
www.edscratchapp.com

EdScratch lesson plans
Teacher guide and answer key

The EdScratch Lesson Plans Set by Microbric and Emma Dewar is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

Learn more at www.meetedison.com

3.2.4.3.2 rev2

http://www.meetedison.com.
http://www.meetedison.com.

www.edscratchapp.com

About this guide
What’s in this guide...4
Understanding the activity types...5
Using the answer key..6
Supplies you will need...7
Frequently asked questions...8
Before you start...10
Programming Edison V3...11

Troubleshooting...12

Unit 1 - Get started

Let’s explore our Edison robots..15
Let’s explore barcode programming...17
Let’s explore the EdScratch environment..25

Let’s explore warning messages...28

Unit 2 - Move it

Let’s explore how computers ‘think’..30
Let’s explore driving Edison..35
Let’s explore Edison's outputs..38
Let’s explore input parameters...40
Let’s explore Edison’s musical talents...44
Let’s explore Edison’s motors...48

Unit 3 - Got loops?

Let’s explore repeating steps..54
Let’s explore loops and sequence..62
Let’s explore forever loops..63
Let’s explore stacking and nesting loops...65
Let’s explore interrupting the main program..67

Let’s explore comments in coding...70

Contents

www.edscratchapp.com

Unit 4 - What if...

Let’s explore using conditionals..76
Let’s explore if statements..80
Let’s explore stacking and nesting if statements..82
Let’s explore pseudocode..84
Let’s explore Edison’s line tracker..86
Let’s explore Edison’s obstacle detection...90

Let’s explore messaging with Edison...93

Unit 5 - Versatile variables

Let’s explore messaging expressions..102
Let’s explore Edison’s light sensors...104
Let’s explore variables..107

Let’s explore using variables with sensor data...111

Unit 6 - Inventors time!

Let’s explore the design-build-test cycle..120
Invent an imaginary creature..122
Invent a burglar alarm...123
Invent a mousetrap...124
Invent a combination safe..125
Let’s explore a haunted house...126

www.edscratchapp.com
4

The EdScratch activities are designed to allow students to work independently. As students work
through the activities, they will develop a familiarity with computational thinking and fundamental
computer science concepts, mastering a range of related skills as they progress. This guide outlines
more about the concepts to be taught, approaches to be taken, skills to develop and processes to be
learned. Here you will find strategies, ideas, and further information to help make teaching using Edison
and EdScratch effective, easy and fun.

What’s in this guide
The EdScratch lesson activities are organised into six units – from an initial preparatory unit to a
culminating project-based unit – with each unit containing one or two lessons. Each lesson contains a
mix of structured and open-ended activities that introduce the key concepts and learning objectives
while engaging students in active exploration of the learnings.

This guide provides an overview and supporting information for all of the EdScratch units, lessons and
activities. In this guide you will find:

•	 an overview of each unit, including the key learning objectives of that unit,

•	 an overview of each lesson with a list of all activities in that lesson,

•	 a dedicated section per activity detailing:

	 - the activity’s purpose and objectives,
	 - supporting information including estimated time requirements, supply requirements, and tips 	
	 for delivery, and
	 - an answer key including recommendations on assessing student work.

Creative Commons licence
These teaching recourses have been released under a Creative Commons licence. You are free to use
these resources as they are, translate them, share them or use them as the base to develop your own
customised lessons.

Licence and attribution details
The EdScratch Lesson Plans Set is comprised of the EdScratch lesson activities and this guide. The
collection is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Developed and written by: Microbric and Emma Dewar
Illustrations by: Emma Dewar

EdScratch is developed by Microbric Pty Ltd using open source software created and maintained by the Scratch Foundation.
The Scratch Foundation does not sponsor, endorse, or authorize this content. See scratch.mit.edu for more information.

About this guide

www.edscratchapp.com
5

The EdScratch lessons are comprised of activities designed to gradually introduce and reinforce
computational thinking, computer science and problem-solving skills. All lessons include base activities
which introduce key ideas and contain tasks requiring students to apply what they have learned.
Supplemental extension activities, designed to further explore and expand on the core learnings of each
lesson, are also included.

There are three types of lesson activities: ‘Let’s explore’ activities, ‘Change it up’ activities, and ‘Challenge
up’ activities.

Let’s explore activities – core learning
All lessons include ‘Let’s explore’ activities. These activities are the base activities which introduce new
concepts and explain key ideas. ‘Let’s explore’ activities include explanations and guidance around
the core learnings, then have tasks for students to complete. The tasks allow students to explore the
concepts and skills being introduced.

Change it up activities – extension activities
‘Change it up’ activities are extension activities that reinforce skills and concepts that have already been
introduced. While ‘Change it up’ extension activities do not introduce new material, they do offer new
projects or tasks to try. ‘Change it up’ activities are generally less structured than ‘Let’s explore’ activities
but still include sufficient guidance and hints to help students undertake the tasks or projects.

Challenge up activities – extension activities
Similar to ‘Change it up’ activities, ‘Challenge up’ activities are also extension activities which expand
on and reinforce the material that has been previously introduced. The tasks and projects outlined in
‘Challenge up’ activities are generally more open-ended and offer less structured guidance than ‘Let’s
explore’ or ‘Change it up’ activities.

A note on activity size estimates
The size estimates (given as ‘small’, ‘medium’, ‘large’, or ‘project’) are indications of the size of the
activity compared to other activities in the EdScratch lesson set. The time required to complete an
activity can vary greatly depending on each students’ age, experience and interest in the activity.

As a general rule:

•	 ‘small’ activities will require less than one standard teaching block (less than 45 minutes)

•	 ‘medium’ activities should be able to be completed within one standard teaching block
(45 minutes or less)

•	 ‘large’ activities may take students more than one full teaching block
(approximately 45 minutes – 90 minutes)

•	 ‘projects’ are complex activities which will generally need multiple teaching blocks
(minimum of 90 minutes)

It is recommended to work through a few introductory activities with your students to gauge how long
they will need, on average, to complete activities of each size.

