慶應義塾大学ビジネス・スクール

統計及び数列のノート三訂版

このノートでは，ファイナンスの最も基礎的な概念であるリスクやリターンという概念を説明す るために用いられる統計用語，および割引現在価値を求める時に必要な数列の公式について解説

平均

あるデータがあったとする。例として，日本の国債収益率および株式収益率の2000年 1月から12月までの 12 ヶ月間の月次データを考えよう。国債収益率及び株式収益率が以下の表 Sallで与えられると仮定する。ここでは，12 組の観測値をすべて書き出したが，これが仮に過去 30年のデータだとすると，360 もの観測値があり，いちいち書き出すのは大変である。そこで，こ れらのデータの性質を，いちいち全ての観測値を書き出すことなしに，何らかの尺度で代表させ ることを考えよう。ある n 個の観測値があり，それぞれ $a(1), a(2), \cdots, a(n)$ という値を取ったと する。このデータの平均は

$$
E(a) \equiv \frac{1}{n} \sum_{i=1}^{n} a(i)
$$

で定義される。ここで三の記号は右辺が左辺の定義であることを示している。

	株式収益率	国債収益率
Jan－00	-0.82	0.36
Feb－00	0.66	-1.16
Mar－00	-0.44	0.71
Apr－00	-3.35	0.43
May－00	-7.64	1.13
Jun－00	4.55	-0.39
Jul－00	-8.70	0.73
Aug－00	4.02	-1.70
Sep－00	-2.44	0.53
Oct－00	-6.17	0.42
Nov－00	-1.25	1.94
Dec－00	-5.77	-0.23

本ケースは慶應義塾大学ビジネス・スクールが出版するものであり，複製等についての問い合わせ先は慶應義塾大学ビジネス・スクールー 〒 223－8523神奈川県横浜市港北区日吉本町 2 丁目 1 番 1 号，電話 045－564－2444， e－mail：case＠kbs．keio．ac．jp）。また，注文はhttp：／／www．kbs．keio．ac．jp／へ。慶應義塾大学ビジネス・スクー ルの許可を得ずに，いかなる部分の複製，検索システムへの取り込み，スプレッドシートでの利用，またいかな る方法（電子的，機械的，写真複写，録音•録画，その他種類を問わない）による伝送も，これを禁ずる。
Copyright© 和田賢治（2005年作成，2008年5月改訂）

例えば，（ 0.70 .20 .3 ）というデータがあったとすると，平均は $1 / 3(0.7+0.2+0.3)=0.4$ であ る。ファイナンスではリターンといった場合，ある資産または複数の資産から成るポートフォリ オの収益率の平均の事をさす。

例題 1

上記の国債収益率と株式収益率の平均を求めよう（表計算ソフトを用いずに，電卓で解いてみよ う）。この期間においては，株式収益率の方が国債収益率より低い事が分かったと思う。

分散

平均はおしなべてどれくらいの値かを測る尺度だったが，次にはデータのばらつきを測る尺度を考える。これのひとつに分散がある。分散は以下のように定義される。

例えば，（ 0.30 .1 ）というデータがあったとすると，平均は 0.2 なので，分散は
$1 / 2\left\{(0.3-0.2)^{2}+(0.1-0.2)^{2}\right\}=0.01$ となる。ファイナンスにおいては，個人投資家にとって のリスクという場合に，その投資家の保有するポートフォリオの収益率の分散を意味している点 2001 に注意されたい。個大投資家のポートフォリオ収益率の分散と，そのポートラォリオに含まれる個別株式の収益率の分散の関係については，後述する。

例題 2

25all正記の国債収益率と株式収益率の分散を求めよう。る株式収益率の分散の方が，国債収益率の分散 よりはるかに大きい事が確かめられたと思う。このノートでは日本の国債と株式の平均と分散に ついて考えたが，同時期のアメリカの国債と株式の月次収益率ではどちらの平均が高いだろう か？またどちらの分散が高いだろうか？さらに両国の国債および株式を比較すると，どちらの平均や分散が高いだろうか？また，これらの比較はデータをとる期間（たとえば戦前と戦後）に 30allよって異なっているであろらか？皆さんいろいろ計算してみていただきたい。ample

