Congratulations !

You have purchased the latest in Handheld Specific Ion-pH-ORP-Temperature instrumentation. We trust that your new **WP-90** will give you many years of reliable service.

The **WP-90** is a breeze to operate. This manual has been designed to help you get started, and also contains some handy application tips. If at any stage you require assistance, please contact either your local TPS representative or the TPS factory in Brisbane.

The manual is divided into the following sections:

1. Table of Contents

Each major section of the handbook is clearly listed. Sub-sections have also been included to enable you to find the information you need at a glance.

2. Introduction

The introduction has a diagram and explanation of the display and controls of the **WP-90**. It also contains a full listing of all of the items that you should have received with your **WP-90**. Please take the time to read this section, as it explains some of items that are mentioned in subsequent sections.

3. Main Section

The main section of the handbook provides complete details of the **WP-90**, including operating modes, calibration, troubleshooting, specifications, and warranty terms.

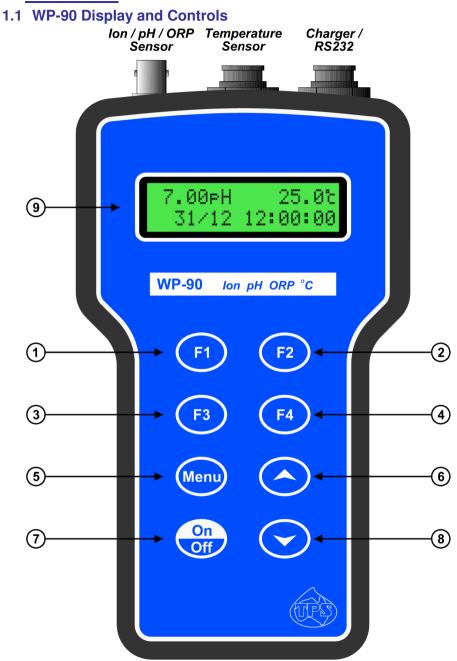
4. Appendices

Appendices containing background information and application notes are provided at the back of this manual.

Model WP-90 Specific Ion, pH, ORP & Temp. Meter Version: 2.0 Date: 1-Jul-2012

TPS Pty Ltd

6 / 253 Leitchs Road Brendale QLD 4500 Australia


Phone	: (07)	32 058 027
International	: 61 7	32 058 027
Fax	: (07)	3808 4871
International	: 61 7	3808 4871
Email	: tps@t	ps.com.au
Web	: <u>www</u> .	.tps.com.au

Contents

1.	Intr	oduction	5
	1.1	WP-90 Display and Controls	5
	1.2	Unpacking Information	
	1.3	Specifications	8
2.	WP	-90 Menu Structure	9
3.	Spe	ecific Ion Mode	11
•••	3.1	Selecting ppM or ppK Mode	
	3.2	Selecting Exponential Mode (e.g. Molar)	13
4.	Spe	ecific Ion Calibration	15
	4.1	Calibration Procedure	
	4.2	Calibration Notes	
	4.3	Calibration Messages	17
5.	pН	Calibration	
	5.1	Calibration Procedure	
	5.2	Calibration Notes	
	5.3	Calibration Messages	19
6.	mV	ORP Calibration	20
7.	Rel	ative mV/ORP Calibration	20
	7.1	Notes	20
8.	Ten	nperature Calibration	21
	8.1	Calibration Procedure	
	8.2	Calibration Notes	
	8.3	Calibration Messages	
	8.4	Manual Temperature Setting	
9.		od Laboratory Practices (GLP)	23
	9.1	To recall GLP information on the display	
	9.2 9.3	Failed Calibration	
	9.3 9.4	Printing GLP Information to the RS232 Port Instrument Serial Number	24
	9.5	Additional GLP Features	
10	. N	otepad Function	
10	10.1	Recording Readings into the Notepad	
	10.2	Recalling Records from the Notepad	
	10.3	Erasing Records from the Notepad	
	10.4	Printing Records from the Notepad to the RS232 Port	
11	. A	utomatic Data logging	28

12.	R	S232 Port	30
1:	2.1	Setting the Baud Rate	
12.2 Sending Readings to the RS232 Port		Sending Readings to the RS232 Port	
	2.3	RS232 Configuration	
	2.4	Communication and Statistical Software	
	2.5	Commands	
	2.6	Data Format	
L	2.7	GLP Data Format	
13.	В	attery Saver Function	34
14.	R	echarging the Battery	35
15.	С	lock Function	36
1	5.1		
1	5.2	Displaying or Hiding the Clock	
16.	S	electing Buffers for Auto Buffer Recognition	37
17.	Ir	nitialising the WP-90	38
18.	Ir	nstrument firmware version number.	38
19.	т	roubleshooting	39
-	9.1		
1	9.2		
19	9.3	Temperature Troubleshooting	
20.	Α	ppendices: pH Sensor Theory	43
2	0.1	Asymmetry of a pH Sensor	
2	0.2	Slope of a pH Sensor	
2	0.3	pH Temperature Compensation	45
21.	W	Varranty	46

1. Introduction

(1 (F1)

Press to record readings into memory. See section 10.1.

Also used at turn-on to select pH7.00 or pH6.86 as the primary pH buffer (section 16).

2 F2

Press to show or hide the date and time. See section 15.2.

3 F3

Press to start or stop automatic logging. See section 11.

Alternatively, press to transmit current reading plus date and time to the RS232 port. See section 12.2.

4 F4

Press to zero Relative mV/ORP, when Relative mV/ORP mode is selected (section 7).

(5) Menu

Press to access the user-friendly menu system which makes the **WP-90** easy to operate.

The \bigcirc and \bigcirc keys are used for calibrating temperature readout (section 8.1), setting the clock (section 15.1), setting the automatic logging period (section 11), and displaying GLP information (section 9.1).

The \bigcirc key is also used to initialise the **WP-90** at turn-on. See section 17.

7 On Off

Switches the WP-90 on and off.

(9) **Display** 32 character alpha-numeric display with user-friendly menu and prompting system. Shows Specific Ion/pH/ORP and Temperature simultaneously. Date and time can also be displayed.

