Coding for beginners - how to code your
Spencer

Simple timer

We'll start with something simple.

We'll use all of the LEDs on Spencer and make them light up, and turn off in a loop every
second.

To begin, drag the "loop forever" block from the "Loops" block section onto the drawing
area.

Search...

*a Ogic
A =
Q Variaole
¢ Functions

loop forever
a8 o c
d Time

This block will ensure that the code inside it is executed all the time in loops.

Firstly, we want all of the LEDs to turn off, and for that, we'll need the "fill frame with 0" block

from the "Matrix" block section.

Don't change the 0 for now.

Search...

% Logic

Q

> @

1 =
- o
4

Ial 3
]

5 &

Functions
loop forever
8 o fill frame with ﬂ
—

To run the code on the matrix, you must always include the "push frame to matrix" section;
otherwise, the code will fail.

*a ogic
i
ks Loo
B e
A Tex
Q varizbles
& Function
loop forever
a /0 fill frame with ﬁ
push frame to matrix
6 e =

Because the following step will be to turn on the LEDs, we must include a one-second delay
between these two activities.

Go to the "Time" block section, and you'll find this block:

Search...

Logic
Loops
Matn
Text
Variables

8
A
Q
¢ Functions
loop forever
a
6

o] fill frame with ﬁ

push frame to matrix

\Eleep n seconds

ooooo

It's time to turn on the matrix.

To do that, duplicate the "fill frame with 0" block.

This time, we'll change the 0 to 255.

Search...

*a Logic

Q

Loops
Math
Text
Variables

Functions
loop forever

f(o] fill frame with ﬂ

push frame to ratrix

¢ 0 % D » @

sleep n seconds

fill frame with 255
—

us
a2
<
a
[
-
=

To ensure that the code runs properly, add another "push frame to matrix" block.

Search...

*a Logic
i

R+ |OCDs

Math
loop forever

-
Text fill frame with ﬁ

push frame to matrix

¢ 0 & D > @

Variables
sleep n seconds
runctions fill frame with 255
; ush frame to matrix
0 \P
Time

Matrix

Finally, add the "sleep 1 second" block at the end because that is the amount of time we
want to pass before the code runs in loops over and again.

Search...

g Logic
7~
/s Loops
B et
loop forever
A T fill frame with ﬁ
& arizbles push frame to matrix
sleep n seconds
& Functions fill frame with 255
u . push frame to matrix
sl seconds
5 Seer @

Click on the Run button, and check the code!

Play with the red button!

This time, we'll do something similar to the Simple timer example. The code, on the other
hand, will not execute in the loops but will begin when you click on the big red button.

If you wish to code something with the buttons, head to the I/O block section.

To begin, drag this "When big button pressed" block onto the drawing area.

Search...

b Logic
~a
r Looos
E hatl
A
when button pressed
D ‘ariables
o NN "
a o

Inside this I/O block will be the code for what should happen once you hit the button.

We want the matrix to light up when we press the button and switch off when we release it.

Change the 0 in the "fill frame with 0" block to 255 to ensure it lights up.

Also, don't forget the "push frame to matrix" so your code is executed properly.

Search

e memE

255

fill frare with

sh frame to ratrix
P

Now, let's code what'll happen once we release the button.

Return to the 1/0 block section and look for the "when big button released" block.

Drag and drop it onto the drawing area.

Search..

&
-]
i
o]
[ts]
~

e e

Variables fill frame with 265

when button released

8
A
Q
push frame to matrix
& runciions =
2]
o

You can duplicate the same "matrix" blocks inside it.
This time, make sure to replace 255 to 0.

Here's how your code should look:

Search...

b Logic
~
& 0O
E Math
A =
when button pressed
8 arizbies fill frame with PHELE
sh frame to matrix
¢ Function _pu
6 when button released
- fill frame with n
#E natric ;push frarme to matrix

Your code is almost finished!

The only thing that's missing is the "scan buttons" block inside the "loop forever" block.

It is critical to include these two blocks whenever you are coding anything with buttons; else,
your code will fail.

Search..

By | oic

gic

Q

LOODS

B et
A =

when button pressed
Q ariables fill frarne with 255

sh frame to matrix
& cuncion P
loop forever
u . scan buttons
Q —

6 when button released

- fill frame with n

B sty sh frame to matrix
atrx S

Click on the Run button, and start playing with the big red button.

