Coding for beginners - how to code your
ByteBoi

Let's get down to business!

First, you need to connect your ByteBoi to your computer's USB port and turn it on.

LET'S DRAW SOMETHING!

The first thing we're going to learn is how to use the feature called Sprite editor!

In computer graphics, a sprite is a two-dimensional image or animation that is integrated
into a larger scene.

Find the three dots on your Toolbar first, click on it and find the Sprite editor.

This window will open:

My Sprites

+

Default Sprites

* %X AR XN @ ¢

sword knife marning _star| trident shield potion

4 4 & ® o

treel tree2 treed rockl

i & @ R &

character] character2 character3 character4

cry

CLOSE

As you can see, you have the option to choose one of the premade sprites or create your
own by clicking on "blank".

Let's explore the blank option first.

Check what each icon means.

e Paintbrush - you'll use it for painting whatever you want.
e Eraser - you'll use it to erase mistakes you make.

e Paint bucket - choose any color you want, click on the drawing area, and paint
the entire background.

e Color dropper - this tool samples colors from anywhere you click and adds them
to your sprite.
Color picker - here, you can choose which color you will use for drawing.
Dimensions - choose the dimensions of your sprite.
Drawing area - once you're done with the drawing, press the big blue button
saying "Close".
Sprite name - Write any name you want to give your sprite.
Close - Close without saving.
Save - For saving your sprite.

You can paint whatever you want, and later on, you can put it on your ByteBoi's display.

If you don't want to draw, but you'd like to have some cool images on your ByteBoi, you can
always choose a pre-made one.

Maybe you want to draw on the pre-made icons and make them better. No problem, just
click on the one you want to upgrade and start drawing!

For example, | chose to draw a Christmas tree but didn't want to draw a tree from scratch.
So, | took a premade tree and drew Christmas ornaments.

Also, | didn't want my tree to have a generic name, so | renamed it to christmastree.

If you want to rename your drawing, you should know that its name cannot begin with a
number, and there can't be any spaces between words.

I.l |

christmastree CLOSE SAVE

One more tip is you can change the resolution of your sprite in the upper left corner.

The resolution is the size of a sprite, and it's measured in pixels.

A pixel is the smallest controllable element of a picture represented on the screen.

You can play with this some more, but now we're going to code for real!
' - L]

Let's play with the display!

For the next step, let's go a bit further and do something fun on display.

The first thing we are going to use are variables.

In computer programming, a variable is a storage location that contains a value. Every
variable has a specific name. You can store and change the values of a variable.

Firstly, let's create a variable. Find the section named "Variables" and press the "Create
variable..." button.

Search.. Create Variable

. —— |
0|
I T
] @]
(s} W
o] ful

Z]
A
=

&d Variables

e a Jd0 #

You need to give your variable a name.

| am not that creative, so | will name my variable "x" (just a single letter x).

code.circuitmess.com says

MNew variable name:

We have a variable now. Great!

Create Variable
Search...

n

Q

&
A
(]
=
-
a
L

Logic L
Loops ’_f__J

Math

Text

Variables

Functions

We can make all the variables we will need for this sketch immediately.

Just repeat the same process you did while making the variable "x".

Create Variable
Search...

I L |

_ dx
E hMath "uv

& Variables

& cunctions
2 oiso ay

- Y

8 o
(i)

m

4k}

When we create a variable, it's undefined - it has no value. We must set a value for every
variable when our computer program starts. That's why you'll need the "set variable" block.

Take the "set x variable" block and drop it into the drawing area.

¢ 0 d & D > @

You need to define the value to which you want to set the variable.

Find the block named "123" in the "Math" section. This block is a numerical value block, and
you can type in the numerical value you want once you drop it onto the drawing area.

Place the block as shown in the photo below.

Now click on the block and type in the value. Set the numerical value of the block to 20. You
can do this by simply typing the number 20 on your keyboard.

Now, repeat this process for every other variable you make. But make sure to add the
correct numerical value for each variable.

By doing this, we defined the position of the ball on the screen.

