Let's code!

First, open CircuitBlocks and connect your Wheelson to your computer's USB port.

CircuitBlocks should now say "Wheelson connected".

If CircuitBlocks didn't recognize your Wheelson, please check if the USB cable is plugged in
properly and if you are using a working USB port on your computer.

If you still cannot get CircuitBlocks to recognize your Wheelson, reach out to us via email at

contact@circuitmess.com.

Let's make your Wheelson'’s lights blink
In computer programming, a variable is a storage location that contains a value.
Every variable has a specific name and you can store and change the value of a variable.

Let's create our first variable. Find the section named "Variables" and press the "Create
variable..." button.

mailto:contact@circuitmess.com

Search

Create Variable

A new window will appear, asking you to name your variable. Let's name it "blinkTime" and click
IIOKII.

code.circuitmess.com says

New variable name:

blinkTime

After you save the variable, this will create new variables that you can now use.

They will look like this.

Search.. Create Variable

-] - I
Logic blinkTime »
~al
& |Loops

_ blinkTime
E hMath
A Texwt

Functions

e
LI Disolay
0
i

Find the variable “set ‘blinkTime’ to” and drag and drop the block into the drawing area.

Search..

lLogic

g

Q

LOODS

Text blinkTime

¢ 0 0 & D » @

When we create a variable, it's undefined - it has no value. We must set a value for every
variable when our computer program starts. That's why you'll need the "set variable" block.

Now you need to define the value that we want to set the variable to.

Find the “Time” section on the left side of the screen and from there take the “ms since started”
block.

Search. sieep () seconds
o Looe

slee m
3 LoODs p m .

Math
ms since started

Text

Variables us since started

B
A
o
R uncions
=
(2]

wait forever

Lisplay

Take the “ms since started” block and drag it into the empty spot on the right side of the “set”
variable.

Search...

Now, we have to create a new variable that will help us set the RGB colors to the ones we want.
Go back to the “Variables” section on the left side and click on “Create variable...” to create a
new variable just like we did a few moments ago. Let’'s name this variable “RBGcolor”. Once you
enter the name, save your variable.

This will generate a few new variables that we can now play around with. For this step, we need
the “set ‘RGBcolor’ to” variable.

Search... Create Variable
By Logic |
RGBColor (

i = |
& _0ooDs
B van _ blinkTime
A lext

_ RGBColor

Drag and drop the "RGBColor" variable right below the previous variable. Take a look at the
photo below to see how this should look like.

Search...

b Logic

(]

LOODS

Math

RGBColor [

Variables —

Functions
Display

/0

¢ 0 0 & D > @&

Time

Wheelson’s RGB has 7 different colors and we want to show all of them off.

We'll start with the first color and move our way to the last one. Our first color will be set to ‘0,’
so let’s add that value to the variable.

To do that, go to the "Math" block section and find the first block with numbers. Change the
number to 0.

Search...

R Logic
Loops
RGBColor ;o
Variaoles

Q

¢ 0 0 & D » @

Good job so far!

Now let’s create a function. Find the “Functions” section on the left side of the screen and click
on this block:

Search...

oy

Logic
)
rr |loops

B0
B wvath 8Be
A Text
return

& \ariables

.
o Display -
8o

(' s
s if ‘ return '

You can name the function by simply writing down the name in the empty space.

We named it "checkBlink".

Search

b Logic

Q

LOODS

Math

Text blinkTime ms since started

RGBColor

Variables —r
Functions

Display B © - checksiink

ie;

¢ a0 d0 & 0 » @

Time

Now we’ll define what this function does. Let’s add some logic to it. From the “Logic” section on
drag and drop the “if” block inside of the “checkBlink” function.

Search...

*a Logic

Q

LOOpDs

Math

Text blinkTime ms since started

RGBColor

Variables =

Functions

Display

/0

¢ 0 0 & D » @

Time

Add this comparison block from the “Logic” section. Change the comparison symbol in the
middle to the greater than or equal to symbol (=) from the drop-down menu.

Search

b Logic

c LOODS

B ath

A [S blinkTime
O vaisbles 8 RGBColor E

¢ Functions

oo BN creciain |

8o (&) if . ‘ (>~ | '

6 Time

Then, from the “Math” section, add the block with the ‘> symbol between the two numbers.

