
Hair: continuously self-regenerating

- ► The full head of hair consists of 110,000 - 150,000 hairs
- ► The average of scalp surface is 600 cm² ^{1,2}
- Each hair is produced by a single hair follicle
- Each hair follicle produces an average of 30 hairs during our life
- Hair grows at 1 cm per month which corresponds to:
 - 0.3 to 0.5 mm per day
 - about 10 cm per year
- ▶ We lose naturally from 50 to 100 hair each day.

The hair structure is divided in 2 sections: the hair follicle and the hair shaft

Zoom on the hair structure

What are Stem Cells

Stem cells are non differentiated cells

They have two key features:

- Self renewal: they can give birth to other stem cells
- Potency: they can give birth to specialized cell types

Stem cells are divided in two broad categories:

- Embryonic stem cells, which are totipotent: they can create a complete human being
- Adult stem cells, which are multipotent: they can generate an organ

Stem cells are at the origin of our body self regeneration faculties.

More information on: http://stemcells.nih.gov

Stem cells in regenerative medicine

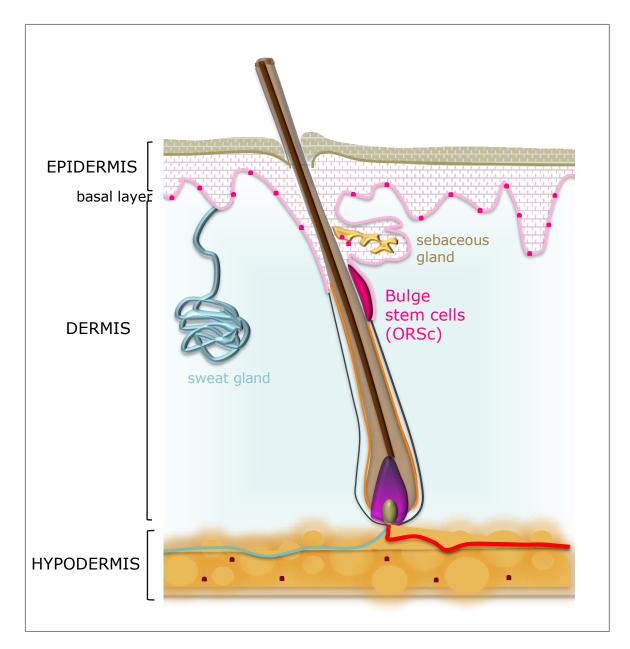
Stem cells therapy has been a key fundamental research area for more than 30 years.

Concept: introduce new adult stem cells into damaged tissues and organs to regenerate them

Targeted diseases:

- Leukemia (bone marrow)
- Parkinson's and Alzheimer's diseases (neurons)
- Type I diabetes (pancreas)
- Cancers (brain)
- Heart failure (heart)
- Muscles atrophy (muscles)
- Wound healing (skin)
- Baldness (hair) ¹

In 2013, 500 clinical trials based on stem cells therapy have been initiated ²

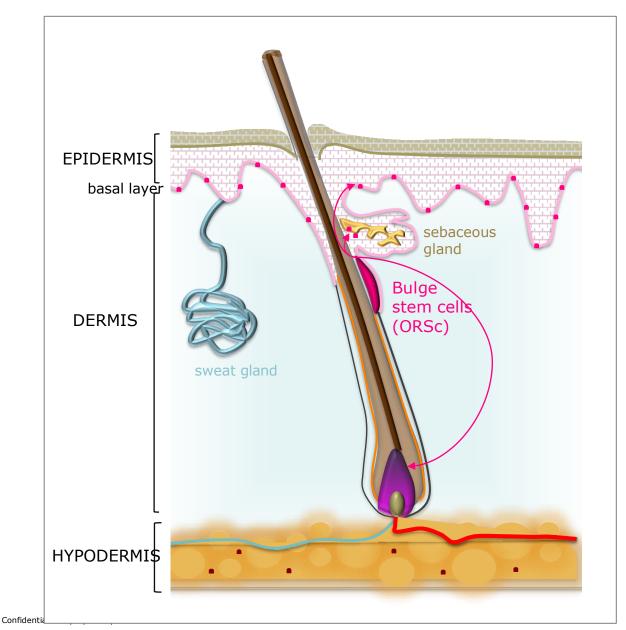

¹ Yang et al. Nature Communications, 2014

² www.clinicaltrials.gov

Stem cells in skin

Stem cells are mainly found in

- The hypodermis
- The basal layer
- The sebaceous gland
- The bulge (ORSc stem cells)



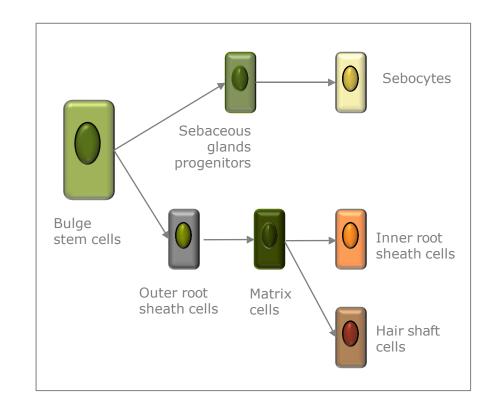
Diaz-Flores, 2006, Histol Histopathol.