Understanding the activity types

www.edscratchapp.com
6

All of the EdScratch activities have tasks or projects to be completed. Many of the worksheets also
require students to note down elements of their experience or to provide answers to questions in various
formats. For every activity which has students provide answers to a question or questions, you will find
an answer key in that activity’s section.

The answer key lists both the question number and question type, then provides the answer (or sample
answer) along with marking notes, as required.

Example answer key:

Question Type Sample answer Marking notes
1 SE When I turned Edison on, the red LEDs came

on and started flashing. Edison also made a
chirping noise one time.

There are two key things to look for in
students’ answers:

•	 The robot’s red LED lights turn on and
begin to flash.

•	 The robot makes a noise.

Answer types
The answer type column identifies what style of response the question has asked students to provide.
There are three possible answer types:

•	 Exact answer (EA): a question which has an exact solution which the student must provide.

•	 Result code (RC): a question which asks students to capture the code they have as a result of their
programming, where a variety of code solutions are possible.

•	 Student experience (SE): a question which asks students to capture their experiences or outcomes
as a result of their experimentation and programming, where a variety of responses are possible.

It is valuable to note the answer type when marking students’ work. When marking result code (RC) or
student experience (SE) type answers, it is important to remember that many answers are possible.

Using the answer key

www.edscratchapp.com
7

Supplies you will need
All lesson activities require a set of V3.0 Edison robots and internet-connected programming devices
(desktops, laptops, Chromebooks or tablets). Be sure to read the ‘Before you start’ section of this guide
carefully to learn how to set up your programming devices to work with EdScratch. Ideally, you will want
to have an equal number of Edison robots and programming devices.

The majority of the lesson activities are designed to work in a 1:1 student-to-robot ratio. However, some
of the activities are best suited to pair or group work, with multiple students sharing one or more Edison
robots. Learning about robots can initially be an overwhelming task for some students, especially if they
are new to computer science, so having a supportive partner can often be helpful.

The majority of the ‘Let’s explore’ base activities can be completed using just basic supplies along with
the student worksheets and activity sheets included in the EdScratch lesson activities set. Many of the
‘Change it up’ and ‘Challenge up’ extension activities require additional supplies to enable students to
get the most out of physical computing. The following lists detail the basic supplies and key additional
resources you need to get the most out of the EdScratch lesson activities.

Basic supplies:
•	 Full set of Edison robots

•	 Full set of programming devices (computers or tablets)

•	 Print-outs of student worksheets and activity sheets

Additional resources:
•	 Dark coloured tape (e.g. black electrical tape)

•	 Torches (flashlights)

•	 Opaque objects to use as obstacles and walls for 3D mazes

•	 TV or DVD remote controls

•	 EdCreate kits and any other LEGO brick compatible building system parts

•	 Various ‘maker-space’ craft and build materials [such as coloured construction paper, large-sized
paper (e.g. butcher’s paper), glue, felt, cardboard, pipe cleaners, recycled materials, and other similar
materials]

https://meetedison.com/wp-content/uploads/2024/01/Getting-started-with-Edison-V3.pdf

www.edscratchapp.com
8

Frequently asked questions
The following section includes some of the most common questions about using the EdScratch lesson
activities set. Additional information about using the Edison robots, including troubleshooting help, is
available at the Meet Edison website: www.meetedison.com

Q: How much do students need to already know about coding and robotics to use these lessons?

A: No prior knowledge of either coding or robotics is needed to complete the EdScratch lessons. If you or
your students are new to coding and robotics, you may find working through the lessons in the order they
are presented in this guide to be the best way to build up your knowledge and get the most out of these
activities.

Q: Do students need to know Scratch to use these lessons? Do these lessons tie into Scratch?

A: The lessons assume that students have not used a Scratch programming environment previously. If
students are familiar with Scratch, however, they will likely find using the EdScratch environment fairly
straightforward.

Q: Do students need to do all the activities in a unit to cover the learning objectives of that unit?

A: The EdScratch lessons are designed to gradually introduce and reinforce key computational thinking,
computer science and problem-solving skills. All lessons include ‘Let’s explore’ activities. These activities
introduce new concepts, terminology and explain key ideas. These core learnings are then expanded
and reinforced through the ‘Change it up’ and ‘Challenge up’ extension activities in the lesson. This
modular design is intended to allow for more flexible teaching and learning through a mix of whole-
class, small groups, pair work and individual study.

Having students complete all of the ‘Let’s explore’ activities in a unit will ensure that they are introduced
to all of that unit’s key computational thinking and computer science learning objectives. You may find
that using at least a few of the ‘Change it up’ or ‘Challenge up’ extension activities in a unit will help
students cement their understanding of important topics and build up skills. Including some of the
‘Change it up’ and ‘Challenge up’ extension activities will also ensure students get exposure to real-world
problem-solving and robotics project opportunities.

Q: Are the solutions in the answer key the only correct answers?

A: In some cases, there is a single correct answer, but in most cases many solutions are possible.
Programming is creative – don’t be too quick to dismiss your students’ ways of thinking. What might
appear to be ‘incorrect’ can be an acceptable solution, even when a more elegant solution is also
possible.

Q: Can I modify the suggested activities and projects?

A: Absolutely! Tools, such as Edison and EdScratch, can be powerful motivators on their own. However,
to get the most out of any ‘cool tool’, it needs to relate directly to the interests of the students using
it. Choosing extension activities and projects that are the most relevant to your students’ lives and
interests will help them to get the most out of the lessons overall.

http://www.meetedison.com

www.edscratchapp.com
9

Q: Do I need to follow the units in order? Do I need to do the lessons and activities inside a unit
in order?

A: The EdScratch lessons are designed to allow for flexible teaching. You may choose to rearrange the
content to best suit your students’ needs. For example, you may want to move some units, lessons
or activities around to match better with other areas of study your students are engaged in at the
time. If your students have used Edison robots before (for example, with the EdBlocks programming
environment) you may also choose to skip some activities.

The student worksheet set also includes an index at the end of the collection. If you are looking for
lessons that relate to a specific topic (for example, sequence or algorithms) or that use a particular
feature of Edison (for example, the motors or the line tracking sensor) you may find this index helpful in
selecting activities from across units.

