

Test Report

Nixamide E-liquid Analysis

For the Attention of:

Ready Mix

Study Reference	HAL23-043
Test Report Number	HAL23-043-0-1
Study Description	e-liquid HPHC analysis
Submitting Customer	Ready Mix
Customer Reference	Ready Mix Naturals
Date of Test Report	04-Sep-2023

Authorised on behalf of Element Materials Technology Analytical Services Ltd

wito 4th-Sept-2023

Laboratory Manager

Note:

- The results relate only to the items tested.
- Tests not covered under the scope of Element Manchester's ISO 17025 accreditation are identified with an asterisk (*).
- Reproduction of the complete report is permitted. Partial reproduction is only permitted after obtaining written permission of the issuing laboratory.

Study Reference: HAL23-043

Element Sample ID	Customer Sample ID	Date Received
H85138	Nixamide / Vegetable Glycerine For Lab Testing / No Flavour - 100mg	24-Apr-2023
H85158	VG/Nixamide 6mg Solution without flavouring 30ml	24-Apr-2023

element

Study Reference: HAL23-043

Glossary

Term	Definition
ACM	Aerosol Collected Mass
SD	Standard Deviation
%RSD	Relative Standard Deviation expressed as a percentage
LLD	Low-Liquid Detection
PG	Propylene Glycol
VG	Vegetable Glycerin
EG	Ethylene glycol
DEG	Diethylene glycol
LoQ/LLoQ	(Lower) Limit of Quantification as determined during method validation.
U	Uncertainty of measurement – expanded uncertainty with k=2 unless otherwise stated.
S	Seconds
mL	Millilitres
g	Grams
LC-MS	Liquid Chromatography-Mass Spectrometry
GC-MS	Gas Chromatography-Mass Spectrometry
GC-FID	Gas Chromatography-Flame Ionisation Detection
ICP-MS	Inductively Coupled Plasma-Mass Spectrometry

Aerosol Generation Conditions

Aerosol samples were generated using a regime described in Table 1 and based upon those described in CRM 81 / ISO 20768.

Table 1

I au	16 1
Instrument	Cerulean SM450e
Puff Volume	55 mL
Puff Duration	3 s
Puff Interval	30 s
Puff Block	Testing suite dependant
Vaping Angle	-45°
Puff Profile	Square Wave

CFPs and holders were weighed pre and post each puff block to enable ACM to be calculated.

Study Reference: HAL23-043

Test Method: TM_SOP_045* (e-liquid)

Major Components (Nicotine, Propylene Glycol, Glycerin and Menthol) in E-liquids and ENDS Emissions by GC-FID

Storage conditions: Ambient

The results of 3 replicates are described in Table 2.

Table 2

Element Sample ID	Test	Start Date	End Date	Nicotine	Mean	%RSD	PG	Mean	%RSD	VG	Mean	%RSD	Units						
	1	40 1.1	47 1	<0.08			<2			993			mg/g						
H85138	2	13-Jul- 2023	17-Jul-	<0.08	n/a	n/a	<2	n/a	n/a	973	988	1.3%	mg/g						
	3	2023	2023	<0.08			<2			998			mg/g						
	1	40 1	12 Jul	12 Iul	12 Jul	12 Jul	12 Jul	12 Jul	17-Jul-	<0.08			<2			993			mg/g
H85158 2	2	13-Jul-		<0.08	n/a	n/a	<2	n/a	n/a	>1,000*	n/a	n/a	mg/g						
	3	2023	2023	<0.08			<2	<2		>1,000*			mg/g						

^{*}Greater than upper LOQ of method TM_SOP_045 for VG

Test Method: TM_SOP_045* (Aerosol Emissions)

Major Components (Nicotine, Propylene Glycol, Glycerin and Menthol) in E-liquids and ENDS Emissions by GC-FID

Storage conditions: Ambient

The results of 3 replicates are described in Table 3 - Table 4. Aerosol generated using Innokin Zlide Tank (0.48 Ohm Mesh Coil) and Evolv™ battery unit (power set at 12W)

Table 3:

				•	un.0 0.					
Element Sample ID	Test	Start Date	End Date	Nicotine	Mean	%RSD	PG	Mean	%RSD	Units
	1	24 1.1	24 1	<1.0			<25			µg/puff
H85138	2	21-Jul- 2023	21-Jul- 2023	<1.0	n/a	n/a	<25	n/a	n/a	µg/puff
	3	2023	2023	<1.0			<25			µg/puff
	1	21-Jul-	24 1	<1.0			<25			µg/puff
H85158			21-Jul- 2023	<1.0	n/a	n/a	<25	n/a	n/a	μg/puff
	3	2023	2023	<1.0			<25			μg/puff

