 4 DATA ONCO MATH) 2 1 ONCO MATH) 3 0 (MATH) 0 0 = ONCO MATH) 3 1 (MATH) 0 0 = ONCO MATH) 3 1 (MATH) 0 0 = ONCO MATH) 3 2 (MATH) 0 0 ENDER 7 5 1 = ONCO MATH) 3 3 5 (2 MOF) 7 S 1 = ONCO MATH) 3 4 (MATH) 0 0 = ONCO MATH) 3 4 (MATH) 0 0 =
mat \rightarrow list L2: $\{3\ 2\}$ [29] MODE (LIST) 2, 7, 4 \rightarrow L1 -3, -1, -4 \rightarrow L2 L1+L2 = $\{-1\ 6\ 0\}$ sortA L1 = $\{2\ 4\ 7\}$ sortD L1 = $\{7\ 4\ 2\}$ dim(L1,5) = $\{2\ 7\ 4\ 0\ 0\}$ fill(5,5) = $\{5\ 5\ 5\ 5\}$ cumul L1 = $\{2\ 9\ 13\}$ df_list L1 = $\{5\ -3\}$	MODE S
mat \rightarrow list L2: $\{3\ 2\}$ [29] MODE (LIST) 2, 7, 4 \rightarrow L1 -3, -1, -4 \rightarrow L2 L1+L2 = $\{-1\ 6\ 0\}$ sortA L1 = $\{2\ 4\ 7\}$ sortD L1 = $\{7\ 4\ 2\}$ dim(L1,5) = $\{2\ 7\ 4\ 0\ 0\}$ fill(5,5) = $\{5\ 5\ 5\ 5\}$ cumul L1 = $\{2\ 9\ 13\}$ df_list L1 = $\{5\ -3\}$	MODE 5 V 3 (DATA 2 DATA 7 DATA 4 DATA ONC MATH 2 0 V 3 (DATA + 1 DATA + 4 DATA + 7 3 DATA + 7 1 DATA + 7 4 DATA + 7 3 DATA + 7 1 DATA + 7 4 DATA ONC MATH 0 0 + MATH 0 0 = 0 ONC MATH 3 0 (MATH 0 0 = 0 ONC MATH 3 1 (MATH 0 0 = 0 ONC MATH 3 2 (MATH 0 0 = 0 ONC MATH 3 3 5 (MATH 0 0 = 0 ONC MATH 3 4 (MATH 0 0 = 0 ONC MATH 3 4 (MATH 0 0 = 0 ONC MATH 3 5 (MATH 0 0 = 0 ONC MATH 3 5 (MATH 0 0 = 0 ONC MATH 3 5 (MATH 0 0 = 0 ONC MATH 3 6 (MATH 0 0 = 0 ONC MATH 3 6 (MATH 0 0 0 ONC MATH 3 6 (MATH 0 0 0 ONC MATH 3 6 (MATH 0 ONC MATH 3 6 (MAT
mat \rightarrow list L2: (3 2) [29] MODE (LIST) 2, 7, 4 \rightarrow L1 -3, -1, -4 \rightarrow L2 L1+L2 = {-1 6 0} sortA L1 = {2 4 7} sortD L1 = {7 4 2} dim(L1,5) = {2 7 4 0 0} fill(5,5) = {5 5 5 5} cumul L1 = {2 9 13} df_list L1 = {5 -3} aug(L1,L2) = {2 7 4 -3 -4} fill(5,5) = {2 7 4 -3 -4} fill(5,5) = {2 7 4 -3 -4} fill(5,5) = {2 7 4 4 4 -3 -4} fill(5,5) = {2 7 4 4 4 4 -3 -4} fill(5,5) = {2 7 4 4 4 4 -3 -4} fill(5,5) = {2 7 4 4 4 4 4 -3} fill(5,5) = {2 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	(MODE 5 (W 3 (DATA 2 DATA 7 DATA 4 DATA ONC (MATH) 2 0 (W 3 (DATA +/-) 1 (DATA +/-) 4 DATA +/-) 3 (DATA +/-) 1 (DATA +/-) 4 DATA (MC) (MATH) 2 1 (MC) (MATH) 0 0 + (MATH) 0 1 = (MC) (MATH) 3 0 (MATH) 0 0 = (MC) (MATH) 3 1 (MATH) 0 0 = (MC) (MATH) 3 2 (MATH) 0 0 (MATH) 3 3 5 (MATH) 0 0 = (MC) (MATH) 3 4 (MATH) 0 0 = (MC) (MATH) 3 5 (MATH) 0 0 = (MC) (MATH) 3 6 (MATH) 0 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 0 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 1 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 1 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 1 1 1 1 = (MC) (MATH) 3 6 (MATH) 0 1 1 1 1 = (MC) (MATH) 3 6 (MATH) 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
mat \rightarrow list L2: {3 2} [29] MODE (LIST) 2, 7, 4 \rightarrow L1 -3, -1, -4 \rightarrow L2 L1+L2 = {-1 6 0} sortA L1 = {2 4 7} sortD L1 = {7 4 2} dim(L1,5) = {2 7 4 0 0} fill(5,5) = {5 5 5 5} cumul L1 = {2 9 13} df_list L1 = {5 -3} aug(L1,L2) = {2 7 4 -3 -} min L1 = 2	MODE 5
mat \rightarrow list L2: {3 2} [29] MODE (LIST) 2, 7, 4 \rightarrow L1 -3, -1, -4 \rightarrow L2 L1+L2 = {-1 6 0} sortA L1 = {2 4 7} sortD L1 = {7 4 2} dim(L1,5) = {2 7 4 0 0} fill(5,5) = {5 5 5 5} cumul L1 = {2 9 13} df_list L1 = {5 -3} aug(L1,L2) = {2 7 4 -3 -4} min L1 = 2 max L1 = 7	MODE 5
mat \rightarrow list L2: {3 2} [29] MODE (LIST) 2, 7, 4 \rightarrow L1 -3, -1, -4 \rightarrow L2 L1+L2 = {-1 6 0} sortA L1 = {2 4 7} sortD L1 = {7 4 2} dim(L1,5) = {2 7 4 0 0} fill(5,5) = {5 5 5 5} cumul L1 = {2 9 13} df_list L1 = {5 -3} aug(L1,L2) = {2 7 4 -3 -4} min L1 = 2 max L1 = 7 mean L1 = 4.3333333333	MODE 5

