Congratulations!

The smartCHEM-pH is an advanced, high quality pH, mV & Temperature instrument.

Despite its impressive list of features, the **smartCHEM-pH** is a breeze to operate. This manual has been designed to help you get started, and also contains some handy application tips. If at any stage you require assistance, please contact either your local TPS representative or the TPS factory in Brisbane.

The manual is divided into the following sections:

1. Table of Contents

Each major section of the handbook is clearly listed. Sub-sections have also been included to enable you to find the information you need at a glance.

2. Introduction

The introduction has a diagram and explanation of the display and controls of the **smart***CHEM***-pH**. It also contains a full listing of all of the items that you should have received with the unit. Please take the time to read this section, as it explains some of items that are mentioned in subsequent sections.

3. Main Section

The main section of the handbook provides complete details of the **smart***CHEM***-pH**, including operating modes, calibration, troubleshooting, specifications, and warranty terms.

4. Appendices

Appendices containing background information and application notes are provided at the back of this manual.

smart*CHEM*-pH

pH, mV, Temperature Meter

Date : 01-Jun-2010

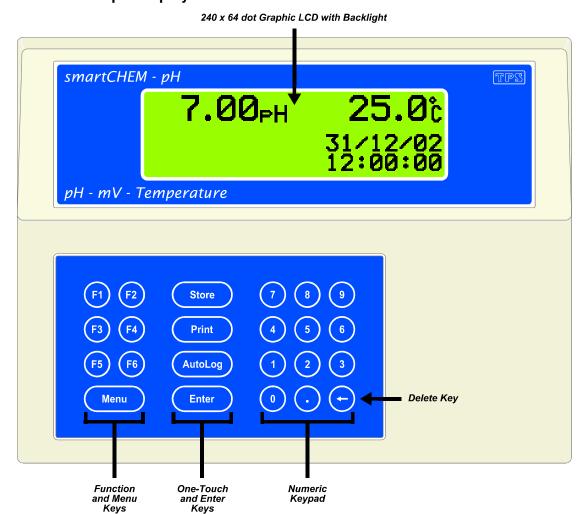
Version: 1.1

TPS Pty Ltd

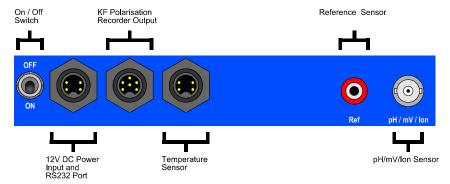
ABN 30 009 773 371

Unit 6 / 253 Leitchs Road Brendale, QLD, Australia, 4500

Phone : (07) 32 058 027 International : 61 7 32 058 027 Fax : (07) 3808 4871 International : 61 7 3808 4871 Email : tps@tps.com.au Web : www.tps.com.au


Contents

**		
1. In	ntroduction	5
1.1	smartCHEM-pH Display and Controls	5
1.2	smartCHEM-pH Rear Panel Connectors	5
1.3	Function and Menu Keys	6
1.4	One-touch Keys	6
1.5	Numeric Keypad	
1.6	Delete Key	
1.7	240 x 64 Dot Graphic Display	
1.8	Unpacking Information	
1.9	Specifications	
	mart <i>CHEM</i> -pH Menu Structure	
	•	
	H Mode	
3.1	Selecting pH Mode	
3.2	Selecting the pH Buffer Set	
3.3	Calibration Buffer Sequence	
3.4	pH Calibration	
3.5	pH Calibration Notes	
3.6	pH Calibration Messages	
4. A	bsolute Millivolt Mode	
4.1	Selecting Absolute Millivolt Mode	
4.2	Absolute Millivolt Calibration	16
4.3	mV Calibration Notes	17
4.4	mV Calibration Messages	18
5. R	Relative Millivolt Mode	19
5.1	Selecting Relative Millivolt Mode	
5.2	Relative Millivolt Calibration	
5.3	Relative Millivolt Calibration Notes	
	emperature Mode	
6. T 6.1	Temperature Calibration	
6.2	Temperature Carloration Notes	
6.3	•	
	Calibration Messages	
6.4	Manual Temperature Setting	
	uto Stability Function (ASF)	
7.1	ASF During Normal Measurement	
7.2	ASF During Calibration	
7.3	ASF with Manual Datalogging	
7.4	ASF with Automatic Datalogging	24
8. D	Display Backlight	25
9. G	Good Laboratory Practices (GLP)	26
9.1	To recall GLP information on the display	
9.2	Failed Calibration	
9.3	Printing GLP Information to the RS232 Port	
9.4	GLP Calibration Alarm	
9.5	Instrument Serial Number	
9.6	Additional GLP Features	
10.	Access Code	
10.1	8 · · · · · · · · · · · · · · · · · · ·	
10.2	- · · · · · · · · · · · · · · · · · · ·	
10.3	6 6	
10.4	8 · · · · · · · · · · · · · · · · ·	
11.	Datalogging	
11.1	3.6 1.5 1	2.1
11.1	Manual Datalogging	31


11.3	Recalling Readings from the Logger	
11.4	Erasing Records from the Logger	33
11.5	Printing Records from the Logger to the RS232 Port	
12. I	RS232 Port	34
12.1	Setting the Baud Rate	34
12.2	Sending Readings to the RS232 Port	34
12.3	RS232 Configuration	
12.4	Communication and Statistical Software	34
12.5	Commands	35
12.6	Data Format	36
12.7	GLP Data Format	
12.8	Importing Data into Microsoft Excel	37
13. I	Recorder Port	39
13.1	Recorder Port Configuration	39
13.2	Recorder Port Specifications	39
14.	Setting the Clock	40
15. I	Initialising the smart <i>CHEM</i> -pH	41
16. I	Instrument firmware version number	41
17.	Troubleshooting	42
17.1	General Errors	42
17.2	pH and mV Troubleshooting	42
17.3	Temperature Troubleshooting	43
18.	Appendices	44
18.1	pH Electrode Fundamentals	
19. \	Warranty	40

1. Introduction

1.1 smart CHEM-pH Display and Controls

1.2 smart CHEM-pH Rear Panel Connectors

Turn the retaining nut clockwise until it clicks into place when plugging in plastic connectors. This is essential to produce a waterproof seal.

Always replace the waterproof cap when a connector is not in use to maintain waterproof integrity.

1.3 Function and Menu Keys

Press Menu to enter the user-friendly menu system. Menu is also used to step backwards through the menu one level at a time, and as an "escape" key to quit functions such as calibration, data entry etc.

Press the ^{ft} to ^{ft} function keys to select desired options within the menu system.

Additionally, these keys perform the following function directly in normal measurement mode...

- Establishment : Press to Zero Relative mV, when Relative mV is selected. See section 5.2.
- Es : Press to start and stop the Automatic Stability Function. See section 7.

1.4 One-touch Keys

- (Store): Press to manually record readings into the Logger. See section 11.1.
- (Print): Press to transmit current reading plus date and time to the RS232 port. See section 12.2.
- (AutoLog): Press to start and stop Automatic Datalogging. See section 11.2.
- Enter: Press Enter to accept default values or those entered on the Numeric Keypad.

1.5 Numeric Keypad

Used to enter values during set-up and calibration. A decimal point is provided.

1.6 Delete Key

Press ⊕ to make corrections to values entered on the Numeric Keypad.

1.7 240 x 64 Dot Graphic Display

Graphic display with large, clear digits and letters. Features a user-friendly menu and context-sensitive help system. pH/mV/Relative mV, Temperature, Date and Time simultaneously.

Backlight can be set to On, Off or Energy Saver modes. See section 8.

1.8 Unpacking Information

Before using your new **smartCHEM-pH**, please check that the following accessories have been included:

		Part No
Stand	dard Kit	
1. s	smartCHEM-pH pH, mV, Relative mV, Temperature Meter	121103
2. F	Plastic Body pH Sensor	121207
	Temperature/ATC Sensor	
	pH7.00 Buffer, 200mL	
5. p	pH4.01 Buffer, 200mL	121381
6. Ī	Plug-Pack Power Supply	130037
7. s	smartCHEM-pH Handbook	130050
-	onal sensors that may have been ordered with your smartCHEM-pH	
	Intermediate Junction pH Sensor	
	Plastic Body Combination Redox Sensor	
	Intermediate Junction Redox Sensor	
4. I	Double Platinum Karl Fischer Sensor	122209
	rument Options	
	Flexible arm type electrode holder	
2. F	RS232 Serial Interface Cable	130041
3. S	Serial to USB adaptor (must also have 130041 Serial Cable)	130087
4. F	Recorder Output Option (includes cable)	130028
5. V	WinTPS RS232 Communication software for Windows 95, 98 and ME	130086

1.9 Specifications

1.9.1 pH

Ranges	Resolution	Accuracy
0 to 14.000 pH	0.001 pH	±0.002 pH
0 to 14.00 pH	0.01 pH	±0.01 pH

Sensor TypeGlass bulb pH sensor, combination or half cell.

Input Impedance>3 x 10¹² Ohms

Temperature Compensation Automatic, 0 to 100 °C

Calibration......Automatic asymmetry and slope calibration.