1.2 Unpacking Information

Before using your new **WP-90**, please check that the following accessories have been included:

		Part No
1.	WP-90 Specific Ion-pH-ORP-Temp Instrument	121191
2.	Temperature/ATC Sensor	121247
3.	Battery charger	130037

4. Manual

Options that may have been ordered with your WP-90:

1.	Your choice of a complete range of Ion Selective, Reference, ORP sensors. <i>(see cable label for part No)</i>	pH and
2.	Extended cable	130040
3.	RS232 Serial Interface Cable	130041
4.	Communication software for Windows 95 and later	130086
5.	USB to Serial Adaptor (requires 130041 also)	130087
6.	Hard Carry Case	130059
7.	Battery charger lead for 12V cigarette lighter socket	130046
8.	Battery charger lead for 12V DC, with battery clips	130052
9.	Solar Panel	130012

Page 8 1.3 Specifications

Specific lons

Range	Auto-ranging,	in	units	of	ppM,	ppK	and
C	Exponential No					••	
Resolution	.3 significant dig	gits	S				
Accuracy	± least significa	ant	t digit				

<u>рН</u>

Range	0 to 14.00 pH
Resolution	0.01 pH
Accuracy	±0.01 pH

mV/ORP

Range	0 to ±500.0 and 0 to ±1500 mV (auto-
-	ranging)
Resolution	0.15 and 1 mV
Accuracy	±0.3 and ±1 mV

Temperature

Range	10.0 to +120.0 ^o C
Resolution	0.1 ^o C
Accuracy	±0.2 ^o C

General Specifications

Temperature Compensation:

pH & Ion (only, not for mV/ORP). Automatic 0 to 100 °C Manual 0 to 100 °C

Calibration:

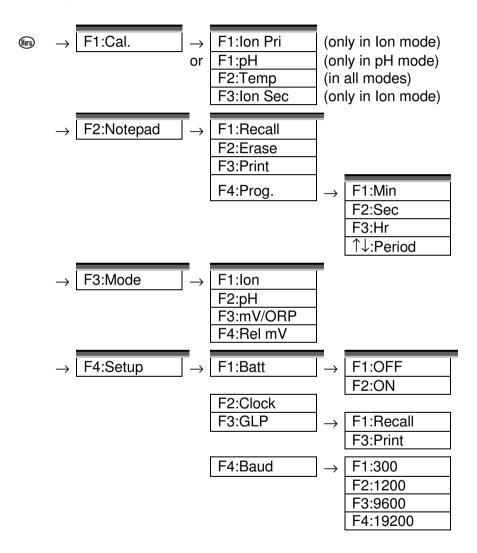
pH.....Auto Standard Recognition in pH4.01, pH6.86, pH7.00, pH9.18 or pH10.01 buffers.

pH Sensor Asymmetry Range -1.00 to +1.00 pH

pH Sensor Slope Range......85.0 to 105%

Input Impedance>3 x $10^{12} \Omega$

Specific Ion...... Calibration in user-definable standards.


mV/ORP Sensor calibration not available.

Temperature Use a reference thermometer. Temperature Sensor Offset . -10.0°C to +10.0°C

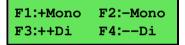
Memory	. 3600 readings including date and time
Automatic Logging	. User-set for one reading every 1 to 90 seconds, 1 to 90 minutes, or 1 to 24 hours.
RS232 Output	. 300, 1200, 9600 & 19200 baud. 8 bits, no parity, 1 stop bit, XON/XOFF Protocol.
Clock	. Calendar clock displays date, month, hours, minutes & seconds. Year is recorded in memory and transmitted to RS232 port, but is not displayed.
Battery Saver	. On : Auto switch-off after 5 minutes Off : Continuous use Bar Graph display of battery charge level. Readout of battery voltage available for troubleshooting.
Good Laboratory Practices	. Date, Time and Value of last Specific Ion, pH and Temperature calibration are stored, and can be recalled or sent to the RS232 port at any time.
Power	. 6V NiMH Rechargeable Battery for approx 50 hours operation.
Dimensions	. 195 x 110 x 55 mm
Mass	. Instrument only : Approx 520g Full Kit : Approx 2.5kg
Environment	. Temperature : 0 to 45 ^o C Humidity : 0 to 95 % R.H.

Page 10 2. WP-90 Menu Structure

A detailed breakdown of the menu system of the **WP-90** is shown below. This diagram provides a quick reference for the **WP-90** menu functions.

3. Specific Ion Mode

Before taking Specific Ion measurements, it is necessary to set up this mode for the Specific Ion to be measured. To set up the Specific Ion mode, follow these simple steps...


3.1 Selecting ppM or ppK Mode

- 1. Select Specific Ion mode ($\textcircled{m} \rightarrow F3:Mode \rightarrow F1:Ion$).
- 2. Select ppM/ppK as the unit of measurement.

Press D to select readout in ppM (parts per million) and ppK (parts per thousand). The **WP-90** will automatically select the range that provides the best resolution for the sample being measured.

3. Select the type of Specific Ion to be measured.

Press (1) for Monovalent Cation (e.g. Na⁺).

Press E for Monovalent Anion (e.g. F^{-}).

```
Press <sup>(13)</sup> for Divalent Cation (e.g. Cu<sup>2+</sup>).
```

Press (1) for Divalent Anion (e.g. S^{2-}).

4. Enter the value of the Primary Standard to be used for calibration.

```
1.000ppM Pri Std
F1:← F2:→ ↑↓:Set
```

Use the O and O keys to set the first digit. The numbers scroll from 0 to 9 plus the decimal point.

Press P to move to the next digit, then use the O and O keys to set it. Continue moving from digit to digit until the value of the Primary Standard has been correctly set. Up to 4 digits plus a decimal point can be entered.

After the last digit has been entered, $\textcircled{1}{12}$ will move the cursor to the units.

Use the O and O keys to select ppM or ppK.

Press (2) to save the Primary Standard.

5. Enter the value of the Secondary Standard to be used for calibration. The Secondary Standard must be at least 2 to 100 times higher or lower than the Primary Standard.

$$\frac{10.00 \text{ppM Sec Std}}{\text{F1:}\leftarrow \text{F2:}\rightarrow \uparrow\downarrow:\text{Set}}$$

Use the O and O keys to set the first digit. The numbers scroll from 0 to 9 plus the decimal point.

Press $\textcircled{1}{2}$ to move to the next digit, then use the 2 and 2 keys to set it. Continue moving from digit to digit until the value of the Secondary Standard has been correctly set.

Up to 4 digits plus a decimal point can be entered.

After the last digit has been entered, $\textcircled{1}{12}$ will move the cursor to the units.

Use the O and O keys to select ppM or ppK.

Press 1 to save the Secondary Standard.

- 6. The WP-90 will now return to normal measurement mode.
- 7. A " * " will be shown is place of the decimal point if the Specific Ion mode is not calibrated, or if calibration has failed.

3.2 Selecting Exponential Mode (e.g. Molar)

- 2. Select Exponential mode as the unit of measurement. This mode is designed specifically for units such as Molar.

Press F2 to select Exponential readout (e.g. Molar). The **WP-90** will automatically select the range that provides the best resolution for the sample being measured.

3. Select the type of Specific Ion to be measured.

Press (E) for Monovalent Cation (e.g. Na⁺).

Press (2) for Monovalent Anion (e.g. F⁻).

Press ^(E) for Divalent Cation (e.g. Cu²⁺).

Press (1) for Divalent Anion (e.g. S^{2-}).

4. Enter the value of the Primary Standard to be used for calibration.

 $\frac{1}{F1:\leftarrow F2:\rightarrow \uparrow\downarrow:Set}$

Use the O and O keys to set the first digit. The numbers scroll from 0 to 9.