Table 4:

					Table 4.						
Element Sample ID	Test	Start Date	End Date	VG	Mean	%RSD	Units	ACM	Mean	%RSD	Units
	1	04 1	24 1	3199			µg/puff	0.0691			g
H85138	2	21-Jul- 2023	21-Jul- 2023	3912	3553	10.0%	µg/puff	0.0810	0.0737	7.11%	g
	3	2023	2023	3547	3333		µg/puff	0.0709			g
	1	04 1	04 11	4337			µg/puff	0.0846			g
H85158	2	21-Jul- 2023	21-Jul- 2023	5312	4717	11.1%	µg/puff	0.0964	0.0897	5.52%	g
	3	2023	2023	4502	4502		µg/puff	0.0881			g

Test Report Number: HAL23-043-0-1

Page 5 of 8

Test Method: TM_SOP_005 (Aerosol Emissions)

Mono-carbonyl analysis: Formaldehyde, acetaldehyde, butyraldehyde in e-liquids / aerosol emissions by LC-MS. Aerosol generated as described in Table 1. Aerosol generated using Innokin Zlide Tank (0.48 Ohm Mesh Coil) and Geekvape NOVA TC battery unit (power set at 12W)

Storage conditions: Ambient

The results of 3 replicates are described in Table 5 - Table 6

Note: Method deviation – d2-formaldehyde IS for calculated response of acetaldehyde (Risk Assessment (RA-034)

Table 5:

Element Sample ID	Test	Start Date	End Date	Formaldehyde	Mean	%RSD	Acetaldehyde	Mean	%RSD	Units
	1	13-Jul-	14-Jul-	2.345			0.040			μg/puff
H85138	2	2023	2023	1.460	1.985	0.2	0.030	0.038	0.2	µg/puff
	3	2023	2023	2.149			0.044			µg/puff
	1	10 1	44 1	0.311			0.011			µg/puff
H85158	2	13-Jul- 2023	14-Jul- 2023	0.152	0.250	0.3	< 0.005	n/a	n/a	μg/puff
	3	2023	2023	0.286			0.006	*		μg/puff
U		-		23 -		-	27		-	%

Table 6:

				IUDIC						
Element Sample ID	Test	Start Date	End Date	Butyraldehyde	Mean	%RSD	ACM	Mean	%RSD	Units
	1	40 1	44 1	<0.005			0.2326			g
H85138	2	13-Jul-	14-Jul-	<0.005	n/a	n/a	0.1998	0.215	0.1	g
	3	2023	2023	<0.005			0.2138			g
	1	40 1	44 1	<0.005			0.2526			g
H85158	2	13-Jul- 2023	14-Jul- 2023	<0.005	n/a	n/a	0.5393	0.353	0.4	g
	3	2023	2023	<0.005			0.2675			g
U		-		10			-			%

Test Method: TM_SOP_050* & TM_SOP_001 (Aerosol Emissions)

Flavours and VOCs in e-liquids / aerosol emissions by GC-MS. Aerosol generated as described in Table 1.

Storage conditions: Ambient

The results of 3 replicates are described in Table 7 - Table 9. Aerosol generated using Innokin Zlide Tank (0.48 Ohm Mesh Coil) and Geekvape NOVA TC battery unit (power set at 12W).

Table 7:

Element Sample ID	Test	Start Date	End Date	2-3 Pentane- dione	Mean	%RSD	Acryl- onitrile	Mean	%RSD	Benzene	Mean	%RSD	1- butanol	Mean	%RSD	Units
	1	01 1	01 110	<0.10*			<0.10*			<0.10*			<0.10*			μg/puff
H85138	2	01-Aug- 2023	01-Aug-	<0.10*	n/a	n/a	<0.10*	n/a	n/a	<0.10*	n/a	n/a	<0.10*	n/a	n/a	μg/puff
	3	2023	2023	<0.10*			<0.10*			<0.10*			<0.10*			μg/puff
	1	01 010	01 Aug	<0.10*			<0.10*			<0.10*			<0.10*			μg/puff
H85158	2	01-Aug- 2023	01-Aug- 2023	<0.10*	n/a	n/a	<0.10*	n/a	n/a	<0.10*	n/a	n/a	<0.10*	n/a	n/a	μg/puff
	3	2023	2023	<0.10*			<0.10*			<0.10*			<0.10*			μg/puff