Search...
% Logic

~
®s LOODS

hMath

Text

. random integer from ‘ to '
Variables 2 g .
Functions _ random fraction
Dispiay : :

g constrain ‘ low ‘ high ‘

Time Arithmetic

2
A
(]
&
-
a
&

Search...

b Logic

Q

LOCDS

Math

RGBColor fm
Variables -

Functions

¢ 0 0 & D » @

B O | cheoksink
0 =0 feady ==
Time

After that, we'll go to the “Time” section on the left of the screen and select the “ms since
started” block and add it to the left slot of the “Math” block we just dropped.

In the right slot of this same “Math” block, we’ll add the “blinkTime” variable block from the
“Variables” section.

Finally, we’ll change the number ‘123’ to ‘500’ to make the lights change color every 0.5
seconds. This is how it should look like:

Search

Q

¢« 0 0 & 0 » @

Logic
Loops

Math

Text blinkTime . ms since started

RGBColor o]

Variables —_

Functions

Display "
: B0 checkin
() if - - \
. "‘ ms since started n blinkTime | ml‘ |m

/0

Time

Let’s create a new function called “cycle RGB”. Go to the “Functions” section and click on
“Create a Function”. Just like the last time, choose a name for your function - let’'s go with
“cycleRGB?” this time. Click “OK,” and the function will show up on the screen.

Search
R Logic
blinkTime ms since started
~a —_
"~ toops RGBColor Wol
E Math
A e
O variables @ @ -1 checkBlink
(&) if | g .
& Functions . ‘| el - - [blinkTime ;-] l@
(- Display
a o
d Time

0101 cyicree

Let’'s add some variables to the function.

From the “Variables” section, get the “set ‘RGBcolor’ to” block and drop it in the empty slot of the
“cycleRGB” function.

Search...

*n Logic
pinkrime
@' Loops RGBColor E
B uvath -
A e
Q variaoles @ @ tO
8 cunctions &) if ‘| ms since started ’ blinkTime m(\m
) Display
a o
O e

B @ . cyclercB

]
RGBColor [

We'll fill the empty space on the right side of the “set” function with a block from the “Math”
section.

Find the “remainder of” block and drop it into the empty slot.
By default, there are some random numbers written in the “remainder of” block.
We'll switch the number ‘64’ with another block from the “Math” section. Find a block that has

number ‘1’ on each side with a ‘+’ symbol in the middle. Then, drag and drop that block in place
of the number ‘64’

Search.

b Logic
blinkTime ms since started

—~ |
oo RGBColor
B vatn
A
Q ariabies @ - checkBlink
O e if

~unctions ms since started u blinkTime
[} Display
a .o
6 Time

B © . cyclerch

RGBColor i | e
remainder of T e - ﬂ

Next, go to the “Logic” section and drag and drop the “if, else” block right under the variable we
just created.

Search.
b Logic
blinkTime ms since started

—~ |~
e RGBColor
B et
A e
D Variables @ G’) e} checkBlink

o if
8 Funcions ms since started - blinkTime
] Display
a o
‘ Time

©® - cyclerGB

RGBColor

remainder of u + g

Let's add some comparison logic to this new block. From the “Logic” section find a block that
compares whether two number values are equal to each other and drag and drop it in place of
the “true” value that’s there.

Search

o Logic
blinkTime ms since started
—~ |
o RGBColor Mo
B et
A et
Q varisbles 2 @) checkBlink
(@) if (1 w
& Funcions - "‘ e - - [blinkTime : -] \m
o Display
8 o
ﬁ Time

@101 cyoiercs |

RGBColor

—
a

: ‘ 0
remainder of | RGBCOlor =0 = [

Let’s add the “RGBcolor” variable in the left slot of the comparison logic. Let’s also put the
number '0' on the right side.

Search...

®n agic
blinkTime . ms since started

S~ iy
e RGBColor Mo
B wmath
A et
Q variables @ @ .- checkBlink

) (&) it [g 1 M [
& Funcrions : I| ms since started - blinkTime m" |m
(=] Display
8 o
ﬁ Time

B @ . cyclercs

RGBColor f

1 i [r < [
remainder of | RGBColor =‘ ‘n !
() if RGBColor [=- 00

else if

Now find the “I/O” section on the left side of the screen. From there drag and drop the “set RGB
LED color” block in the empty slot of the “if else” block. Just like this:

Let’'s do the same for all of the colors. To add a new check click on the little ‘gear’ icon on the
upper left side of the block.

do set RGB LED color
L

else if

Then, drag and drop the same comparison block as in the previous step and add the
“RGBcolor” variable. This time instead of ‘0’ add the value ‘1’ and set the “RGB LED color” to
“red” by selecting the red color from the drop-down menu.