Press P to move to the next 2 digits, then use the O and O keys to set each in turn (the decimal point is fixed in the second position).

Press 10 to move the 10⁺, then use the 2 and 2 keys to set it as 10⁺ or 10⁻.

Press $^{\textcircled{12}}$ to move to the next 2 digits, then use the $^{\textcircled{2}}$ and $^{\textcircled{2}}$ keys to set each in turn.

For example...

1.0010⁺01 is 1.00×10^{1} in units of the operator's choice (e.g. Molar). **1.0010⁻01** is 1.00×10^{-1} in units of the operator's choice (e.g. Molar). Press (2) to save the Primary Standard.

 Enter the value of the Secondary Standard to be used for calibration. The Secondary Standard must be at least 2 to 100 times higher or lower than the Primary Standard.

 $\frac{1}{F1:\leftarrow} F2:\rightarrow \uparrow\downarrow:Set$

Use the O and O keys to set the first digit. The numbers scroll from 0 to 9.

Press $\textcircled{1}{12}$ to move to the next 2 digits, then use the $\textcircled{2}{12}$ and $\textcircled{2}{12}$ keys to set each in turn (the decimal point is fixed in the second position).

Press 10 to move the 10⁺, then use the 2 and 2 keys to set it as 10⁺ or 10⁻.

Press $^{\textcircled{12}}$ to move to the next 2 digits, then use the $^{\textcircled{2}}$ and $^{\textcircled{2}}$ keys to set each in turn.

For example...

1.0010⁺01 is 1.00×10^{1} in units of the operator's choice (e.g. Molar). **1.0010⁻01** is 1.00×10^{-1} in units of the operator's choice (e.g. Molar). Press (2) to save the Secondary Standard.

- 6. The **WP-90** will now return to normal measurement mode.
- 7. A " * " will be shown is place of the decimal point if the Specific Ion mode is not calibrated, or if calibration has failed.

4. Specific Ion Calibration

4.1 Calibration Procedure

- 1. Plug the Ion Selective Electrode into the **Sensor** socket. If a separate Reference Electrode is being used, plug this into the separate 4mm Reference socket provided.
- 2. Switch the meter on.
- 3. Select and set up Ion mode, as detailed in section 3.

For the purposes of this handbook, the **WP-90** has been set up for 1.000ppM as the Primary Standard and 0.100ppM as the Secondary Standard.

4. Ensure that temperature has already been calibrated (see section 8.1).

NOTE: A " * " in place of the decimal point in the temperature readout indicates that temperature is not calibrated.

5. Rinse the Ion Selective Electrode, (Reference Electrode if using) and Temperature sensors in distilled water and blot dry.

Primary Calibration

6. Place the Ion Selective Electrode, (Reference Electrode if using) and Temperature sensors into the Primary Standard.

Ensure that any lonic Strength Adjusting Buffer (ISAB) that may be required has been added (see the lon Selective Electrode's handbook). A magnetic stirrer providing constant, gentle stirring generally improves stability.

7. Select Primary Calibration () \rightarrow F1:Cal \rightarrow F1:Ion Pri).

The following message should be displayed. The current reading is displayed on the top left. A "*" in the reading indicates that the **WP-90** is currently not calibrated.

```
1*234ppM 25.0°c
F1:Cal at1.000ppM
```

When the reading has stabilised, press P to perform a Primary Calibration. A "*" will not be removed from the display after a 1-point Asymmetry Calibration.

8. Rinse the Sensors in distilled water and blot dry.

Secondary Calibration

9. Place the Ion Selective Electrode, (Reference Electrode if using) and Temperature sensors into the Secondary Standard.

Ensure that any Ionic Strength Adjusting Buffer (ISAB) that may be required has been added (see the Ion Selective Electrode's handbook).

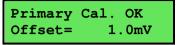
A magnetic stirrer providing constant, gentle stirring generally improves stability.

10. Select Secondary Calibration () \rightarrow F1:Cal \rightarrow F3:Ion Sec).

The following message should be displayed. The current reading is displayed on the top left. A "*" in the reading indicates that the **WP-90** is currently not calibrated.

When the reading has stabilised, press $\textcircled{\mbox{f}}$ to perform a Secondary Calibration.

A "*" in the display will be replaced by a decimal point after a successful 2-point Slope calibration.


11. The WP-90 is now calibrated ready for Specific Ion measurements.

4.2 Calibration Notes

- 1. A Primary Calibration should be performed at least weekly. In applications where the reference electrode junction can become blocked, such as dairy products, mining slurries etc, a Primary Calibration may have to be done daily.
- A full Primary and Secondary Calibration should be performed at least monthly. Of course, more frequent calibration will result in greater confidence in results.
- 3. All calibration information is retained in memory when the **WP-90** is switched off, even when the battery is removed. This information can be recalled or printed later using the GLP function (see section 9).
- 4. The **WP-90** displays the value of the standard to which it will attempt to calibrate. Ensure that the standard value displayed corresponds to the standard that you are using. Alter the set-up if necessary (see section 3)

4.3 Calibration Messages

1. If a Primary Calibration has been successfully performed, the **WP-90** will display the following message, and the offset value of the sensor. For example...

 If a Secondary Calibration has been successfully performed, the WP-90 will display the following message, and the slope value of the sensor. For example...

```
Sec Cal. OK
Slope= 99.0%
```

3. If a Secondary Calibration has failed, the **WP-90** will display the following message, and the failed span value of the sensor. For example...

```
Sec Cal. Failed
Slope= 49.0%
```

<u>Notes</u>

- 1. The Offset range is unlimited, as long as the reading is not overranged. This is to allow for the large variety of Ion Selective Electrodes available.
- 2. The allowable Slope range is 50.0% to 110.0%. This range is ample to allow for correctly functioning Ion Selective Electrodes.

Page 18 5. pH Calibration

5.1 Calibration Procedure

- 1. Plug the pH sensor into the **Sensor** socket.
- 2. Switch the meter on.
- 3. Ensure that you are using buffers which have been selected for automatic buffer recognition. See section 16 for a detailed explanation.
- 4. Select pH Mode (1 \rightarrow F3:Mode \rightarrow F2:pH).
- 5. Ensure that temperature has already been calibrated, or manually set (see sections 8.1 and 8.4). NOTE: If the decimal point in the temperature reading is shown by a *, then the temperature readout is not calibrated.
- 6. Remove the wetting cap from the pH sensor.
- 7. Rinse the pH and Temperature sensors in distilled water and blot them dry.
- Ensure that you are using the primary buffer for which the WP-90 has been set (see section 16).
 Place both sensors into a small sample of pH7.00 (or pH6.86) buffer, so that the bulb and reference junction are both covered.
 DO NOT place the sensors directly into the buffer bottle.
- 9. Select pH Calibration ($\textcircled{1} \rightarrow \texttt{F1:Cal.} \rightarrow \texttt{F1:pH}$).
- 10. When the reading has stabilised, press the ^(f) key to calibrate. If a 1 point calibration has been performed, the * will not be removed until a full 2 point calibration has been performed.
- 11. Rinse the pH and Temperature sensors in distilled water and blot them dry.
- 12. Place both sensors into a small sample of pH4.01, pH9.18 or pH10.01 Buffer, so that the bulb and reference junction are both covered. **DO NOT** place the sensors directly into the buffer bottle.

pH9.18 and pH10.01 buffers are unstable once the bottles have been opened. Discard immediately after use.