Bulge stem cells (ORSc)

Bulge stem cells are mother cells, generating:

- the epidermis cells,
- the hair follicle matrix,
- the sebaceous gland stem cells.

Diaz-Flores, 2006, Histol Histopathol.


Bulge stem cells (ORSc)

Bulge stem cells are expressing the keratin 15 marker.

They have a key role in the regeneration of the hair follicle.

Bulge stem cells are initiating the hair cycle.

THE HAIR CYCLE IS DIVIDED IN 3 STEPS

Fuchs et al., 2008, Journal of Cell Biology

Step 1: ANAGEN - Growing phase

Anagen phase is the active phase of the hair (80% to 90% of all hair).

Keratinocytes in the matrix at the root of the hair are dividing rapidly.

During this phase the hair grow about 1 cm every month.

Scalp hair stays in this active phase of growth for 2-6 years.

Randall 2009. The biology of hair growth, Gurpreet S. Ahluwalia (ed.), Cosmetic Applications of Laser and Light-Based Systems, 3-35, William Andrew Inc.

Step 2: CATAGEN - Transition phase

Catagen phase is a transitional stage and 2% of all hairs are in this phase.

This phase lasts for about 2-3 weeks.

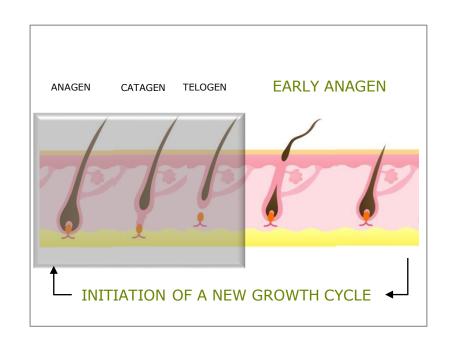
During this phase, hair growth stops.

Step 3: TELOGEN - Falling phase

Telogen phase is the resting phase and accounts for 10-15% of all hairs.

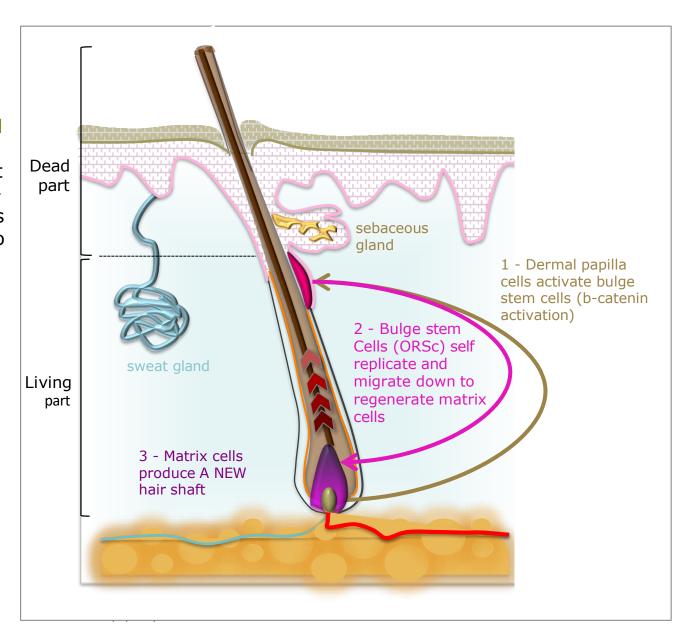
This phase lasts for about 3 months.

During this phase the hair follicle is at rest and the club hair is completely formed.


During a period of intensive hair loss, up to 30% of the hairs can be in the telogen phase.

Transition to a new cycle

Early Anagen phase is the activation of a new hair cycle growth.


A new hair is formed and pushes the club hair up the follicle and eventually out.

Early anagen: chronology of the communication

Cells from the dermal papilla activate bulge stem cells (transient activation of the β-catenin pathway initiates the anagen phase to induce new hair follicle 1,2).

Bulge stem cells self replicate and migrate into the matrix to create new active keratinocytes.

Givaudan

¹ Lo Celso et al, 2004

² Shimizu and Morgan, 2004

What happens during hair loss?

Hair loss is a biological problem.

It happens when the number of hairs in anagen phase is lower than those in the telogen phase.

40% of men will have noticeable hair loss (alopecia) by age 35. It reaches 65% by 60 years of age.