Search...

*a Logic
' Looos
| BL
Matn | set
Text = :X %
s ¥

¢ 0 0 & D »>» @

Look for the "loop forever" block in the "Loops" block section.

Search...
®a Logic
©~ Loops
Bt
- E L E
Yy

Variables

¢ B J0 & D » @

Using this block, we make sure the background of our screen is black once we run the
sketch.

Now, we should control the ball's motion.

Firstly, go to Variables, and choose a block called "set x to".

In addition to that block, add the math block in which we'll add the value of 'dx' to the value
of 'X'.

Search...

Logic

gic

Q

LOODS

e B 0 & D » @
]
g

Repeat this for the variable 'y' as well.

Search...

e Logic

Q

Loops
Math

Text
Variaoles
Functions

Display

e

e B 0 & D » @

Time

Let's move on to the "Logic" section!

Drag the if-do block below.

Search...

By Logic

Q

LOODS

Math

Text

Variables

Functions

Display

e B 0 ¢ Db » @

Up next, we'll need a Boolean block - the one that says "or".

Boolean is a binary variable that can have one of two possible values, 0 (false) or 1 (true).

Search...

RS Logic

o

Q

LOODS

¢ 0 0 & D » @

Now we'll need a comparison block. This block is usually used for comparing the value of a
variable to a fixed value (i.e., let's see if the variable x is less than or equal to number 5).

Place the variable we've created on the left side of the comparison block.

Take the numerical value block from the math section and place it on the right side of the
comparison block.

Search...

*a Logic

Q

LOODS

Math

Text

Variables

Functions

Display

¢ 0 J & D » @

Also, we have to define a numerical value of the "dx" variable, so we need to take a "set dx
to" block.

Find single operand blocks in the Math section.

An operand is part of a computer instruction that specifies what data is to be manipulated or
operated on.

Search...

*a Logic

Q

LOODS

Math

Text

Variables

Functions

Display

/O

¢ 0 0d &% D » @

Time

Now you'll have to duplicate the last couple of blocks. You can do that by clicking on the
right button on your mouse and choosing "duplicate".

We'll need the second group of blocks for the "y" variable.

Check out the values we put for the "y" variable:

Search...

*a Logic

Q

LOODS

Math

Text

Variables

Functions

Display

/O

e 0 J0 & D » @D

Time

The hard part is done!

Let's draw the ball that will appear on the screen.

Before drawing anything on a screen, we want to fill the screen with one particular color,
and for that, we'll need this block:

Search...

g Logic

Q

LOODS

Math

Text

Variables

Functions

¢ 0 0 & D » @

i frame witn

Now, let's draw the ball.

Search...

g Logic

(@]

LOODS

Math

Text

Variables

Functions

Display

/0

e 0 0 & D » @

Time

Fﬁffr‘nma with

draw =KD circle

For the circle to appear on a screen, we have to add the "push frame" block at the end.

Search...

b Logic

Q

LOOpPS

Math

Text

Variaoles

Functions

Display

/0

¢ 0 J0 & D » @

Time

fill frame with
draw ([circle
radius:

x

y:

color:
us h frame
]

Finally, add the time block labeled "sleep 0 ms". Change the zero into 20.

This block determines the amount of time that'll pass before the code runs again.

Search...

Logic

($]

LOOPS

Math

Text

Variables

Functions

Display

/o

¢ 8 O & D » @

Time

Great job!

Click on the Run button and check the code.

Simple timer

This chapter will teach us how to change the color of the display every second.

Begin by looking for the "loop forever" block in the "Loops" block section.

Search...

*a Logic

[¢)]

LOODS

Math
loop forever
Text

Variables
Functions
Display

/0

e 800 & D » @

Time

To change the color of the screen, we'll need the "fill frame with..." and "push frame" blocks
from the "Display" block section.

Search..

*a Logic

(@]

LOOPS

Math

loop forever

fill frame with
pu

Text

Variables

Functions

Display

/o

¢ B J0 & D » @

Time

Let's pause for 1 second and then change the color of the screen again.