- 13. Select pH Calibration () \rightarrow F1:Cal. \rightarrow F1:pH).
- 14. When the reading has stabilised, press the ^(f) key to calibrate. The * will now be replaced by a decimal point, if calibration was successful.
- 15. The **WP-90** is now calibrated for pH and is ready for use. Discard the used samples of buffer.

5.2 Calibration Notes

- 1. A 1-point calibration should be performed at least weekly. In applications where the electrode junction can become blocked, such as dairy products, mining slurries etc, a 1-point calibration may have to be done daily.
- 2. A full 2-point calibration should be performed at least monthly. More frequent calibration will result in greater confidence in results.
- 3. All calibration information is retained in memory when the **WP-90** is switched off, even when the battery is removed. This information can be recalled or printed later using the GLP function (see section 9).
- 4. The **WP-90** displays the value of the pH buffer to which it will attempt to calibrate. Ensure that the buffer value displayed corresponds to the buffer that you are using.

5.3 Calibration Messages

1. If a 1-point Calibration has been successfully performed, the **WP-90** will display the following message, and the asymmetry value of the sensor. For example...

```
1 Point Cal.OK
Asy=0.10pH
```

2. If a 1-Point Calibration has failed, the **WP-90** will display the following message and the failed asymmetry value of the sensor. For example...

```
1 Point Cal.Fail
Asy=1.50pH
```

3. If a 2-Point Calibration has been successfully performed, the **WP-90** will display the following message, and the asymmetry and slope values of the sensor. For example...

2 Point Cal.OK	then
Asy=0.10pH	

2 Point Cal.OK Slope= 99.0%

4. If a Secondary Calibration has failed, the **WP-90** will display the following message, and the failed slope value of the sensor. For example...

or:

```
2 Point Cal.Fail
Slope= 70.0%
```

2	Point	Cal	.Fai
	lope=13		

Notes

- 1. The allowable Asymmetry range is -1.00 pH to +1.00 pH.
- 2. The allowable Slope range is 85.0% to 105.0%.

6. mV/ORP Calibration

The mV/ORP section is factory calibrated. There is no sensor calibration using a calibration standard for this mode.

7. <u>Relative mV/ORP Calibration</u>

Select Relative mV/ORP mode when measurements relative to a calibration standard are required. Calibration of the Relative mV/ORP mode is simply a matter of zeroing the reading when the sensor is in the calibration standard.

- 1. Plug the ORP sensor into the **Sensor** socket. Temperature compensation is not applied in Relative mV/ORP mode, so the temperature sensor does not need to be connected.
- 2. Switch the meter on.
- 3. Select Relative mV/ORP Mode () \rightarrow F3:Mode \rightarrow F4:Rel mV).

The display should now be showing Relative mV on the top line with absolute mV or date and time on the bottom line. For example...

Press P to alternate between absolute mV/ORP or the clock on the bottom line.

- 4. Remove the wetting cap from the ORP sensor.
- 5. Rinse the sensor in distilled water and blot dry.
- 6. Place the ORP sensor into a sample of the calibration standard. Ensure that the platinum tip and reference junction are both covered.

When the reading has stabilised, press the $\textcircled{F}{4}$ key to zero the Relative mV reading. The Relative mV reading will now be zero, and the absolute mV reading will remain unchanged. For example...

0mVR 25.0°c	or:	0mVR 25.0°c
500mV F4:Zeros		31/12 12:00:00

 The WP-90 Relative mV/ORP mode is now zeroed and is ready for use. The readout can be re-zeroed by pressing the ⁽²⁾ key whenever required.

7.1 Notes

- 1. The Relative mV offset is retained in memory when the **WP-90** is switched off, even when the battery is removed.
- 2. The Relative mV zero is reset when leaving Relative mV mode.

8. Temperature Calibration

The temperature readout must be calibrated or manually set before attempting Specific Ion or pH calibration. The decimal point is replaced by a "*" if the reading is not calibrated.

8.1 Calibration Procedure

- 1. Plug the Temperature sensor into the **Temperature** socket.
- 2. Switch the meter on.
- 3. Place the sensor into a beaker of room temperature water, alongside a good quality mercury thermometer. Stir the sensor and the thermometer gently to ensure an even temperature throughout the beaker.
- 4. Select Temperature Calibration ($\textcircled{1} \rightarrow \texttt{F1:Cal.} \rightarrow \texttt{F2:Temp}$).
- 5. The reading from the sensor is now displayed on the right of the display, and the value you are going to set is shown on the left. A "*" in the reading indicates that the **WP-90** is currently not calibrated. For example...

- 7. Press the (1) key to calibrate the temperature readout.

The * will now be replaced by a decimal point, if calibration was successful.

Alternatively, press the limit key to abort temperature calibration.

8. The **WP-90** is now calibrated for Temperature and is ready for use. The unit can now be calibrated for Specific lons and pH.

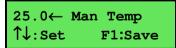
8.2 Calibration Notes

- 1. Temperature calibration information is retained in memory when the **WP-90** is switched off, even when the battery is removed. This information can be recalled or printed later using the GLP function (see section 9).
- 2. Temperature does not need to be re-calibrated unless the sensor is replaced or the meter is initialised.

8.3 Calibration Messages

1. If a temperature calibration has been successfully performed, the **WP-90** will display the following message and the offset value of the sensor.

```
Calibrate OK
Offset= 1.0°c
```


2. If a temperature calibration has failed, the **WP-90** will display the following message, and the failed offset value of the sensor.

```
Calibrate Fail
Offset= 10.5°c
```

8.4 Manual Temperature Setting

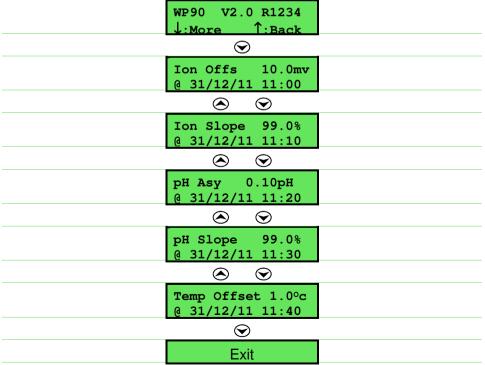
If the temperature sensor is not connected, the temperature of the sample solution must be set manually for accurate Specific Ion and pH measurements. A separate thermometer will be required for this.