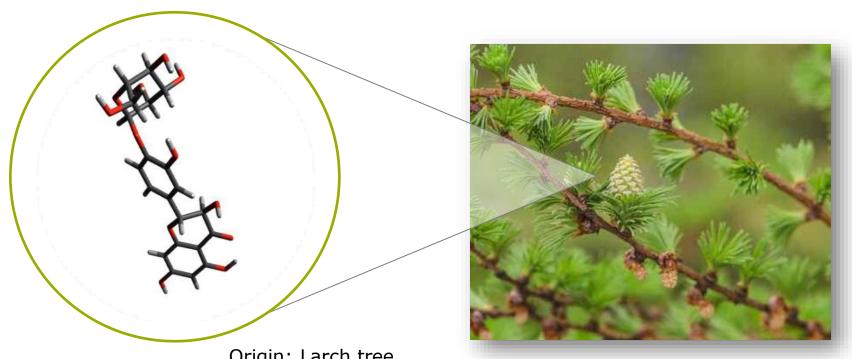
50 to 75% of women suffer noticeable hair loss by age 65.

Hair loss has several origins¹:

- Hormones (androgenic alopecia)
- Stress
- Aging
- Infections

No matter the causes, hair loss happens when the initiation of the new anagen phase (activation of ORS stem cells) is not activated.

¹ Chen et al., 2012, J Dermatol Sci


Lossing Languagen phase initiation

In vitro evaluations

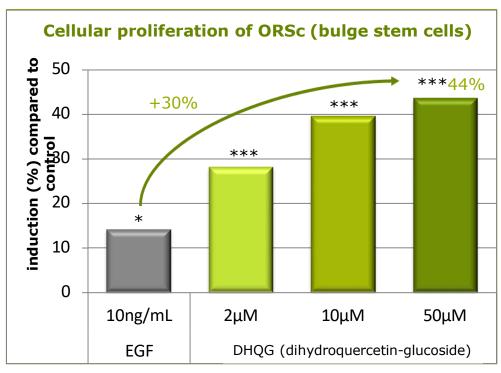
Identifying molecules reactivating the bulge (ORS) stem cells to initiate a new anagen phase.

DHQG: Dihydroquercetin-glucoside

Origin: Larch tree

MW: 466 g/mol

Biotechnology optimisation (glycosylation)

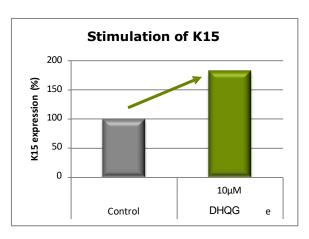

DHQG: activation of bulge stem cells (in vitro)

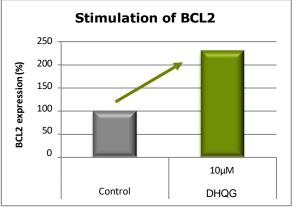
PROTOCOL:

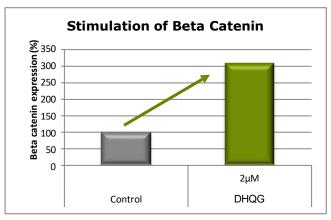
Incubation of human ORS stem cells (hair follicle bulge stem cells) with increasing concentrations of dihydroquercetin-glucoside (DHQG).

→ DHQG enhances the division of the hair follicle ORS stem cells

(Nota: $50\mu M$ DHQG = 1/3 of the amount tested in the clinical assessment)


*p<0.01, ***p<0.001 compared to control, Student's t Test


16


DHQG: effects on hair follicle stem cells genes (in vitro)

PROTOCOL:

Incubation of human ORS stem cells (hair follicle bulge stem cells) with different concentrations of dihydroquercetin-glucoside (DHQG). Measure of mRNA expression using qRT-PCR of markers of stem cells' phenotype (K15), anti-apoptosis (BCL2) and differentiation (β -catenin).

Stimulation of the expression of cytokeratin 15

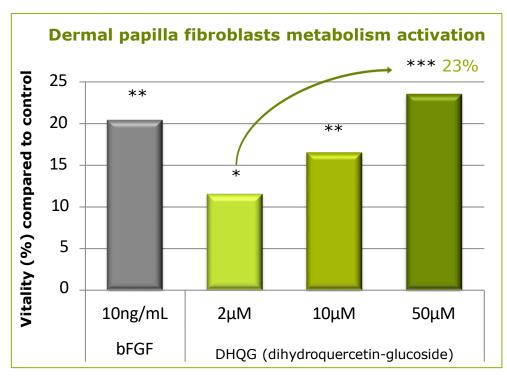
→ DHQG maintains the hair follicle stem cells' phenotype