Search

b Logic
blinkTime ms since started
~ |~
oo RGBColor Mo
B izt
A T
O variables B @ - checkBlink
i (2] if
8 Functions — ms since started u blinkTime m @
[} Display
a o v Off R
Red
ﬁ Time

00

Blue

o e 0

Magenta -
RGBCOK e)

RGBColor

(&) if

C
do | set RGB LED coldi
L . Yellow

else if RGBECoI¢ Purple

set RGB LED color

Repeat this same process for the remaining 6 colors. With each new block, make sure to
increase the value by 1 and change the color into a different one. Just like this:

Search...

. B @ - cyclerGB

% Logic —_—————————————— —

RGBColor i ‘ el
e B comcoor [T JRSLE,
1 + 0
N RGBColor (+ - | | & |
& Loops : .

_— r—
() RGBColor (= [0 0]
Math ‘

do _Set RGB LED color [Off + |
A wo Ise if J |
FESN RGBColor (=- | ‘ﬂ
Q varizbles do | setRGB LED color Red -
—
-) i J |
B Functions R RGBColor (=] ‘
D Doy do \iet RGB LED color
. ¢ |
else if RGEColor (= |
a o \
o do | set RGB LED color
Time

5 | i
L L

do | set RGB LED color

. | |
L - L

do | setRGBLEDcolor ([[EFEN<RAD
—

et o 0

do | set RGB LED color | Cyan - |

do | set RGBLED color | White + |

L

Now let’s go back to our “checkBlink” function. Add the “cycleRGB” function from the “Functions”
section to the empty slot of the “if’ logic.

blinkTime ms since started

RGEColor

Now go to the “Variables” section and drag the “set” variable.

blinkTime ms since started

RGBColor

) @ . checklink

(&) if - '
' : ms since started n m m

blinkTime

We’'ll now add a block from the “Time” section. Look for the “ms since started” block and place it
inside the variable.

blinkTime . ms since started

RGEBColor

D @ - checkslink

(&) if , - | .
e ms since started n blinkTime m m

blinkTime

There’s one final block we need to add. Go to the “Loops” section and drag and drop the “Loop
forever” block.

Add the "checkBIlink" function inside it.

blinkTime ms since started

RGBColor

© checkBlink

ms since started ﬂ m .
do [eyclercs

blinkTime

loop forever

| checkBlink
|

This is how your sketch should look like in the end:

@01 cyoiercs |

RGBCol [. - o
blinkTime ms since started ey remainder of | J | ln |]B
RGEColor o] :)
: S RGBColor [- - [0]

do | setReB LED color [Off -]
ieall RGBColor (= - [:i
do | setRGB LED color
Sleclk RGBColor (- - |
do :st RGB LED color
ieall RGBColor (= - [
do | setRGB LED color
mizelk RGBColor (- - |

do :et RGB LED color

BN chesksink |
() I | —
' : L | ms since started ’ blinkTime m { 1 m

ms since started

loop forever
s y ——
thackalink ieall RGBColor - [

do | setRGE LED color

—

) —
else if RGBColor [=- I ¢
do :et RGB LED color m

) [
else it RGBColor (= - [‘
do _5©tREB LED color [White - |

—

This sketch will make you Wheelson's RGB light blink in different colors every 0.5 seconds and
it will draw the camera on the screen. So, let’s test it out and see if it works!

Click on the Run button and check it out.
If your code was compiled and uploaded successfully, Wheelson's white LED headlights and the

RGB light underneath the screen should blink in different colors every 500 milliseconds and you
should be able to see the camera on the screen.

Is everything ok? Great, let's move on.

Let's get movin'!

In this chapter, we'll learn how to code your Wheelson's motors to go forward or backward,
or to move the wheels in place.

This seems like a lot of work, but don't worry.