- 1. Switch the meter on.
- 2. Measure the temperature of the sample.
- 3. Select Temperature Calibration () \rightarrow F1:Cal. \rightarrow F2:Temp)
- 4. The current temperature setting is now displayed. For example...

Alternatively, press the 📾 key to quit and retain the current setting.

9. Good Laboratory Practices (GLP)

The **WP-90** keeps a record of the date and time of the last Specific Ion, pH and Temperature calibrations as part of GLP guidelines.


9.1 To recall GLP information on the display

- 1. Select the GLP menu. () \rightarrow F4:Setup \rightarrow F3:GLP)
- 2. Select F1:Recall.
- 3. The instrument model, firmware version number, and instrument serial number are displayed, along with a prompt describing how to scroll through the GLP information.

```
WP90 V2.0 R1234
↓:More ↑:Back
```

Press the ^S key to sequentially scroll through the GLP information for all parameters. Press the ^S key to scroll back to previous data. The sequence of information displayed is shown over the page. Press ^(IIII) to abort at any time.

GLP Display sequence...

9.2 Failed Calibration If calibration has failed, the GLP function will reset the date and time to zero. The **WP-90** still shows the results of the last successful calibration. These calibration values are still used if further measurements are taken without re-calibrating. For example...

Ion Offs 10.0mv	Ion Slope	99.0%
@ 00/00/00 00:00	@ 00/00/00	00:00
pH Asy 0.10pH	pH Slope	99 .0%
@ 00/00/00 00:00	@ 00/00/00	00:00

Temp Offset 1.0°c @ 00/00/00 00:00

9.3 Printing GLP Information to the RS232 Port

The GLP information stored in the instrument's memory can be sent to a printer or PC via the RS232 port.

Switch the meter on.

Ensure that the **WP-90** RS232 cable is connected to the instrument and to the printer or PC.

Select the GLP menu. () \rightarrow F4:Setup \rightarrow F3:GLP)

Select F3: Print.

The GLP information is sent to the RS232 port in formatted ASCII text. For example...

```
WP 90
     V2.0 R1234 @ 31/12/11 12:00
           Offset=
                      10.0mV @ 31/12/11 11:00
Ion
                      99.0% @ 31/12/11 11:10
Ion
            Slope=
              Asv=
                      0.10pH @ 31/12/11 11:20
pН
                      99.0% @ 31/12/11 11:30
pН
            Slope=
                       1.0oC @ 31/12/11 11:40
Temperature Offset=
ENDS
```

9.4 Instrument Serial Number

In case the barcode serial number that is fitted to the rear of the **WP-90** is removed or becomes illegible, it is also available on the **WP-90** display.

• The serial number is displayed at turn-on...

```
WP90 V2.0 R1234
Ion pH ORP °C
```

where R1234 is the serial number.

- The serial number is displayed when recalling the GLP information (section 9.1).
- The serial number is included on the printout of GLP information (section 9.3).

9.5 Additional GLP Features

Another GLP requirement is to record the date and time of every reading. The **WP-90** does this for you when readings are recorded either with the Notepad function (section 10.1) or the Automatic Logging function (section 11).

Page 26 10. Notepad Function

10.1 Recording Readings into the Notepad

To record readings into the Notepad memory:

1. Press ^(f) in normal display mode. The display should now look like this...

- 2. Press (F), to record the current Specific Ion/pH/mV/ORP, Temperature, Date and Time into the notepad, and labelled as reading number 1.
- 3. Repeat steps 1 & 2 as often as required. The maximum number of readings that can be stored in the Notepad is 3600.

10.2 Recalling Records from the Notepad

To recall records from the Notepad onto the **WP-90** display...

- 1. Select the Notepad menu ($\textcircled{1}{100} \rightarrow F2:Notepad$)
- 2. Select **F1:Recall** from the menu.
- 3. Record number 1 is now displayed. For example...

4. Press (2) to alternate between the data and the date and time for this record. For example...

5. Press O to move forward through the records.

Press \bigcirc to move backward through the records.

Press and hold the $\textcircled{\mbox{or}}$ or $\textcircled{\mbox{or}}$ keys to roll rapidly through the readings.

10.3 Erasing Records from the Notepad

To erase all records from the Notepad...

- 1. Select the Notepad menu ($\textcircled{} \rightarrow F2:Notepad$)
- 2. Select **F2:Erase** from the menu.
- 3. The **WP-90** now asks if you are sure that you wish to erase all records.

4. Press (E) to erase all records from the Notepad.

Press (12) to quit without erasing the records from the Notepad.

10.4 Printing Records from the Notepad to the RS232 Port

- Connect one end of the RS232 cable to the Charger/RS232 socket of the WP-90. The charger, optional solar panel, or optional car battery lead can be connected into the spare socket on the cable for long term use, if required.
- 2. Connect the other end of the RS232 cable to an RS232 Printer, or to COM1 or COM2 of a PC.
- 3. Ensure that the baud rate for the printer or PC and the **WP-90** are the same.

If necessary, alter the baud rate of the **WP-90** (see section 12.1).

The **WP-90** uses XON/XOFF protocol. Ensure that the printer is set accordingly.

- 4. Select the Notepad menu ($\textcircled{1} \rightarrow F2:Notepad$).
- 5. Select **F3:Print** from the menu.

Printing starts as soon as (3) is pressed. The display shows the word "Printing" until printing is completed.

11. Automatic Data logging

The **WP-90** can automatically log readings. First the logging period must be programmed, then automatic logging can be started and stopped as required.

- 1. Select the Notepad menu ($\textcircled{1} \rightarrow F2:Notepad$).
- 2. Select **F4:Prog.** from the menu.

The display should now look like this...

```
\rightarrow 00 \leftarrow F1:Min F2:Sec
\uparrow \downarrow:Period F3:Hr
```

- 3. Use the O and O keys to set the period at which the **WP-90** will automatically log records.
- 4. When the logging period has been correctly set, select whether this period is in minutes, seconds or hours.

Press F to save the period as minutes.

Press 1 to save the period as seconds.

Press ⁽³⁾ to save the period as hours.

For example, if the period is set to $\mathbf{05},$ followed by 12, then the WP-90 will automatically log a record every 5 seconds.

5. The **WP-90** will ask if the records are to be logged into the Notepad, or sent directly to the RS232 port.

Press $\textcircled{\mbox{f}}$ to log records into the Notepad (maximum of 3600 readings).

Press ⁽³⁾ to send records directly to the RS232 port.

5. The automatic logging function is now programmed, and can be started and stopped as required.

6. To start automatic logging, press (13) in normal display mode.

If the WP-90 is logging into the Notepad, the display will look like this...

```
100.0ppM 25.0°c
Log# 1 12:00:00
```

The log number will increment and the **WP-90** will beep each time a reading is recorded.