Stimulation of the expression of BCL2 marker

→ DHQG protects the hair follicle stem cells from apoptosis

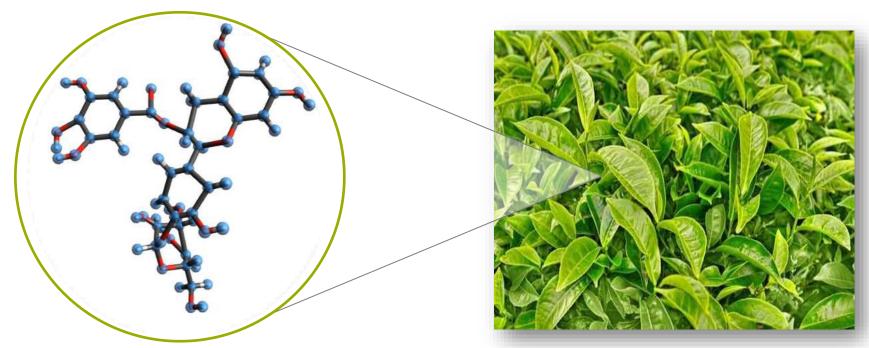
Stimulation of the expression of the beta-catenin marker

→ DHQG stimulates the hair follicle stem cells to initiate the anagen phase


DHQG: stimulation of dermal papilla cells metabolism (in vitro)

PROTOCOL:

Incubation of human fibroblasts dermal papilla cells (HFDPc) with increasing concentrations of dihydroquercetinglucoside (DHQG).


→ DHQG activates the metabolic activity of HFDPc, for a better nourishment of the hair follicle

(Nota: $50\mu M$ DHQG = 1/3 of the amount tested in the clinical assessment)

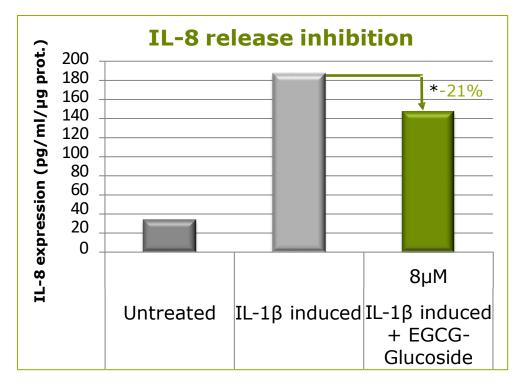
*p<0.05, **p<0.01, ***p<0.001 compared to control, Student's t Test

EGCG2: Epigallocatechin-gallate-glucoside

Origin: Green tea leaves

MW: 604 g/mol

Biotechnology optimisation (glycosylation)


EGCG2: inhibition of interleukin 8 release (in vitro)

PROTOCOL:

Incubation of human normal keratinocytes with epigallocatechin gallate-glucoside (EGCG2). Measure of interleukin 8 release after induction by IL-1b.

→ EGCG2 inhibits the release of interleukin 8, a cytokine involved in hair loss (Kuwano 2007. Br J Dermatol)

(Nota: $8\mu M$ EGCG2 = 1/2 of the amount tested in the clinical assessment)

*p<0.05 compared to control, Student's t Test

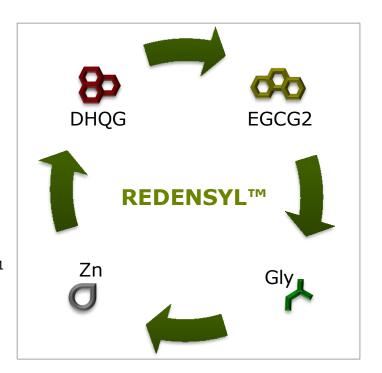
Creation of Redensyl™

Based on these research results we combined:

DHQG

- Activator of stem cell division
- Maintenance of their stem cell properties
- Protection against apoptosis
- Stimulation of dermal fibroblasts metabolism

EGCG2

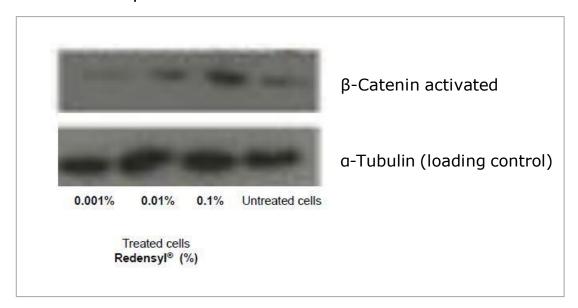

- Highly potent antioxidant
- Inhibitor of interleukin 8 release

Zinc, because

- Zn increases incorporation of cystine in hair proteins¹
- Deficiency in zinc is associated with hair loss

Glycine, one of the top 10 amino acid in hair

- The main structural proteins in the hair fiber are the hair keratins and the hair keratin-associated proteins, KAPs
- The KAPs possess either high cysteine or high glycine-tyrosine content ²

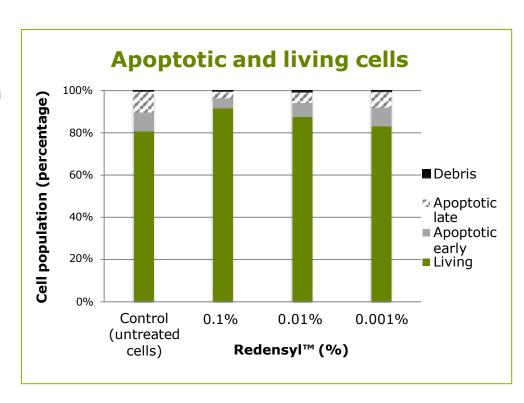

¹ Hsu et al., 1971, J. Nutr. 101.