To begin, find this 1/0 block labeled "When button left pressed" and drop it on the drawing
area.

Search...

b Logic

< Loops

B8 vt when button [ET8a pressed
AT

O varisoe

& Functions

0D o

a o]

O 1

Let's change the "left" to "up".
Now we'll code what happens to each motor when you click the button.

To do that, find this 1/0 block:

Search...

b Logic

Q

Locps
when button pressed

Math set motor ([GEIETRE speed D
—

Text
Variables

Functions

¢ 0 0 & D > @

Make sure the speed value for this button is set to 10.

Repeat this for all four motors.

Search...
b Logic
~a
& Loops
E when button pressed
Jetn set motor (ZETTETENN speed ([
A T set motor ([GEITT-TTEN speed [
ey I
set motor speed ([
Q Variables :et motor speed m
¢ Functions
2 Display
a o
é Time

So, what we did here is we coded your Wheelson to move forward once the Up button is
pressed.

Another thing we'd like to do is turn on the headlights.

For that, you'll need this I/O block:

Search...
bl Logic
x|
ke Loops
E when button pressed
e set motor speea ([0
A T set motor speed (D)
=
set motor speed (D
O arisbes set motor (CZEHETINN speed [
headlights ON
|-
¢ Functions
2 Display
a o
6 Time

Let's see what happens when we release the button we're holding.

Search...
b Logic
u
= Looos
E when button pressed
e set motor (ZETIETEND speea (D
set motor ([GEITETITEAN speed [T
A e |
set motor speed ([
O Varizbies set motor [T speed (D
headlights ON
L
¢ Functions
0 o ay
when button released
a o
6 Time

We want the motors to stop and the headlights to turn off once we release the button.

Find these two blocks and place them within the "When button up released" block to do this.

Search...

Pa Logic
I
rr Loops
E when button ([pressed
e sot motor (ZTIETEND spocd (T
A Text set motor lmnﬂm speed lI,
ex
set motor speed [
O \arisbies | set motor (TR speed [0
headlights ON
L
¢ Functions
O oisp ay
when button released
8 o | stop motors
headlights OFF
e
O 1me

Let's do it again for three more pushbuttons: down, left, and right.

When we press the "down" button, we want the Wheelson to start moving backward and
that's why we need to add the minus sign before the speed value.

We also want to turn on the headlights.

Search.
b Logic
~
* Loops
8 when button pressed when button ([EETTIEEN pressed
o set motor (CITTETEED speed (B [sot motor GESTIETEER spoes €1
A T set motor [FERATc D speed D | setmator Front right - JECELN -10 |
ex :
set motor [CEEACLRAN speed [N | set motor Rear left - =N -10 |
Q variables sot motor (XTI speed (D | setmotor (TETIITEND speed EID
headlights ON _headiights ON
—
B runctions
0 piso ay
when button released
0 o stop motors
headlights OFF
—
G e

We want the motors to stop and the headlights to switch off when we release the button in

question.

Search...
b Logic
x|
/s Loops
E when button m pressed when button [T pressed
viath set motor (EENTTTRED speed D set motor (RIS speed B0
A Teq set motor (CETTEEN speed [setmotor ([EETTIEGIREN speea 1D
set motor [CESAETRa speed D LTl GO Rear left speed m
Q veriabies setmotor (TR speca (D % roter EETKETRN »poel R
| " headlights ON
headlights ON
S g L
8 uncions
O Display
when button released when button released
a Yol | stop maotars stop motors
headlights OFF _ headlights OFF
L —
O Time

So we coded the back-and-forth movement.
Let's code moving the wheels in place.

We'll do that with the right and left buttons.

Search
By .
Logic
when button pressed when button m pressed
& Loops setmotor ([EEITETEEN speed [0 | setmotor (GEETIETEAN speed ETD

set motor (ST speed
setmotor (ENTTTIRED spoed (D 2 peed ED

8 ven set motor speed (D | =t motor speod CED
ot matar speed [| setmotor speed [E1D
A= :
e headlights ON Ibsocighz O
S
Q varizbles
Q Functions when button released when button released
stop motors | stop motors
O Display headlights OFF | headlights OFF
L - —
8 o
é Time when button [0 pressed

set motor m speed m
setmotor [EEA: L speed [T
set motor speed m
set motor speed [

headlights ON
L -

We must set two of the motors to move backward and two to go, forwards, in order for
Wheelson to move in place.