歪度

平均，分散と考えてきたが，次にデータの分布の非対称性の具合を調べる歪度を定義する。
$\operatorname{squ}^{2}(a) \equiv \frac{\sum_{i=1}^{n}\left\{(a(i)-\bar{G}(a)\}^{3}\right.}{\sigma^{3}}$

ただし $\sigma=\sqrt{\sigma^{2}(a)}$ は分散の平方根から求められる標準偏差と呼ばれる。歪度が正ならば，分布の右の裾が長く，負ならば左の裾が長い。

尖度

最後にデータの分布のとがり具合を測る尖度を考える。尖度は以下のように定義される。
$\operatorname{cur}(\bar{a}) \equiv \frac{\sum_{i=1}^{n}\left\{(a(i)-E(a)\}^{4}\right.}{\sigma_{\text {Samp }}^{4}}$
正規分布では尖度が 3 なので，尖度が 3 より大きければ正規分布よりとがっており，小さければ丸くなっている。

相関係数

以上は一系列のデータについてのいろいろな性質を，ひとつの数字で簡単に表現できる尺度を説明したが，今度は二系列のデータがあったとき，それらの関係を調べる尺度である相関係数を説明する。たとえば水の体積と重さを考えよう。体積が大きければ重さも増える。これは，二種類 のデータ（体積と重さ）が同じ方向に動く場合の例である。次に，高速道路の交通量と車のスピー Salドを考えよう。交通量が増えれば，混雑が生じて車の不ピードは低下する。これむ，ご種類のデー夕が逆に動く場合の例である。

ある n 個の観測地からなるデータが二系列あって，それらが
$\{a(1), a(2), \cdots, a(n)\},\{b(1), b(2), \cdots, b(n)\}$ という値をとったとする。相関係数は
$\operatorname{corr}(a, b)$ 以下のように定義される。

$$
\operatorname{corr}(a, b) \equiv \frac{\sum_{i=1}^{n}\{a(i)-E(a)\}\{b(i)-E(b)\} m}{\sqrt{\left(\frac{1}{n} \sum_{i=1}^{n}\{a(i)-E(a)\}^{2}\right)\left(\frac{1}{n}\{b(i)-E(b)\}^{2}\right)}}
$$

相関係数は -1 から 1 の間の値をとる。つまり常に，$-1 \leq \operatorname{corr}(a, b) \leq 1$ が成立する。また相関係数に似た概念として共分散がある。共分散は財務でもっとも重要な概念で，以下のように定義 される。
sancov $\left.(a, \bar{b}) \equiv \sum_{i=1}^{n}\{a(i)=E(a)\} b(i)-E(b)\right\}$

分散と共分散のファイナンスにおける重要性

以下では統計における分散の概念のファイナンスにおける応用例を考える。具体的には，投資家が多数の資産に分散投資を行ら場合には，投資家の保有するポートフォリオ全体の収益率の分 10 散は，そのポートフ牙リオに含まれる個別資産の収益率の分散ではなく，個別資産収益率とマー ケットポートフォリオ収益率の共分散から決定される事を示す。ファイナンスでは，個別投資家 についてはそのポートフォリオ収益率の分散をリスクと定義する。この分散と個別株式収益率の分散を混同する学生が多い。投資家はあくまで自分の保有ポートフォリオの分散を気にするが， この保有ポートフォリオの分散はのポートフォリオを構成する個別資産の分散とは関係がなく， 45 個別資産の共分散と関係があるという点の理解がラアイナンスにおいては重要である。以下では資産の数が 2 個の場合と n 個の場合を考える。

はじめに，投資家が資産を二つの株式に分けて投資する場合を考える。個別株式の収益率を R_{1}, R_{2} とし，その期待値，分散，共分散をそれぞれ

20an $r_{1} \equiv E\left[R_{1}\right], r_{2} \equiv E\left[R_{2}\right]$

$$
\begin{aligned}
& \sigma_{1}^{2} \equiv E\left[\left(r_{1}-R_{1}\right)^{2}\right], \sigma_{2}^{2} \equiv E\left[\left(r_{2}-R_{2}\right)^{2}\right] \\
& \sigma_{12} \equiv E\left[\left(r_{1}-R_{1}\right)\left(r_{2}-R_{2}\right)\right]
\end{aligned}
$$