r1 = 8, $\theta 1 = 70^{\circ}$ $r2 = 12, \theta 2 = 25^{\circ}$ r = ?, $\theta = ?$ ° __....

stdDv L1 = 2.516611478	ON/C (MATH) 4 6 (MATH) 0 0 =
vari L1 = 6.333333333	ON/C (MATH) 4 7 (MATH) 0 0 =
o_prod(L1,L2) = {-24 -4 19}	ON/C MATH 4 8 MATH 0 0 2ndF , MATH 0 1) =
i_prod(L1,L2) = -29	ON/C MATH 4 9 MATH 0 0 2ndF , MATH 0 1) =
abs L2 = 5.099019514	ON/C MATH 4 A MATH 0 1 =
list \rightarrow matA matA: $\begin{bmatrix} 2-3\\7-1\\4-4 \end{bmatrix}$	ONC MATH 6

[30]

Function	Dynamic range			
Funzioni	Campi dinamici			
	DEG: x < 10 ¹⁰			
	$(\tan x : x \neq 90 (2n-1))^*$			
$\sin x$, $\cos x$,	RAD: $ x < \frac{\pi}{180} \times 10^{10}$			
tan x	$(\tan x : x \neq \frac{\pi}{2} (2n-1))^*$			
	GRAD: $ x < \frac{10}{9} \times 10^{10}$			
	(tan $x : x < \frac{1}{9} \times 10^{-9}$)			
sin-1x, cos-1x	x \le 1			
$\tan^{-1}x$, $\sqrt[3]{x}$	x < 10 ¹⁰⁰			
$\ln x$, $\log x$	$10^{-99} \le x < 10^{100}$			
	• $y > 0$: $-10^{100} < x \log y < 100$			
	• $y = 0$: $0 < x < 10^{100}$			
y.x	A 11 4 01 11 12			
	y < 0. $x = 11(0 < x < 1: \frac{1}{x} = 2n-1, x \ne 0)^*$			
	$-10^{100} < x \log y < 100$			
	• $y > 0$: $-10^{100} < \frac{1}{x} \log y < 100 \ (x \neq 0)$			
	• $y = 0$: $0 < x < 10^{100}$			
$x\sqrt{y}$				
	$(0 < x < 1 : \frac{1}{x} = n, x \neq 0)^*,$			
	• $y < 0$: $x = 2n - 1$ $(0 < x < 1 : \frac{1}{x} = n, x \ne 0)^*,$ $-10^{100} < \frac{1}{x} \log y < 100$			
e ^x	-10 ¹⁰⁰ < x ≤ 230.2585092			
10 ^x	$-10^{100} < x < 100$			
sinh x, cosh x,				
tanh x	x ≤ 230.2585092			
sinh ⁻¹ x	x < 10 ⁵⁰			
cosh⁻¹ x	$1 \le x < 10^{50}$			
tanh-1 x	x <1			
x ²	x < 10 ⁵⁰			
x ³	x < 2.15443469 × 10 ³³			
\sqrt{x}	$0 \le x < 10^{100}$			
x-1	$ x < 10^{100} (x \neq 0)$			
n!	0 ≤ n ≤ 69*			
nPr	0 ≤ r ≤ n ≤ 999999999*			
	$\frac{n!}{(n-r)!} < 10^{100}$			
	0 ≤ r ≤ n ≤ 9999999999*			
nCr	0 ≤ r ≤ 69			
