Coding for beginners - how to code your
Jay-D

Encoders

As you can see, there are many LEDs on your Jay-D.
Let's have some fun with them.

The goal of this code will be to turn the encoders left and right to light up or switch off the
LEDs in a row.

To begin, we must create the variable "width" and set it to 6.

‘ % Logic
e
ks Loops
width

[+

Because we are coding the LEDs above the center slider (mid matrix), a value of 6 indicates
that the variable is set to the middle.

Now, let's code what happens when we move the encoders to the left and right.

Find this 1/0O block:

Search...

b Logic
&~ Looos
width W ﬂ
@ Matl
A T when encoder [[IE[[ERS Left - 1
a Variables
¢ Fu n
Oo
a o

We want the LEDs to turn off one by one when we move the encoder to the left.

We'll need to subtract 1 from the variable "width" to accomplish this.

Search...
h Logic

|
& L0005

width L O

Math

Text

Variables

&
A
Q
& cuncrons
]
a
o

We must also ensure that the value range is between 0 and 12, as this is the number of
available LEDs.

Search

Logic

Q

LOOpS

width V6

Math =

Text

Variables

Functions

Display

/0

¢ 0 0 & D » @

Time

HE Mt

We can duplicate this entire block and change what will happen if we turn the encoder to
the right.

Make sure you're adding 1 right now!

Search..

Logic

Loops

Math P —C

Text

Variables

Display

&

A

a

& runciions
(]

8 o

@

Time

* Matrix

We'd like to draw anything on the LED matrix while we're messing around with the
encoders.

Because that will be displayed all of the time, we must first locate the "loop forever" block
from the "Loops" block part.

Search...
Logic

~a
®4LOODS

Math

Text

Variables

Display

/o loop forever
Time

8
A
Q
& runcions
(=i
a
o

The first thing we want to do is turn off all of the LEDs.

This will be accomplished by locating the "fill matrix with" block in the "Matrix" block section.

Search...
% ogic ~ width

~a
K LOODS

: =
width - - - [|
[T | | pre—
i | high |
corsron. TR v | 3

Math

Text

Variagoles

when encoder LLEE1E ht -

Display

loop forever

&
A
Q
8 Functions
-
a
O Jllmatrix [T=ED frame with n

Make sure to put the Mid matrix since that's the one we are working on right now.
It's time to draw a rectangle.

That block can also be found in the "Matrix" block section.

Make sure you use the correct matrix in the code.

Set the width value to the variable's value and the height value to 2.

Remember to switch on the LEDs by setting the intensity to 100.

Search...

*n Logic

[¢)]

Loops

Math

Text

Variables

Functions

7
A
Q
a
o
a
o

Matrix

loop forever

fil matrix [T frame with n
In matrix m draw m rectangle

width:

helght:

¥

Intensity:
L -

To ensure that anything you create on the matrix appears on the screen, you must include
the "push frame" block.

Search...

% Loge set (T
i

& LOoops

width

7 width | 5 i (
constrain low | high | |2
wi 0 nigh [EB

Math

Text

Variables
when encoder [LEIERSN moves L[{8

Display

/9 loop forever

fill matrix [[YEIE frame with n
In matrix m draw m rectangle
i

= Matrix width:

a8
A
(]
& Funcions
o
a
o

Time

height:
x
y:

Intensity:

push frame to matrix
—

Another thing to remember is to always put the "scan inputs" block inside the "loop forever"
block if you're coding anything with the inputs (encoders, pushbuttons, sliders, etc.).

Search...

g
b Logic width IE

LOODS

Q

when encoder

B vah
A
O variaoles
when encoder
¢ Functions
0 i a3y
8 o
! loop forever
O 7= fill ratrix [T frame with ﬂ
in ratrix m draw m rectangle
#E - Matri widith:

height:
X
y:
intensity:

push frame to matrix [Nk

scan inputs
| pul

Click on the Run button and start playing!

Sliders

Sliders are another type of input that we can experiment with.
With this code, we want you to expand or narrow the rectangle you'll create on the matrix.
First, create two variables called "width" and "slider_value."

Set both values to 0.

Search...

he Logic

% Loops width E
slider_value E

B v

A=z

O varaoes

e I n

0 o

a o

O e

Now, let's code the changes we'll make with the slider.

For that, we'll need the 1/0 block, inside which we'll insert the code for the slider changes.

Search...
b Logic
& Looos TIERE. O
/s Loops
slider_value E
E Mat
—
Q Variables
¢ Fu n
0o
8 o

We want to save the slider's current position (which can range between 0 and 235) every

time we move it.