However, practical skills in computer science need to be built up from some key foundational concepts,
and some elements of the lessons are progressive. As such, you may find it easiest to work through the
lessons and activities sequentially.

Q: Should the whole class work on the same activity together? Can students jump ahead?

A: How you teach the content is really up to you! All of the lessons are designed to enable independent
learning by your students. You may choose to let students progress through all or some of the
material at their own pace. Units make good stopping points, so you may choose to let students work
independently through a unit, but no further, for example.

Depending on your students’ ages, abilities and familiarity with Edison robots and Scratch programming
environments, you may find that some students complete activities more quickly than others. Making
‘Change it up’ and ‘Challenge up’ extension activities available for students to work through at their own
pace can help keep the entire class engaged but on the same topic.

As programming is, at its heart, about participation, collaboration, creativity and sharing, having
students who finish an activity more quickly work together with others who require additional time is
another great way to keep the whole class engaged and progressing together.

Q: What reading level do students need to read at to use the student worksheets
independently?

A: The original set of student worksheets, written in Australian English, are designed for independent use
by students in Year 5 (10-11 years old) and above. Overall, the complete worksheet set has an average
reading level of 6.6 on the Flesch-Kincaid Grade Level scale with later units averaging slightly higher
reading requirements than earlier units.

Please note: Translated and modified versions of these lessons may have different reading level
requirements.

www.edscratchapp.com
10

Before you start

Before using Edison with your students, you will need to set up the programming devices, (i.e. the
computers, laptops, Chromebooks or tablets) you will be using with the EdScratch app and get the
Edison robots ready.

This guide shows the basics and troubleshooting help for getting set up to use Edison with EdScratch.
Additional details, including information about Edison’s other programming languages, can be found
in the free Getting started with Edison guide available at https://meetedison.com/wp-content/
uploads/2024/01/Getting-started-with-Edison-V3.pdf

Charging Edison V3 - USB

To power up Edison V3, you can use a USB-A power source like a computer’s USB-A port, a USB-A wall
adapter, or a USB-A power bank.

Once you have selected your power source, connect Edison’s USB cable to the USB-A port on that
source.

During charging, both LED lights on Edison V3 will flash simultaneously. When Edison is fully charged,
the lights will stop flashing and remain on steadily.

It takes approximately 4 to 5 hours to charge Edison’s battery to full capacity.

Once charging is finished, unplug Edison’s USB cable from the device or power source. Neatly fold the
USB cable and tuck it into the USB cable compartment.

Charging Edison V3 - EdCharger
Connect the EdCharger’s USB cable to a USB-A power source, such as a computer’s USB-A port, a USB
wall adapter (minimum 1 amp/5 watts), or a power bank.

Position Edison V3 inside the charger, ensuring the clear top faces the EdCharger markings on its front.

While charging, both LED lights on Edison V3 will flash simultaneously. Once the battery is fully 	
charged, the lights will cease flashing and remain lit.

Additionally, the EdCharger can serve as a storage unit for your Edison robots. It automatically oversees
the charging process, ensuring Edison V3 is always prepared for action.

https://meetedison.com/wp-content/uploads/2024/01/Getting-started-with-Edison-V3.pdf
https://meetedison.com/wp-content/uploads/2024/01/Getting-started-with-Edison-V3.pdf

www.edscratchapp.com
11

Programming Edison V3 in the EdScratch language

EdScratch is a vertical block-based programming language for the Edison robot based on Scratch.
EdScratch combines the ease of drag-and-drop programming with powerful functionality and flexibility.

The EdScratch programming language app is at this URL: https://www.edscratchapp.com/

Windows, Chromebook, Mac, Linux, and Android
Running a test program is a great way to get started using EdScratch.
Follow these steps to test EdScratch on your computer:

1.	 Open the EdScratch app at edscratchapp.com using one of the following browsers Chrome, Edge,
or Opera.

2.	 When EdScratch opens click ‘Menu’ and select ‘Load Demos.’ Select the program called
‘Test_Program’ which will load in the programming environment.

3.	 Plug the Edison V3 robot’s USB cable in to the computer’s USB-A port.

4.	 From the EdScratch app, press the ‘Program’ button (top right corner).

5.	 A popup window will appear asking to connect to Edison V3. Select
‘Edison V3 – Paired’ and click ‘connect’.

6.	 The program will download to Edison V3 and you will hear the
‘success’ sound (the same tune Edison plays when you turn
Edison on).

7.	 Disconnect Edison from the USB port and press the triangle
button on Edison to run the program.

EdScratch for iPad
If you are using an iPad to program your Edison, follow these steps to test EdScratch on your iPad:

1.	 Open the EdScratch app at edscratchapp.com using one of the following browsers Chrome, Edge,
or Opera.

2.	 When EdScratch opens, you will see the programming environment. Click ‘Menu’ and select ‘Load
Demos.’ Select the program called ‘Test_Program’ which will load in the programming environment.

3.	 Press the ‘Program’ button in the app (top right corner) and the screen flasher download box
appears.

4.	 Place your Edison V3 over the outline and press Edison V3’s round
button one time, both LEDs will come on.

5.	 Press ‘download program’ in the download box, and the program will
start downloading to Edison V3.

6.	 When the program has downloaded to Edison V3 you will hear the
‘success’ sound (the same tune Edison plays when you turn Edison on).

7.	 Press the triangle button on Edison to run the program.

https://www.edscratchapp.com/

www.edscratchapp.com
12

Troubleshooting

While Edison robots are designed to be user-friendly and intuitive straight out of the box, occasional
issues, common to any computing device, may arise. Explore these troubleshooting tips to swiftly resolve
any queries you might encounter.

Check the browser

Checking that Edison’s USB cable is pushed all the way into your device’s USB-A port. Then, check that
the browser you are using to program Edison is Use Google Chrome, Microsoft Edge or Opera.

Check the connectivity status
If this error is visible ‘There seems to be a network issue accessing the compiler’ message after pressing
the ‘Program’ button in the app, or if the program failed to download successfully, you will need to check
the app’s connectivity status.