For the pause, look for the time block labeled "sleep 1 seconds".

Search...
b ogic
i
ks Loor
B wvath
loop forever
A = Black
D Variables Lgleep seconds
& runcton
0o
a ¢

Now, we'll change the color of the screen into red.

Search..

a

Q

¢ B 0 & D » =@

Logic

LOODS

Math

Text

Variables

Functions

Display

ye]

Time

loop forever

| fil frame with

Fpush frame
sleep ([seconds

* fillframe with
rp'ﬁ-sn frame

sleey seconds
e

You can play with as many colors as you want!

Search...

®a

Logic
7~
/s Loops
Math
loop forever
- il frame wit
pJ;sh frame
Variables sieep ([l seconds

Ll
Functions F’-’;!h e

sieep [seconds

Display
: fil
0 Esh frame

sieep [seconds

Time fil
push frame

sieep [seconds

Pﬁhummm

e B 0 & D » @

slee) seconds
e @

After finishing the code, click on the Run button, and check the colors changing.

Buttons

In this chapter, we'll learn how to change the color of the screen and write different words by
clicking on different buttons.

For coding anything with buttons, you need an 1/O block section.

Find the "when button left pressed" in the I/O block section and drop it into the drawing
area.

Search...

when button pressed

Q
8

e 8 0 & D » @

When we press this particular button, we want the screen to turn black, and for the word
"left" to appear on it.

To do so, create this block:

Search...
i Logic

~
® Looos when button pressed

White

The 'X' and 'Y' coordinates in the block indicate where the word will show on the screen.

Feel free to choose any color you want for the background of the screen or for the word.
We'll use black for the background and white for the word in this example.

Don't forget the "push frame" block at the end.

Search...

®8 Logic

=

(@]

Loops when button pressed

5 White

e 0 0 & D » @

Now we'll write the code for what happens when the pushbutton is released.

Find this block in the 1/O block section:

Search...

*a Logic
i
ks Loops when button pressed
g [fil frame with
Math
v N < N v N oo TR

A T Eﬂshfmma
Q varizbles

when button released
¢ Functions
2 Display
8 o
ﬁ Time

We want the screen to turn black and for the word to disappear.

Search...
b Logic
~
R _OODS when button pressed
[filframe with EZZTEED
8 st :
wie W < WO N e
A Text push frame
& varizoles
¢ when button released
Functions ey
- [fin'framne with
‘u-sh frame
L Display pu
a o
6 Time

Let's repeat this for each button.

This is what your code should look like at the end:

Search

* Logic

Q

Loops
Math
Text
Variables
Functions
Display

/0

e 0 0 ¢ D » @

Tirme

Don't forget the "loop forever" and "scan buttons" blocks at the end.

Search

®8 Logic

Q

Loops

Math

Text

Varizbles

Functions

Display

/0

e 08 0 & D » @

Time

when button (ETEE pressed
[fiiframe with

[r— p—
[fillframe with

when button (D pressed

[i framne with

when button (38D released

("fil frame with

winen button (ETEE pressed

when button ([T released

E\ﬁmmm

T

*fil frame with

when button [Nl released

when button (TSI pressed

‘when button

wiie o] = o] v o] coo- (TR

(il frame with

when button (IR relecsed
[filframe with

when button (Rl pressed

[fil frarme with

T

[fi frarme witn

(I pressed

when button (T released

when button [CX pressed

when button (I released

. I

when button (VR pressed

[fil rame witn

when button (TS pressed

fillframe with (CETCRED

— T

("fil frarme with

when button (I refeased

El\ﬁmmvm-

oo forever
scan buttons
=

when button [EEWERA pressed
[fill frame with

i N - Ml - TR

when button ([CEYEEN released
[fill frare with

‘whenbutton [ETIEED pressed

fillframe with (CETCRED

e W < o o = R

when button (R released

Click on the Run button, and start pressing the pushbuttons on your gaming console.