Automatic Buffer RecognitionpH4.01, pH6.86, pH7.00, pH9.18 & pH10.01.

Any other can be entered during calibration.

Sensor Asymmetry Range-1.00 to 1.00 pH

Sensor Slope Range85.0 to 105.0 %

1.9.2 Absolute and Relative mV

Ranges	Resolution	Accuracy
0 to ± 400.0 mV 0 to ±1500 mV (auto-ranging)	0.1 mV 1 mV	±0.15 mV ±1 mV

Ion Selective Electrodes can also be used in this mode.

1.9.3 Temperature

Range	Resolution	Accuracy
-10.0 to 120.0 °C	0.1 °C	±0.2 °C

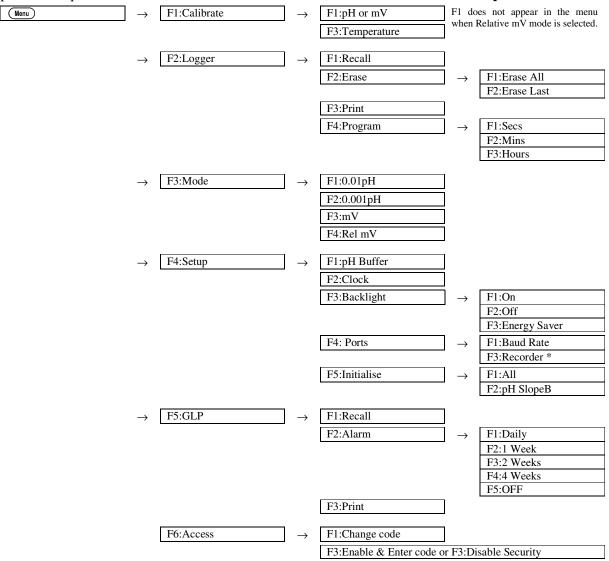
Calibration Automatic offset calibration

Sensor Offset Range-10.0 to 10.0 °C

1.9.4 G	eneral S	pecifica	tions
---------	----------	----------	-------

Memory......2730 readings including date and time hours. 8 bits, no parity, 1 stop bit, XON/XOFF Protocol. & seconds. are stored. This information can be recalled or sent to the RS232 port at any time. AC/DC adaptor to suit country of destination is included in standard kit.

Mass Instrument only : Approx. 1.0 kg


Full Kit : Approx. 2.5 kg

: 0 to 45 °C

> : 0 to 90 % R.H. Humidity

2. smart CHEM-pH Menu Structure

A detailed breakdown of the menu system of the **smart***CHEM***-pH** is shown below. This diagram provides a quick reference for the menu functions available for the **smart***CHEM***-pH**.

^{*} This function only available when Recorder Port option is fitted.

3. pH Mode

3.1 Selecting pH Mode

To select or change the pH Mode...

1. Select the Mode menu ($\stackrel{\mathsf{Menu}}{\longrightarrow}$ **F3:Mode**)...

Mode >F1:0.01pH F2:0.001pH F3:mV F4:Rel mV

The arrow indicates the current selection.

Press (9) to select pH mode with 0.01 pH resolution.

Press (2) to select pH mode 0.001 pH resolution.

Press Menu to quit without changing the current selection.

3.2 Selecting the pH Buffer Set

The **smart***CHEM***-pH** can be programmed to automatically recognise any of the following buffer sets during pH calibration. All pH values listed below are at 25 °C.

- 1. pH4.01, pH7.00, pH9.18
- 2. pH4.01, pH7.00, pH10.01
- 3. pH4.01, pH6.86, pH9.18
- 4. pH4.01, pH6.86, pH10.01.

To select the pH buffer set for automatic recognition...

1. Select the pH Buffer set-up menu.

(\longrightarrow F4:Setup \longrightarrow F1:pH Buffer).

2. The primary buffer selection menu is now displayed...

Select Primary Buffer >F1:7.00pH F3:6.86pH

The arrow indicates the current selection.

Press (1) to select pH7.00 as the Primary Buffer.

Press (2) to select pH6.86 as the Primary Buffer.

Press Menu to quit without changing the current setting.

3. The secondary buffers selection menu is now displayed...

Select Secondary
Buffers
>F1:4.01/9.18pH
F3:4.01/10.01pH

The arrow indicates the current selection.

Press (9) to select pH4.01 and pH9.18 as the Secondary Buffers.

Press (2) to select pH4.01 and pH10.01 as the Secondary Buffers.

Press Menu to quit without changing the current setting.

Notes

- 1. The selected buffer set is kept in memory when the meter is switched off.
- 2. If you wish to use a pH buffer other than one of those listed above, its value can be keyed in during calibration. Make sure that pH versus Temperature data for the buffer is known.

3.3 Calibration Buffer Sequence

Before proceeding to pH Calibration (section 3.4), please consider the sequence in which the buffers should be used. This will vary depending on whether a 1, 2 or 3 point pH calibration is required.

3.3.1 1 Point Calibration

A 1 point pH calibration can be performed in any buffer and will only adjust for the asymmetry of the pH sensor. See section 18.1.1 for a detailed explanation of asymmetry. A 1 point calibration will not remove the "*", which is shown in place of the decimal point when pH is un-calibrated or has failed calibration.

3.3.2 2 Point Calibration

A 2 point calibration is performed automatically after a successful 1 point calibration, when the pH sensor is calibrated in a buffer that is at least 1.50pH higher or lower than the buffer that was used for the first point.

A 2 point calibration can be performed in any two pH buffers, and in any order, as long as they are at least 1.50pH apart.

3.3.3 3 Point Calibration

A 3 point calibration must be performed in the correct order.

For the pre-programmed buffers (see section 3.2), this order can be any one of the following...

First Point	Second Point	Third Point
pH7.00 or pH6.86	pH4.01	pH9.18 or pH10.01
pH4.01	pH7.00 or pH6.86	pH9.18 or pH10.01

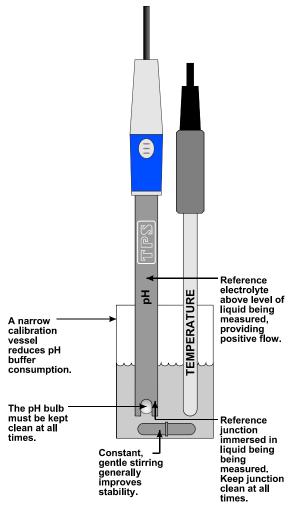
When using buffers other than the pre-programmed buffers, please use the following guidelines to determine the correct order in which to perform a 3 point calibration...

1. **Definitions**

- a) A neutral buffer must be between pH6.50 and pH7.50, inclusive.
- b) An acidic buffer must be 1.50pH or more lower than the neutral buffer that is being used.
- c) A basic buffer must be 8.50pH or higher.

2. Buffer Order

- a) Neutral \rightarrow Acid \rightarrow Base
- b) Acid \rightarrow Neutral \rightarrow Base


3. *Notes*

- a) When using buffers other than the pre-programmed buffers, ensure that the pH versus Temperature characteristics are known. The buffer value corresponding to the calibration temperature must be keyed in correctly.
- b) pH sensors offer an extremely linear response over a wide range. A 2 point calibration would normally be sufficient for most measurements between pH2.00 and pH10.00.
- c) When a 3 point calibration has been successfully performed, an extra line appears in the GLP Recall (section 9.1) and the GLP print-out (section 9.3) labelled "SlopeB".

3.4 pH Calibration

A "*" in place of the decimal point indicates that the pH readout is not calibrated, or a past calibration has failed. The "*" will be removed once at least a two-point pH calibration has been successfully performed.

- 1. Plug the pH sensor into the **pH/mV/lon** BNC socket and the temperature sensor into the **Temperature** socket. Switch the meter on.
- 2. Select the desired pH resolution (see section 3.1).
- 3. Ensure that temperature has already been calibrated, or manually set (see sections 6.1 and 6.4). NOTE: For real temperature readings, the decimal point is shown by a " * ", when the temperature readout is not calibrated.
- 4. Remove the wetting cap from the pH sensor. Rinse the pH and Temperature sensors in distilled water and blot them dry.
- 5. Ensure that the primary and secondary buffers to be used have been correctly selected for automatic buffer recognition. See section 3.2.
- 6. Place both sensors into a small sample of buffer so that the bulb and reference junction are both covered as per the diagram below. Choose the buffer to be used according to the details in section 3.3.

DO NOT place the electrodes directly into the buffer bottle.

7. Select pH Calibration ($\stackrel{\text{Menu}}{\longrightarrow}$ **F1:Calibrate** \rightarrow **F1:pH**).

The display should now look something like this...

```
6*98pH 7.00
25.0°C Buffer
Press Enter to Cal.
or Edit Buffer.
```

The current pH reading is shown on the left. A "*" in place of the decimal point indicates that pH is currently not calibrated.

The buffer that the **smart***CHEM***-pH** has attempted to recognise is also displayed with the correct value at the current temperature.

8. Press Enter to calibrate to the displayed buffer. Otherwise, enter an alternative buffer using the Numeric Keypad, and then press Enter. The Automatic Stability Function will now show a and highlight any unstable readings...

```
6.98pH 7.00
25.0°C × Buffer
Waiting to Stabilise
```

When the pH and Temperature readings have stabilised, the unit will calibrate itself.

