# MD4 - F01/E8 subject to change

Repeatability

## THERMAL PROCESSING MDV systems for surface-mix burners





MDV gas metering systems for the flexible production and flow control of fuel gases, oxygen or air; especially designed for surface-mix burners.

#### **Benefits**

- the flexible arrangement of metering valves (2 or 3 gases) provides the flexibility to meet the gas supply requirements of various types of processing machinery
- subsequent changes of machine parameters, e.g. capacities or number of burners, can be easily accomplished because of the modular design
- all parameters can be adjusted with the burners in sight due to the installation of the metering valves close to the burners
- the perfect repeatability of the parameter setting senables the initial setting of the burners before actually starting the process. This results in reduced set-up times as well as in minimised cost of rejects during start-up.

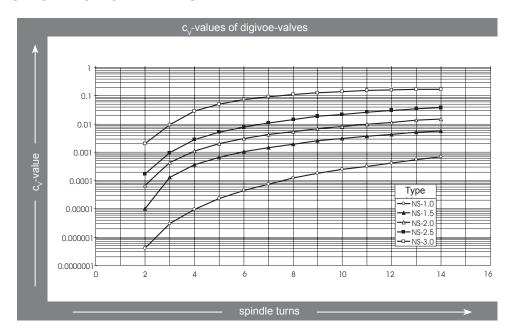
better ±1% abs.

- low assembly cost due to very convenient assembly of mixing and metering valves without any additional pipe work, brackets or housings
- integrated WITT safety technology to prevent dangerous flashbacks or back burns into the gas supply system protecting life and equipment

Please indicate the individual gases as well as number and capacities of the required burners when ordering!

Low Voltage Directive

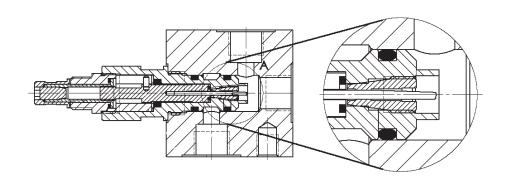
2014/35/EU


| Туре                 | MDV Systems for                                                | Gas connections    | dependent on valve block size               |
|----------------------|----------------------------------------------------------------|--------------------|---------------------------------------------|
| Gases                | Surface-Mix Burners fuel gases such as natural gas,            | Material           | aluminium, brass, stainless steel           |
| Gases                | methane, propane, hydrogen, acetylene with oxygen and/or air   | Weight             | dependent on number of valves               |
| Mixing range         | dependent on the gases                                         | Dimensions (HxWxD) | dependent on number of valves               |
| Gas inlet pressures  | 0.3 to max. 10 bar                                             | Shut-off valves    | solenoid valves,<br>24 V DC or 230 V AC     |
| Gas outlet pressures | dependent on the back pressure of the burners                  | Approvals          | Company certified according to ISO 9001     |
| Flow capacity (air)  | approx. 10 NI/min to 1000 NI/min (other quantities on request) |                    | CE-marked according to:<br>- EMC 2014/30/EU |

## THERMAL PROCESSING MDV systems for surface-mix burners



#### FLOW CALCULATION OF DIGIVOE-VALVES


Characteristic curve



#### **Formulas**

| Pressure drop             |                                                  | Gas flow in Nm <sup>3</sup> /h                                                        |              |
|---------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------|--------------|
| $\Delta P < \frac{Pv}{2}$ |                                                  | $Qn = \frac{Cv \cdot 514}{\sqrt{\frac{\rho n \cdot \vartheta n}{\Delta P \cdot Ph}}}$ |              |
| $\Delta P > \frac{Pv}{2}$ |                                                  | $Qn = \frac{Cv \cdot 257 \cdot Pv}{\sqrt{\rho n \cdot \vartheta n}}$                  |              |
| Symbol                    | Description                                      |                                                                                       | Unit         |
| Qn                        | Gas flow                                         |                                                                                       | Nm³/h        |
| Kv                        | Flow coefficient from curve                      |                                                                                       | Nm³/h        |
| ΔΡ                        | Pressure drop = Pv-Ph                            |                                                                                       | bar          |
| Pv                        | Inlet pressure                                   |                                                                                       | bar absolute |
| Ph                        | Outlet pressure                                  |                                                                                       | bar absolute |
| ρn                        | Density at norm conditions: 0 °Celsius, 1013 hPa |                                                                                       | Kg/Nm³       |
| <i>9</i> n                | Gas temperature upstream the valve               |                                                                                       | Kelvin       |

### Sectional drawing

