

Vortex Flowmeter

AVF7000 Series

Operation Manual

 ALIA TECHNOLOGY LLC

 633 W. 5th Street, 26th Floor, Los Angeles, CA 90071, USA

 TEL : +1 - 213 - 533 - 4139

 FAX : +1 - 213 - 223 - 2317

URL: http://www.alia-inc.com E-mail: alia@alia-inc.com OP7000.1.1.7.R12ENG

Index

1. Flowmeter Check	3
2. Product Overview	3
3. Working Principle	3
4. Specifications	4
5. Dimensions	5
6. Installation	6
7. Wiring Diagram	8
7.1 With 4-20mA(2 wire) or Scale pulse, but without Temp./ Pressure Compensation	8
7.2 With RS485 Communication, but without Temp./ Pressure Compensation	8
7.3 With Temp./ Pressure Compensation, and 4-20mA(2 wire) or Scale pulse output	9
7.4 With Temp./ Pressure Compensation, and RS485 Communication	10
7.5 Separation board	11
8. Panel Display	12
9. Function	12
9.1 Button Function	12
9.2 Display Function	12
9.3 Field Application	13
10. Parameter Operation Chart	14
11. Parameter Settings	17
11.1 Basic Settings	17
11.2 Advanced Parameter Settings	20
11.3 Output 4-20mA Current Calibration	21
11.4 5 Points linear Calibration	22
11.5 Amplification Gain Settings	23
11.6 Temperature / Pressure Calibration	23
12. Modbus Communication Settings	25
13. Commonly Seen Problems	26

1. Flowmeter Check

- A. Check the overwrap first, if any damages occur, contact ALIA Customer Service Center at once.
- B. Confirm whether the instrument has been damaged or its spares are lost.
- C. It's recommended that you read the manual thoroughly, once you have any quires, please email or fax to ALIA technical department.
- D. Ensure all the specifications of instrument are in a normal state.
- E. Power on to check whether the LCD screen operates normal.
- F. Proper installation is required.
- G. Install flowmeter and pipeline under installation instructions.
- H. Connect wires and specially attention on whether they have been shielded or grounded.
- I. Power on and check whether there is any current leakage (mind your own safety), then if it doesn't display any flow rate, please follow steps above again, particularly wiring, power supply and grounding. If problem remains, please contact ALIA Technical Support center or local agency.

2. Product Overview

Based on Von Karman vortices theory, AVF7000 can be used to measure liquid, gas and steam, even liquid that has slight particles inside or turbid liquid. It's widely used in industries such as petroleum, chemical engineering, pharmacy, paper making, metallurgy, electricity, environmental protection and food.

3. Working Principle

ALIA AVF7000 is newly stress-type flowmeter that's based on von Karman effect. It's made up of a whole body whose internal diameter and nominal diameter are the same and a triangular bluff body inside. Flow will alternately generate vortices when passing by a bluff body. The periodic shedding of eddies occurs first from one side and then from the other side of a bluff body (vortex-shedding body), is called "Karman vortex street" whose frequency is proportional to the flow velocity.

Vortices at both sides cause pressure pulsation, making probe to generate alternation stress. The built-in electronic in probe generates electric charge due to alternation press. And amplifier transmits them into pulsating output signals which are equivalent to vortex shedding frequency.

F—frequency of vortex shedding (numbers) hz d—width of bluff body v—fluid velocity St—Strouhal number, dimensionless

The actual width of a bluff body within a specific vortex meter is fixed and a function of Reynolds, therefore, a constant. In linear range, from detected frequency F, pipe's velocity is known, then volumetric flow. The relationship between frequency and volumetric flow is defined as below:

K: factor

- F: frequency
- Q: fluid volume under actual condition (m3/h)