To calibrate immediately without waiting for complete stability, press (9) to disable the Automatic Stability Function.

- 9. The meter is now 1 point calibrated. Note that a "*" will not be removed until a 2 point calibration has been performed. Rinse the pH and Temperature sensors in distilled water and blot them dry.
- 10. Repeat steps 6 to 8 in a second buffer to perform a 2 point calibration. See section 3.3.2 for details on the correct sequence of buffers to ensure the instrument is correctly calibrated at the 2 points. If a " * " was shown in place of the decimal point, this will be removed after a successful 2 point calibration.
- 11. Repeat steps 6 to 8 in a third buffer to perform a 3 point calibration, if required. See section 3.3.3 for details on the correct sequence of buffers to ensure the instrument is correctly calibrated at the 3 points.
- 12. The **smart***CHEM***-pH** is now calibrated for pH and is ready for use in this mode. Discard the used samples of buffer.

Rinse the pH and Temperature sensors in distilled water and blot them dry before placing them into unknown samples.

3.5 pH Calibration Notes

- 1. **DO NOT** place the electrodes directly into buffer bottles. Decant a small quantity and discard after use.
- 2. pH9.18 and pH10.01 buffers are unstable once the bottles have been opened. Discard immediately after use.
- 3. A 1 point calibration should be performed at least weekly. In applications where the electrode junction can become blocked such as dairy products, mining slurries etc, a 1 point calibration may have to be done daily.
- 4. A full 2 point calibration should be performed at least monthly. Of course, more frequent calibration will result in greater confidence in results.
- 5. All calibration information is retained in memory when the **smart***CHEM***-pH** is switched off, even when the power supply is removed. This information can be recalled or printed later using the GLP function (see section 9).
- 6. When a 3 point calibration has been successfully performed, an extra line appears in the GLP Recall (section 9.1) and the GLP print-out (section 9.3) labelled "SlopeB".
- 7. To clear the Slope B from a 3 point calibration without losing all other calibration data, please refer to the section regarding Initialisation (section 15).

3.6 pH Calibration Messages

1. If a 1-point calibration has been successfully performed, the **smart***CHEM***-pH** will display the following message and the asymmetry of the electrode.

```
Asymmetry
Calibration OK
+0.10pH Asym
```

2. If a 1-point calibration has failed, the **smart***CHEM***-pH** will display the following message and the failed asymmetry value of the electrode.

```
Calibration Failed,
Repeat Cal. or
Initialise
1.1 pH Asymmetry
```

3. If a 2-point calibration has been successfully performed, the **smartCHEM-pH** will display the following message and the asymmetry and slope of the electrode.

```
Slope & Asymmetry
Calibration OK
+0.10pH Asym
99.0% Slope
```

4. If a 2-point calibration has failed, the **smart***CHEM***-pH** will display the following message and the failed slope value of the electrode.

```
Calibration Failed,
Repeat Cal. or
Initialise
80.0% Slope
```

5. If a 3-point calibration has been successfully performed, the **smart***CHEM***-pH** will display the following message and the asymmetry and second slope of the electrode.

```
3 Point
Calibration OK
99.0% SlopeB
```

6. If a 3-point calibration has failed, the **smart***CHEM***-pH** will display the following message and the failed slope value of the electrode.

```
Calibration Failed,
Repeat Cal. or
Initialise
80.0% SlopeB
```

7. If the **smart***CHEM***-pH** has been 3-point calibrated and the incorrect buffer sequence is subsequently used, the following message will be displayed...

```
Cal. sequence wrong.
Cannot 3 Point Cal.
Change to 2 point ?
F1:Yes F2:No
```

Press (9) to proceed with a 2 point calibration. The second slope currently in memory from the previous 3 point calibration will be deleted.

Press (2) to cancel, without re-calibrating.

See section 3.3.3 for details on the correct 3 point calibration buffer sequence.

8. The **smart***CHEM***-pH** has an allowable Asymmetry range of -1.00 to +1.00 pH. The allowable Slope range is 85.0 to 105.0 %. If calibration fails due to either the Asymmetry or the Slope being outside these limits, then please consult the Troubleshooting guide (section 17.2) for possible remedies.

4. Absolute Millivolt Mode

4.1 Selecting Absolute Millivolt Mode

To select Absolute Millivolt Mode...

1. Select the Mode menu ($\stackrel{\mathsf{Menu}}{\longrightarrow}$ **F3:Mode**)...

Mode >F1:0.01pH F2:0.001pH F3:mV F4:Rel mV

The arrow indicates the current selection.

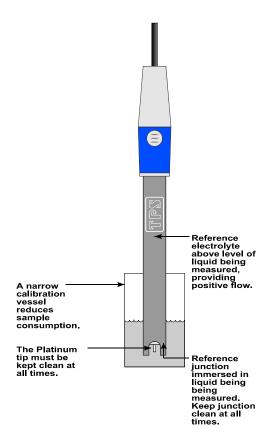
Press (3) to select Absolute Millivolt mode.

Press Menu to quit without changing the current selection.

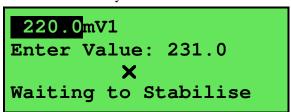
2. The **smart***CHEM***-pH** will display the actual millivolts produced by the sensor in this mode.

4.2 Absolute Millivolt Calibration

This calibration procedure uses a Redox/ORP sensor and ZoBell calibration as examples. For other types of sensors (eg. ISE's) and solutions, please substitute them when carrying out this procedure.


- 1. Plug the Redox sensor into the **pH/mV/lon** BNC socket. Temperature compensation is not applicable for Millivolt mode, so it is not necessary to connect a Temperature sensor. Switch the meter on.
- 2. Select Millivolt mode (see section 4.1).
- 3. Remove the wetting cap from the sensor, if fitted. Rinse the sensor in distilled water and blot dry.
- 4. Place the sensor into a small sample of known millivolt solution so that the platinum tip and reference junction are both covered as per the diagram on the next page. ZoBell Redox standard can be made with a 1:1 mixture of Part A and Part B. This solution produces +231mV of Redox potential. Caution: ZoBell solution is poisonous and should be handled with care.
- 5. Select mV Calibration ($\stackrel{\text{Menu}}{\longrightarrow}$ F1:Calibrate \rightarrow F1:mV).

The display should now look something like this...


220.0mV1 Enter Value: <u>2</u>20.0

The current mV reading is shown on the top line.

6. The **smart***CHEM***-pH** displays the same value on the second line, on the assumption that the reading will be close to the expected calibration point.

7. Enter the value of the calibration solution using the Numeric Keypad, and then press Enter. The Automatic Stability Function will now show a 🗷 and highlight any unstable readings...

When the Millivolt reading has stabilised, the unit will calibrate itself.

To calibrate immediately without waiting for complete stability, press (9) to disable the Automatic Stability Function.

8. The **smart***CHEM***-pH** is now calibrated for mV and is ready for use in this mode. Discard the used samples of standard.

Rinse the Redox sensor in distilled water and blot dry before placing into unknown samples.

4.3 mV Calibration Notes

- 1. **DO NOT** place the sensor directly into stock bottles of standard. Decant a small quantity and discard after use.
- 2. Redox standards are highly unstable. Discard immediately after use.
- 3. A mV calibration should be performed at least weekly. In applications where the electrode junction can become blocked such as dairy products, mining slurries etc, a 1 point calibration may have to be done daily.
- 4. All calibration information is retained in memory when the **smart***CHEM***-pH** is switched off, even when the power supply is removed. This information can be recalled or printed later using the GLP function (see section 9).

4.4 mV Calibration Messages

1. If a mV calibration has been successfully performed, the **smart***CHEM***-pH** will display the following message and the offset of the sensor.

2. If a mV calibration has failed, the **smart***CHEM***-pH** will display the following message and the failed offset value of the sensor.

3. The **smart***CHEM***-pH** has an allowable Offset range of –60 to +60 mV. If calibration fails due to the Offset being outside these limits, then please consult the Troubleshooting guide (section 17.2) for possible remedies.

5. Relative Millivolt Mode

5.1 Selecting Relative Millivolt Mode

To select Relative Millivolt Mode...

3. Select the Mode menu ($\stackrel{\text{Menu}}{\longrightarrow}$ **F3:Mode**)...

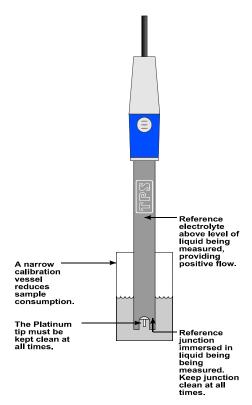
Mode >F1:0.01pH F2:0.001pH F3:mV F4:Rel mV

The arrow indicates the current selection.

Press (4) to select Relative Millivolt mode.

Press Menu to quit without changing the current selection.

4. The **smart***CHEM***-pH** will display the millivolt data relative to a known, user-selectable zero point.


5.2 Relative Millivolt Calibration

Calibration of the Relative mV mode is simply a matter of zeroing the reading when the sensor is in the known standard.