As always, turn the headlights on.

When we release the right button, we want the motors to stop working and the headlights to
turn off.

Search..
% oaic
Logic
when button pressed when button [EETTIRM pressed
< Looos setmotor [FEAC Bl speed | setmoator [Front left - FREERE 10 |
sot motor ([FETTIEED speed | setmotor (GERTIFIRN speca G
B ven o spesd [setmotor (EETAETRAN speed ETD
A set motor (TR speed D | setmator (CEEIIEIIRAN speed ERD
e headlights ON | G
L=
Q variables
¢ Functions when button released when button [T released
o stop mators | stop motors
Display headlights OFF | headlights OFF
L —
a o
ﬁ Time ‘when button pressed

set motor spead m
| set motor m speed m
| set motor speed m
set motor speed m

headlights ON
S

when button m released

stop motors

| headlights OFF
—

Repeat the process for the left button, but make sure to make different motors going back
and forth.

Search

*a Logic

Q

Loops
Math
Text
Variables
Functions
Display

el

¢ O 0 &% 0 > @

Time

The final step is to include the block that determines what happens when the left button is

released.

when button pressed
set motor ([FENICLAN speed
set motor m speed m
set motor ([T R speed [
| set motor ETITTEEN speed [T

headlights ON
—

when button released
stop motors

headlights OFF
[

when button ([T pressed

set motor m speed m
setmotor ([EENTLLdl speed [ED
set mator speed (@D
set motor speed m

headlights ON
—

‘when button m released

stop motors

. headiights OFF
—

when button (XN pressed
set motor speed m
setmotor ([FENAC LR speed BB
set mator speed [EID
set motor speed m

headlights ON
L.

when button released
stop motors

| headlights OFF
| —

when button pressed

set motor ([FETICLRAN speed (BB
set motor ([FENIC ARl speed LD
set motor speed m
set motor speed [EDD

headlights ON
—

Search...

set motor m speed m
set motor m spead m
set motor speed m
set motor speed BB

headlights ON
—

when button (GG released

stop motors

| headlights OFF
—

B -
Loge when button pressed when button m pressed
& Looos set motor speed D | St [Frontleft - JE-EEN 10 |
| set motor speed BB | setmotor [EETTFEEN speed BT
B v = — speed 0D | setmotor CEEIETIAN speed BTN
[set motor (CEITTIEE spsed B setmator [CEEIENRAN speed EID
A | [—— ;headlighzsom
—
QO variables
R Funcions when button released when button released
stop motors | stop motors
O oisolay [headiights oFF | headiights OFF
— —
a o
O tre when button pressed when button e

set motor speed m
set motor speed m
set motor speed BB
set motor speed [ELD

headlights ON
L

when button released
stop motors

. headlights OFF
L

Finally, we must include the "loop forever" block with the "scan buttons" inside it to
guarantee that the buttons are always scanned and that the code is executing properly.

Please remember to include this section every time you code something with the buttons.

Click on the Run button and try it out.

Buttons

Let's write code to light the LED in the chosen color when a specific button is pressed.

This will be done mainly in the 1/O block section.

Drag and drop the "When button left pressed" block from the I/O block section here:

Search...

*a Logi

~ Loo

B ath

A=

Q veranes when button pressed
8 rincion

&o

a o

O e

Then, find the "set RGB LED color off" block and insert it in the block above.

Search...

A Logic
i
rs Loops
B mah
A
& variables
when button pressed
B =unctions setRGBIED color ([EiAMD
-
4 Off a
O oise ay
Red
a /0 Graen
Elue
6 e Yellow
Cyan
Magenta
White
Cyan
Yellow
Purple -

Click on "off" and you'll see a drop-down menu showing you all the different colors you can
choose from.

For the first one, choose red.

Search...

b Logic

Q

Loops
Math
Text

Variables

when button [ETIEN pressed

setRGBIEDcolor ([[TRAD
o

Functions

Display

/O

¢ 8 OJ0 & D » @

Time

You can duplicate this 5 times - one block for each button.
You can duplicate the block by right-clicking it and selecting "Duplicate".