AVF7000 Operation Manual **4. Specifications**

 Size (mm) 	: 15, 20, 25, 32, 40, 65, 80, 100, 125, 150,	Protection Class	: IP 65.
	200, 250, 300, 350, 400, 450, 500 mm		Explosion Proof Exd IIC T6
Measuring Range	: Steam - 1.6 to 540,000 Kg/Hr		Intrinsically safe Exia IIC T4
	Gas - 3 to4 6,000 m3/Hr	Local Display	: 2 or 3 Line LCD
	Liquid - 0.3 to 4950 m3/Hr		6 digit Flowrate
 Material 	: Stainless Steel 304 / 316		8 digit Totalizer
Accuracy		• Output	: 4~20 mA (2wire)
Liqu	id : +/- 0.7%	Loa	d:Rohm=(Vdc-12)*30
Gas/Stea	m : +/- 1.0%	Pulse Output	: Standard Pulse Output
Repeatability	: +/- 0.2%	Loa	d:1000 Ω –5000 Ω.
Process Connection	: Flange / Wafer	Communication	: HART or RS485
 Flange Type 	: JIS 10K / JIS 20K / JIS 40K	Data Storage	Operation Parameter, Totalizer Figures are stored by EEPROM.
	ANSI 150# / ANSI 300# / ANSI 600#	 Housing Material 	: Aluminum Alloy
	DIN PN 10 / PN 16 / PN25 / PN 40	Cable Entry	: 2x0.5mm2
• Wafer Type	: 40, 65, 80, 100, 125, 150, 200, 250	Power Supply	: 12~32 VDC
	without Temperature / Pressure Sensor	 Keypad 	. 3 keys from internal for programming and display control
Temperature	: -40 ~ +280 $^\circ\!\mathrm{C}$ (Standard Type)	Option	
	-4 ~ +420 $^\circ\!\mathbb{C}$ (Explosion Proof Type)	Pressure Transmitter	Pressure Compensation
Ambient Temperature	e : -20 ~+60°C	Signal Inpu	ut 0~30 mV DC
Pressure	: 78 Kg/cm2 (Max.)	Temperature Sensor	Temperature Compensation
		Signal Inpu	ut PT1000 (2 Wire)

5. Dimensions

Norm	al Size										
mm	Inch	H1	H2	H3	H4	H5	L1	L2	L3	L4	D1
15	1/2"		430					200			
20	3/4"		435					200			
25	1"		440		455	440		200	275	275	
32	1-1/4"		452		468	452		200	275	275	
40	1-1/2"	415	468	477	505	468	70	200	275	275	85
50	2"	425	480	484	518	480	70	200	275	275	99
65	2-1/2"	440	502	495	535	502	70	200	275	275	118
80	3"	460	515	519	550	515	70	225	300	300	132
100	4"	480	534	543	571	534	70	250	350	350	156
125	5"	500	564	560	599	564	70	275	375	375	184
150	6"	530	593	585	631	593	70	300	400	400	211
200	8"	578	647	635	682	647	98	350	450	450	248
250	10"	628	700	685	735	700	114	400	500	500	298
300	12"		750		785	750		450	550	550	
350	14"		805		840	805		500	600	600	
400	16"		861		895	861		550	650	650	
450	18"		910		945	910		600	700	700	
500	20"		965		998	965		650	750	750	

• Note: L5= reduced L4 + pipe diameter before reducing (Example: DN200mm reduce DN150mm, L5 = 400mm + 200mm = 600mi

Wafer Type

Flange Type

Flange Type Under Pressure Replace Sensor

Flange Type with T/P Sensor

H2 ⇔

Reduced Bore Type

Under Pressure Replace Sensor

With Temperature Sensor and Pressure Sensor

5

AVF7000 Operation Manual **6. Installation**

Installation position of Vortex Flowmeter is very important. It concerns measuring accuracy. Please leave more space of straight pipe in upstream and downstream as best as you can. If not permitted, please install as 2/3 of total straight pipe length on the upstream and 1/3 on downstream. However, accuracy this time can not be assured as factory accuracy. For example:

• Grounding

Good grounding is highly demanded so as to avoid signal interference. Please see below pictures, all you need to do is to ground the displayer. And the sensor grounding is unnecessary. Grounding place is like stairs and railing. To define whether vortex is well grounded initially, user need to check whether frequency is 50HZ or 60HZ or not. If it's always 50HZ or 60HZ, it means grounding is poor. Please see details in **9.2** to check frequency value.

AVF7000 Operation Manual **7. Wiring Diagram**

Cable should be equipped as 2-core AVPV2*0.5mm2 or 3-core AVPV3*0.5mm2. Connecting terminals should be firm and tight. Meanwhile, shielding cable must be properly connected to the housing of amplifier.

7.1 With 4-20mA(2 wire) or Scale pulse, but without Temp./ Pressure Compensation

7.2 With RS485 Communication, but without Temp./ Pressure Compensation

12-36VDC Power supply	RS485 communication
+ -	
12-32 VDC Power Supply	+↓ ↓- RS485 + RS485 -

AVF7000 Operation Manual 7.3 With Temp./ Pressure Compensation, and 4-20mA(2 wire) or Scale pulse output

Note: The terminals S1+, S2+ are signal ports of vortex sensor.