	$\frac{n!}{(n-r)!} < 10^{100}$			
A DEC DOME				
↔DEG, D°M'S	0°0'0.00001" ≤ x < 10000°			
$x, y \rightarrow r, \theta$	$\sqrt{x^2 + y^2} < 10^{100}$			
	$0 \le r < 10^{100}$ DEG: $ \theta < 10^{10}$			
F A ¬ × "				
$r, \theta \to x, y$	1 180			
	GRAD: $ \theta < \frac{10}{9} \times 10^{10}$			
	, and the second			
DRG▶	DEG→RAD, GRAD→DEG: x < 10 ¹⁰⁰			
	RAD \rightarrow GRAD: $ x < \frac{\pi}{2} \times 10^{98}$			
(A+Bi)+(C+Di)	A + C < 10 ¹⁰⁰ , B + D < 10 ¹⁰⁰			
(A+Bi)-(C+Di)	A - C < 10 ¹⁰⁰ , B - D < 10 ¹⁰⁰			
(A+Bi)×(C+Di)	(AC - BD) < 10 ¹⁰⁰			
	$(AD + BC) < 10^{100}$			
	$\frac{AC + BD}{C^2 + D^2} < 10^{100}$			
(A+Bi)÷(C+Di)	C-+ D-			
(****Di)=(O+Di)	$\frac{BC - AD}{C^2 + D^2} < 10^{100}$			
	$C^2 + D^2 \neq 0$			

→DEC →BIN →PEN	DEC : $ x \le 9999999999$ BIN : $10000000000 \le x \le 1111111111111111111111$
→OCT →HEX	PEN : 2222222223 ≤ x ≤ 4444444444 0 ≤ x ≤ 2222222222
AND	OCT : $40000000000 \le x \le 7777777777$
OR XOR	$0 \le x \le 3777777777$ HEX: FDABF41C01 $\le x \le FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF$
XNOR	0 ≤ x ≤ 2540BE3FF
	BIN : 1000000000 ≤ x ≤ 1111111111
	0 ≤ <i>x</i> ≤ 111111111
	PEN : 2222222223 ≤ x ≤ 4444444444
NOT	0 ≤ <i>x</i> ≤ 222222221
NOT	OCT : $40000000000 \le x \le 77777777777$
	$0 \le x \le 3777777777$
	HEX : FDABF41C01 $\leq x \leq$ FFFFFFFFF
	0 ≤ x ≤ 2540BE3FE
	BIN : 1000000001 ≤ x ≤ 1111111111
NEG	0 ≤ <i>x</i> ≤ 111111111
	PEN : $2222222223 \le x \le 44444444444$
	0 ≤ <i>x</i> ≤ 222222222
I I'L'G	OCT : $4000000001 \le x \le 7777777777$
	0 ≤ <i>x</i> ≤ 377777777
	HEX : FDABF41C01 $\leq x \leq$ FFFFFFFFF
	0 ≤ x ≤ 2540BE3FF

^{*} n, r: integer / intero

- Physical Constants and Metric Conversions are shown in the tables.
- La constanti fisiche e le conversioni delle unità di misura vengono mostrate nella tabella.