- 1. Plug the Redox sensor into the **pH/mV/lon** BNC socket. Temperature compensation is not applied in Relative mV mode, so the temperature sensor does not need to be connected. Switch the meter on.
- 2. Select Relative mV Mode (see section 5.1).
- 3. The display now shows the millivolt data with the units "mVR" The "R" indicates Relative mV...

400.0mvR 25.0°c 31/12/01 12:00:00

- 4. Remove the wetting cap from the Redox sensor.
- 5. Rinse the sensor in distilled water and blot dry.
- 6. Place the Redox sensor into a sample of the known standard. Ensure that the platinum tip and reference junction are both covered as per the diagram over the page.

7. Press ⁶⁹ to zero the Relative mV reading. The Automatic Stability Function will now show a and highlight the Relative mV reading while it is unstable. For example...

The Relative mV reading will automatically be zeroed once the reading becomes stable.

To calibrate immediately without waiting for complete stability, press (5) to disable the Automatic Stability Function.

8. The **smart***CHEM***-pH** Relative mV mode is now zeroed and is ready for use. The readout can be re-zeroed by pressing [®] whenever required.

5.3 Relative Millivolt Calibration Notes

- 1. Temperature compensation does not apply in Relative mV mode,
- 2. The Relative mV offset is retained in memory when the **smart***CHEM***-pH** is switched off.
- 3. The Relative mV zero offset is reset when entering or leaving Relative mV mode.

6. Temperature Mode

The temperature readout must be calibrated or manually set before attempting pH calibration.

A " * " in place of the decimal point indicates that the Temperature readout is not calibrated, or a past calibration has failed. The " * " will be removed once Temperature has been successfully calibrated.

6.1 Temperature Calibration

- 1. Plug the temperature sensor into the **Temperature** socket.
- 2. Switch the meter on.
- 3. Place the Temperature sensor into a beaker of room temperature water, alongside a good quality mercury thermometer. Stir the probe and the thermometer gently to ensure an even temperature throughout the beaker.
- 4. Select Temperature Calibration ($\stackrel{\text{Menu}}{\longrightarrow}$ **F1:Calibrate** \rightarrow **F3:Temperature**).

The Temperature Calibration screen is now displayed, for example...

```
Enter Actual
Temperature:_
24*0°C
```

The current reading from the Temperature sensor is displayed.

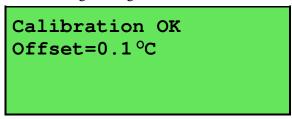
5. Type in the temperature as measured by the mercury thermometer using the Numeric Keypad and press Enter. The Automatic Stability Function will now show a 🗷 and highlight the Temperature reading while it is unstable...

```
Enter Actual
Temperature: 25.0

24*0 °C X
Waiting to Stabilise
```

When the Temperature reading has stabilised, the unit will calibrate itself.

To calibrate immediately without waiting for complete stability, press (5) to disable the Automatic Stability Function.


6. The **smart***CHEM***-pH** is now calibrated for Temperature and is ready for use in this mode.

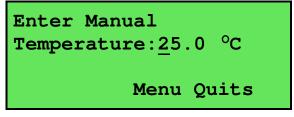
6.2 Temperature Calibration Notes

- 1. Temperature calibration information is retained in memory when the **smart***CHEM***-pH** is switched off, even when the power supply is removed. This information can be recalled later using the GLP function (see section 7).
- 2. Temperature does not need to be re-calibrated unless the Temperature sensor is replaced or the meter is initialised.

6.3 Calibration Messages

1. If a temperature calibration has been successfully performed, the **smart***CHEM***-pH** will display the following message and the offset of the sensor.

2. If a temperature calibration has failed, the **smart***CHEM***-pH** will display the following message and the failed offset value of the sensor.

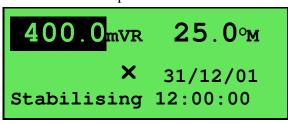

```
Calibration Failed Offset=11.0°C
```

3. The **smart***CHEM***-pH** has an allowable Offset range of -10.0 to +10.0 °C. If calibration fails due to the Offset being outside these limits, then please consult the Troubleshooting guide (section 17.3) for possible remedies.

6.4 Manual Temperature Setting

If the Temperature sensor is not connected, the temperature of the sample solution must be set manually for accurate pH measurements. A separate thermometer will be required for this.

- 1. Switch the meter on.
- 2. Measure the temperature of the sample.
- 3. Select Temperature Calibration ($\stackrel{\text{Menu}}{\longrightarrow}$ **F1:Calibrate** \rightarrow **F3:Temp.**).
- 4. The current temperature setting is now displayed. For example...

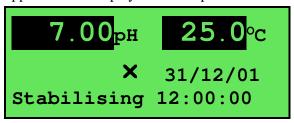


5. Enter the temperature of the sample using the Numeric Keypad.

Press Enter to save the new value.

Alternatively, press (Menu) to quit and retain the current setting.

6. When returning the **smart***CHEM***-pH** to normal measurement mode, note the "**C**" in the temperature readout alternating with an "**M**" indicating that Manual Temperature Compensation is in use. For example...


7. Auto Stability Function (ASF)

ASF adds an extra level of versatility to the **smart***CHEM***-pH**. When ASF is activated, the **smart***CHEM***-pH** monitors all parameters that are currently in use. When **ALL** parameters become stable, the readings are frozen on the display.

ASF can be used in the following ways...

7.1 ASF During Normal Measurement

1. Press ^⑤ in normal measurement mode. All active parameters are highlighted and the **☒** symbol appears in the display. For example...

As each parameter becomes stable, the highlighting is removed. If any parameter subsequently becomes unstable, the highlighting is applied again.

The highlighting is provided to give the operator a visual indication of exactly which parameters have not stabilised in case user intervention is required.

2. When ALL parameters have stabilised, all highlighting will be removed and the ■ will change to a ■. All readings are now frozen. For example...

- 3. The operator can now make a note of the reading as required.
- 4. To unfreeze the display in order to take the next reading, press (5) again to re-start the ASF sampling process.
- 5. Press (5) a second time, while the **\overline{\overli**

7.2 ASF During Calibration


The Automatic Stability Function is automatically invoked during calibration. The stability parameters programmed into the **smart***CHEM***-pH** have a finer tolerance during calibration than during normal measurement. This is done to ensure the most accurate possible calibration results.

Press ⁽⁵⁾ while the **\(\overline{\text{M}}\)** symbol is being displayed during calibration to turn ASF off and calibrate immediately, before the reading has stabilised.

See the calibration sections of this manual for further details on the ASF function during calibration.

7.3 ASF with Manual Datalogging

1. Press ⁽⁵⁾ then ^(Store) in normal measurement mode. All active parameters are highlighted and the [™] symbol appears in the display, along with the message "Auto Store". For example...

As each parameter becomes stable, the highlighting is removed. If any parameter subsequently becomes unstable, the highlighting is applied again.

The highlighting is provided to give the operator a visual indication of exactly which parameters have not stabilised in case user intervention is required.

2. When ALL parameters have stabilised, all highlighting will be removed and the ⊠ will change to a ☑. All readings are now frozen and will be recorded into memory. For example...

- 3. To unfreeze the display in order to take the next reading, press (5) and (Store) again to restart the ASF Auto-Store process.
- 4. Press ^⑤ a second time, while the **☒** symbol is being displayed, to turn ASF off.

7.4 ASF with Automatic Datalogging

Using ASF with Automatic Datalogging allows continuous logging until all readings are stable. This is useful in titrations etc, where logging is no longer required once an end point is reached.

See section 11.2 for details on programming the Automatic Datalogging function.

1. Press ⁽⁵⁾ then ^(utoLog) in normal measurement mode. All active parameters are highlighted and the ✓ symbol appears in the display, along with the message "Auto Log". For example...

As each parameter becomes stable, the highlighting is removed. If any parameter subsequently becomes unstable, the highlighting is applied again.

The highlighting is provided to give the operator a visual indication of exactly which parameters are not yet stable in case user intervention is required.

2. When ALL parameters have become stable, all highlighting will be removed and the ☑ will change to a ☑. All readings are now frozen and automatic datalogging has stopped. For example...

- 3. To unfreeze the display in order to take the next reading, press (5) and (AutoLog) again to restart the ASF automatic datalogging process.
- 4. Press ^⑤ a second time, while the **☒** symbol is being displayed, to turn ASF off.

8. Display Backlight

The **smart***CHEM***-pH** is fitted with an Electro-Luminescence ("EL") backlight. This can be set up according to your preferences as follows...

- 1. Switch the meter on.
- 2. Select the Backlight menu ($^{\text{Menu}} \rightarrow \text{F4:Setup} \rightarrow \text{F3:Backlight}$).
- 3. The Backlight menu is now displayed...

BACKLIGHT
F1:On F2:Off
>F3:Energy Saver

The arrow indicates the current selection.

Press (F) to set the Backlight to be on continuously.

Press ② to set the Backlight to be off continuously.

Press (3) to set the Backlight to turn on automatically whenever a key is pressed. It will turn off automatically if no key has been pressed for 5 minutes.