Search

*a Logic

width E
Loops slider_value E

Math

Q

when slider [YEELRM moves
slider _value qet slider m value

Text

Variables

Functions

Display

/0

¢« 8 Jd & D » @

Time

2 Matrix

Then, in the form of ratio, we wish to store that value in the "width" variable.

Search

Logic

width E
" slider_value E

(&)

LOODS

Math

when slider m moves
slider_wvalue get slider m value

[servone - W]

Text

Variables

Functions

Display

e 0 & D » @

/O
ﬁ Time

Matrix

Make a new variable called "width_display". Store the above value in the variable

"width_display" as a percentage.

Search...

®n Logic
width E
~ - T e ——
R LOODE slider_value E

Math

Text

Variables el

P
width_display

round down - I |

Display

&8

A

a

B Funciions
o

a o

0

Time

+ Matrix

Now is the time to create what will be happening in loops on the matrix.

For starters, we need the "loop forever" block in the "Loops" block section.

Search...

g

Logic
width 'ﬁ:l
<~ Looos 2
. slider_value 'E
B v
when slider LLGGEERSS moves
A wu
Q variables
¢ Functions
D biso ay
loop forever
a o
6 Time
HHE Matriv

We want for the display to turn black, and have the slider and width display values written
on it.

For that, your code needs to look like this:

Search...

Logic

width ! : I
& Loops > E
it ot slider_value

Math

when slider m moves

slider_value

Text

get slider value

o L]

owraconr P o Mo |

Variables

width _display

Display

loop forever
/0 | fill frame with
write %) create text with U3 slider_value: B - n ¥ “ color: (TR0
slider_value

Matrix write | (1] create text with L width: B2

&8
A
aQ
& Funciions
]
a
i

width_display

Make sure the value for "width" is written as a percentage.

Don't forget to include the "push frame" block at the end to guarantee that the code shows
on the screen.

Now, let's make the main part on the big matrix.
The first step is to turn off all of the LEDs on that matrix.

You do this with the "fill matrix with 0" block. When the LED intensity is adjusted to 0, the
LEDs turn off.

Search...

e Logic

width
5] e o]
Loops slider_value m

Math

when slider
Text

slider_value get slider value

R e €5

Variables

width_display

Display
loop forever

/0 | _f.II.I-.frurnewlth ‘Black -
write 2] create text with {9 slider_value: EEM ﬂ v “ color KRN
Time slider_value

#E Matrix wiite | (0] create text with L width: B2 x ﬂ y: n LT white - |

width _display

“ -

a8
A
Q
& Functions
o
a
o

I_;;G.sh frarne

fill matrix frame with IR
L 1

Check if you put the correct matrix in the block (big one in this case).

The block for drawing the rectangle can be found in the "Matrix" block section.

Search...

width g : I
®a Logic slider_value ﬂ : I
< Loops el vidde - D
slider_value get siider value
B van —_—
| @ @
- . I T _
A e width _display \!I m I'.lﬁl}
Q ariables
loop forever
& cunctions \ fil frame with ([ERERED
:l write G create text with U slider_value: EEM “ ¥ n color: m
Display
- slider_value
8o wite (5] crearereawin ¢ (D> [< ol v N coo-
width _display
O Time T L
BE atic rpusn frame

fill matrix [EFEED frame with ﬂ
inmatrix [EEEED drow (IR rectangle

width:

height:
x
y:

Intensity:
I Y:

The rectangle's height is set to 9, and its width is relative to the number width x 8 (8 being
the maximum width).

To turn on the LEDs, make sure the intensity is set to 100.

Don't forget to add the "push frame to matrix" to ensure the code really shows on the matrix.

Search...

width ! :I
By Logic E slider_value ! :I
C Locops when slider moves
slider_value get slider value
B wath
[sider_vaive L+
A width_display round down - || (= - 1M 00]
Q varizoles
loop forever
B cunctions fill frarne with (TR
o write 21 create text with U slider_value: B “ ¥ “ el White - |
Display
: slider_value
a0 write] create text with L width: B2 o n y: n color:
width_display
O e
M atrix sh frame

fill matrix [ERIED frame with “
nmatrix [EEEED drow [IEFEM rectangle

width:

height:

x

¥:
Intensity:

push frame to matrix
S

Another thing to keep in mind when using any of the inputs is to include the "scan inputs"
block inside the "loop forever" block.