Terminal Cable color		Sensor
PI+	red	
PI-	blue	Prossure consor
PV+	black	riessure sensor
PV-	yellow	
T+	white	
TA-	red	Temperature sensor
TB-	red	
S1+ orange		Vortex consor
S2+	orange	VUILEX SEI ISUI

9. Function

9.1 Button Function

Key	Button	Function
Setting	SET	Press shortly (1s) to enter menu settings or exit settings.
Move		Press shortly (1s) to shift to page down or move digit position when set parameters.
Up	\wedge	Press shortly (1s) to shift to page up or increase value by "1" when set parameters. Press long for 3s to enter chosen menu settings or confirm.

9.2 Display Function

10.5 m3/h	2_Line Display Mode
E 20.0 m3	LCD only displays flow rate and totalizer.
E 20.0 m3	

10.5 m3/h	3_Line Display Mode
E 20.0 m3 P=12.5Kpa T=20.0℃	LCD displays flow rate and totalizer + frequency / density / pressure / temperature / current / percentage/ P&T.
	Press A button to choose pressure, temperature, density, current and percentage

In normal display interface, press shortly (3s) and check frequency, density, pressure, temperature, current percentage ...as below:

Symbol	F:	Den:	P:	T:	Curr:	Per:	P&T
Content	Frequency	Density	Pressure	Temperature	Current	Percentage	Temperature Pressure

Other display:

- If enable pressure auto acquisition and pressure signal is abnormal, the pressure value in "Temp.&Pressure" interface will flash.
- If enable temperature auto acquisition and temperature signal is abnormal, the temperature value in "Temp.&Pressure" interface will flash.
- P and T Shows the preset pressure and temperature of circuit board , P&T Shows the pressure and temperature value from sensor

9.3 Field Application

Two situations will frequently happen at site:

- A. No flow, it displays value.
- B. Flow, it displays zero.

Reasons for problem A: vortex get interfered by outside environment, keeping receiving interference signals. In the picture below, interference signal is more than vortex's threshold value. So vortex displays value. To solve this problem, interference signal should be smaller than threshold value.

Reasons for problem B: flow frequency is very low, see the flow signal below. It's lower than threshold value, leading to measurement failure. To solve this problem, flow signal should be bigger than threshold value.

Then how to adjust interference signal and flow signal? The solution lies in signal amplification. Signal amplification adjustment is "2000~2000000".

Default amplification:

If measuring medium is liquid, it's 5000.

If measuring medium is gas or steam, it's 80000.

Amplification adjustment method:

 Magnification can be divined into two parts: amplification factor and magnification gain. Magnification factor is in "Max AMP" while magnification gain in "AMP. Channel".

If amplification is 5000, amplification factor will be 500 and amplification gain 10^1 , namely $500*10^1 = 5000$.

Max AMP	AMP.Channel
500	CH1
Amplification factor	Amplification gain (CH1 -10^1 ; CH2 -10^2 ; CH3 -10^3)

 \Rightarrow **To solve problem A**: decrease amplification factor. Suppose amplification is 5000 now, change amplification factor (Max AMP) as 400 but keep amplification gain (AMP.Channel) the same (CH1). Then amplification is 400*10¹ =4000. If vortex still displays unusually, adjust amplification factor again.

☆ **To solve problem B**: it happens to be on the contrary of A, namely adjust amplification from 5000 to 30000. Then: Change amplification factor (Max AMP) as 300;

Change amplification gain (AMP. Channel) as CH2; Amplification number is: $300*10^2 = 30000$

 \Rightarrow In conclusion, amplification has to be set according to actual condition, making vortex displays properly, namely it displays zero when there is no flow and displays correct values when there is flow.

AVF7000 Operation Manual **10. Parameter Operation Chart**

AVF7000 Operation Manual **11. Parameter Settings**

11.1 Basic Settings

18

AVF7000 Operation Manual 11.2 Advanced Parameter Settings

Pulse Factor 9100.00	Pulse Factor Press ▲ and ≥ to select unit for pulse factor. Optional unit: t, kg, Nm3, m3, Scf, cf, USG, UKG, bbl, Ib. If select kg, the value means pulse/kg. Others apply the same. Press ≥ to return to signal strength and ^{set} to password interface.
SET	
000000	Password
	Press [▲] and [≥] keys to input password. Press ^{ser} to return normal interface.
50	

11.3 Output 4-20mA Current Calibration

AVF7000 Operation Manual **11.4 5 Points linear Calibration**

Code

5 Points linear Calibration

Generally accuracy can be met with K factor. If something particular needs more complete linear calibration, 5 points linear calibration is necessary. Steps:

Input password to enter 1^{st} point calibration frequency F1 interface, press to enter 1^{st} point calibration coefficient Y1 interface and then press again to enter F2, Y2 / F3, Y3 / F4, Y4 / F5, Y5 interface one by one. The initial value of each point is 1.0000.