と定義する。それぞれの株式に投資する割合を $x_{1}, x_{2}\left(x_{1}+x_{2}=1\right)$ とおくと，このポートフォ 25a1リオからの収益率の平均および分散は
$r_{p}=E\left[x_{1} R_{1}+x_{2} R_{2}\right]=x_{1} r_{1}+x_{2} r_{2}$
$\sigma_{p}^{2} \equiv E\left[\left\{\left(x_{1} R_{1}+x_{2} R_{2}\right)-\left(x_{1} r_{1}+x_{2} r_{2}\right)\right\}^{2}\right]=x_{1}^{2} \sigma_{1}^{2}+x_{2}^{2} \sigma_{2}^{2}+2 x_{1} x_{2} \sigma_{12}$
となる。仮に $x_{1}=x_{2}=0.5$ とおくと，このポートフォリオからの収益率の平均および分散は S0 ${ }^{30} \mathrm{~m}_{p} \equiv 0.5 r_{1}+0.5 r_{2}$
$\sigma_{p}{ }^{2}=0.25 \sigma^{2}{ }_{1}+0.25 \sigma^{2}{ }_{2}+0.5 \sigma_{12}$

となる。
次に，投資家が資産を n 種類の株式に分けて投資する場合を考える。個別株式の収益率を $R_{1}, R_{2}, \cdots R_{n}$ とし，その期待值，分散，共分散をそれぞれ，
saln r_{1}, r_{2}, e_{n}
$\sigma_{1}^{2}, \sigma_{2}^{2}, \cdots, \sigma_{n}^{2}$
$\sigma_{12}, \sigma_{13}, \cdots, \sigma_{1 n}, \sigma_{23}, \sigma_{24}, \cdots, \sigma_{2 n}, \cdots, \sigma_{(n-1)}, \sigma_{(n-2)}, \cdots, \sigma_{(n-1) n}$
とおく。それぞれの株式に投資する割合を $x_{1}, x_{2}, \cdots, x_{n}\left(\sum_{i=1}^{n} x_{i}=1\right)$ とおくと，このポートフォ リオからの収益率の平均および分散は

$\sigma_{p}^{2}=E\left[\left\{\left(x_{1} R_{1}+x_{2} R_{2}+\cdots+x_{n} R_{n}\right)-\left(x_{1} r_{1}+x_{2} r_{2}+\cdots+x_{n} r_{n}\right)\right\}^{2}\right]$
$=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} r_{j} \sigma_{i j}$
$=x_{1}^{2} \sigma_{1}^{2}+x_{2}{ }^{2} \sigma_{2}{ }^{2}+\cdots+x_{n}{ }^{2} \sigma_{n}{ }^{2}$
$+\left(\sum_{j=1}^{n} x_{1} r_{j} \sigma_{1 j}-x_{1}^{2} \sigma_{1}^{2}\right)+\left(\sum_{j=1}^{n} x_{2} r_{j} \sigma_{2 j}-x_{2}^{2} \sigma_{2}^{2}\right)+\cdots+\left(\sum_{j=1}^{n} x_{n} r_{j} \sigma_{n j}-x_{n}^{2} \sigma_{n}^{2}\right)$
samとなる。仮に $x_{1}=x_{2} \mathrm{~S}$ a $\mathrm{m}_{1} x_{n}=\frac{1}{n}$ とおくと，乌のポートフォリオからの収益率の平均および
分散は，
$r_{p}=\frac{1}{n}\left(r_{1}+r_{2}+\cdots+r_{n}\right)$
$\sigma_{p}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{n^{2}} \sigma_{i j}$
$=\frac{1}{n^{2}}\left(\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{n}{ }^{2}\right)$
$+\left(\sum_{j=1}^{n} \frac{1}{n^{2}} \sigma_{1 j}-\frac{1}{n^{2}} \sigma_{1}^{2}\right)+\left(\sum_{j=1}^{n} \frac{1}{n^{2}} \sigma_{2 j}-\frac{1}{n^{2}} \sigma_{2}^{2}\right)+\cdots+\left(\sum_{j=1}^{n} \frac{1}{n^{2}} \sigma_{n j}-\frac{1}{n^{2}} \sigma_{n}{ }^{2}\right)$
となる。ここで $\sigma_{a \mathrm{var}}^{2} \equiv \frac{1}{n}\left(\sigma_{1}^{2}+\cdots+\sigma_{n}^{2}\right)$ とおき，
sample $_{\sigma_{\text {acov }}}=\frac{1}{n(n-1)}\left\{\left(\sum_{j=1}^{n} \sigma_{1 j}-\sigma_{1}^{2}\right)+\left(\sum_{j=1}^{n} \sigma_{2 j} \sigma_{2}^{2}\right)+\cdots+\left(\sum_{j=1}^{n} \sigma_{n j}-\sigma_{n}^{2}\right)\right\}$