² Rogers et al., 2002, JBC Papers in Press.

RedensylTM: Activation of β -Catenin (in vitro)

PROTOCOL:

Western blot analysis run on human androgenic alopecic ORSc (3 donors) treated with RedensylTM. Measurement of β -Catenin activation.

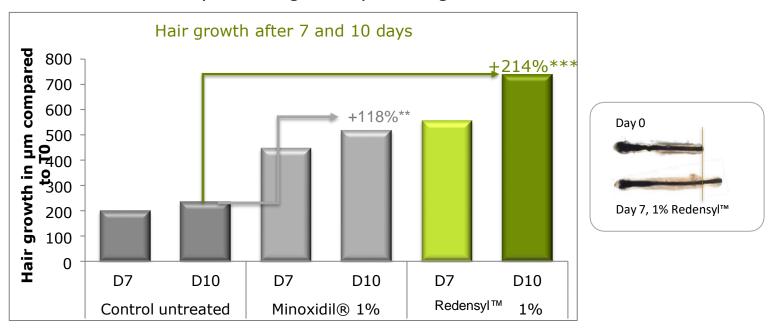

 \rightarrow RedensylTM activates β -Catenin in androgenic alopecia ORSc which confirms the very good results observed during the q-RT PCR with DHQG.

EGCG2: inhibition of interleukin 8 release (in vitro)

PROTOCOL:

Apoptosis Annexin V assay run on human androgenic alopecic ORSc (3 donors) treated with Redensyl™. Measurement of living cells situation proportions.

→ Redensyl[™] protects androgenic alopecia ORSc from apoptosis which confirms the very good results observed during the q-RT PCR with DHQG.


Ex vivo evaluations

Hair follicle growth test (Philpott test)

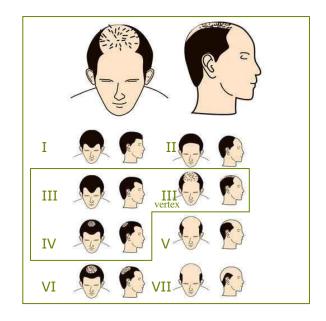
PROTOCOL:

24 hair follicles from men suffering from alopecia were maintained alive with either 1% of Minoxidil or 1% of Redensyl™ during 10 days. Hair growth was measured at D7 and D10.

p<0.1, *p<0.001 compared to untreated, Student's t Test

- → Redensyl[™] increases hair growth by +214% compared to untreated
- → Redensyl[™] acts almost 2x more than Minoxidil, the benchmark reference.

Clinical evaluation


Protocol of clinical trial

VOLUNTEERS

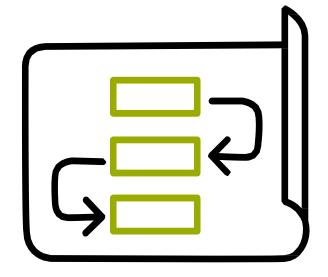
- 26 men aged 18 to 70 years old
- Brown to dark hair
- Qualified for a grade 3 to 4 alopecia (Norwood scale)
- With minimum 150 hair/cm2 and 40 telogen hairs/cm2

PROTOCOL

- Double blind clinical trial versus a placebo
- Applying the formula once a day
- 50% of volunteers received the placebo
- 50% received the formula with 3% Redensyl™
- Clinical study was performed under the control of a dermatologist.
- Period of the test: autumn

Clinical formula: AQUA, ALCOHOL DENAT., BUTYLENE GLYCOL, GLYCERIN, XANTHAN GUM, DISODIUM EDTA, CITRIC ACID, (+/-) REDENSYL™ 3%

27

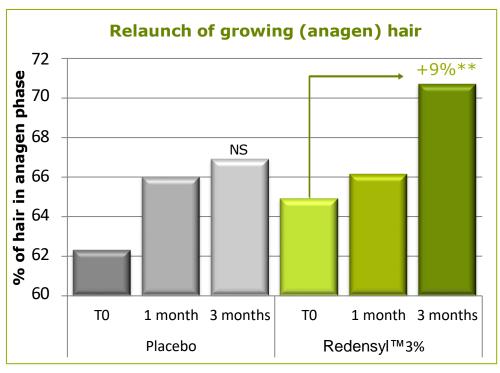

Evaluated parameters

Clinical measures at D0, D30 and D84

- Macro pictures on scalp
- Density of hair in anagen phase
- Density of hair in telogen phase
- Ratio anagen/telogen
- Pictures of the head
- Self assessment questionnaire at D84

Nota:

- Shaving of a 1.5 cm² area
- Analysis on 0,7 cm²

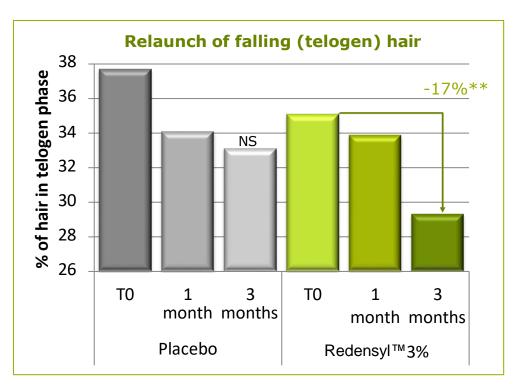


Counting of anagen hair (=growing)

PROTOCOL:

Analysis of the volunteers' scalp of the number of hair in anagen phase.

- → Slight non significant placebo effect up to D84 (activation of microcirculation)
- → Redensyl[™] stimulates up to +9% the number of hair in anagen phase.

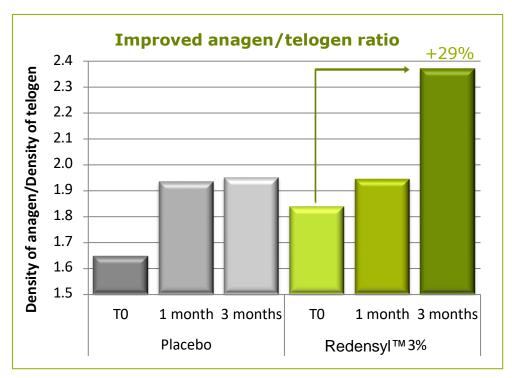

**p<0.01, compared to untreated, Student's t Test

Counting of telogen hair (=falling)

PROTOCOL:

Analysis of the volunteers' scalp of the number of hair in telogen phase.

- → Slight non significant placebo effect up to D84 (activation of microcirculation)
- → Redensyl[™] reduces down to -17% the number of hair in telogen phase.

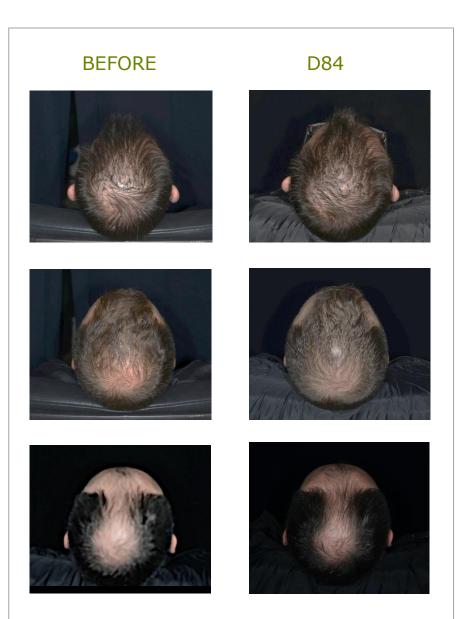

**p<0.01, compared to untreated, Student's t Test

Follow up of the anagen/telogen ratio

PROTOCOL:

Analysis of the volunteers' scalp of the number of the ratio of anagen versus telogen hair.

→ After 3 months, Redensyl[™] improves the ratio of anagen/telogen by +29%, reaching 2.37 from the initial 1.83