If the color of the screen changes and the words appear, your code is successful.

Create your first game!

Let's try something more advanced now!

Creating a whole game is not an easy task. There are a lot of little details that need to be
considered to make the game work as well as possible. When creating your own game,
always set the goals at the beginning so that you can work from the bottom up with some
structure in mind. Writing code without a bigger picture in mind can be a big problem later in
code development.

The game that we'll create will showcase pretty much every feature we've gone through so
far.

It will look like a simple video game, where you'll move a character that collects objects
while counting a score.

Let's begin!

Now, let's make some variables and name them "posX" and "posY". Those will define your
(player's) position on the screen.

Sea

®a

($]

8
A
(@]
&
-
a
o

Drag and drop them onto the drawing area.

Create Variable
rch...

1
Logic set §iilf !
Loops _ posX

hMath 'M

Text

Variables

Functions

Display

/0

Time

Search...

By

Q

¢ 0 J & D » @

Logic
posX
Loops »

s posY |
Math
Text
Variables
Functions
Display

/O

Time

Find this block named "123" in the "Math" section. Type in the numerical value you want
once you drop it onto the drawing area.

Write these numerical values in the circles:

posX = 401

& |oops posY = 201

>

D

¢ 0 Jd &

Create another set of variables that'll determine the speed of your ball.

Let's call them "velocityX" and "velocityY". Drag and drop the new variables under the
variables we used for determining position.

"VelocityX" means that this will be the velocity of the ball in the x-axis direction, and
"velocityY" determines the velocity of the ball in the y-axis direction.

Make the numerical value of the velocity 0.01 for both X and Y.

Search...

g

(@]

Let's make a few more variables while setting up our game.

You can name them "lastTime" and "score". Of course, you should put the value of the

¢ 0 0 & D » @

Logic

posx -~ . B

LOCDS
_posy o B

velocityX
Math § o == g

velocityy

Functions

"score" to zero (0) at the beginning of the code.

Search...
* Logic
o | pex -—
E \Math | set KElblb) S to \.relomtyx
velocityY H I
A e lastTime
Y score IE
Q variables
¢ Functions
D Display
8 o
ﬁ Time

Now go to the Time block section and look for the "ms since started" block and add it to the
"lastTime" variable.

Search...
*n Logic

posX ~ 401
ks Looos

posY > 201

velocityy > 0.01

A Text lastTime mas since started
score o0

E Math velocityX o 001
Loo |

We have to create a function if we want to execute some code.

Let's name our function "createPickup" and place it under the "set score" variable.

Search..

o, - =
e Logic @ " createrickup |
~ posX P 200 |
® |oops]
posY 20,1
velocityX |
B vatn o
velocityY
A Text E lastTime
score
& variables cr;ﬂtePlckup
¢ Functions
- Display
a o
é Time

You probably guessed the next step - creating variables for the newly made function.

Let's call them "pickupX" and "pickupY" as they'll define the position of the pickup (the
smaller ball you'll have to catch).

Search
*ﬂ B —
o (=) e
~ | set Yzlelds o401 | piekupX N
& Loops =
. posY 20 | pickupY

velocityX

B wvath =
velocityY
A 1o lastTime
score
& variables cr;utaPlckup
¢ Functions
(m Display
a0
ﬁ Time

We'll set those variables to a random integer, and you'll find that block in the Math section.

An integer is a whole number that can be positive, negative, or zero. Examples of the
integer are: '5, 1, 5, 8, 97.

Place those blocks in the pickup variables, and write the numerical value.

For "pickups" and "pickupY" you have to use a random number from 0 to 150 because the
display resolution is 160*120 pixels.

B | ogic
o (7] createPickup
——
o posX a0 pickupX ' L‘J—WE!U
---- posY A 20
ickupY » il
B e velocityx ¥ oo pioxup 810 (o
velocityY 2 0.0 e
A = lastTime ms since started
score el
Q variadle
Rl (0|
- I

Firstly, we'll create a new function and call it "physics".