The app need to access the compiler. The compiler is what converts the programs you see on the screen
into a format that can be sent to the Edison robot inside the app.

To check your connection and thus ensuring that the app can access the compiler, open ‘Menu’ in the
upper left-hand corner and select ‘Help’. This will open a pop-up which includes the option to ‘Run the
connection checker’. Click this button to check your connection.

If the connection test result shows ‘NO SERVER FOUND’ then you may be behind a firewall, which is
blocking access to the compiler.

To fix the problem, contact your network administrator and ask that them to unblock ports 80, 8080, 443
and 8443 and white list these addresses:

•	 https://www.edscratchapp.com

•	 https://www.edblocksapp.com

•	 https://www.edpyapp.com

•	 https://api.edisonrobotics.net

•	 52.8.213.196

•	 13.210.175.93

•	 52.52.42.133

iPad screen flasher not downloading
The iPad screen flasher download uses the iPad’s screen to flash the program’s code to the line tracking
sensor. A few things can affect how well this works.

Ambient Light – Move away from any bright direct and indirect sunlight.

Screen brightness setting – experiment with different brightness levels between 50% and 100%

Age of iPad – Older iPads have slower screens. Set the speed setting to ‘reliable’

No USB-A port
If your computer only has USB-C ports you will need a USB-C to USB-A adaptor.

Drive troubleshooting
On occasion, you may need to straighten the drive of your Edison robot. If you are having trouble
with how Edison is driving, such as the robot is not driving straight, you will need to perform a drive
calibration on the robot.

Full instructions and the resources you need for your version robot can be found at https://meetedison.
com/edison-robot-support/drive-calibration/

https://www.edscratchapp.com
https://www.edblocksapp.com
https://www.edpyapp.com
https://api.edisonrobotics.net
https://meetedison.com/edison-robot-support/drive-calibration/
https://meetedison.com/edison-robot-support/drive-calibration/

www.edscratchapp.com
13

Line tracking troubleshooting
If you are having trouble with a line tracking program, check the following:

•	 Only use non-glossy paper and, if laminating the paper, only use a matte-finish laminate.

•	 Edison will be best able to follow a line if that line is a very dark colour (such as black),
approximately 1.5cm (0.6 inches) wide and found on a white background.

•	 Always start the robot on the white background, never on the line itself.

•	 Avoid running line tracking programs in very bright light, such as sunlight, as this can negatively
affect the program.

•	 Double-check your program to ensure you have the line tracking sensor turned on.

Obstacle detection troubleshooting
If you are having trouble with an obstacle detection program, check the following:

•	 Ensure that your Edison robot’s obstacle detection is properly calibrated using the barcode and
instructions available at https://meetedison.com/obstacle-detection-calibration/.

•	 Edison will be best able to detect obstacles which are opaque but not too dark (e.g. not black) and at
least as tall as Edison.

•	 Avoid running obstacle detection programs in very bright light, such as sunlight, as this can
negatively affect the program.

•	 All of the Edison programming languages except for EdBlocks and the barcodes require the obstacle
detection sensor to be turned on to work. Double-check your program to ensure you have the
obstacle detection sensor turned on.

Still not working?
You can find more troubleshooting ideas on our website at https://meetedison.com/edison-robot-
support/trouble-shooting/ or you can contact us for support at https://meetedison.com/edison-robot-
support/contact-us/

Our team of friendly Technical Support Officers will do their best to help you out!

https://meetedison.com/obstacle-detection-calibration/.
https://meetedison.com/edison-robot-support/trouble-shooting/
https://meetedison.com/edison-robot-support/trouble-shooting/
https://meetedison.com/edison-robot-support/contact-us/
https://meetedison.com/edison-robot-support/contact-us/

www.edscratchapp.com
14

Prepare for your EdVenture! This initial unit introduces students first to the Edison robot and then to the
EdScratch programming environment. Students gain familiarity with the Edison robot through a series of
activities including programming the robots using barcodes. They then learn the basics of the EdScratch
programming environment in preparation for the next unit.

Learning objectives
Students will:

•	 develop a working familiarity with the Edison robot, including its key physical features (power switch,
sensors and buttons)

•	 be able to program an Edison robot using barcodes

•	 know how to access EdScratch and how to download a program from EdScratch to Edison.

Key ideas: hardware versus software, Edison’s buttons and sensors, EdScratch terminology and basic
features.

Unit 1 - Get started

www.edscratchapp.com
15

Let’s explore our Edison robots

Activity size: Small
Delivery recommendations: Recommended if your students are new to Edison robots.
Resources needed: Edison robot, worksheet on page 3.

Overview
This lesson introduces students to the Edison robot, including the location of the robot’s buttons
and sensors. Students familiarise themselves with their robot and its parts. Establishing a working
understanding of the robot in this way will help set students up for success in future lessons.

Tips and tricks
•	 It may be helpful to have students keep this activity sheet for their review of Edison’s components in

future lessons.

•	 Some of the robotics projects in later lessons will require students to remove the wheels and skid
from Edison. Understanding that this is possible can help open up students’ imaginations to what
the robot might be able to become. It is recommended that students practice at least removing the
wheels. If you want students to practice removing the skid as well, consider having them do so over
something, like a plastic tray, so that if they drop the skid, it is easier to locate.

•	 If your students are interested in learning more about what is on Edison’s motherboard, you can
download the full-size motherboard layout guide at https://meetedison.com/content/Edison-
Motherboard-layout-V2.pdf

Answer key

Question Type Sample answer Marking notes
1 SE When I turned Edison on, the red LEDs came

on and started flashing. Edison also made a
chirping noise one time.

There are two key things to look for in
students’ answers:

The robot’s red LED lights turn on and begin
to flash, and the robot makes a noise.

https://meetedison.com/content/Edison-Motherboard-layout-V3.pdf
https://meetedison.com/content/Edison-Motherboard-layout-V3.pdf

www.edscratchapp.com
16

Bricks, blocks and Edison

Activity size: Small
Delivery recommendations: If students have never used LEGO bricks with Edison before, this is a fun
activity to help get them excited
Resources needed: Edison robots, worksheet on page 5, EdCreate kits or any other LEGO brick com-
patible building system.