Write something!

You can write any kind of short message on Spencer's matrix board.

We'll try that out right now.

The goal is to write "ON" when you press the big red button and "OFF" when you release it.
Let's first code what'll happen once you run the code.

We want all of the LEDs on the matrix to turn off, and for that we need the "fill frame with 0"
block.

Search

*a Logic
~

& Lco

E Math
A Tent

O arisbles
o« S -
a o

é Time

Then, we want to write "off", since the "on" message will not appear until you press the
button.

The writing block can be found within the "Matrix" block area.

Search...

®8 Logic

=

Q

LOCDS

e o = O - o e o

&% D
I &
I
]
3
5 o

As you can see, the text we want to appear is "OFF", and we want the coordinates to be x:
0, and y: 1. The intensity level will be set to 100.

As you already know, the matrix code will not function without the "push frame to matrix"
section at the end.

Search...
e Logic
e
ks oo
B vath
fill frame with n
e VTR = o v ol e o
8 ariables push frame to matrix
8 cunciion

Now, let's check what actions we want the big red button to trigger.

You'll need the 1/O block section's "when big button pressed" and "when big button
released" blocks for this.

Search.
*a Logic
~
ks Locps
B watn
fill frame with n
Aw e T < - W o W
O variables push frame to matrix
¢ :JA— n
a c when button [EFTTEENENN pressed when button —
Aatrix

You'll put whatever you want to happen when you press and release the big button inside
these purple blocks.

Search

e Legic
i
s Loops
M

fill frame with n
A e VT = o - W o
(w) Variable push frame to matrix
£ cuncion

when button pressed
a ~ when button released
- fill frame with n
fill frame with ﬂ

ﬁ Time write: m X ﬂ ¥ intensity: 100 I

sh frame to matrix
Lo

sh frame to matrix
S

So, in both cases we want the matrix to turn off.

When we press the button, the text "ON" appears, and when we release it, the text "OFF"
appears.

Both will have the coordinates x: 0 and y: 1, with an intensity of 100.

Because we're working with buttons, we'll need to add the "scan buttons" and "loop forever"
buttons at the end.

Search...

¥ Loaic

gic

Q

LoOps

fill frame with n

push frame to matrix

when button pressed

fill frame with n

when button [EHSVEGHLESE released

fill frare with n

e 8 & D > =@

ish frame to matrix
NS

sh frame to matrix
LP‘-'

loop forever
scan buttons
—

Now, click on the Run button, start playing with the button and check the text.

Drawing shapes

For the end, let's code something more complicated.
The matrix board can be used to draw a variety of shapes.

To draw shapes, we'll make two functions. We'll name one of them "drawBG" and use it to
clear the background and draw two crossing lines in the middle of the matrix.

Search...

Logic

~a

® Loops

Math

. BION Y crouso |
X
Variables
Functions
/Q

Time

* Matrix

The other one will be called "showRect" and will be used to draw a rectangle.

Search..

) Logic

~a

ks Loops

B8 e
B/ @ dawss | B @ - showeect |

A v

Q Variables

¢ Functions

a o

é Time

Let's play with the first one for a second.

First, we want to clear the background, or turn off anything on the matrix.

We'll need the "fill frame with 0" block for this.

Search...

b Logic
~

rs |_ocDs

B atn
A T
Q variatles
B cunctions
a o
O tme

Matrix

Let's start with the first line.

B @ ' drowss |
fill frame with ﬂ
—

B @) showrect |

The block for doing so can be found in the "Matrix" block section.

Search...
*a Logic
~~
r Loops

B vah
A =
L variables
B runctons
8 o
6 Time

2 Matrix

B @ - drawss |
fill frame with n

draw line
Xl
vl
X2

yZ

intensity:
\ " ty:

B @ showrect |

Check the coordinates we put. The intensity level is set to 100.

Let's draw the second line now. By right-clicking on this block, you can duplicate it.

Search.

b Logic
~

®s Looos

Math

BFoRY arawso | B @ - showrect |

fill frame with ﬁ

draw line

Text

A

0 \ariables
X1

¢ Functions

yl:

ﬂ o) X2

yZ

6 Time intensity:

draw line

Matrix X
vl
XZ
vy

intensity:
"l ty:

Make sure the coordinates for the second line are changed.