Search...

o, - P
o e IO croericrup |
posX 401 pickupX I
& Loops 7 = random integer from | ([T | to |
X N ——— E—
e , pickup¥ I
B e | oot CETEM (1] rondomintsgerem | €| to | T
velocityY
A = lastTime ms since started
B @) physics |
Q varizbies
B cunciions
2 Display
8 o
6 Time

The first thing we have to do in the physics function is create a new variable called
"timeDelta".

Search
o, - e
. B0 creatcricrun |
posX L 40) | ickupX el
& Loops 7 = pickup: random integer from | ([l to |
. I —
e ; pickupY ; '
B e ot CETTER e (0 . rondom ktegesfrom_{ (R | t= | TN |
velocityY
A lastTime ms since started —
Bl @ . physics |
Q varisbles timeDelta
¢ Functions
(i Display
a o
6 Time

A Greek symbol delta is used to note the difference between the two things. We created the
variable "timeDelta" to note the elapsed and measured time difference.

We will calculate "timeDelta" by subtracting from the current time the last time the function
was executed. Also, we'll have to divide it by 1000.01 to get the time in seconds.

velocityX
velocityy

lastTime

createPickup

ms since started

BIONY createriceup |

pickupX . random integer from (10 ANCNE 150 |

pickupy . random integer from | [l | to

BleN v |

timeDelta

Now, let's play with the physics formulas a little bit.

"VelocityY" will increase by multiplication of "timeDelta" and 60.

velocityX

velocityY

lastTime

createPickup

ms since started

B @) createpickup

pickupX

random integer from | [l | to

pickupy random integer from | [| to

o

timeDelta

ms since started | - ﬂ

ms since started

[imepea - [Be0)

lastTime

wvelocityY

We have to update position X and position Y based on velocity.

You can do that by using "change posX/posY" blocks and placing them under the "change

velocityY" block.

ms since started - ﬂ _

B @) createpickup

pickupX random integer from | [| to | [

elalang . random integer from | ([l | to

velocityX
velocityY

lastTime

ms since started

B @ physics |

i:r;utal’kzkup timeDelta

ms since started - ﬂ

lostTime ms since started

e [revsto [Jieo)
y SN o | e oo TR
[imeveta LT ooty

Now, let's see what will happen if the ball hits one of the edges of the display.
We'll use the "if-do-else" block from the Logic section and place the comparison block in it.

Your code will check if the ball's position on the x-axis is under five (5). As we mentioned
before, the x-axis goes from 0 to 150.

) @) createpickup

pickupX random integer from

: pickupY

velocityX ¢ random integer from

velocityY

lastTime

ms since started

createPickup

ms since started ’ == _

ms since started

T O (@
=

tmebelia

If position X is under the numerical value we gave it, which is five, velocityX will change into
-velocityX (negative on the axis).

In other words, the ball will change its direction when it hits the edge.

velocityX
velocity
lastTime ms since started

createPickup

B @ | createrickup

pickupX random integerfrom | [to

pickupY random integer from | [l to

8@) physics |

timeDelta
ms since started n [-] | looe.or

lastTime ms since started

e T O O
HES O gres oo JETTE
[imevota [T ooy

(5]
velocityX

Now, let's see what happens if the ball is in position over 155.

Once again, we have decided that the posX is set to 155. So, if the velocityX is bigger than

155, the ball will change its direction.

B @)) crectepickup |

, random integer from

velocityX random integer from

lastTime

ms since started

createPickup timeDelta

lastTime ms since started

velocityY

Now, let's repeat the procedure for the Y position.

The physics function should look like this:

= O o (T
timeDelta | . i >
ms since started | ikl |+ - 1 1000.01

lastTime ms since started

SESE T o o

T oo T

posY : '
[imedoto L T ooy

_ - velocityX

. - velocityY

L5

- velocityY
T O (T
[oo [i0s]

velocityy
velocityy

velocityX

As you can see, we did the same thing as we did with position X.

We've done the hard part! Congratulations!

Now, let's do some drawing.

Can you guess what the next step is?