Overview

Edison is so much more than just a ‘car’ style programmable robot. Using Edison as the building block
base in robotics projects is one of the best ways to see the power of programming and robotics come
to life. This fun STEAM (science, technology, engineering, arts, and maths) activity is designed to be a
low-risk task that gives students a chance to experiment with ‘engineering’ using Edison. The free-form
building task encourages kids to experiment, tap into their creativity, and begin to explore some of the
tactile engineering components of physical computing.

Tips and tricks

•	 Edison works with any LEGO brick compatible building system, including the EdCreate robot
creator’s kit. Bricks can be attached to the top and bottom of the Edison robot and pegs can be
attached to the robot’s sides. When Edison’s wheels are removed, cross axles can be used in the
powered sockets.

•	 You may want to add mini challenges to this activity such as ‘build as high as you can’ or ‘make sure
Edison’s buttons are still accessible’.

•	 You may choose to get students to include why they created the design they did in their answer.

Answer key

Question Type Sample answer Marking notes
1 SE My Edison had a big tower on the top of

the robot..
This is a free-form activity.

www.edscratchapp.com
17

Let’s explore barcode programming

Activity size: Medium
Delivery recommendations: Recommended if your students are new to Edison robots.
Resources needed: Edison robots, worksheet on page 6, activity sheet on page 21, torches (flashlights),
objects for making obstacles, optional: EdMat.

Overview
Students explore some of Edison’s sensors in action using pre-set programs. Seeing what the robots are
capable of without needing to do any coding is a great way to deliver early success and get students
motivated for upcoming activities.

This activity includes five programs stored in Edison’s memory, which are accessed using special
barcodes. Details on each barcode-activated program follow.

Clap controlled driving:
Edison’s sound sensor is responding to loud sounds, such as claps. Edison will turn right when it detects
one clap or drive forward about 30cm if it detects two claps.

Tips and tricks

•	 The robots may struggle to detect and differentiate sounds when there is a high level of background
noise. Having students tap a finger near the sound sensor on the top of their Edison robot will have
the same effect as clapping.

Avoid obstacles:
The avoid obstacles program uses the Edison robot’s infrared (IR) light LEDs and IR sensor to detect
objects directly in front of the robot. Once the pre-set program is activated, the Edison robot will drive
forward, turning as needed to avoid obstacles it encounters.

Tips and tricks

•	 Obstacles need to be opaque but not too dark (e.g. not black) and at least as tall as Edison for the
robot to detect them.

Follow a torch:
In this program, Edison’s two light sensors at the front-left and front-right of the robot take light
readings of the amount of visible light each one detects. The readings are then compared to each other.
If the level of light detected by the right sensor is higher than the level of the left sensor, then Edson’s
left motor is driven forward, turning Edison right, towards the light. This movement will continue until the
level of light detected by the left sensor has the greater value. At that time, the left motor will stop, and
the right motor will be driven forward, driving Edison, once again towards the light.

Tips and tricks

•	 You will need a torch (flashlight) and a flat surface located away from any other sources of bright
light, such as sunlight or overhead fluorescents to run this program.

•	 Once Edison ‘sees’ the bright source of light, the robot will drive towards it. By moving the torch,
you can control where Edison drives.

www.edscratchapp.com
18

Follow a line:
The line tracking program uses the Edison robot’s reflected light sensor to detect differences between
dark and light surfaces beneath the robot. Once the pre-set program is activated, the Edison robot
will drive until it finds a dark coloured line, then follow that line. In this program, Edison’s line tracking
sensor shines light from its red LED on to the surface beneath the robot. The sensor then measures
the amount of light that is reflected back to the robot. White surfaces reflect a lot of light, giving a high
light level reading while black surfaces reflect very little, giving a low light level reading. Edison adjusts
direction according to these light level readings. When Edison is off the line, it turns right to get on the
line. However, when Edison is on the line, it turns left to get off the line. This functionality is why Edison
‘waddles’ back and forth at the edge of the line.

Tips and tricks

•	 The difference between the dark and light surfaces needs to be easily understood by the robot.
Either use the thick, dark lines on the activity sheet, those on an EdMat (free download available at
https://meetedison.com/edmat/) or make a track for Edison to follow by drawing a dark
(e.g. black) line approximately 1.5cm (0.6 inches) wide on a white background.

•	 Make sure students start by placing Edison next to the black line, but not on top of it, so that the line
tracking sensor starts on a white surface. Always start the robot on a white surface when using the
line tracking sensor.

•	 If Edison’s wheels catch the edge of the activity sheet’s paper, this can throw the robot off slightly.
You can fix this by taping the activity sheet down or replicating the activity sheet’s pattern on a
larger piece of paper.

Bounce in borders:
Like the line tracking program, the bounce in borders program uses the Edison robot’s reflected light
sensor to detect differences between dark and light surfaces beneath the robot.
Once the pre-set program is activated, the Edison robot will drive until it encounters a dark coloured line.
It will then turn around and drive in a different direction without crossing that line.

Tips and tricks
•	 The difference between the dark and light surfaces needs to be easily understood by the robot.

Either use the thick, dark lines on the activity sheet, those on an EdMat (free download available at
https://meetedison.com/edmat/) or make a track for Edison to follow by drawing a dark
(e.g. black) line approximately 1.5cm (0.6 inches) wide on a white background.

•	 Make sure students start by placing Edison next to the black line, but not on top of it, so that the line
tracking sensor starts on a white surface. Always start the robot on a white surface when using the
line tracking sensor.

https://meetedison.com/edmat/
https://meetedison.com/edmat/

www.edscratchapp.com
19

Sumo wrestling

Activity size: Small
Delivery recommendations: Complete previous activities prior to this activity.
Resources needed: At least 2 Edison robots, worksheet on page 10, activity sheet on page 22,
optional: EdMat, objects for making your own sumo ring.

Overview
This activity uses one of Edison’s special barcodes to activate the sumo wrestling program. The program
is a favourite with students and a good way to begin to create an atmosphere of collaboration when it
comes to using the robots.