This is what your code should look like right now:

when button m pressed when button pressed when button pressed
set RGB LED color set RGB LED color
S [Red -] I [Red - (setReBLED color ([RED
when button pressed when button pressed when button pressed
set RGB LED color Red - | set RGB LED color | Red - | | set RGB LED color [Red - |
S L —

Change which button you press and which color the LEDs light up.

As a result, when each button is pressed, the LED changes color:

when button ([T pressed when button [T pressed when button pressed

set RGB LED color set RGB LED color
S Red - I [Green -] _setRoBLiDcoor (EED
when button [EETTIEE pressed when button [EEES Rl pressed when button pressed
setRGELED color [N : setRGBLEDcolor [ERrnCRaD
s _set RGB LED color [Cyan - | {5

Return to the 1/0 block section and select the "When button left released" block. Drag it onto
the drawing area.

when button [ETI pressed when button [C:G0 pressed when button pressed
set RGB LED color set RGB LED color
G Red ~ s | Green - (setReaLEDcolor (CIVERED

when button released

when putton [EETTREN pressed when button [EEESRal pressed when button pressed
se1 R LED ol wirontEDcoor (T ((otR08 2D color (TR
— e -

As you can assume, for each button-pressed action, we'll code what happens when the
button is released.

Each "released" block will include the identical "set RGB LED color" block.

when button @ pressed when button m pressed

set RGB LED color s&t RGB LED color
S (Red -~ &

when button relecsed

:et RGB LED color m

when button [EETREM pressed when button [ERESRdl pressed
set RGB LED color Yellow - o
S [vellow - | _set ROB LED color (EYETEEN

Let's duplicate the "released" block 5 times.

This is what your code should look like right now:

when button pressed

. set RGB LED color
—

when button pressed
. set RGB LED color
—

when button m pressed

when button m pressed
| set RGB LED color m
S

when button pressed

setRGE LEDcolor [dD
| -

| set RGB LED color
—

when button released when button released

when button released
38t RGB LED color [off - | et RGB LED color [Off -~]

| setRGBLEDcolor (CTIED
—

when button [0 uRal pressed when button [EEES&d pressed when button pressed

t RGB LED col Yellow - set RGB LED color
e color = _S6t RGB LED color | Cyan - | &

when button released

when button released when button released
. set RGB LED color m
—

| setRGBLEDcolor (T _Set RGB LED color G
—

We want the LED to turn off when we release the button, so we'll keep the "off" section of
the block, but we'll replace the buttons in question.

when button m pressed

when button pressed

when button m pressed

_Set RGB LED color [Green + | _set RGB LED color [Blue = |

:et RGB LED color @

when button released when button [CE L released

56t RGB LED color [off - | et RGB LED color [off - |

when button released

36t RGB LED color [Ooff - |

when button [EEITIEE pressed when button [RS8l pressed

set RGE LED color Yellow - a
= :et RGB LED color m

when button m pressed
setRGBLED color [Nl onciil
—

when button [EETLEED released
36t RGE LED color [Off - |

when button [EEESEd released
_5et RGB LED color [Off - |

when button m released

:et RGB LED color m

The "scan buttons" block inside the "loop forever" block is the last item we need to add. This
will ensure that this action is carried out at all times.

when button m pressed
_Set RGB LED color

when button [ET3 pressed when button [T pressed

set RGB LED color Red - set RGB LED color
| — —

when button [released when button [EFTTEEN released
set RGB LED color
56t RGB LED color [off - | I

when button m released

setRGE LEDcolor [EAD
—

when button [EEULRA pressed when button (R[22 pressed when button [EEETSM pressed

set RGE LED color Yellow - an - set RGB LED color
= | Vellow -] ot RGB LED color S

when button ([EETIIEED released when button ([EXE2Ra released when button [ERTTSEM released

set RGB LED color set RGB LED color set RGB LED color
— ~— —

loop forever

scan buttons
L.

Click on the Run button, and start pressing and releasing the buttons.

Simple Timer

Now we'll learn how to code the ongoing switching of the back and front lights, as well as
the filling of the display with black and white.

Let's kick off!

To begin, look for the "loop forever" block inside the "loops" block section.

Search...

%y oo

Jic

Q

LOCDS

loop forever

¢ 0 0 & D » @

The first step is to make the display completely dark.

You can do that by adding the "display" block.

Search...