9. Good Laboratory Practices (GLP)

The **smart***CHEM***-pH** keeps a record of the date and time of the last calibrations for all parameters as part of GLP guidelines.

9.1 To recall GLP information on the display

- 1. Switch the meter on.
- 2. Select the GLP menu ($\stackrel{\text{Menu}}{\longrightarrow}$ **F5:GLP**).
- 3. Select **F1:Recall** from the menu.
- 4. The instrument model, firmware version number, and instrument serial number are displayed, along with along with current calibration information. For example...

```
      smartCHEM-pH V1.1 S1234
      31/12/02 13:00

      mV Offset=10mV
      31/12/02 12:00

      pH Asymmetry=0.10pH
      31/12/02 12:10

      pH SlopeA= 99.0%
      31/12/02 12:20

      pH SlopeB= 99.0%
      31/12/02 12:30

      pH Calibrated
      31/12/02 12:40

      Temp Probe Calibrated
      F4:Ends
```

5. Press (4) to quit.

9.2 Failed Calibration

If calibration has failed, the GLP function will reset the date and time for the failed parameter to zero. The **smart***CHEM***-pH** still shows the results for the last successful calibration, as shown in the following example where the last pH calibration has failed...

```
      smartCHEM-pH V1.1 S1234
      31/12/02 13:00

      mV Offset=10mV
      31/12/02 12:00

      pH Asymmetry=0.10pH
      00/00/00 00:00

      pH SlopeA= 99.0%
      00/00/00 00:00

      pH Un-Calibrated
      Temp Probe Offset=1.0°c
      31/12/02 12:40

      Temp Probe Calibrated
      F4:Ends
```

9.3 Printing GLP Information to the RS232 Port

The GLP information stored in the instrument's memory can be sent to a printer or PC via the RS232 port.

- 1. Switch the meter on.
- 2. Connect one end of the RS232 cable to the **Power/RS232** socket of the **smart***CHEM*-**pH**.
- 3. Connect the other end of the RS232 cable to an RS232 Printer, or to a Serial port on a PC.
- 4. Send the GLP information to the RS232 port (Menu) → F5:GLP → F3:Print).
 The message "Printing GLP Data" is displayed while sending the data to the RS232 port.
- 5. The GLP information is sent to the RS232 port in formatted ASCII text. For example...

```
smartCHEM-PH V1.1 S1234 @ 31/12/2002 13:00
mV
             Offset=
                         10.0mV
                                   @ 01/02/2002 12:00
Hq
             Asy=
                         0.10pH
                                   @ 01/02/2002 12:10
                                   @ 01/02/2002 12:20
рΗ
             SlopeA=
                         99.0%
             SlopeB=
                         99.0%
                                   @ 01/02/2002 12:30
pН
Temp. Probe Offset=
                          1.0oC
                                   @ 01/02/2002 12:40
Ends
```

9.4 GLP Calibration Alarm

A new feature of the **smart***CHEM***-pH** is the GLP calibration alarm. The operator can select how often they wish to be reminded that the instrument requires calibration, and for which parameters they wish to be reminded.

9.4.1 To set the GLP Calibration Alarm...

- 1. Select the GLP Calibration Alarm menu ($^{\text{Menu}} \rightarrow \text{F5:GLP} \rightarrow \text{F2:Alarm}$).
- 2. The calibration alarm period can now be selected...

GLP ALARM
F1:Daily F2:1 Week
F3:2 Weeks F4:4 Weeks
>F5:OFF

The arrow indicates the current selection.

Press (f) to be reminded that calibration is due every day.

Press (2) to be reminded that calibration is due every week.

Press (8) to be reminded that calibration is due every 2 weeks.

Press (4) to be reminded that calibration is due every 4 weeks.

Press (5) to switch the GLP Calibration Alarm system off.

Press Menu to quit and retain the current setting.

3. If ⁽¹⁾, ⁽²⁾, ⁽³⁾ or ⁽⁴⁾ was pressed above, the **smart***CHEM***-pH** will now allow the operator to select which parameters will be flagged with a calibration alarm...

Select Channels
F1:pH
F3:Temperature

Press the relevant $^{\textcircled{1}}$ or $^{\textcircled{1}}$ function key to select which parameter or parameters you would like to be flagged with a calibration alarm whenever calibration is due. Note the "*" which appears next to the relevant parameter(s).

Pressing the function key repeatedly adds and removes the "*".

4. Press Menu to exit and save the selection.

9.4.2 How the GLP Alarm Operates

On the day that calibration is due, the following message will be displayed the first time the **smart***CHEM***-pH** is switched on...

```
GLP Alarm, Calibrate
pH, Temperature
```

Only those parameters that were selected (see section 9.4.1) will be displayed.

This message will not be displayed again until the next time calibration is due.

In addition to the message shown above, the **smart***CHEM***-pH** also flashes the decimal point of each parameter that requires calibration, and flashes the message "Cal Now" on the display.

9.4.3 Notes on the GLP Calibration Alarm function

- 1. To remove the "Cal Now" message and flashing decimal points, each selected parameter must be correctly calibrated.
- 2. Switching the GLP Calibration Alarm function off will not clear "Cal Now" message and flashing decimal points. The relevant parameters must be calibrated.
- 3. When Weekly, 2 Weekly or 4 Weekly periods have been selected, the GLP Calibration Alarm will always be activated on the same day of the week as when the function was first activated, even if the unit is not calibrated on that day. For example, if the GLP Calibration Alarm is triggered weekly on a Monday and the meter is finally calibrated the following Wednesday, the next GLP Calibration Alarm will still be on the following Monday.

9.5 Instrument Serial Number

In case the serial number that is fitted to the rear of the **smart***CHEM***-pH** is removed or becomes illegible, it is also available on the **smart***CHEM***-pH** display.

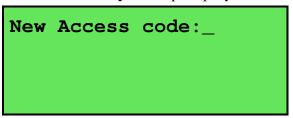
1. The serial number is displayed at turn-on, for example...

```
smartCHEM-pH V1.1r
S1234 © 2002 TPS P/L
pH/mV, Temperature
```

The "**r**" after **V1.1** is shown when the Recorder Port option is fitted.

- 2. The serial number is displayed when recalling the GLP information (section 9.1).
- 3. The serial number is included on the print-out of GLP information (section 9.3).
- 4. The GLP information can be downloaded to a PC using the optional Windows® software (part number 130086).

9.6 Additional GLP Features


Another GLP requirement is to record the date and time of every reading. The **smart***CHEM***-pH** does this for you whenever readings are recorded either with the Manual Datalogging function (section 11.1) or the Automatic Logging function (section 11.2).

10. Access Code

The Access Code is system is provided for those users who need to ensure the integrity of recorded data, calibration settings and so forth. The Access Code function will prevent anyone who does not know the code from entering the menu system. Keys that are available during normal measurement, (Store), Print, (MIDLOG) and (F) to (FS) are still available without the Access Code. This means that others are still able to carry out day-to-day work.

10.1 Enabling the Access Code System

- 1. Select the Access Code menu (Menu → F6:Access).
- 2. Select **F3:Enable & Enter Code** from the menu.
- 3. The **smart***CHEM***-pH** now prompts you to enter a new access code...

Enter a new code of up to 4 digits using the numeric keypad.

If less than 4 digits are entered, press Enter to save the new code.

If 4 digits are entered, it is not necessary to press Enter.

Press Menu to quit without enabling the Access Code system.

4. The **smart***CHEM***-pH** now prompts you to re-enter the access code for verification...

```
New Access code:_
Re-Enter to Verify
```

Re-enter the access code as per the previous step.

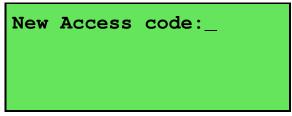
Press Menu to quit without enabling the Access Code system.

5. The **smart***CHEM***-pH** now confirms that the Access Code system is enabled before returning to the Access Code menu.

10.2 Using the Access Code System

When the Access Code system is enabled (as per section 10.1), the **smartCHEM-pH** prompts the operator to enter the access code whenever when is pressed in normal display mode. No further access code entry is required to access any of the menu functions. It is therefore imperative never to remain in any of the menus when leaving the unit. Always press until the **smartCHEM-pH** is in normal display mode before leaving the unit.

For access codes with less than 4 digits, you must press (Enter) after entering the code.

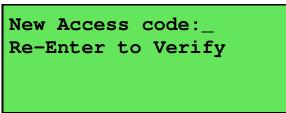

For access codes with 4 digits it is not necessary to press Enter.

Notes

- 1. Do not store your Access Code on or near the unit.
- 2. If you forget the Access Code, please contact TPS. Once we have established your ownership of the unit, we will be able to give you an access code. We will need the serial number of the unit to provide this code.

10.3 Changing the Access Code

- Select the Access Code menu (→ F6:Access).
 (Of course, you will need to enter the current access code after pressing Menu.)
- 2. Select **F1:Change Code** from the menu.
- 3. The **smart**CHEM-**pH** now prompts you to enter a new access code...


Enter a new code of up to 4 digits using the numeric keypad.

If less than 4 digits are entered, press Enter to save the new code.

If 4 digits are entered, it is not necessary to press Enter.