That's right! Creating a new function - let's call it draw!

B @ . crearerickup _

lslieis random integer from | [to |

el random integer from | ([to |

velocityX

velocityY

ms since started

lastTime

createPickup

ms since started ﬂ _

ms since started

B O - daw

velocityX
. posX

do velocityX ==
posX 155 |

velocityy

. posY

Every time you draw something on your display, the first thing you want to do is fill the
display with some color. We chose black.

You can find that particular block in the Display section.

9

pickupX . random integerfrom | [to | (E

velocityX [; random integerfrom | ([| to | WD

velocityY

lastTime

ms since started

| o) physies |

timeDelta | g 2
ms since started - 1000.01

lastTime ms since started

[imevera - 1eo)
[imeoero [T8 voooi |
[imeoero [T8 ooy |

fill frame with
—

do velocityX

- posX

velocityX
posX
posY

. -
velocityY

posY

Once we color our screen black, we can start to draw.

As you already know, the game consists of a player represented by a ball and the other
smaller balls that a player needs to catch.

Once again, let's go back to the Display section and choose one of the blocks.

This is the one you'll need:

2) o

EEes random integer from | ([| to | [E)

sl 5 random integer from | [| to

velocityX

velocityY
lastTime ms since started

score

L physics |

createPickup

timeDelta 1
ms since started = - - [1000.01

lastTime: ms since started

iy e O

[omepots L= 10 oo
(RN e o T
SRL - [l
do velocityX - - [velosiyx
: posX a
do velocityX
posX 155

(5]
do velocityY n
posY a

| drow (¥R circle

radius:

velocityX |

velocity¥

The x coordinate will be the variable "posX", and y coordinate will be the variable "posY".
Radius is the size of the player ball, and we decided the size to be 4.

Now, let's draw the smaller balls you'll need to catch. The procedure is the same as we
used to make a player ball.

Since we have to recognize two balls, we need to change the color of the other ball. You
can put any color you want in your game.

Also, the x coordinate of the drawing function is variable "pickupX" and the y coordinate is
the variable"pickupY".

As this is a smaller ball, its radius will be 3.

random integer from

o

@ v
veloeityX random integer from m [

velocityY

lastTime

ms since started

createPickup

Bl @ . daw
fill frame with
draw m circle

radius:

T e o T
T o T

x

y:

color N
draw m circle

radius: 3

veloeityX

posX

x pickupX

y: piekupY

e[Yellow -
L

velocityY

posY

Only one thing is left for us to draw, and that's the score. Making a game without keeping
the score wouldn't make any sense.

You'll do that by dragging and dropping this particular block from the Display section:

velocityX

velocityY

lastTime

draw m circle
radius:

EE

¥

color:
draw [[TEE circle
radius:

EE

¥

color:

ms since started

pickupX

pickupY

o

el random integer from | ([l | to | [E

Eking random integer from | (i) | to | [RID

ms since started ﬂ - I8l 00001 |

ms since started

HESSNI O e con TR
[meceis L T ooty |

velocityX velocityX
posX E

do veloeityX
posX 195]

do velocityY

velocityx |

velocityY

posY

In order to display the score on the screen, we need to find the "create text" blue block.

We'll put the word "Score:" in the left circle, and for that, we need the first block from the

Text section.

On the right side of the block, we'll put a variable called "score".

In x and y, you'll write the desired position where the score will be written on the screen.

random integer from

random integer from

mes since started

fill frame with
draw m circle

radius:

HEZEN 0 e oo TR
R oo R

x:

Y
color: (EETEE
draw m circle

radius: 3

do velocityX

posxX

do velocityX

x pickupX

A plckupY
color:
wite (0] createtextwith | 66 EXIER Y | x ﬂ y: W coor CXER

velocity¥
LR velocity¥ 08
Good job, we're done with drawing!

Create a new function, and call it "checkPickup". This function will detect whether the player
has collected a ball.

