

Composite Rebar for Concrete Structures

Revolution in Concrete Construction Corrosion Resistance Strength Durability Easy Site Handling & Easy Cutting Electromagnetic Neutrality Lightweight

Durability / Corrosion Resistance

V•**ROD** rebar does not rust, even in the harshest environments. It does not react to salt, chemical products or the alkalinity of the concrete. Structures exposed todeicing salt, sea water or chemical products have significantly longer life-expectancy when reinforced with **V**•**ROD** rebars.

V•**ROD** is ideal for bridges, concrete pavements, bridge decks, bridge curbs, pier caps, abutments, sidewalks, barrier walls, sound barriers, airport runways, water treatment plants, sea walls, wave breakers, piers and jetties, harbours, parking garages, salt storage facilities, swimming pools, industrial floors, desalination intake, etc.

쥦 Strength

V•ROD rebar offers a superior tensile strength than steel. Depending on the rebar grade and the requirements, V•ROD can offer more than three (3) times the tensile strength of steel rebars. V•ROD is ideal for heavily solicited elements like barrier walls, two way slabs, etc.

Electromagnetic neutrality

V•ROD rebar does not contain any metal, it will not cause any interference when subjected with strong magnetic fields or when operating sensitive electronic instruments. **V•ROD** is ideal for MRI machine pads in hospitals, in research facilities, aluminum smelters, industrial facilities, electrical underground enclosures, switchyards, toll roads, monorail tracks, etc.

쥦 Easily Cut

V•**ROD** rebar is easily machined and cut. It will not damage concrete saw nor boring machines. **V**•**ROD** is ideal for soft-eyes, diaphragm walls, drilled pile walls, formwork anchors, temporary structures, rock anchors, soil nails, etc.

😔 Lightweight

V•ROD is up to four (4) times lighter than steel rebar. It is much easier to handle, reduce installation time and requires fewer transport to bring the material to site.
V•ROD is ideal for remote region structures, precast elements and where large diameter bars are required.

V-ROD 46 Straight Bar

GLASS FIBER REINFORCED POLYMER (GFRP) REBAR

REVISION: DEC. 2019

Product Data Sheet - V•RO	D 46	#2 (6 M)	#3 (10M)	#4 (12M)	#5 (15 M)	#6 (20M)	#7 (22M)	#8 (25M)	#9 (30M)	#10 (32M)
Guaranteed tensile strength* (ASTM D7205)	MPa	1000	1000	1000	1000	1000	950	850	800	800
	ksi	145.0	145.0	145.0	145.0	145.0	137.8	123.3	116	116
Minimum tensile modulus (ASTM D7205)	GPa	46								
	ksi	6800								
Guaranteed transverse shear capacity	MPa	160								
(ASTM D7617)	ksi	23.2								
Resin		vinylester								
Weight	g/m	73.4	150.8	264.5	403.7	567.4	760.5	1012.6	1281.6	1582.2
	lb/ft	0.049	0.101	0.178	0.271	0.381	0.511	0.680	0.861	1.063
Effective cross-sectional area (including sand coating)** (CSA S806 Annex A)	mm²	36.5	71.12	123.9	195.8	277.1	377.2	477.8	604.7	746.6
	in²	0.057	0.110	0.192	0.303	0.430	0.585	0.741	0.937	1.157
Effective diameter	mm²	6.65	9.49	12.56	15.61	18.52	21.71	24.66	27.7	30.8
	in²	0.262	0.374	0.494	0.615	0.729	0.855	0.971	1.091	1.213
Nominal cross-sectional area (CSA S807 Table 1)	mm²	32	71	129	199	284	387	510	645	819
	in²	0.050	0.110	0.199	0.308	0.440	0.599	0.790	1	1.269