Press Menu to quit without changing the Access Code.

4. The smartCHEM-pH now prompts you to re-enter the access code for verification...

Re-enter the access code as per the previous step.

Press Menu to quit without changing the Access Code.

5. The **smart***CHEM***-pH** now confirms that the Access Code system is enabled before returning to the Access Code menu.

10.4 Disabling the Access Code System

- Select the Access Code menu (→ F6:Access).
 (Of course, you will need to enter the current access code after pressing (Menu).)
- 2. Select **F3:Disable Security** from the menu.
- 3. The **smart***CHEM***-pH** now confirms that Access Code system has been disabled before returning to the Access Code menu.

11. Datalogging

11.1 Manual Datalogging

To manually record readings into the Logger memory...

1. Press Store in normal display mode to record all parameters plus Date and Time into the Logger. This will be labelled as reading number 1. For example...

2. Repeat as often as required. The maximum number of readings that can be stored in the Logger is 2730.

Hint: Press (5) before (Store) to make the **smart***CHEM***-pH** store the reading only when all the readings have stabilised. See section 7 for more details on the Auto Stability Function.

11.2 Automatic Datalogging

The **smart***CHEM***-pH** can automatically record records into the Logger. First the logging period must be programmed, then automatic logging can be started and stopped as required.

- 1. Select the Logger menu ($\stackrel{\text{Menu}}{\longrightarrow}$ **F2:Logger**).
- 2. Select **F4:Program** from the menu.

The display should now look similar to that shown below. The current Logging/Printing Period is displayed.

Enter Logging/Print Period: <u>0</u> secs

- 3. Use the Numeric Keypad to set the period at which the **smart***CHEM***-pH** will automatically log records into memory or to the RS232 port.
 - Press $\begin{tabular}{ll} \end{tabular}$ to save the Logging/Printing Period.
 - Press $\stackrel{\text{Menu}}{}$ to quit without changing the current setting.
- 4. After pressing Enter, the **smart**CHEM-**pH** will ask you to enter the units. The Logging/Printing Period you have set is also displayed. For example...

Logging/Print
Period: 2
Select Units F1:Secs
F2:Mins, F3:Hours

- Press $^{\scriptsize \textcircled{\tiny 1}}$ to save the Logging/Printing Period as seconds.
- Press $^{\scriptsize{\mbox{\scriptsize f2}}}$ to save the Logging/Printing Period as minutes.
- Press $^{\scriptsize{\scriptsize{f3}}}$ to save the Logging/Printing Period as hours.

5. The **smart***CHEM***-pH** will ask if the records are to be logged into the instrument's memory, or sent directly to the RS232 port. The display will look like this...

F1:Log to Memory
F2:Send to RS232

Press (5) to log records into the Logger (maximum of 2730 readings).

Press (2) to send records directly to the RS232 port.

- 6. The automatic logging function is now programmed, and can be started and stopped as required.
- 7. To start automatic logging, press (AutoLog) in normal display mode.

When the **smart**CHEM-**pH** is logging into its own memory, the display will look like this...

7.00_{рн} 25.0°c 31/12/01 12:00:00

The log number will increment and the **smartCHEM-pH** will beep each time a reading is recorded.

If the **smart***CHEM***-pH** is sending records directly to the RS232 port, the display will look like this...

7.00_{pH} 25.0°c

31/12/01

Sending 12:00:00

The smartCHEM-pH will beep each time a record is sent to the RS232 port.

8. Press (AutoLog) to stop automatic logging.

Hint: Press (5) before starting automatic logging to make the **smart***CHEM***-pH** stop logging as soon as all the readings have become stable. See section 7 for more details on the Auto Stability Function.

Notes on Automatic Datalogging

- 1. The clock must be set before the **smart**CHEM-**pH** will allow automatic datalogging to start. The message "Clock Not Set" is displayed if the clock is not set. See section 14 for details on setting the clock.
- 2. Pressing during automatic datalogging halts logging. Press durolog after returning to normal display mode to re-start automatic datalogging.

11.3 Recalling Readings from the Logger

To recall records from the Logger onto the **smart***CHEM***-pH** display...

- 1. Select the Logger menu ($\stackrel{\text{Menu}}{\longrightarrow}$ **F2:Logger**)
- 2. Select **F1:Recall** from the menu.

Record number 1 is now displayed.

For example...

3. Press ② and ③ to move forwards and backwards through the records.

Press and hold or to scroll continuously through the readings. The rate is slow enough to allow the operator to see trends in the data as it is scrolling.

To display a specific record, type in the desired record number using the Numeric Keypad and press Enter).

Press (9) to send the displayed record to the RS232 port.

11.4 Erasing Records from the Logger

To erase records from the Logger...

- 1. Select the Erase Logger menu ($\stackrel{\text{Menu}}{\longrightarrow}$ **F2:Logger** \rightarrow **F2:Erase**)
- 2. The **smart***CHEM***-pH** now displays the Erase menu, for example...

```
Erase Logger,
2730 Readings
Select Option
Erase F1:All F2:Last
```

The number of readings stored in the Logger is displayed. See the "2730" in the example above.

- 3. Press (9) to erase all of the readings stored in the Logger.
 - Press (2) to erase the last recorded reading only.

Press Menu to quit without erasing any records.

11.5 Printing Records from the Logger to the RS232 Port

- 1. Connect one end of the RS232 cable to the **Power/RS232** socket of the **smart***CHEM*-**pH**.
- 2. Connect the other end of the RS232 cable to an RS232 Printer, or to a Serial port of a PC.
- 3. Ensure that the baud rate for the printer or PC and the **smart**CHEM-**pH** are the same. If necessary, alter the baud rate of the **smart**CHEM-**pH** (see section 12.1).

The **smart***CHEM***-pH** uses XON/XOFF protocol. Ensure that the printer is set accordingly.

- 4. Select the Logger menu. ($\stackrel{\text{Menu}}{\longrightarrow}$ **F2:Logger**).
- 5. Select **F3:Print** from the menu.
- 6. Printing starts as soon as ⁽³⁾ is pressed. The display shows the word "**Printing**" until printing is completed.

12. RS232 Port

12.1 Setting the Baud Rate

- 1. Select the Ports Set-up menu ($\stackrel{\mathsf{Menu}}{\longrightarrow} \mathbf{F4}:\mathbf{Setup} \to \mathbf{F4}:\mathbf{Ports}$)
- 2. Select **F1:Baud Rate** from the menu. The available baud rates are listed, along with the RS232 port configuration...

Baud Rate F1:1200 F2:9600 >F3:19200 F4:38400 8 bits, No Parity, 1 Stop bit, XON/XOFF

The arrow indicates the current selection.

3. Press (1) to select 1200 baud.

Press (2) to select 9600 baud.

Press (3) to select 19200 baud.

Press (4) to select 38400 baud.

Press Menu to quit and retain the current setting.

12.2 Sending Readings to the RS232 Port

Press Print to instantly send readings to the RS232 port whenever the **smart***CHEM***-pH** is in normal display mode.

Records can be sent directly to the RS232 port rather than stored in memory during automatic datalogging. See section 11.2 for details.

Press Print while recalling data on the display (see section 11.3) to send that record to the RS232 port.

12.3 RS232 Configuration

The smartCHEM-pH RS232 configuration is 8 Bits, No Parity, 1 Stop Bit, XON/XOFF Protocol.

This information is displayed when setting the baud rate (see section 12.1)

12.4 Communication and Statistical Software

Communication between the **smart***CHEM***-pH** and a PC can be handled with any RS232 communication software. A TPS communication software package for Windows[®] is optionally available (part number 130086).

Once the data is saved to disk, the next problem is how to use it. The data sent by the **smart***CHEM***-pH** is formatted in fixed-width columns that can be imported by programs such as Microsoft[®] Excel[®] and Lotus 123[®].

Help on importing the data into Microsoft[®] Excel[®] is provided in section 12.8 and the "excel.txt" file in the folder where you installed the WinTPS program.

12.5 Commands

The following commands can be sent from a PC to the **smart***CHEM***-pH**. Note that <cr> denotes carriage return and <lf> denotes a line feed.

Action	Command	Notes		
Request current data	?D <cr></cr>	Returns the current data of all parameters plus date and time from the smart <i>CHEM</i> -pH . The log number returned is set to Zero.		
Request logged data	?R <cr></cr>	Returns all logged records from the smart <i>CHEM</i> -pH memory. The data ends with the message ENDS <cr></cr>		
Erase logged data	?E <cr></cr>	Erases all logged records from the smartCHEM-pH memory. Returns the message ERASED <cr>> to confirm that the records have been erased.</cr>		
Request status information	?S <cr></cr>	Returns the model name, firmware version number, instrument serial number and number of logged readings in memory, for example smartCHEM-PH•V1.1•S1234•2730•% <cr>, where "•" are spaces. Note that the number of logged readings is right-justified. The "%" is used internally by the WinTPS software.</cr>		
Request GLP information	?G <cr></cr>	Returns all calibration GLP information, plus the instrument model, serial number and current date (see section 12.7 for data format and hand-shaking).		
Positions of Data Fields	?P <cr></cr>	Returns the number of data fields, along with their position and length as follows 5,1,10,12,8,21,4,26,8,38,5 This denotes 5 fields, the first of which is at column 1 and is 10 characters long. The second field is at column 12 and is 8 characters long and so on.		
Data Column Header	?H <cr></cr>	Returns a text string which can be used to provide headers for each data field. Spaces are included to ensure that the headers are correctly aligned with the data.		