If the **WP-90** is sending records directly to the RS232 port, the display will look like this...

```
100.0ppM 25.0°c
Sending 12:00:00
```

The WP-90 will beep each time a record is sent to the RS232 port.

7. Press ⁽¹³⁾ to stop automatic logging.

Notes:

- The clock must be set before the WP-90 will allow automatic logging to start. The message "Clock Not Set" is displayed if the clock is not set.
- 2. The Battery Saver function (section 13) is disabled while the meter is in Automatic Data logging mode, to stop the meter switching off while logging data. Even when the memory is full and the meter stops logging, the Battery Saver function is still disabled. This allows the data to be downloaded and the memory to be reset remotely.

Page 30 12. <u>RS232 Port</u>

12.1 Setting the Baud Rate

- 1. Select the RS232 Set-up menu ($\textcircled{1} \rightarrow F4:Setup \rightarrow F4:Baud$)
- 2. The available baud rates are listed on the display...

```
F1:300 F2:1200
→F3:9600 F4:19200
```

The arrow shows the current selection.

3. Press 🗊 to select 300 baud

Press (2) to select 1200 baud

Press (3) to select 9600 baud

Press (4) to select 19200 baud.

Press Implement of the current setting.

12.2 Sending Readings to the RS232 Port

Press ^(E3) to instantly send readings to the RS232 port whenever the **WP-90** is in normal display mode. This function is disabled if the automatic logging period is set to greater than zero (see section 11).

Records can be sent directly to the RS232 port rather than stored in memory during automatic data logging. See section 11 for details.

12.3 RS232 Configuration

The **WP-90** RS232 configuration is 8 bits, No Parity, 1 Stop Bit, XON/XOFF Protocol.

12.4 Communication and Statistical Software

Communication between the **WP-90** and a PC can be handled with any RS232 communication software. The diskette supplied by TPS contains a BASIC program for this purpose. A Windows[®] version is also optionally available.

Once the data is saved to disk, the next problem is how to use it. The data is formatted columns that can be imported by programs such as Microsoft[®] Excel[®] and Lotus 123[®].

Information on how to use the software is provided in the README files on the diskette.

12.5 Commands

The following commands can be sent from a PC to the **WP-90**. Note that <<r> denotes carriage return and <lf> denotes a line feed.

Action	Command	Notes
Request current data	?D <cr></cr>	Returns the current Specific lon/pH/mV/ORP, Temperature, date and time from the WP-90 . The log number returned is set to zero.
Request logged data	?R <cr></cr>	Returns all logged records from the WP-90 memory. The data ends with the message ENDS <cr></cr>
Erase logged data	?E <cr></cr>	Erases all logged records from the WP-90 memory. Returns the message ERASED <cr> to confirm that the records have been erased.</cr>
Request status information	?S <cr></cr>	Returns the model name, firmware version number, instrument serial number and number of logged readings in memory, eg: WP90++V2.0+R1234+9999 <cr>, where • are spaces. Note that the number of logged readings is right- justified.</cr>
Request GLP information	?G <cr></cr>	Returns all calibration GLP information, plus the instrument model and current date (see section 12.6 for data format and handshaking).

Page 32 12.6 Data Format

Data is returned to the RS232 port by the WP-90 in the following format...

LLLL+DDDDDDDDUUU+TTTTTTTTTuuu+dd/mm/yy+hh:mm:ss

where...

LLLL	is the Log Number. Maximum 4 characters, right justified. The WP-90 sends a Zero for instant readings (section 12.2)
•	is one space.
DDDDDDDD	is Specific Ion, pH, mV/ORP or Relative mV/ORP data, maximum 8 characters, right justified.
טטט	is the unit description. Either "ppM", "ppK", "pH•", "mV•", "mVR". "•••" is sent for Exponential readout of Specific lons.
•	is one space. (• are spaces.)
TTTTTTTT	is the Temperature Data, maximum 8 characters, right justified.
սսս	is the Temperature unit description. Either "oC•" for real temperature data (where • is 1 space), or "oCm" for manual temperature compensation data.
•	is one space.
dd/mm/yy	is the date, month and year data.
•	is one space.
hh:mm:ss	is the hours, minutes and seconds data.

When data is requested by a PC with the ?D or ?R commands (section 12.5), it is terminated with a carriage return.

When data is sent by the **WP-90** using the Print function (section 10.4) or the Instant Send function (section 12.2), the data ends with a carriage return and a line feed.

When the Temperature is not within the ATC limits for Specific Ion or pH measurement "ATCLIM" will be sent instead of the Data.

12.7 GLP Data Format

GLP information is returned as 7 lines terminated by a carriage return. When using the "?G" command (section 12.5), the computer must respond with a character after receiving each line.

For example...

WP90 V2.0 R1234 @ 31/12/11 12:00					
Ion	Offset=	10.0mV	0	31/12/11	11:00
Ion	Slope=	99.0%	9	31/12/11	11:10
рH	Asy=	0.10pH	9	31/12/11	11:20
рH	Slope=		-	31/12/11	
Temperatu	re Offset=	1.0oC	9	31/12/11	11:40
ENDS					

Page 34 13. Battery Saver Function

The **WP-90** is equipped with a battery saver function. If no button has been pressed for five minutes, the unit beeps and flashes the display for 20 seconds, and then shuts off. This function can be switched off for continuous use.

To enable or disable the battery saver function...

- 1. Switch the meter on.
- 2. Select Battery Saver Set-up ($\textcircled{} \rightarrow F4:Setup \rightarrow F1:Batt$)

The battery saver menu is now displayed...

The arrow indicates the current selection.

The bar graph and percentage indicate the approximate level of charge in the battery.

3. Press (1) to disable the battery saver function for continuous use.

Press P to enable the battery saver function. The meter will switch itself off if no key has been pressed for five minutes.

Press $\textcircled{\mbox{\tiny I\!\!\! I\!\!\! I}}$ to quit the battery saver menu and retain the current setting.

Notes:

- 1. For troubleshooting purposes, the battery volts can also be displayed in the battery saver menu. Press (3) to display battery volts.
- 2. The Battery Saver function is disabled while the meter is in Automatic Data logging mode (section 11), to stop the meter switching off while logging data. Even when the memory is full and the meter stops logging, the Battery Saver function is still disabled. This allows the data to be downloaded and the memory reset remotely.

14. Recharging the Battery

The is symbol flashes when the battery drops below 5.60 volts. The battery should be recharged at this point. If the battery is not recharged, the **WP-90** will switch itself off when the battery drops below 5.00 volts.

To recharge the battery...

- 1. Plug the battery charger, solar panel, or car cigarette lighter adaptor into the **Charger/RS232** socket. **DO NOT** plug into the **Temperature** socket, as this will damage the **WP-90**.
- 2. Charge for approximately 8 hours for full capacity. The **WP-90** has special circuitry to prevent overcharging, so the charger can be used continuously.
- 3. To ensure optimum battery life and capacity, the **WP-90** should only be charged once the is symbol starts to flash.

