LASER SINTERING MATERIAL SPECIFICATIONS

AN EOS COMPANY

HP 11-32 FE

NYLON 11

A well suited material where the application requires superior thermal strength in the X, Y, and Z dimensions. The material offers high stiffness and high tensile strength. Excellent material for Wind Tunnel models and under the hood automotive applications.

HIGHLIGHTS

- → Isotropic Properties
- → Melt compounded Carbon Fiber filled PA11 with Dry-Mixed fibers
- → High stiffness, high tensile strength
- → Electrostatically dissipative

APPLICATIONS

- → Under hood components
- → Wind tunnel display models
- → Well suited to applications which require superior thermal properties, with maximum performance and consistent properties in XY&Z dimensions

HEADQUARTERS

ALM - Advanced Laser Materials

3115 Lucius McCelvey, Temple, TX 76504 P: 1.254.773.3080 FAX: 1.254.773.3084 E: info@advancedlasermaterials.com

AdvancedLaserMaterials.com

HP 11-32 FE

NYLON 11

A well suited material where the application requires superior thermal strength in the X, Y, and Z dimensions. The material offers high stiffness and high tensile strength. Excellent material for Wind Tunnel models and under the hood automotive applications.

TYPICAL PHYSICAL PROPERTIES			
PROPERTY	TEST METHOD	IMPERIAL	METRIC
Color/Appearance	Visual	Dark Gray	Dark Gray
Bulk Density	ASTM D792	0.0387 lb/in ³	1.07 g/cm ³
Elongation at Break	ASTM D638	7%	7%
Heat Detection Temperature @ 264 psi	ASTM D648	289°F	143°C
Heat Detection Temperature @ 66 psi	ASTM D648	347°F	175°C
Izod Impact Strength (method A, notched)	ASTM D256	1.02 ft-lb/in	54 J/m
Tensile Modulus	ASTM D638	450,000 psi	3,100 MPa
Tensile Strength	ASTM D638	7,000 psi	48 MPa
Coefficient of Thermal Expansion: 77-212°F (25 -100°C)	ASTM E831	124.5 µin/in °F	224.1 µm/m °C
Coefficient of Thermal Expansion: 212-338°F (100-170°C)	ASTM E831	176.6 µin/in °F	317.9 µm/m °C
Volume Resistance	-	6.0E+02 - 7.8E+03 ohms-cm	-
Surface Resistance	-	2.9E+10 - 3.2E+10 ohms	-
Voltage Field	-	< 50 volts	-
Heat Deflection Temperature	ASTM D648	343°F @ 264 psi	173°C @ 1.82 MPa

The material properties provided herein are for reference purposes only. Actual values may vary significantly as they are dramatically affected by part geometry and process parameters. Material specifications are subject to change without notice.