sam

右辺第一項の個別株式の収益率の分散には影響されず，右辺第二項のある種の共分散に影響され る事が分かる。よって分散投資を行ら投資家は個別株式の分散をリスクとみなさないことになる。

統計学の参考書には初級者向けから上級者向けまで様々な教科書が出版されている。このノート は初級者向けにファイナンスで最低限必要な概念を説明した。これらの概念についてより詳しい説明や例題を学びたい学生は，猪股清二「基礎 統計学ハンドブック」 $35 \sim 52$ ページ，東京大学教養学部統計研究室 「基礎統訑学 I 統計学入門」28～38ページ及び $47 \sim 54 ヘ ゚$ ページ，石 10 村園子「すぐわかる 確率•統計」 $150 \sim 155$ ページ等を参照。

数列

1，4，7，10，13，16， 19 ••・などや $3,6,12,24 \cdot$ •・などある規則をもってならんでいる数の列 45 を数列という。前の項との差が一定のものと等差数列，前の項との比が一定のものを等比数列と いうが，ファイナンスで重要なのは等比数列やその総和の求め方である。なぜかというと，配当流列から株価を求める場合に数列の知識が必要になるからである。ここでは，ファイナンスで良 く用いられる等比数列の総和の求め方の公式を紹介する。 $a, a r, a r^{2}, \cdots, a r^{n-1}$ という数列があったときに n 項までの総和 $\mathrm{S}(\mathrm{n})$ は以下のように求まる。

公式1

$$
S(n) \equiv a+a r+\cdots+a r^{n-1}=\frac{a\left(1-r^{n}\right)}{1-r}, r \neq 1
$$

 2 や 3 の場合を用いて確かめることを薦める。さて，ここで上の公式を使って例題を解いてみよう。

例題 3

soln，6，12，24，••• sありら数列の1 項目からn n 項目末での総和を求めよ。 sample

例題 4

3，9，27，81，••・という数列の 1 項目からn項目までの総和を求めよ。
 きる。

公式2

sample
$S=a+a r+a r^{2}+\cdots=\frac{a}{1-r}, r<1$
ファイナンスでは，一定の配当を永遠に払い続ける株式の割引現在価値を求めるときにこの公式 を用いる。次の例題を解いてみよう。

例題 5

毎期末に配当をD 払いつづける株式があったとする。割引率をRとして，この株式の割引現在価値を求めてみよう。

毎期末に配当を D_{t} 払いつづける株式があったとする。そして配当は以下のように成長率 g で成長すると仮定する。

$$
D_{2}=(1+g) D_{1} \quad D_{3}=(1+g) D_{2}=(1+g)^{2} D_{1}
$$

Sall割引率をRとして，らの株式の割引現在価値を求めてみよう。
sample
sam
sample
sample
sample
sample
sample
sample
sample
sam
sample
sample
sample
sample
sam
sample sample
sample sample
不 許 複 製
sam