*a Logic

Q

LOODS

Math

Text

Variables

loop forever

fill frame with

Functions

Display

/0

e 8 0 & D » @

Time

Find another "display" block labeled "push frame" and place it below like this:

Search...

*a Logic

Q

Loops

Math

Text

Variables

Functions

loop forever

fill frame with

Display

/0
push frame

¢ 00 & D » @

Time

When this happens, we will turn off the backlights on your Wheelson.

For that, you have to use an 1/O block labeled "backlight off".

Search...

3 Logic

(@]

LOODS

Math

Text

Variables

Functions

loop forever

Display -
e fill frame with

= push frame

¢ 0 0 & D » @

Time backlight OFF
—

We'll also switch off the frontlights.

Find another I/O block and place it below:

Search..

®a |ogic
c LOODs
@ it
A Text
O variables
¢ Functions
loop forever
& Disoiay me with
a o push frame
O e backlight OFF

headlights OFF
S

Let's turn off the LED as well.

Search..
b Logic
c LOODS
B man
A T
& variables
¢ Functions
loop forever
& Disolay fill frame with
8o push frame
O Time backlight OFF

headlights OFF

_Set RGB LED color Off v |

Now, jump to the "time" block section and find the "sleep 0 seconds" block.

We'll put the code to sleep for one second.

Search

b Logic
~
R _OODS
B wvamn
A Tea
Q variables
8 runcions
loop forever
I Disolay = .
e fill frame with
8o push frame
O Time backlight OFF

headlights OFF

set RGB LED color m

sleep “ seconds
~—

We want the display to turn white after 1 second.

Search..

=g

Q

¢ 8 0 & D » @

We also want all of the lights to turn on.

Logic
Loops
Math
Text
Variables
Functions
Display
/0

Time

loop forever
fﬁl frame with
push frame
backlight OFF
headlights OFF

set RGB LED color mﬂ

sleep n seconds

fill frame with

push frame

Search

[

¢« 0 Jd0 & D » @

Logic
Loops
Math

Text
Variables
Functions
Display
/0

Time

loop forever

fill frame with

push frame
backlight OFF
headlights OFF

setRGBLED color [ElAdD

sleep () seconds

fill frame with

backlight ON

headlights ON
L .

Once the back and front lights are turned on, the LED should light white.

Search...

b Logic
c LOODS
B math
A e loop forever
Q variables fill frame with
a . push frame
backlight OFF
] Display + 9
headlights OFF
a o |
set RGB LED color m
G I
- sleep ([seconds

fill frame with

backlight ON

headlights ON

\jet RGB LED color

In the end, add another "time" block and the "push frame" block.

Search

®a Logic

Q

Loops
Math

Text loop forever

Variables fill frame with

push frame

Functions

backlight OFF

Display
headlights OFF
/O I
set RGB LED color

e 0 0 # D » @

Time

sleep n seconds

fill frame with

backlight ON
headlights ON

set RGB LED color

sieep ([seconds

push frame

Click on the Run button, and check the lights and the display.

Restoring Wheelson's firmware

If you want to restore the firmware on your Wheelson, follow these steps.

This is quite simple, just connect your Wheelson to the USB port of your computer and
press the "Restore firmware" button on the top right.

G circuit CEZD Spencer Settings @ Log Out

Your sketches

New sketch

Chatter coding - first steps|

You will be prompted with a window where you need to choose the device that you are restoring
the firmware for.

Choose Wheelson, of course.

Restore Stock Firmware

r Device

Chatter 2.0
Batmobile™
Batcontroller
Armstrong
CircuitPet
Wheelson
Jay-D
ByteBoi
Synthia
Spencer
Nibble

Ringo

Wait for a few seconds, and your Wheelson will be back and running like usual.

What's next?

You've reached the end of our first Wheelson coding tutorial, congratulations!

We hope you're as excited as we are about Wheelson's future since there are so many cool
things we want to do with it in the future firmware and CircuitBlocks updates.

In the meantime, continue exploring on your own and show us what you've done with
Wheelson's lights, wheels, marker, and ball detection by sharing it on the CircuitMess

community forum: https://community.circuitmess.com/

If you need any help with your device, as always, reach out to us via
contact@circuitmess.com and we'll help as soon as we can.

Thank you and keep making!

https://community.circuitmess.com/