Page 36 15. <u>Clock Function</u>

15.1 Setting the Clock

1. Select the Clock Set-up menu ($\textcircled{\baselinetwidth} \rightarrow F4:Setup \rightarrow F2:Clock$).

The display now shows the current date and time. The cursor starts at the day.

31/12/11 12:00 F1:← F2:→ ↑↓:Set

- 2. Press the O and O keys until the day is correct.
- Press [€]² to move to the month. Press the ^S and ^S keys until the month is correct.
- Press [€]² to move to the year. Press the ^S and ^S keys until the year is correct.
- 5. Press 12 to move to the hour. Press the 2 and 2 keys until the hour is correct.
- 6. Press ^{€2} to move the cursor to the minutes. Press the ^(C) and ^(C) keys until the minutes are correct.
- 7. Check that the date and time are correct.

If any changes are needed, press the F key to move left to the desired position.

8. Press (E) when the cursor is in the "minutes" position to save the settings.

Press lo quit without resetting the clock.

<u>Note</u>

The **WP-90** does not test for a valid day of the month when setting the clock (eg: attempting to enter 31/02/11 is not corrected).

15.2 Displaying or Hiding the Clock

Date and time are normally displayed along with the Specific lon/pH/mV/ORP and Temperature readings. Press (E) in normal display mode to alternatively display or hide the clock. When Relative mV/ORP is selected, the (E) key alternatively displays the clock or absolute mV.

16. Selecting Buffers for Auto Buffer Recognition

The **WP-90** is factory set to automatically recognise pH4.01, pH7.00 and pH9.18 buffers. However, some users may prefer to use pH6.86 instead of pH7.00 and pH10.01 instead of pH9.18. The following procedure describes how to set which of these buffers are automatically recognised at calibration.

- 1. Switch the meter **OFF**.
- 2. Press and HOLD the (1) key while switching the meter back on. The buffer selection menu is now displayed.

```
Select →F1:7.00pH
Buffer F2:6.86pH
```

The arrow indicates the current selection.

3. Press 1 to select pH7.00 as the primary buffer.

Press 1 to select pH6.86 as the primary buffer.

Press I to quit buffer selection and retain the current setting.

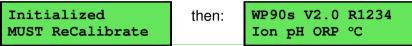
4. <u>The display will now show the currently selected high pH buffer</u>.

```
Select →F1:9.18pH
Buffer F2:10.0pH
```

The arrow indicates the current selection.

Press ⁽¹⁾ to select pH9.18 as the high pH buffer.
 Press ⁽²⁾ to select pH10.01 as the high pH buffer (the display shows 10.0 for the latter, but this buffer is stored as pH10.01).

- 6. Press log to guit buffer selection and retain the current setting.
- 7. The setting is kept in memory when the meter is switched off, even if the battery is removed.


Page 38 17. Initialising the WP-90

If the calibration settings of the **WP-90** exceed the allowable limits, the unit may need to be initialised to factory default values.

To initialise the WP-90...

- 8. Switch the **WP-90 OFF**.
- 9. Press and HOLD the O key while switching the **WP-90** back on.

The following messages should be displayed...

(The "s" after WP-90 is shown when the RS232 serial port option is fitted)

10. The meter then displays Specific Ion and Temperature. Note that the decimal points have been replaced with a *, to indicate that the unit requires re-calibration.

18. Instrument firmware version number.

If you need to phone or fax TPS for any further technical assistance, the version number of your **WP-90** firmware may of benefit to us. The version number is displayed by the **WP-90** at turn-on. In the example below, the firmware version number is **V2.0**.

```
WP90s V2.0 R1234
Ion pH ORP °C
```

19. Troubleshooting

19.1 General Errors

Error Message	Possible Causes	Remedy
Factory Cal. Failed	The EEPROM chip which contains the factory calibration information has failed.	The unit must be returned to TPS for service.
Memory Failed Calibration Lost then: Initialised MUST ReCalibrate	User calibration settings have been lost or corrupted.	 Re-calibrate the instrument 2-point calibration for Specific lon (section 4.1). 2-point calibration for pH (section 5.1). 1-point calibration for temperature (section 8.1).
Flashing 🗓 symbol.	Battery is below 5.60 volts.	Recharge the battery. Note that the unit will switch itself off when the battery falls below 5.00 volts.
Meter displays the word OFF , and switches off.	Battery is below 5.00 volts.	Recharge the battery. If this fails, check the charger. If charger OK, replace the battery.
Meter will not turn on.	 Battery is exhausted. Faulty Instrument 	Recharge the battery. If this fails, check the charger. If charger OK, replace the battery.
Battery does not charge up when charger is connected.	 Faulty battery charger or faulty battery. Faulty instrument. 	Return to factory for repair. Connect the charger and switch the power on. Display the battery volts in the battery saver menu (section 13). If the battery volts are increasing then the charger is OK. If the battery volts do not increase, then the charger is faulty. Replace the charger or the battery, as required. Return to factory for repair.

Page 40 19.2 Specific Ion, pH and mV/ORP Troubleshooting

Symptom	Possible Causes	Remedy	
Unit fails to	Calibration settings outside	Initialise the unit. See section	
calibrate, even	of allowable limits due to	17.	
with new sensor.	previous failed calibration.		
1 Point calibration fails	 Reference junction blocked. 	Clean reference junction, as per instructions supplied with	
(Specific Ion offset causes over-		the pH or reference sensor. Flush with distilled water and	
range reading, or pH asymmetry is greater than ± 1.00	2. Reference electrolyte contaminated.	replace electrolyte.	
pH.) 2 Point calibration	1 Incorrect primary lon	Ensure that you are using	
fails (Specific Ion slope is less than 50%	 Incorrect primary Ion Standard or pH Buffer. 	Ensure that you are using the primary Ion Standard or pH Buffer for which the WP- 90 has been set (sections 3	
or pH Slope is	2. Ion sensor surface or pH	& 16).	
less than 85%).	glass bulb not clean.	Clean lon sensor or pH glass bulb as per instructions	
	Sensor is aged.	supplied with the sensor.	
		Attempt rejuvenation, as per instructions supplied with the sensor. If not successful, replace sensor.	
	4. Connector is damp.		
	5. Ion Standard or pH	Dry in a warm place.	
	Buffers are inaccurate.	Replace standards or buffers.	

Continued next page...

Specific Ion, pH and mV/ORP Troubleshooting, continued...