The sumo wrestling program combines aspects of two of Edison’s other programs – bounce in borders
and obstacle detection. For this program to work, you need to place at least two Edison robots on a
white-coloured surface with a black-coloured outline. The obstacle detection part of the program helps
each Edison robot find the other robots while the line detection part of the program helps Edison detect
and react to the dark-coloured border.

Tips and tricks

•	 You will need at least two Edison robots for this activity. Both robots need to scan the sumo wrestling
barcode to activate the program.

•	 Make sure the sumo ring is large enough for all the robots to drive around inside. If the ring is too
large, however, it will take longer for the robots to find each other.

•	 This program uses Edison’s line tracking sensor. If students are struggling with a line tracking pro-
gram, check that the line they are using is a very dark colour, such as black, and approximately
1.5cm (0.6 inches) wide. Also, make sure that the background is white or another highly reflective
colour. The EdMat (free download available at https://meetedison.com/edmat/) works very well
for this activity.

•	 Make sure students start by placing Edison inside the black line so that the line tracking sensor is on
a white surface. The robot can start near the black line but not on top of it. Always start the robot on
a white surface when using the line tracking sensor.

https://meetedison.com/edmat/

www.edscratchapp.com
20

Make your own barcode

Activity size: Small
Delivery recommendations: Recommended if students are new to programming.
Resources needed: Worksheet on page 11.

Overview

This offline activity reinforces how barcode programming with Edison works. Students learn the
connection between how barcodes function (i.e. by activating stored programs in the robot’s memory)
and why this means they cannot make their own barcodes. Students then embark on an exercise in
imagination – creating their own pretend program and barcode for Edison.

Tips and tricks

•	 The worksheet starts with several questions about how barcodes work. You may want to discuss
these as a group or have students think about them on their own, coming up with their answers
before handing out the worksheets. Doing so is a good exercise in extrapolation.

•	 Having students create a ‘fake’ program is a good, low-risk task to get them to start thinking about
what programs actually are. This activity gets students to start exercising computational thinking
before being introduced to the concept explicitly.

Answer key

Question Type Sample answer Marking notes
1 SE My program would have Edison put away my

clean laundry. If Edison ran my program, the
robot would drive to the laundry basket and
pick up all the clean clothes. It would then
drive to my closet and put all the clothes
away.

•	 If students have developed an
understanding of the robot’s capabilities,
they may design a program which
uses the robot’s actual functionality.
Otherwise, they may design a program
that is quite fanciful, like in the example
answer. Either is fine.

•	 You may want to see if students’
programs show a preliminary
understanding of basic computational
thinking, such as sequence, in their
programs.

•	 As the barcodes are only pretend, they
do not need to look like real barcodes.

www.edscratchapp.com
21

TV remote control barcodes

Activity size: Small
Delivery recommendations: Strongly recommend if students will be using remote controls with Edison
in later projects.
Resources needed: Edison robots, worksheet on page 12, activity sheet on page 23.

Overview

This activity introduces using Edison robots with TV or DVD remote controls. This activity is the first in
the lesson set using Edison’s IR messaging and can serve as a chance to explore that functionality.

Using remote controls with Edison gives students a chance to actively control their robots without
needing to code. This activity can excite students to learn more ways they can program the robots.

Tips and tricks

•	 The TV/DVD remote control barcodes affect Edison while the robot is in standby mode – make sure
students do NOT press the play (triangle) button after using the remote-control barcodes. Instead,
press the paired button on the remote control to activate that action.

•	 Edison is compatible with around 75% of TV and DVD remote controls. If one of your remotes doesn’t
happen to work with Edison, try a different remote, preferably a different brand. Alternatively, you
can purchase an inexpensive ‘universal remote’ and set it to be a Sony DVD remote control, which
works well with the robots.

•	 If multiple students are running programs using the remote-control codes in close physical proximity
to each other, they may experience ‘cross-talk’ where one robot receives and reacts to the remote-
control signals sent from a different group. Try spacing students out. You can also encourage them
to select different buttons on their remotes to pair with the robots to differentiate each group from
one another.

Answer key

Question Type Sample answer Marking notes
1 SE

Program Remote control button

Drive forwards Menu navigation wheel ‘up’

Drive backwards Menu navigation wheel ‘down’

Spin left Channel down

Spin right Channel up

Turn left Menu navigation wheel ‘left’

Turn right Menu navigation wheel ‘right’

Play beep Volume down

Play tune Volume up

You may want to check that students
have applied logic to their button
selection to ensure they understand
the robot’s functionality.

www.edscratchapp.com
22

Edison Soccer

Activity size: Medium
Delivery recommendations: Complete previous activities prior to this activity.
Resources needed: Minimum of 2 Edison robots, worksheet on page 13, activity sheet on page 23, mini-
mum of 2 TV/DVD remote controls, materials for creating the pitch, goals, and ball.
Optional: EdCreate / LEGO bricks

Overview

This activity gives students a specific task to complete using the TV remote control barcodes with their
Edison robots.

Students need to work together to be successful. The worksheet specifically instructs students to
compete against each other, then hints that they will first need to collaborate to avoid cross-talk with
the remotes. Although not explicitly stated, students also need to work together to agree on the creation
of both the playing surface and rules for the soccer game. Encouraging, and pointing out this type of
natural collaboration as it occurs, is a good opportunity to show problem-solving in action.

Creating the pitch, goals and ball are a good chance for low-risk experimentation in a ‘real world’
scenario.

Tips and tricks

•	 The TV/DVD remote control barcodes affect Edison while the robot is in standby mode – make sure
students do NOT press the play (triangle) button after using the remote-control barcodes. Instead,
press the paired button on the remote control to activate that action.

•	 Edison is compatible with around 75% of TV and DVD remote controls. If one of your remotes doesn’t
happen to work with Edison, try a different remote, preferably a different brand. Alternatively, you
can purchase an inexpensive ‘universal remote’ and set it to be a Sony DVD remote control, which
works well with the robots.

•	 With multiple students running programs using the remote-control codes in close physical proximity
to each other, they may experience ‘cross-talk’ where one robot receives and reacts to a remote-
control signal intended for a different robot. Remind students to choose different buttons on their
remotes to differentiate their commands.