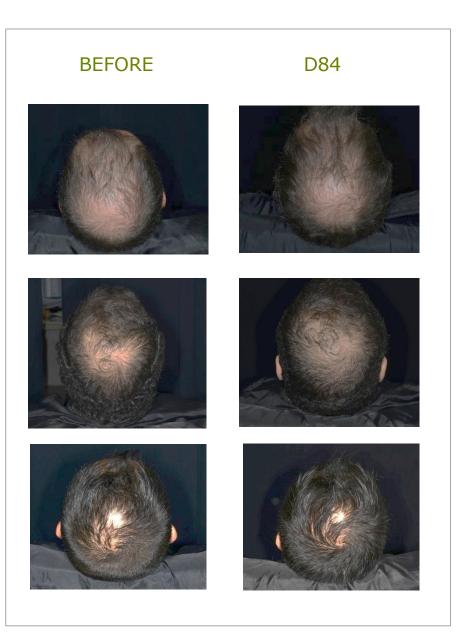


Pictures of volunteers

Increased density 52 years old

Reduction of the vortex 38 years old

Reduction of the bald area diameter 42 years old



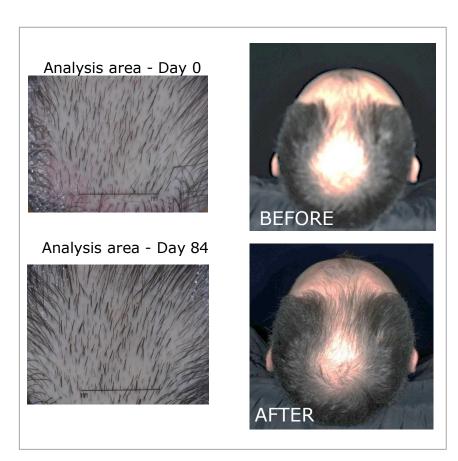
Pictures of volunteers

Increased density 46 years old

Reduction of the vortex 36 years old

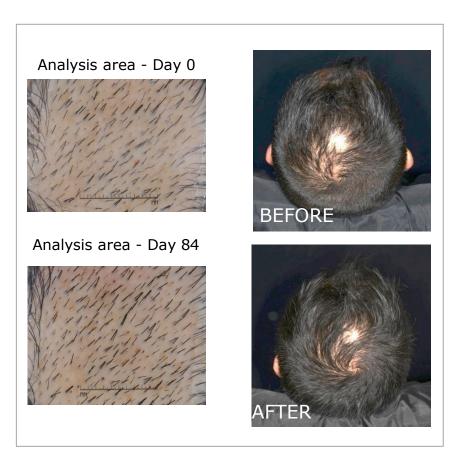
Increased density 29 years old

Details – before/after


Criteria	#3
Age	52 years old
% of new anagen hair	+ 10.8%
% of density of hair increase	+ 17%
Number of new hairs / cm ²	+ 47 hairs/ cm²
Total number of new hairs on the scalp (600 cm ²)	+ 28,200 hairs
Number of new hair per month on the scalp	+ 9,400 hairs

→ Visible redensification of the scalp

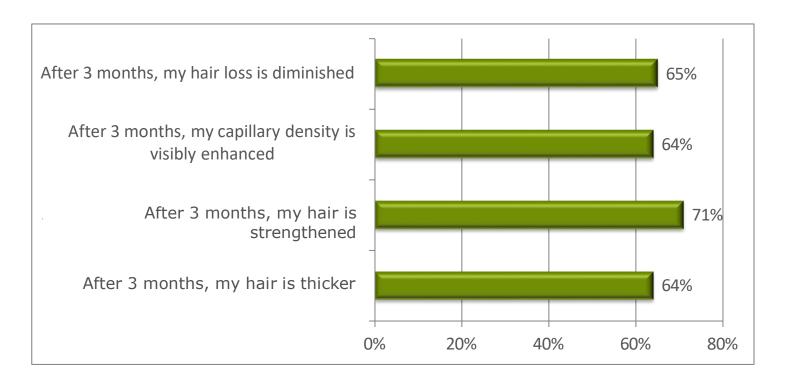
Details – before/after


Criteria	#6
Age	42 years old
% of new anagen hair	+ 19.2%
% of density of hair increase	+ 17%
Number of new hairs / cm ²	+ 43 hairs / cm²
Total number of new hairs on the scalp (600 cm²)	+ 25,800 hairs
Number of new hair per month on the scalp	+ 8,600 hairs

→ Hair loss stopped, a visible increase of hair density

Details – before/after

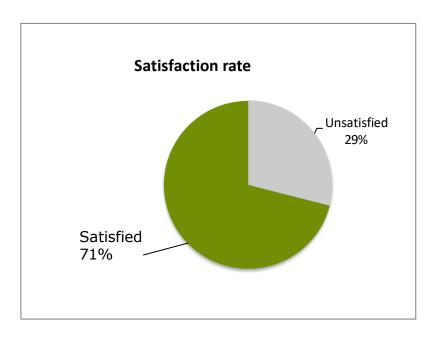
Volunteer	#26
Age	29 years old
% of new anagen hair	+ 9.2%
% of density of hair increase	+ 17%
Number of new hairs / cm ²	+ 29 hairs / cm²
Total number of new hairs on the scalp (600 cm²)	+ 17,400 hairs
Number of new hairs per month on the scalp	+ 5,800 hairs

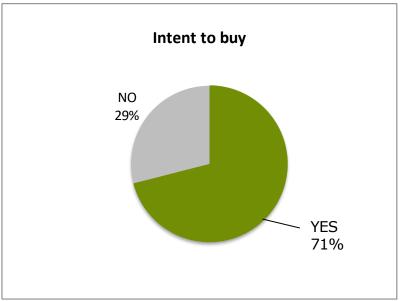


→ Hair looks thicker with a visible improvement of the density

Self assessment

A self-evaluation run by the volunteers after 84 days.


Testers claim to see reduced hair loss, improved capillary density, stronger and thicker hair after three months of treatment.