VROD 60 Straight Bar

GLASS FIBER REINFORCED POLYMER (GFRP) REBAR

REVISION: June 2019

Product Data Sheet - V•RO	D 60	#2 (6 M)	#3 (10M)	#4 (12M)	#5 (15M)	#6 (20M)	#7 (22M)	#8 (25 M)	#9 (30M)	#10 (32M)
Guaranteed tensile strength*	MPa	1100	1100	1100	1100	1100	1100	1100	1000	1000
(ASTM D7205)	ksi	159.5	159.5	159.5	159.5	159.5	159.5	159.5	145	145
Minimum tensile modulus	GPa	60								
(ASTM D7205)	ksi	8702.3								
Guaranteed transverse shear capacity	MPa	180								
(ASTM D7617)	ksi	26.1								
Resin		vinylester								
Weight	g/m	78	175	310	442	633	863	1127	1426	1761
	lb/ft	0.052	0.118	0.208	0.297	0.425	0.58	0.757	0.958	1.183
Effective cross-sectional area** (including sand coating) (CSA S806 Annex A)	mm ²	37.2	83.8	145	232.9	326.8	438.2	572.3	724.3	894.2
	in²	0.058	0.130	0.225	0.361	0.507	0.679	0.887	1.123	1.386
Effective diameter	mm ²	6.9	10.33	13.59	17.22	20.39	23.6	26.99	30.4	33.7
	in²	0.272	0.407	0.535	0.678	0.803	0.929	1.063	1.197	1.327
Nominal cross-sectional area (CSA S807 Table 1)	mm ²	32	71	129	199	284	387	510	645	819
	in²	0.05	0.110	0.199	0.308	0.440	0.6	0.790	1	1.269

* The nominal guaranteed tensile strength must not be used to calculate the strength of the bent portion of a bent bar. instead use the minimum guaranteed tensile strength found in the technical data sheet of bent **V**•**ROD** bars.

** Please contact bar manufacturer for dowelling applications.

Development and splice length are available upon request but should be determined by the design engineer.

The guaranteed value presented in this document is the mean value minus 3 times the standard deviation.

It is the responsibility of the design engineers to contact the bar manufacturer to get the latest updates of this technical data sheet.

Direct comparison between steel and V•ROD

MATERIAL PROPERTIES	UNITS	V-ROD	STAINLESS STEEL (ASTM A955)	STEEL (ASTM A615)	
Tensile strength ⁽¹⁾	PSI	116000 - 189000	60000	60000	
	MPa	800 - 1300	420	420	
Modulus of	KSI	6675 - 8700	29000	29000	
elasticity	GPa	46 - 60	200	200	
Bond strength	PSI	2 000	1450 ⁽²⁾	1450 ⁽²⁾	
	MPa	14	10 (2)	10 (2)	
Thermal	BTU/(hr·ft·°F)	< 0.6 (2)	10 (2)	32 ⁽²⁾	
conductivity	W∕ (m·°C)	< 1 (2)	16 ⁽²⁾	54 ⁽²⁾	
Electrical resistivity	Ω·in	>1011(2)	4x10 ^{-5 (2)}	6x10 ^{-6 (2)}	
	Ω·cm	>1011(2)	1x10 ^{-4 (2)}	1.5x10 ^{-5 (2)}	
Unit weight	lb∕ft³	110 - 130	485 - 500	490	
	kg∕m³	1750 – 2100	7800 - 8000	7850	
Required concrete	in	3/4	11/2-3	11/2-3	
cover ⁽³⁾	mm	20	40 - 75	40 - 75	

⁽¹⁾ Guaranteed tensile strength for V-ROD bars, yield strength for stainless and black steel bars

⁽²⁾ Approximate value

⁽³⁾ For exposed conditions, as per ACI 440.5 and ACI 318

Design Guides

V•ROD composite reinforcing bars are covered by various Design Guides and Design Codes:

Canada

CAN/CSA S806: Design of Buildings with Fibre Reinforced Polymers CAN/CSA S6: Canadian Highway Bridge Design Code CAN/CSA S807: Specification for fibre-reinforced polymers

USA

ACI 440.1R: Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars AASHTO LRFD: Bridge Design Specifications for GFRP-Reinforced Concrete Bridge Decks and Traffic Railing

ASTM D7957 Standard Specification for Solid Round Glass Fiber Reinforced Polymer Bars for Concrete Reinforcement

Europe

FIB Task Group 9.3 – Bulletin 40 – FRP Reinforcement in RC Structures CNR DT 203 - Guide for the Design and Construction of Concrete Structures Reinforced with Fiber-Reinforced Polymer Bars

Availability

V•ROD FRP reinforcing bars are available in various sizes from #2 (6M) to #14 (45M)
 For an easier and faster installation, bends are factory-made, ready-to-use and shipped directly to site.
 V•ROD is available in Glass Fibers and Basalt Fibers