•	 The size of the pitch and ball will affect student success in this activity. Encourage students to
experiment with setting up a good working solution before having an ‘official’ match.

•	 An alternative to this activity is to allow students to build on their Edison robots using EdCreate
or alternative compatible LEGO bricks to make contraptions to help control the ball. Think of this
version of the activity as modified hockey or polo rather than soccer!

www.edscratchapp.com
23

Build and control the EdTank

Activity size: Medium (basic EdTank) Large (complete EdTank)
Delivery recommendations:
Resources needed: Edison robots (1 or 2 depending on EdTank build), 1 TV/DVD remote per EdTank,
worksheet on page 14, 1 EdCreate kit per EdTank, EdTank build instructions set (available at https://
meetedison.com/content/EdCreate/EdBuild-EdTank-instructions.pdf)

Overview

Using Edison to create programmable robotic builds is one of the most exciting things students can do
with the robots. The EdBuild projects using the pre-set instructions and EdCreate kits are an excellent
way to give kids exposure to interactive engineering. Using the EdCreate kits and step-by-step
instructions for creating an EdBuild helps ease students into building with Edison without needing to
design the creation themselves.

About the EdTank

The EdTank is actually two builds in one: the basic EdTank and the complete EdTank with rubber band
cannon.
The basic EdTank uses one Edison robot which can be programmed to drive forwards, backwards and
turn right or left using barcodes and a TV or DVD remote control. The complete EdTank includes a
second Edison robot which controls (fires) the rubber band cannon.

Tips and tricks

•	 Students may find it easiest to first lay out all of the EdCreate pieces onto their work surface and
organise the parts into groups of the same piece type and colour. This can help students identify and
use the correct pieces as they work through the build.

•	 You will need to reset the cannon and reload a rubber band each time you fire the cannon. This
should be done manually to ensure the new band is loaded properly and that the firing ‘pin’ is
pushed completely back into the starting location.

•	 For best results, use the orange bands that come with your EdCreate kit as the ‘ammo’ in the
cannon.

•	 Just like many real tanks, the EdTank’s design means it will be slow to turn left or right. When the
EdCreate tracks are brand new, they may be extra grippy, which will make the EdTank turn even
slower. You can reduce the grip by removing the tracks from the EdTank and lightly dusting them
with talcum powder. Be sure to knock any excess powder off the tracks before putting them back
onto the EdTank.

Answer key

Question Type Sample answer Marking notes
1 SE The EdTank didn’t turn as well as the Edison robot

does when it’s in ‘car’ mode. I think this is because
the tank has a wider turning radius and also it is
heavier than the normal Edison.

Any response that applies logic to any
difference in driving is acceptable.

It is possible that the EdTank will
turn as quick as the Edison robot
depending on the driving surface and
condition of the tracks.

https://meetedison.com/content/EdCreate/EdBuild-EdTank-instructions.pdf
https://meetedison.com/content/EdCreate/EdBuild-EdTank-instructions.pdf

www.edscratchapp.com
24

Build and control the EdRoboClaw

Activity size: Large
Delivery recommendations: Previous activities
Resources needed: 2 Edison robots, 1 TV/DVD remote per EdRoboClaw, worksheet on page 15,
1 EdCreate kit per EdRoboClaw, EdRoboClaw build instructions set (available at https://meetedison.
com/content/EdCreate/EdBuild-EdRoboClaw-instructions.pdf)

Overview

Using Edison to create programmable robotic builds is one of the most exciting things students can do
with the robots. The EdBuild projects using the pre-set instructions and EdCreate kits are an excellent
way to give kids exposure to interactive engineering. Using the EdCreate kits and step-by-step
instructions for creating an EdBuild helps ease students into building with Edison without needing to
design the creation themselves.

About the EdRoboClaw

The EdRoboClaw is a remote-controlled articulated robotic arm, which can be programmed using the
TV/DVD barcodes and controlled with a standard TV or DVD remote control. You can drive the EdRob-
oClaw forwards, backwards and spin it right or left. You can also open and close the claw to pick up and
carry an object, such as one of the EdCreate beams.

Tips and tricks

•	 Students may find it easiest to first lay out all of the EdCreate pieces onto their work surface and
organise the parts into groups of the same piece type and colour. This can help students identify and
use the correct pieces as they work through the build.

•	 The top robot connects to the bottom robot on the second row of studs from the front of the bottom
robot. Thus, the top robot overhangs off the back of the bottom robot by approximately 1 cm.

•	 The claw is composed of 3 ‘fingers’ – two parallel fingers which are stationary (made from grey
beams) and the frontmost finger which moves. The row of gears in the articulated arm controls
this forward finger, including its positioning relative to the stationary fingers. The alignment of the
forward most two gears can affect how the moving finger sits relative to the stationary fingers
when the claw is fully open. When the claw is fully open, and the EdRoboClaw is sitting on a flat
surface (such as a table or desk), the moving finger should be high enough that one of the EdCreate
grey beams can slide under it between the finger and the table. If the moving finger is not this
high, try gently separating the front of the arm and rotating the frontmost gear by one or two
teeth clockwise independently of the next gear. You will be able to see this move the front finger.
Reconnect the gears and the arm.

•	 The EdRoboClaw can pick up objects with some flat surfaces. Students may find that they are not
as able to pick up and carry objects which are round, such as a pen. Try using the 7-hole long grey
beam from the EdCreate kit.

Answer key

Question Type Sample answer Marking notes
1 SE I couldn’t carry my pen, but I could carry

my granola bar and some of the EdCreate
parts. I think that the best objects are flat
in some places so they don’t slip out of the
claw.

Any response that applies logic to the
student’s findings around objects is
acceptable.

https://meetedison.com/content/EdCreate/EdBuild-EdRoboClaw-instructions.pdf
https://meetedison.com/content/EdCreate/EdBuild-EdRoboClaw-instructions.pdf

www.edscratchapp.com
25

Let’s explore the EdScratch environment

Activity size: Large
Delivery recommendations: Strongly recommended if your students are new to EdScratch
Resources needed: Basic supplies set, worksheet on page 16

Overview

While drag-and-drop coding in a Scratch-like environment may be familiar to some students,
understanding the EdScratch environment’s particular layout and functionality is critical for success
using the programming language. This activity introduces the online application and basic layout of
EdScratch to students, including the names of the main areas inside the programming environment.
Students then practice downloading a program from EdScratch to their Edison robot.