Table 8:

Element Sample ID	Test	Start Date	End Date	Diacetyl	Mean	%RSD	Isoamyl acetate	Mean	%RSD	Isobutyl acetate	Mean	%RSD	Methyl Acetate	Mean	%RSD	Units
	1	04 4	04 4	<0.10*			<0.10*			<0.10*			<0.10*			μg/puff
H85138	2	01-Aug-	01-Aug- 2023	<0.10*	n/a	n/a	<0.10*	n/a	n/a	<0.10*	n/a	n/a	<0.10*	n/a	n/a	μg/puff
	3	2023	2023	<0.10*			<0.10*			<0.10*			<0.10*			μg/puff
	1	04 4	04 4	<0.10*			<0.10*			<0.10*			<0.10*			μg/puff
H85158	2	01-Aug- 2023	01-Aug- 2023	<0.10*	n/a	n/a	<0.10*	n/a	n/a	<0.10*	n/a	n/a	<0.10*	n/a	n/a	μg/puff
	3	2023	2023	<0.10*			<0.10*			<0.10*			<0.10*			μg/puff

Table 9:

Element Sample ID	Test	Start Date	End Date	Methyl acetate	Mean	%RSD	Toluene	Mean	%RSD	Units	ACM	Mean	%RSD	Units
	1	04.4	04.4	<0.10*			<0.10*			μg/puff	0.2161*			g
H85138	2		01-Aug- 2023	<0.10*	:0.10* n/a	n/a	<0.10*	n/a	n/a	μg/puff	0.2162*	n/a	n/a	g
	3	2023		<0.10*	1		<0.10*			μg/puff	0.2423*			g
	1	04 0		<0.10*		<0.10*			μg/puff	0.2337*			g	
H85158	2			<0.10*	n/a	n/a	<0.10*	n/a	n/a		0.2351*	n/a	n/a	g
	3	2023		<0.10*	7		<0.10*			μg/puff	0.1881*			g

Test Report Number: HAL23-043-0-1

Page 7 of 8

Test Method: TM_SOP_050* & TM_SOP_002 (Aerosol Emissions)

Flavours and VOCs in e-liquids / aerosol emissions by GC-MS. Aerosol generated as described in Table 1.

Storage conditions: Ambient

The results of 3 replicates are described in Table 10 - Table 11. Aerosol generated using Innokin Zlide Tank (0.48 Ohm Mesh Coil) and Geekvape NOVA TC battery unit (power set at 12W).

Table 10:

Element Sample ID	Test	Start Date	End Date	Acrolein	Mean	%RSD	Croton- Aldehyde	Mean	%RSD	Units	ACM	Mean	%RSD	Units
	Rep 1	12-Jul- 2023	12-Jul- 2023	<0.10*	n/a	n/a	<0.50*		a n/a	μg/puff	0.2648*	n/a	n/a	g
H85138	Rep 2			<0.10*			<0.50*	n/a		μg/puff	0.1987*			g
	Rep 3	2023	2023	<0.10*			<0.50*			μg/puff	0.2239*			g
H85158	Rep 1	12-Jul- 2023	12-Jul- 2023	<0.10*	n/a	n/a	<0.50*	n/a	n/a	μg/puff	0.2121*	n/a	n/a	g
	Rep 2			<0.10*			<0.50*			μg/puff	0.2634*			g
	Rep 3			<0.10*			<0.50*			μg/puff	0.2798*			g

Table 11

					able 11.					
Element Sample ID	Test	Start Date	End Date	Furfural	Mean	%RSD	Propylene Oxide	Mean	%RSD	Units
	Rep 1	12-Jul-	12-Jul- 2023	0.76*	0.69*	13.61*	<0.50*	n/a	n/a	µg/puff
H85138	Rep 2			0.58*			<0.50*			μg/puff
	Rep 3	2023		0.71*			<0.50*			μg/puff
H85158	Rep 1	Rep 1 Rep 2 Rep 3	12-Jul- 2023	<0.50*		n/a	<0.50*	n/a	n/a	μg/puff
	Rep 2			<0.50*	n/a		<0.50*			μg/puff
	Rep 3			<0.50*			<0.50*			μg/puff

End of Test Report

Test Report Number: HAL23-043-0-1

Page 8 of 8