PHYSICAL CONSTANTS 2ndF (CNST) 01 — 52 No. SYMBOL UNIT No. SYMBOL UNIT No. SYMBOL UNIT No. SYMBOL UNIT

No. SYMBOL	UNIT	No. SYMBOL	UNIT	No. SYMBOL	UNIT
01 - c, c ₀	m s ⁻¹	19 - μ _Β	J T ⁻¹	37 - eV	J
02 - G	m³ kg ⁻¹ s ⁻²	20 - μ _e	J T-1	38 - t	K
03 - g _n	m s ⁻²	21 - μ_{N}	J T ⁻¹	39 - AU	m
04 - m _e	kg	22 - μ _p	J T-1	40 - pc	m
05 - mp	kg	23 - μ _n	J T ⁻¹	41 - M(12C)	kg mol⁻¹
06 - m _n	kg	24 - μμ	J T ⁻¹	42 - ħ	Js
07 - mμ	kg	25 - λ _c	m	43 - E _h	J
08 - lu	kg	26 - λ _{c, p}	m	44 - G ₀	s
09 - e	С	27 - σ	W m ⁻² K ⁻⁴	45 - α ^{-/}	
10 - h	Js	28 - N _A , L	mol⁻¹	46 - m_p/m_e	
11 - k	J K ⁻¹	29 - V _m	m³ mol⁻¹	47 - M _u	kg mol ⁻¹
12 - μ ₀	N A ⁻²	30 - R	J mol ⁻¹ K ⁻¹	48 - λ _{c, n}	m
13 - £ ₀	F m ⁻¹	31 - F	C mol ⁻¹	49 - c ₁	W m ²
14 - r _e	m	32 - R _K	Ohm	50 - c ₂	m K
15 - α		33e/m _e	C kg ⁻¹	51 - Z ₀	Ω
16 - a ₀	m	34 - h/2m _e	m ² s ⁻¹	52 - atm	Pa
17 - R∞	m ⁻¹	35 - γ _p	s-1 T-1		
18 - Φ ₀	Wb	36 - K,	Hz V ⁻¹		

RIC CONVERSION	ONS		X (2)	ndF)(CONV) 1 — 4
UNIT	No.	UNIT	No.	UNIT
in→cm	16	kg→lb	31	J→calıт
cm→in	17	°F→°C	32	саІл→Ј
ft→m	18	°C→°F	33	hp→W
m→ft	19	gal (US)→ℓ	34	W→hp
yd→m	20	ℓ→gal (US)	35	ps→W
m→yd	21	gal (UK)→ℓ	36	W→ps
mile→km	22	ℓ→gal (UK)	37	kgf/cm²→Pa
km→mile	23	fl oz (US) \rightarrow m ℓ	38	Pa→kgf/cm ²
n mile→m	24	mℓ→fl oz (US)	39	atm→Pa
m→n mile	25	fl oz (UK) \rightarrow m ℓ	40	Pa→atm
acre→m²	26	mℓ→fl oz (UK)	41	mmHg→Pa
m²→acre	27	J→cal	42	Pa→mmHg
oz→g	28	cal→J	43	kgf·m→J
g→oz	29	J→cal ₁₅	44	J→kgf·m
lb→kg	30	cal ₁₅ →J		
	UNIT $in\rightarrow cm$ $cm\rightarrow in$ $ft\rightarrow m$ $m\rightarrow ft$ $yd\rightarrow m$ $m\rightarrow yd$ $mile\rightarrow km$ $km\rightarrow mile$ n $mile\rightarrow m$ $m\rightarrow n$ $mile$ $acre\rightarrow m^2$ $m^2\rightarrow acre$ $oz\rightarrow g$ $g\rightarrow oz$	$\begin{array}{c cccc} UNIT & No. \\ in \to cm & 16 \\ cm \to in & 17 \\ ft \to m & 18 \\ m \to ft & 19 \\ yd \to m & 20 \\ m \to yd & 21 \\ mile \to km & 22 \\ km \to mile & 23 \\ n \ mile \to m & 24 \\ m \to n \ mile & 25 \\ acre \to m^2 & 27 \\ oz \to g & 28 \\ g \to oz & 29 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$