Unstable readings.	1. Reference electrolyte chamber needs to be	Refill electrolyte. See Ion sensor specifications for
	refilled.	correct electrolyte. Use saturated KCI for pH sensor.
	 Reference junction blocked. 	Clean reference junction, as per instructions supplied with the sensor.
	 Ion sensor surface or pH glass bulb not clean. 	Clean lon sensor or pH glass bulb as per instructions supplied with the sensor.
	4. Bubble in tip of Ion	Flick the sensor to remove bubble.
	sensor or pH glass bulb. 5. Faulty connection to	Check connectors. Replace if necessary.
	meter.	Ensure that the reference junction is fully immersed.
	 Reference junction not immersed. 	Rinse electrolyte chamber with warm distilled water until
	 KCI crystals around reference junction, inside the electrolyte chamber. 	dissolved. Replace electrolyte.
Inaccurate	Reference junction blocked.	Clean reference junction, as
readings, even when calibration is successful.		per instructions supplied with the sensor.
Displays constant Specific Ion	Electrical short in connector.	 Check connector. Replace if necessary.
readings or		2. Replace sensor.
pH7.00 for all solutions.		
Displays constant Specific Ion	Ion sensor surface, pH glass bulb cracked, or internal	Replace sensor.
readings or pH4 to	damage.	
6 for all solutions. Display flashes	The Temperature is not	Cool/Heat solution before
"ATC" and "LIMIT"	within the ATC limits.	taking measurements.

19.3 Temperature Troubleshooting

Symptom	Possible Causes	Remedy
Displays " OVR°c " when	 Faulty temperature sensor. 	Return sensor to factory for repair or replacement.
Temperature		Return to factory for repair.
sensor is plugged in.	2. Faulty instrument.	
Temperature inaccurate and	1. Faulty connector.	Check the connector and replace if necessary.
cannot be calibrated.	 Faulty Temperature sensor. 	Return sensor to factory for repair or replacement.
		Return to factory for repair.
	3. Faulty instrument.	

20. pH Sensor Fundamentals

A combination pH Sensor is two sensors in one. The sensing membrane is the round or spear shaped bulb at the tip of the sensor. This produces a voltage that changes with the pH of the Solution. This voltage is measured with respect to the second part of the sensor, the reference section. The reference section makes contact with the sample solution using a salt bridge, which is referred to as the reference junction. A saturated solution of KCI is used to make contact with the sample. It is vital that the KCI solution has an adequate flow rate in order to obtain stable, accurate pH measurements.

20.1 Asymmetry of a pH Sensor

An "ideal" pH sensor produces 0 mV output at 7.00 pH. In practice, pH sensors, generally produce 0 mV output at slightly above or below 7.00 pH. The amount of variance from 7.00 pH is called the asymmetry. Figure 20-1 illustrates how asymmetry is expressed.

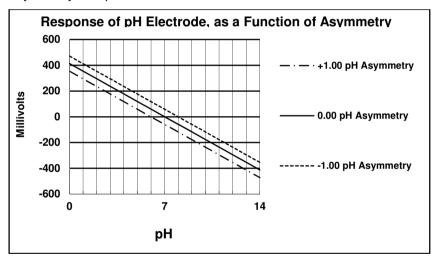


Figure 20-1

Page 44 20.2 Slope of a pH Sensor

As mentioned above, a pH sensor produces 0 mV output at around 7.00 pH. As the pH goes up, an "ideal" pH sensor produces -59mV/pH unit at 25 °C As the pH goes down, an ideal pH sensor produces +59mV/pH unit. In practice, pH sensors usually produce slightly less than this. The output of a pH sensor is expressed as a percentage of an ideal sensor. For example, an ideal sensor that produces 59mV/pH unit has "100% Slope". An sensor that produces 50.15mV/pH unit has "85% Slope" (see Figure 20-2).

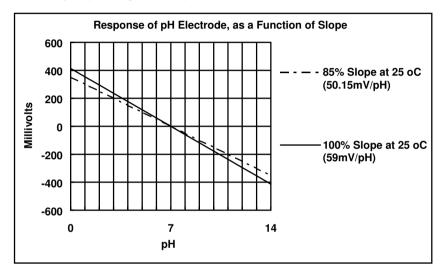


Figure 20-2

20.3 pH Temperature Compensation

The slope of a pH sensor (section 20.2) is affected by temperature. This effect is compensated for either by using an Automatic Temperature Compensation (ATC) sensor or by entering the sample temperature manually. Figure 20-3 shows the slope of a pH sensor at various temperatures.

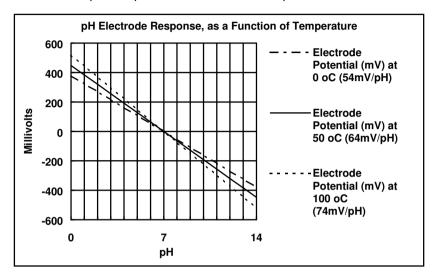


Figure 20-3

Page 46 21. Warranty

TPS Pty Ltd guarantees all instruments and sensors to be free from defects in material and workmanship when subjected to normal use and service. This guarantee is expressly limited to the servicing and/or adjustment of an instrument returned to the TPS Pty Ltd Factory Service Centre, freight prepaid, within twelve (12) months from the date of delivery, and to the repairing, replacing, or adjusting of parts which upon inspection are found to be defective. Warranty period on sensors is six (6) months.

Freight costs to and from the factory are the responsibility of the purchaser. Shipping damage is not covered by this warranty.

TPS Pty Ltd accepts no liability for any incidental or consequential damages caused by or resulting from the use or misuse of this equipment either due to failure of the equipment, incorrect calibration, incorrect operation, or from interpretation of information derived from the equipment. Specifications are subject to change without notice. This warranty becomes invalid if modifications or repairs are carried out on this unit by unauthorised persons. There are no express or implied warranties which extend beyond the face hereof.

Procedure for Service

Please read service details on our 'Service' web page first: http://www.tps.com.au/service.htm

TPS Pty Ltd has a reputation for prompt and efficient service. If you feel that this equipment is in need of repair, please re-read the manual. Sometimes, instruments are received for "repair" in perfect working order. This can occur where batteries simply require replacement or re-charging, or where the sensor simply requires cleaning or replacement.

Return the instrument AND ALL SENSORS to TPS Pty Ltd freight prepaid. It is your responsibility as the sender to ensure that TPS Pty Ltd receives the unit, so consider using a traceable freight service. Please check that the following is enclosed with your equipment:

- A TPS '<u>Service / Return Goods Form</u>' see web link below: http://www.tps.com.au/Service/Service%20form_web.pdf
- Your full name
- Your company name
- Your email address or fax number
- Your return street address
- A description of the fault. (Please be specific "Please Repair" does not describe a fault.)

Your equipment will be repaired and returned to you by express air freight where possible.

For instruments beyond warranty period, a repair cost will be calculated from parts and labour costs and emailed to you. If you decline to have the equipment repaired, the complete instrument will be returned to you freight paid, not serviced.

TPS Pty Ltd has only one service location, which is located at our factory in Brisbane:

Service Department

TPS Pty Ltd Unit 6 / 253 Leitchs Road Brendale, QLD 4500 Australia T: (07) 3205 8027 F: (07) 3808 4871 E: <u>tps@tps.com.au</u> W: www.tps.com.au