Search...

width ! : I
*8 Logic _ slider_value E

£3' Loops when slider EIGEERSN moves
slider_value get slider value
E ‘u”‘ath | pr—
e o e
T] —
A Tt width_display | !I m; I.EE']
Q variables
loop forever
B cunctions | fill frame with
write 1) create text with (3 siicer_value: EEEIE -
D Display
: slider_value
a o 1) create text with L widith: [
width_display
6 Time
Vo | push frame

fill matrix [EIEED frame with n

inmatrix [EXRAD draw [[=RE rectangle

width:

height:
x
v
Intensity:
. push frame to matrix m

scan inputs
L

Click on the Run button, and start moving the slider.

Is the rectangle expanding?

Simple timer

Now is the time to write simpler code.

This time, we'll learn how to switch the LEDs on the matrix on and off in loops with a
one-second delay.

When the LEDs are turned on, the display turns white; when they are turned off, the display

turns black.

Because we want this to happen in the loops all the time, first drag and drop the "loop
forever" block onto the drawing area:

Search...

*8 Logic

< Looos

B vath
A T

O varisoe

& -

& oiso

U e}

6 Time

First, we want to make the display black, and the block for that is in the "Display" section.

Search...
“a Logic

~
ks LOODS

loop forever

__f frame with

Math
Text

Variables

Display

8
A
a
& runcrions
-]
a
¢

Put the blocks that will turn off the LEDs on each matrix below that.

If the intensity is set to 0, the LEDs are turned off.

Search..
g Logic
s
rr Loops
loop forever
E Math p‘,,
| il frame with
A fil matrix [EZID frame with “
- fill ctrix frame with n
Q varizbles E
1ill matrix frame with u
8 Functions i
fill mctrix m frame with “
Q o =
Display
8 o
O 1ime

Matrix

To ensure that the LEDs truly turn off, we must include "push frame to matrix" blocks for
each matrix.

Search
*a Logic
c Loops loop forever
fill framme with
E Math fill atrix m frame with ﬁ
A T fill matrix [YERED frame with “
g v fill rartrix frarme with n
fariables
fill matrix [EEL A frame with ﬁ
¢ Functions
push frame to matrix
] Disolay push frame to matrix
push frame to matrix
a o push frame to matrix
’ L
HE Matr

You must also include the "push frame" block from the "Display" block section to ensure that
the display truly goes black.

Search...

*a Logic
e Looos loop forever
(fill frame with
B v fill matrix [EZEED frame with ﬂ
A Text fill matrix [T frame with “
g v fill matrix [EGRAP frame with n
Variables

fill matrix [EE LR frame with ﬂ
¢ Functions

push frame to matrix
] Disolay push frame to matrix

push frame to matrix
a /O push frame to matrix
6 Time
23 Matrix

Now, add a one-second delay between turning on and off the LEDs.

Search...
i Logic
e Loons loop forever
[fiitrame witn
E Vath fill matrix M frame with n
A Text fil matrix [TTERIP frame with “
0 v fill matrix [0 frame with n
Variables
o fillmatrix [EEL M frame with n
Functions
push frame to matrix m
D Dicolay push frarme to matrix ([N
push frame to matrix lgm
ﬂ /O push frame to matrix m
0 Time slee seconds
{steep D
HE Matri

The next step is to make the display white and all of the LEDs turned on.

Search

“a Logic
& Loops loop forever
[iltrame witn
E Vath il matrix m frame with n
A Text fill matrix ([YIEED frame with n
8 e fil matrix ([T frame with n
Variables |
o fill matrix [EENTEED frame with n
Functions |
push frame to matrix m
|;| Display push frame to matrix M
splay |
push frame to matrx [ETID
a /O push frame to matrix
pu
¢ e Prr—
" . fill matrix =5 frame with 100
—— (oo -]

il matrix m frame with m

il matrix frame with m

fill matrix [T frame with m
—

Remember to include the "push frame to matrix" and "push frame" blocks to ensure that
these changes are visible.

Search.

b Logic

Q

LOOps
Math
Text
Variables
Functions
Display

/o

a8
A
(=]
&
]
a
o

Time

Matrix

il frame witn E7TTEED

fill matrix M frame with n
fill atrix Mfmme with “
fill matrix [ELRP frame with n

fill matrix m frame with n

push frame to matrix [E7: Il
push frame to matrix m
push frame to matrix m
push frame to matrix [LD

fill frame with
fill matrix [EEREP frame with m

fill rmatrix EE-fmme with m
fill matrix [ELRM frame with m

fill matrix m frame with m
push frame to matrix [
push frame to matrix [T R
push frame to matrix m

push frame to matrix

Introduce another delay before the loop starts again.