E.g. When you find the flow rate is not displaying accurate, you can check corresponding flow rate of different velocities in normal display interface and press shortly to check corresponding frequency of each flow rate. Record the flow rate and frequency as table below:

Measuring Point	1	2	3	4	5
Displayed Flow Rate	129m3/h	216m3/h	345m3/h	431m3/h	517m3/h
Frequency	30	50	80	100	120
Actual Flow Rate	132m3/h	216m3/h	345m3/h	425m3/h	510m3/h

Calibration Coefficient Y=Actual Flow Rate/Displayed Flow Rate e.g. Y1=132 / 129 = 1.0233So frequency P and coefficient Y of 5 points linear calibration should be:

F1	F2	F3	F4	E5
30	50	80	100	120
50	50	00	100	120
Y1	Y2	Y3	Y4	Y5
1.0233	1.0000	1.0000	0.9861	0.9865

AVF7000 Operation Manual 11.5 Amplification Gain Settings

Code	Password
00000	Press ▲ and ≥ to enter password 00062, then hold ▲ key for 3s to enter channel setting interface.
AMP.Channel CH3	Amplification Gain Settings Press ▲ and ≥ to set amplification gain: CH1, CH2, CH3; CH_1 means amplifying 10 ¹ times on amplification factor, it's usually used to measure liquid. CH3 means amplifying 10 ³ times on amplification factor, it's usually used to measure gas. CH2 means amplifying 10 ² times on amplification factor, it's usually used to make adjustment according to fluid condition and

11.6 Temperature / Pressure Calibration

AVF7000 Operation Manual **12. Modbus Communication Settings**

Mode: standard MODBUS-RTU. Details: Modbus: MODBUS-RTU mode Baudrate: 9600bps Serial data mode: Parity: None Databit: 8 Stopbit: 1 Communication address: 01

Code 00090	Password Press ▲ and ≥ to enter password 00090. Hold ▲ for 3s to enter MODBUS settings.			
Modbus Addr	Communication Address			
1	Press 🔼 and ≥ to set range: 1-247. Default address: 1.			
	Press ≥ to enter next setting interface.			
Modbus Baud 9600	Baud Rate			
	Press ▲ and ≥ to set baud rate: 9600/4800/2400/1200/600; default address: 9600.			
	Press ^{ser} twice to return to normal interface.			

AVF7000 Operation Manual 13. Commonly Seen Problems

- 1. Vortex displays flow rate when valve is closed.
 - ① If frequency is detected to be 50hz or 60hz, it means grounding needs to be checked. AVF7000 demands high in grounding such as the position, stairs or railing to eliminate interference signals. Try to avoid vortex's cable share the same grounding terminal with those of other devices or intertwined together. Built up a remote grounding pole for vortex if conditions are permitted.
 - ② Huge pipe vibration. If vibration exceeds vortex's bear ability, please reinforce its installation position or add a hose terminal to reduce vibration.
 - ③ Strong-current equipment or strong interference around.
 - ④ Big amplification. Try to reduce it if necessary.
- 2. Vortex displays 0 when flow is running in pipe.
 - ① Actual flow rate in pipe is too low. Please increase it to make sure it reaches vortex's min. measurement value.
 - 2 Small amplification. Try to increase it if necessary.
 - ③ If measuring medium is steam, please make sure actual temperature&pressure parameters are conformed with those inside circuit board.
 - 4 Circuit board or sensor is faulted. Please send them back to ALIA for repair.
- 3. Vortex's flow rate is unstable.
 - 1 Actual flow rate is unstable.
 - ⁽²⁾ Huge pipe vibration. If vibration exceeds vortex's bear ability, please reinforce its installation position or add a hose terminal to reduce vibration.
 - ③ Small amplification, try to increase it if necessary.
- 4. Vortex's displayed flow rate deviates a lot with actual flow rate.
 - (1) Installation direction is wrong. Make sure vortex is installed as the direction indicated in its body.
 - ② Installation is not concentric. Make sure vortex is installed concentric and use tools if necessary.
 - ③ Gasket is not suitable. Its internal size is smaller than that of pipe or it slide into pipe, leading to turbulence. Make sure gasket is proper.
 - ④ If measuring steam, when process temperature or process pressure changes, please make sure whether Temperature&pressure inside vortex is conformed to actual process temperature&pressure.
 - ⑤ K factor is wrong. New K factor=(Display flowrate/Actual flowrate)*K(original)