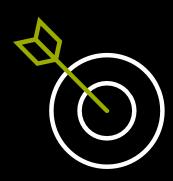


Self assessment

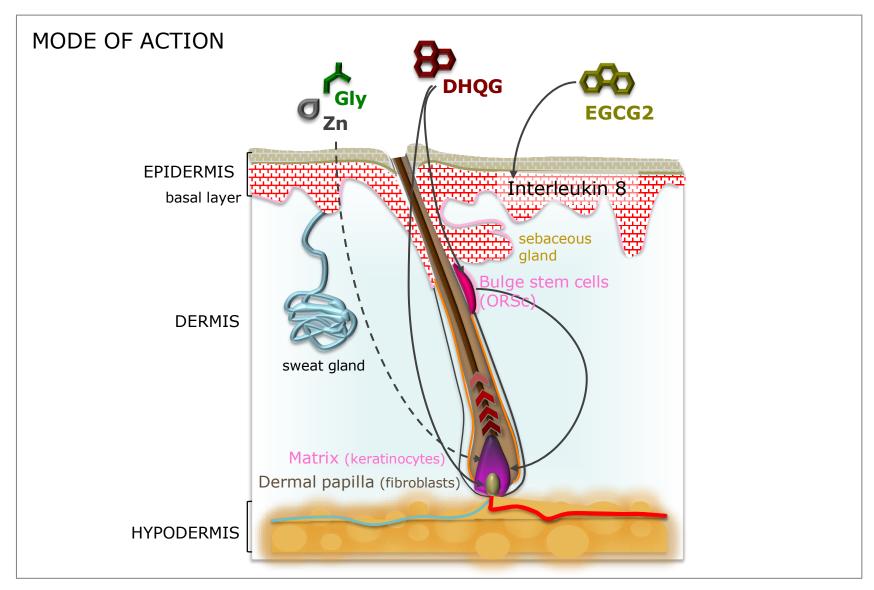
A self-evaluation run by the volunteers after 84 days.

71% of the testers are satisfied by the product, and 71% of them would like to buy the product.

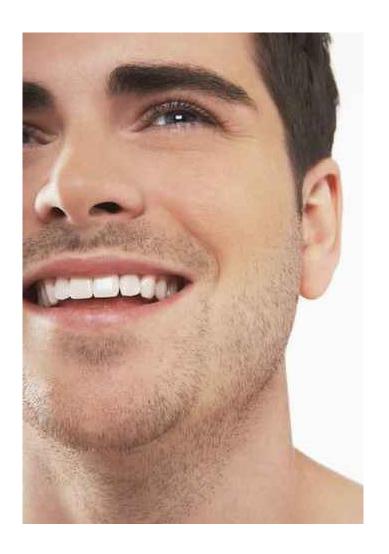
Summary of the clinical assessment


Within 84 days on grade 3 to 4 alopecic volunteers:

85% of volunteers showed clinical improvements:


- √ +9% of anagen hair
- ✓ **-17%** of telogen hair
- √ +29% in the anagen/telogen ratio
- ✓ An average +8% increase of hair density, corresponding to,
 - √ +10,000 new hairs on a total 600 cm²
 scalp surface
 - ✓ Up to +28,200 new hairs

Summary



RedensylTM - the Hair Growth Galvanizer

Targeting existing hair follicle stem cells

- 1. A reactivation of the bulge stem cells
- 2. A metabolic boost of dermal papilla cells
- 3. A shut down of inflammatory reactions
- 4. Excellent results on grade 3 to 4 alopecic volunteers:
 - Hair are denser
 - Hair look thicker
 - Increase in hair growth
 - Decrease in hair loss
 - A better ratio anagen/telogen
 - Visible results in 84 days

Comparison with esthetic surgery

Hair transplantation surgery:

- A hair transplantation surgery enables to make an average of 2016 grafts ¹
- Grade 3 to grade 4 alopecic patients need between 1600 to 2200 hair grafts²
- Each graft contains 4 hair ², so each transplantation gives 6400 to 8800 new hairs
- 65% of the patients undergo a single hair transplantation ¹
- Up to 3 hair grafts sessions can be needed to get the appropriate hair density ¹
- → Redensyl[™] gives better results than one hair transplantation surgery (+10,000 new hairs in average, up to +28,200)

¹ International Society of Hair Restoration Surgery: 2013 Practice Census Results

² Bernstein Medical center <u>www.bernsteinmedical.com/hair-transplant/follicular-unit-transplantation/graft-numbers/</u>

Applications

MEN

- Anti hair loss lotion and shampoo
- Hair growth spray
- Anti aging global hair serum
- Shampoo for thin hair
- Preventive hair care shampoo

WOMEN

- Mask, or leave-on hair care products
- Preventive hair care shampoo
- Post trauma hair treatment
- Anti aging global hair serum
- Eyelash growth mascara
- Eyelash growth primer
- Eyebrows redensifier

Technical information $Redensyl^{TM}$

INCI

Glycerin (And) Water (And) Sodium Metabisulfite (And) Glycine (And) Larix Europaea Wood Extract (And) Zinc Chloride (And) Camellia Sinensis Leaf Extract

Origin White and Green technologies

Preservation Preservative free

Appearance Clear yellow solution

Solubility Water soluble

Dosage 1% to 3%

Processing

Can be added at the end of the formulation process under stirring below 50°C. Can be heated for a short term with the oil phase of formulation

Compliance