Search...

loop forever

®a Logic fill frame with
—~ fill matrix [EFREP frame with n
ks LooDs

fill matrix XM frame with “
E Math

fill matrix frame with n
A Tex fill ratrix [CIEIRA frame with ﬂ
Q y push frame to matrix

Jariables

push frarme to matrix
B concions push frame to matrix

push frame to matrix
(m Display
a o

fill matrix [EREE frame with m

Time filmatrix [{ERE frame with m
ni Matriv fill matrix frame with m
fill matrix (BT frame with m

push frame to matrix
push frame to matrix
push frame to matrix

push frame to matrix

sleep Il seconds

| sleep D seconds
—

Click on the Run button and check it out!
Display

After an easy one, it's time for a slightly more difficult code.

In this example, we'll see how to make a green circle on the screen that bounces off the
edges.

To begin, we must create four variables (x, y, dx, and dy).

X and Y represent the coordinates of the center of the circle, and DX and DY represent the
amount by which the x and y coordinates move.

Search...

dx

]
u &
9230

dy

¢ o Jd &# 0D > @

Now, let's introduce the "loop forever" block, which will include all of the code that will run
continuously.

We'll set the 'x' and 'y' to 20 and 60, and they'll always change by one, therefore the 'dx' and
'dy' must be set to 1.

Search

*a Logic
o ,
/ Loo
y
B it oL M0
a1 8]
A Tex
loop forever
& variabes :
¢ Functions
2 Dok
a o
0 Time

Every 20 ms, the 'x' and 'y' variables will change by one.

As a result, we must set the value of these variables to the sum of that variable's value and
1.

Search...

e Logic
i P '
s LOO0S ¢ 5 _
lath E= :m
a8

e 8 0 & D > @
i

When the circle reaches the display's edges, it will begin to shrink in size.
Because of that, we have to change its direction.

We do that with the "Logic" block.

Search...

e Logic

Q

Loops
Math
Text
Variables
Functions
Display

/o

¢ 0 0 # D = @

Time

HE Matrix

So, whenever the circle reaches the edges, we chose to change the variable 'dx' to -'dx'".

The same goes for the 'y' and 'dy' variables.

Search...

i Logic

(@]

LoOps

Math

Text

Variables

Functions

Display

¢ 00 & D » @

Great!
The only thing left to do is draw a circle.

To do that, first we have to fill the background of the display with black:

Search..

h Logic

Q

Loops
L

Math b o3 b

dy f

Text
Variables
Functions
Display

10

¢ 8 Jd &« 0 » @

Time

#i watrix

Draw the filled circle in color green.

The radius of our circle is set to 5, and the x and y coordinates are set to the initial values of
these variables.

Search...

b Logic

~

r Loops
Math
Text

Variables

Display

/0

&
A
(w]
& runciions
=2
a
o

Time

+ Matrix

[til frame with CTTEED
d‘r_c:w m circle

radius:

To ensure that this circle appears on the display, add the "push frame" block at the end.

Search

g Logic

x

Q

Loops

Math | =

(=%
£l
228

Text

Variables

Functions

Display

/0

¢ 0 0 &% D » @

Time

Matrix

| fitrame win (TR
draw m circle

radius:

x

¥
color: (EERM

Jush frame

And, finally, add the time block "sleep 20 ms".

Search...

% Logic

~a

& Loops
Math
Text
Variables

Display

&
A
(]
& runciions
-
a
0

araw (EEEM cireie

radius:

¥

color: [EENEE

Click on the Run button and check it out!

Get creative

You've reached the end of our first Jay-D coding tutorial, congratulations!

We hope you're as excited as we are about Jay-D's future since there are so many cool
things we want to do with it in the future firmware and CircuitBlocks updates.

In the meantime, continue exploring on your own and show us what you've done with
Jay-D's lights, display, or remixes by sharing it on the CircuitMess community forum:

https://community.circuitmess.com/

Ready for more advanced stuff? Once you master CircuitBlocks and are ready for more

https://community.circuitmess.com/

advanced programming, try using PlatformlO for programming new functions:

Check out our guide for that here:

e PlatformlO Jay-D programming guide

If you need any help with your device, as always, reach out to us via
contact@circuitmess.com and we'll help as soon as we can.

Thank you and keep making!

https://learn.circuitmess.com/resources/guides/platrofmio-jay-d-guide