'§‘ \“: \[* createPickup

pickupx | |
random integer from m to m @ | checkpickup

PR randem integer from to

ms since started n [-]

mas since started

AN | v oo T
R o e oo JrTTE

The first thing we'll have to do with this function is to calculate the distance between the
player and the pickup ball. We used the formula you see below.

That's the formula you can use for calculating the distance between two points in a 2D
space.

B @) checkPickup

distance

-
T o T ™ © T = T

We need to use the "if" block from the Logic section to check if the distance we mentioned
is less than 8 pixels.

We'll use a comparison block to check that.

-} checkPickup

distance

sguare root -

[oo LT poon QI C

If the distance is less than 8 pixels, that means that the player caught the ball, and your
scoreboard increases by one point.

To keep the score, you'll have to take this block:

) .1 checkPickup

aistonce
- = = T = o T ™ O
o

So anytime you pick a ball, you'll get one point!

If you want to put your function in action, you need to call it. So, duplicate the
"createPickup" block and drag it below.

| m';autaPIukup
—

The very last thing we'll do for our game is something we have already learned.

We'll use ByteBoi's pushbuttons to increase the velocity of the ball.

Open the 1/0O section, and click on the "When button up gets pressed" block.

If the right button gets pressed, velocityX will set to 70 in the positive direction,

and if the left button gets pressed, velocityX will be set to 70 in the negative direction on the
X-axis.

If you press the button up, velocityY will change by 60.

when button pressed

1 velocityy &

velocityy

when button m pressed

At the end, don't forget to add the "Loop forever" block and inside it place the "physics",
"checkPickup" and "draw" variables.

Also, add the "scan buttons" block.

loop forever

scan buttons
L

Complete game

This is it!

We tried to explain every part of the game, and now here it is all in one place.

We hope this tutorial has managed to help you make your first steps in video games
creation.

Don’t forget to save and name your sketch. Then, click the “Run” button and grab the
ByteBoi!

lastTime s sinca startad

score

when button (TS pressed

‘when buron TN pressea

when buton (MM prssec

loop forevar

Physics.

Great job!

T o &

B © | csawricup
pickupX

random integer from | (B to | T}

random intager from | [to

o
| araw | fitled - J=°F

radius:

x

¥
color: [EFTNM
araw circla
radius:

=
-
color (AT

waita (] create textwith

« gzl > |« il v

0

coior: (7K

timabeita

R [oo e JEL0000!
s since started

[irevota |- Ji oo}
HEEEN | oo qETT
R |) oo T

lastTime

velocity¥

velogityY

velocityy

e T
T e ©

"~ velosityx

e
T = T © I = T

Restore ByteBoi's firmware

If you, for any reason, want to restore ByteBoi's firmware, follow these steps.

Just connect your ByteBoi to the USB port of your computer and press the "Restore
firmware" button on the top right.

G Circuit (IR Spencer Settings S Log Out

Your sketches

New sketch

Chatter coding - first steps|

You will be prompted with a window to choose the device you are restoring the firmware for.

Choose ByteBoi, of course.

Restore Stock Firmware

Chatter
Chatter 2 0
Batmobile™
Batcontroller
Armstrong
CircuitPet
Wheelson

Jay-D

| ByteBo

Synthia
Spencer
Nibble

Ringo

Wait for a few seconds, and your ByteBoi will be back and running like usual.

You need to do this whenever you're done coding your ByteBoi if you want him to revert to
his initial out-of-the-box functionality.

What's next?

You've reached the end of our first ByteBoi coding tutorial, congratulations!

We hope you're as excited as we are about ByteBoi's future since there are so many cool
things we want to do with it in the future firmware and CircuitBlocks updates.

In the meantime, continue exploring on your own and show us what you've done with your
ByteBoi by sharing it on the CircuitMess community forum or via our Discord channel.

If you need any help with your device, as always, reach out to us via
contact@circuitmess.com, and we'll help as soon as we can.

Thank you, and keep making!

https://community.circuitmess.com/
https://discord.com/channels/765164309655060480/771790668036833280
https://circuitmess.com/