12.6 Data Format

Data is returned to the RS232 Port by the **smart***CHEM***-pH** in the following format.

Please note that a "•" shown anywhere in this section denotes one space.

dd/mm/yyyy•hh:mm:ss•LLLL•PPPPPPPPuuu•TTTTTuuu

where....

dd/mm/yyyy is the date, month and year data.

hh:mm:ss is the hours, minutes and seconds data.

LLLL is the Log Number, 4 characters, right justified. The **smart**CHEM-**pH** sends a

Zero for instant readings (see section 12.2).

PPPPPPP is pH, mV or Relative mV data. 8 characters, right justified.

uuu is the pH/mV unit description, which can be any one of the following...

pH•	for pH readout.
mV•	for Absolute Millivolts readout.
mVR	for Relative Millivolts readout.

TTTTT is Temperature data, 5 characters, right justified.

uuu is the Temperature unit description, which can be either of the following...

oC•	for real Temperature data.	
oCm	for manual Temperature compensation values.	

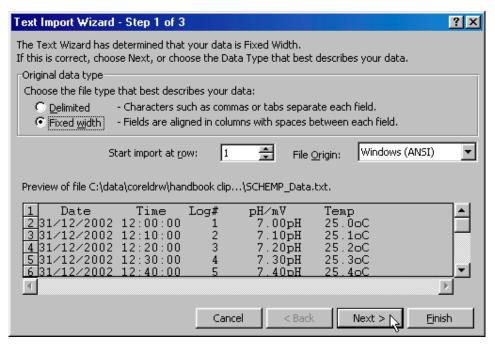
When requested by a PC with the ?D or ?R commands (section 12.5), the data is terminated with a carriage return.

When the data is sent by the **smart***CHEM***-pH** using the Print function (section 11.5) or the Instant Send function (section 12.2), the data ends with a carriage return and a line feed.

12.7 GLP Data Format

GLP information is returned as 18 lines terminated by a carriage return. When using the "?G" command (section 12.5), the computer must respond with a character after receiving each line.

For example...

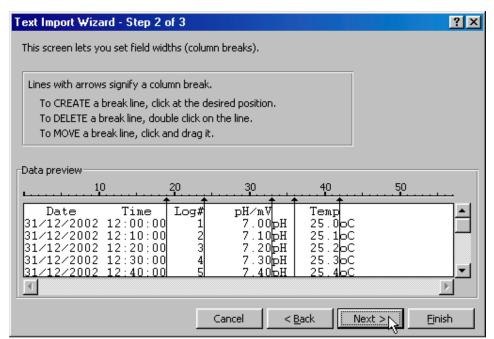

smartCHEM-PH	V1.1 S1234	@ 31/12/20	002	2 13:00	
mV	Offset=	10.0mV	9	01/02/2002	12:00
pН	Asy=	0.10pH	9	01/02/2002	12:10
pН	SlopeA=	99.0%	9	01/02/2002	12:20
pН	SlopeB=	99.0%	9	01/02/2002	12:30
Temp. Probe	Offset=	1.0oC	9	01/02/2002	12:40
Ends					

12.8 Importing Data into Microsoft Excel

The following procedure details the method for importing a **smart***CHEM***-pH** text data file into Microsoft[®] Excel[®].

- 1. Start Microsoft[®] Excel[®] and select File \rightarrow Open
- 2. In the "Files of type:" pull-down box, choose "Text Files (*prn; *.txt; *.csv)".
- 3. Navigate to the folder where your data file is stored and double-click it to start the Text Import Wizard.
 - Note: The default data folder for the WinTPS software is "C:\My Documents\WinTPS".
- 4. In step 1 of the Text Import Wizard select "Fixed width", as per the sample screen below, then press "Next >".

Note that the data column headers in row 1 appear only when the data is downloaded using the WinTPS software.



Continued over the page...

5. Step 2 of the Text Import Wizard allows you to select the points at which each data field will break into a new column. The sample screens below show where TPS recommends the breaks be inserted. There are two screens, as the width of the data requires the window to be scrolled over.

The date and time have been incorporated into a single column to ensure that the X-axis is correctly formatted if the data is to be charted later.

Press "Next >" after all the column breaks have been inserted.

6. Simply press "Finish" at step 3 of the Text Import Wizard. TPS recommends that the data format for each column be set once the data is in spreadsheet format.

For help on formatting the data columns, charting, graphing or other operations please consult the Microsoft® Excel® help file. Alternatively please contact TPS and we will try to provide further assistance.

13. Recorder Port

This section is applicable if the optional Recorder port is fitted.

The optional Recorder Port can be used to send the data from any one parameter to a chart recorder or other analogue logging device.

13.1 Recorder Port Configuration

1. Select the Recorder set-up menu

$$(\stackrel{\mathsf{Menu}}{\longrightarrow} \to \mathtt{F4} : \mathtt{Setup} \to \mathtt{F4} : \mathtt{Ports} \to \mathtt{F3} : \mathtt{Recorder}).$$

The **smart***CHEM***-pH** will now display the Recorder Port configuration screen...

RECORDER

>F1:pH

F3: Temperature

The arrow indicates the current selection.

The **smart***CHEM***-pH** shows "**F1:pH**" when pH mode is currently selected, or "**F1:mV**" when mV or Relative mV mode is currently selected.

2. Press ⁽¹⁾ to set the Recorder output to pH, mV or Relative mV data, depending on current mode selection.

Press (9) to set the Recorder output to Temperature data.

Press Menu to quit and retain the current setting.

13.2 Recorder Port Specifications

Mode	Range	Output Range	Examples (Reading = mV Out)
рН	0 to 14.000 pH 0 to 14.00 pH	0 to 2000 mV (for all resolutions)	7.00 pH = 1000 mV
Absolute mV	-1500 to +1500 mV	0 to 2000 mV	0.0 mV = 1000 mV +750 mV = 1500 mV -600 mV = 600 mV
Relative mV	-1500 to +1500 mVR	0 to 2000 mV	0.0 mVR = 1000 mV +750 mVR = 1500 mV -600 mVR = 600 mV

Output Impedance: Approximately 1000 Ohms

Resolution : Approximately 2 mV

14. Setting the Clock

- 1. Select the Clock Set-up menu ($\stackrel{\text{Menu}}{\longrightarrow}$ **F4:Setup** \rightarrow **F2:Clock**)
- 2. The display now shows the current time, for example...

```
Time is now 12:00
Enter Time <u>1</u>2:00
```

3. Use the Numeric Keypad to enter the current time, then press Enter.

Alternatively, press menu to quit and retain the current setting.

4. If you pressed Enter above, the display will now show the current date, for example...

5. Use the Numeric Keypad to enter the current date, then press Enter.

Alternatively, press menu to quit and retain the current setting.

Notes

- 1. The **smartCHEM-pH** tests that a valid day of the month is entered. If an invalid date is entered (eg. 31/02/2002), the **smartCHEM-pH** beeps and displays the message "**Invalid Date**". The meter then returns to the clock setting screen so that the correct date can be entered.
- 2. The **smart***CHEM***-pH** also tests for leap years.

15. Initialising the smart CHEM-pH

If the calibration settings of the **smart***CHEM***-pH** exceed the allowable limits, the unit may need to be initialised to factory default values. This action may be required if a sensor is replaced.

Initialising the unit will reset all user setups to their factory default values and erase all readings logged in memory. Ensure that any valuable data has been noted or downloaded and saved before proceeding.

To initialise the **smart***CHEM***-pH**...

- 1. Select Initialise from the Setup menu ($\stackrel{\text{Menu}}{\longrightarrow}$ **F4:Setup** \rightarrow **F5:Initialise**)
- 2. The **smart***CHEM***-pH** now asks if you are sure that you wish to initialise ALL parameters, or just the Slope B from a 3 point pH calibration. The latter is only offered when a 3 point pH calibration has actually been performed...

```
Initialise
F1:All F2:pH SlopeB
```

Press (9) to initialise ALL parameters, reset all factory default settings and clear the memory.

Press (2) to clear just the Slope B from a 3 point pH calibration.

3. When returning the meter to normal display mode, note that the decimal points have been replaced with a "*", to indicate that each parameter requires re-calibration.

16. <u>Instrument firmware version number</u>

If you need to contact TPS for any further technical assistance, the version number of your **smart***CHEM***-pH** firmware may of benefit to us. The version number is displayed by the **smart***CHEM***-pH** at turn-on.