Don't forget to include the "push frame to matrix" block at the end, or your code will fail.

Search...

*a Logic

i

®/ |ooos
Math

Text

B

A

Q variatles
B cunciions
a8 o

O Time

2 Matrix

Good job!

Now, inside the "showRect" function, write the code.

B @ . drawss |
fill frame with ﬁ

draw line

Xl

yl
x2
yZ

intensity:

draw line

x2
yZ
intensity:

push frame to matrix
~—

B @ - showrect |

In the "Matrix" block section, look for the "draw outlined rectangle" block.

Search.

i Logic
e

®s Looos

Math

0] u -1 drawBG ‘_] '\) -1 showRect
o
fill frame wil draw _‘:“-ItI ed - ectangle
Il e with ﬁ

width:

Text

draw line height

A
Q \ariables
B Funciions x

y:
u /O " intensity:
yz o
ﬁ Time intensity:

draw line

Matrix X
yl:
X2
yz

intensity:

push frame to matrix
—

Feel free to play about with the coordinates and rectangle size.

Remember to include the "push frame to matrix" block once more.

Search...

Pg Logic

i

R LOODS
Math
Text

ariables

&
A
Q
& Functions
a
o

Let's make those shapes appear in loops one after the other.

B @ ' drawss
fill frame with ﬂ

draw line

xl:

¥k
xZ
yZ

intensity:

draw line

xl: 15
¥yt 0
xx 0
yZ 8

intensity:

push frame to matrix
—

B @ . showreet |

draw rectangle
wicth:

height:

x:

y:

intensity:

push frame to matrix
.

Find the "loop forever" block in the "Loops" block section to do so.

o= Mo lic

100

Search

b Logic

Q

LOCDS

B vath
—
A BN crouss D
=y o O
fext draw rectangle
fill frame with “
o width:
Variables
draw line height
- - Xl ¥
¢ runctions .
y:
a /O intensity:
_pu sh frame to matrix
ﬁ Time intensity:
draw line
Matrix

loop forever

intensity:

. push frame to matrix
~—

Put both functions within the blue block.

Search

b Logic
-~

r Loops

B ven
A BIONY oo | B0 srowrect
Text draw rectangle
fill frame with ﬂ
D - width:
variables
draw line helght
_ X1t .
¢ Functions x
y:
8 o intensity:
push frame to matrix
Time intensity:
draw line
Matrix

loop forever

[arawse

sh;lwku:t

intensity:

. push frame to matrix
.y

To create a one-second delay, add the "sleep 1 second" block.

Search...
i Logic
~
ks Loops
B vath
A EIORN orovco] B © | showRect |
- (GIR?
Text draw rectangle
fill frame with ﬂ
O v width:
Variables
draw line height
8 Funciions x
¥
0 /0 intensity:
\-Eush frame to matrix
6 Time intensity:
draw line
Martrix

loop forever

Intensity: sieep [l seconds
| —

. push frame to matrix
—

Now, add another "drawBG" and "sleep 1 second" blocks at the end.

Search
Pa Logic
ru
" Loops
B vath
A BN irauno D0 =EED
et drow p—
fill frame with ﬂ
Q v wiglth: 8
Variables
draw fine height: 9
8 Funciions x 4
¥ 0
a /O intensity: 100
push frame to matrix
& . . e
Time intensity:
draw line
Matrix

intensity:

push frame to matrix
—

sieep [l seconds
e

That's it.
Great job!

Click on the Run button and check your code.

Restore Spencer's firmware

If, for any reason, you want to restore Spencer's firmware, follow these steps.

This is quite simple, just connect your Spencer to the USB port of your computer and press
the "Restore firmware" button on the top right.

Your sketches

You will be prompted with a window where you need to choose the device that you are
restoring the firmware for.

Choose Spencer, of course.

Restore Stock Firmware

Chatter
Chatter 2.0
Batmobile™
Batcontroller
Armstrong
CircuitPet

Wheelson

Jay-D

ByteBoi
Synthia
Spencer
Nibble

Ringo

Wait for a few seconds, and your Spencer will be back and running like usual.