17. <u>Troubleshooting</u>

17.1 General Errors

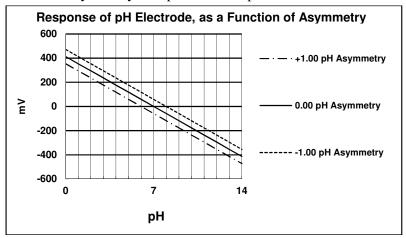
Error Message	Possible Causes	Remedy
Factory Cal. Failure Need Factory Service	The EEPROM chip which contains the factory calibration information has failed.	The unit must be returned to TPS for service.
EEPROM Write Failure Need Factory Service	User calibration settings have been lost or corrupted.	Switch the meter OFF for 5 seconds and switch back ON. If the problem persists, return the unit to TPS for service.
Data Pointer Error Logged Data Lost	Data stored in memory has been lost or corrupted.	Switch the meter OFF for 5 seconds and switch back ON. If the problem persists, return the unit to TPS for service.

Symptom	Possible Causes	Remedy	
Unit fails to calibrate, even with new probe.	Calibration settings outside of allowable limits due to previous failed calibration.	Initialise the unit. See section 15.	
1 Point calibration fails. (pH asymmetry is greater than ±1.00 pH, or mV offset is greater than ±60mV).	 Reference junction blocked. Reference electrolyte contaminated. 	Clean reference junction as per instructions supplied with the pH or reference electrode. Flush with distilled water and replace electrolyte.	
2 Point calibration fails. (pH slope is less than 85.0%.) 3 Point pH calibration fails. (pH SlopeB is less than 85.0%).	pH Buffers not correctly set. pH glass bulb not clean.	For automatic pH buffer recognition, ensure that you are using buffers that match the selected buffer set (see section 3.2). Otherwise, ensure that the buffer value is entered correctly at pH calibration. Clean pH glass bulb as per instructions	
63.0%).	2. pri giass outo not clean.	supplied with the electrode.	
	3. Electrode is aged.	Attempt rejuvenation as per instructions supplied with the electrode. If unsuccessful, replace electrode.	
	4. Connector is damp.	Dry in a warm place.	
	5. pH Buffers are inaccurate.	Replace standards or buffers.	
Unstable readings.	Reference Electrolyte chamber needs to be refilled.	Refill with saturated KCl filling solution.	
	2. Reference junction blocked.	Clean reference junction as per instructions supplied with the electrode.	
	3. pH glass bulb not clean.	Clean glass bulb as per instructions supplied with the electrode.	
	4. Bubble in pH glass bulb.	Flick the electrode to remove bubble.	
	5. Faulty connection to meter.	Check connectors. Replace if necessary.	
	Reference junction not immersed.	Ensure that the reference junction is fully immersed. See diagrams in sections 3.4, 4.2, & 5.2.	
	7. KCl crystals around reference junction inside the electrolyte chamber.	Rinse electrolyte chamber with warm distilled water until dissolved. Replace electrolyte.	
Inaccurate readings, even when calibration is successful.	Reference junction blocked.	Clean reference junction as per instructions supplied with the electrode.	
Displays constant reading around pH7.00 or 0mV for all solutions.	Electrical short in connector.	 Check connector. Replace if necessary. Replace electrode. 	
Displays 4-5 pH for all solutions.	pH electrode glass bulb or internal stem cracked.	Replace pH electrode.	
Reading does not change in any sample being measured	Auto Stability Function has frozen display (notice the ☑).	Turn Auto Stability Function OFF or restart sampling (see section 7).	

17.3 Temperature Troubleshooting

Symptom	Possible Causes	Remedy	
Temperature inaccurate and cannot be calibrated.	1. Faulty connector.	Check the connector and replace if necessary.	
	2. Faulty Temperature sensor.	Return Temperature sensor for repair, or replace sensor.	
Displays flashing " M " when Temperature sensor plugged	Faulty instrument socket.	Return the instrument to the TPS factory for service.	
in.	2. Faulty Temperature sensor.	Return Temperature sensor for repair, or replace sensor.	
Reading does not change in any sample being measured	Auto Stability Function has frozen display (notice the ☑).	Turn Auto Stability Function OFF or restart sampling (see section 7).	

18. Appendices


18.1 pH Electrode Fundamentals

pH electrodes are generally combination electrodes, where the pH sensing membrane and the reference system are contained in a single body. The sensing membrane is the round or spear shaped bulb at the tip of the electrode. This produces a voltage that changes with the pH of the solution. This voltage is measured with respect to the reference section. The reference section makes contact with the sample solution using a salt bridge, which is referred to as the reference junction. A saturated solution of KCl is used to make contact with the sample. It is vital that the KCl solution has an adequate flow rate in order to obtain stable, accurate pH measurements.

18.1.1 Asymmetry of a pH Electrode

An "ideal" pH electrode produces 0 mV output at 7.00 pH. In practice, pH electrodes generally produce 0 mV output at slightly above or below 7.00 pH. The amount of variance from 7.00 pH is called the asymmetry.

Figure 18-1 illustrates how asymmetry is expressed for a pH electrode.

Figure 18-1

18.1.2 Slope of a pH or Specific Ion Electrode

As mentioned above, a pH electrode produces 0 mV output at around 7.00 pH. As the pH goes up, an "ideal" pH electrode produces –59.16mV/pH unit at 25 °C As the pH goes down, an ideal pH electrode produces +59.16mV/pH unit. In practice, pH electrodes usually produce slightly less than this. The output of a pH electrode is expressed as a percentage of an ideal electrode. For example, an ideal electrode that produces 59.16mV/pH unit has "100% Slope". An electrode that produces 50.15mV/pH unit has "85% Slope".

Figure 18-2 illustrates the principle of electrode slope, using a pH sensor as an example.

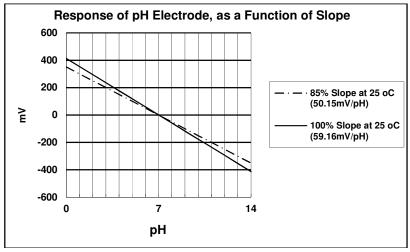


Figure 18-2

18.1.3 Temperature Compensation

The slope of a pH electrodes is affected by temperature. This effect is compensated for either by using an Automatic Temperature Compensation (ATC) probe or by entering the sample temperature manually. Figure 18-3 shows the slope of a pH electrode at various temperatures.

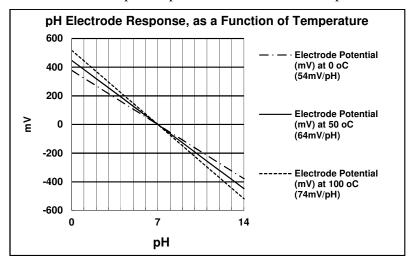


Figure 18-3

18.1.4 Polarisation Output

The **Accessories** connector on the rear panel of the **smart***CHEM***-pH** contains a polarisation output for Karl Fischer titrations. This titration is a method for determining minute quantities of water in non-aqueous liquids.

The TPS Double Platinum electrode (part no 122237) has two connectors. The bayonet type BNC connector fits to the **pH/mV/lon** BNC socket and the black plastic connector fits to the **Accessories** socket.

When performing Karl Fischer titrations, ensure that the **smart***CHEM***-pH** is in mV.

19. Warranty

TPS Pty. Ltd. guarantees all instruments and electrodes to be free from defects in material and workmanship when subjected to normal use and service. This guarantee is expressly limited to the servicing and/or adjustment of an instrument returned to the Factory, or Authorised Service Centre, freight prepaid, within twelve (12) months from the date of delivery, and to the repairing, replacing, or adjusting of parts which upon inspection are found to be defective. Warranty period on electrodes is three (3) months.

There are no express or implied warranties which extend beyond the face hereof, and TPS Pty. Ltd. is not liable for any incidental or consequential damages arising from the use or misuse of this equipment, or from interpretation of information derived from the equipment.

Shipping damage is not covered by this warranty.

PLEASE NOTE:

A guarantee card is packed with the instrument or electrode. This card must be completed at the time of purchase and the registration section returned to TPS Pty. Ltd. within 7 days. No claims will be recognised without the original guarantee card or other proof of purchase. This warranty becomes invalid if modifications or repairs are attempted by unauthorised persons, or the serial number is missing.

PROCEDURE FOR SERVICE

If you feel that this equipment is in need of repair, please re-read the manual. Sometimes, instruments are received for "repair" in perfect working order. This can occur where batteries simply require replacement or re-charging, or where the electrode simply requires cleaning or replacement.

TPS Pty. Ltd. has a fine reputation for prompt and efficient service. In just a few days, our factory service engineers and technicians will examine and repair your equipment to your full satisfaction.

Return the instrument **AND ALL SENSORS** to TPS freight pre-paid and insured in its original packing or suitable equivalent. INSIST on a proof of delivery receipt from the carrier for your protection in the case of shipping claims for transit loss or damage. It is your responsibility as the sender to ensure that TPS receives the unit.

Please check that the following is enclosed with your equipment:

- Your Name and daytime phone number.
- Your company name, ORDER number, and return street address.
- A description of the fault. (Please be SPECIFIC.) (Note: "Please Repair" does NOT describe a fault.)

Your equipment will be repaired and returned to you by air express where possible.

For out-of-warranty units, a repair cost will be calculated from parts and labour costs. If payment is not received for the additional charges within 30 days, or if you decline to have the equipment repaired, the complete unit will be returned to you freight paid, not repaired. For full-account customers, the repair charges will be debited to your account.