Ensuring students can navigate inside EdScratch and understand how to download EdScratch programs
to the robot will support their independent use of the environment in future lessons.

Tips and tricks

•	 While a program is downloading to Edison, Edison makes a whirring sound, similar to an old dial-up
modem. Once the program downloads successfully, Edison will make a chirping beep. If the program
fails while downloading, Edison will make a ‘fail sound’. You can hear what the success and fail noises
sound like at https://meetedison.com/edison-robot-support/trouble-shooting

•	 When many students are downloading programs at the same time, you may experience slower
internet speeds, causing the program to take longer to create the ‘Program Edison’ button in the
pop-up box and for the program to download to Edison. Remind students to listen for the success
sound before unplugging the EdComm cable to ensure they wait until the program fully downloads.

Answer key

Question Type Sample answer Marking notes
1 EA In the menu bar

2 EA There are zero messages in the bug box. The correct Test_program does not have any
warning messages, so nothing should appear
in the bug box.

3 SE First, the robot beeps once, turns on the
left LED and spins left almost all the way
around. Then the robot beeps once, turns
on the right LED and turns off the left LED
and spins back to the start position. It
repeats the whole thing five times.

The main objective is that students download
and run the correct program successfully. How
they describe the program is of secondary
importance.

https://meetedison.com/edison-robot-support/trouble-shooting

www.edscratchapp.com
26

Download another

Activity size: Small
Delivery recommendations: Complete activity on page 12
Resources needed: Basic supplies set, worksheet on page 19, additional supplies will be needed
depending on the programs selected.

Overview

This activity encourages students to explore EdScratch a bit further independently. By selecting a
different demo program than the Test_program (which was used in the base activity), students
practice the key skills required to download programs to their robots successfully.

The questions on worksheet page 19 encourage students to begin to tie the on-screen code they see
in the demo program of their choice to their robot’s real-world actions. Understanding this connection
is fundamental to being able to use computational thinking practices effectively when developing their
own programs.

Tips and tricks

•	 You can limit the supplies required for this activity to just the basic supply set and the worksheet by
having students select the Moving_with_music or Clap_controlled_driving demo programs.

•	 If students are struggling with this activity, have them review worksheet

Answer key

Question Type Sample answer Marking notes
1 SE Moving_with_music The program name should be one from the

demos list.

2 SE I thought the robot would move to whatever
music I put on. Instead, the robot played a
song and moved to that song.

Anything that answers the question is
acceptable.

3 SE The robot played the notes that the
program has in it. The robot also moved the
same way as what the blocks said. It did the
actions in the same order that the blocks
are in, top to bottom.

Ideally, the answer should demonstrate an
understanding that the blocks on screen are
related to the robot’s actions. Depending on
the program students’ select, this connection
may be less obvious.

www.edscratchapp.com
27

Does EdScratch = Scratch?

Activity size: Small
Delivery recommendations: Recommended if students have used, or will be using, both Scratch
and EdScratch
Resources needed: Internet-linked computers or tablets, worksheet 19.

Overview

Many students will immediately ‘recognise’ EdScratch – especially if they have used MIT’s Scratch
programming language before. The EdScratch app was developed using the Scratch Blocks code base
developed by MIT (building on the Blockly code base developed by Google). That’s why there is such a
strong similarity between Scratch and EdScratch. It’s important for students to understand that the two
are separate languages, however. This activity asks students to explore this for themselves.

Tips and tricks

•	 This activity may not be as effective for students who have not used Scratch. You may choose
to have it as an optional activity for any student curious about the relationship between the two
languages.

•	 This activity is well suited to group or whole-class work, with students contributing to a list of
similarities and differences.

•	 Even if your students are not using Scratch, this activity can still make for an interesting exploration
of the fact that there are many different programming languages, each with its own capabilities and
limitations.

Answer key

Question Type Sample answer Marking notes
1 SE 1 – The colours and the shapes of the blocks

look the same in both languages.

2 – Both Scratch and EdScratch have a
block pallet, a menu bar and an area for
making programs.

3 – Some of the block categories, like
‘sound’ and ‘control’, are the same in both
Scratch and EdScratch.

Any three things that are similar or the same
in the two languages are acceptable.

1 SE 1 – Scratch uses Sprites, like the cat, but
EdScratch doesn’t have Sprites.

2 – EdScratch has a bug box, but Scratch
doesn’t have one.

3 – The names of the block types are
different in EdScratch and Scratch.

Any three things that are different or appear
different in the two languages are acceptable.

www.edscratchapp.com
28

Let’s explore warning messages

Activity size: Small
Delivery recommendations: Strongly recommended if your students are new to EdScratch, Strongly
recommended if your students are new to the idea of debugging in programming
Resources needed: Basic supplies set, worksheet 20.

Overview

The bug box in EdScratch provides warning messages to users. These messages can flag different
problems or potential issues. In this activity, students learn about the bug box and the two types of
warning messages they may encounter in the bug box. The idea of bugs in programming is not explicitly
introduced in this activity, however, nor is the practice of debugging.

The critical learning objective of this activity is that warning messages in EdScratch are not ‘failures’ or
inherently bad things. Quite the opposite! The bug box and its warning messages are wonderful tools to
help discover and fix issues – critical problem solving and coding skills. This lesson activity aims to help
students develop a good attitude towards the bug box, viewing it as a tool they can use, while laying the
framework for debugging as a skill to be developed in future lessons.

Tips and tricks

•	 Some students may fix the bugs before answering the questions. Reloading the demo program will
bring back the original program and its bugs. Using the keyboard shortcut ‘undo’ (PC: Ctrl + z) (Mac:
command + z) will also undo changes one by one.

•	 You can find a complete guide to the warning messages in EdScratch at https://meetedison.com/
robot-programming-software/edscratch/. This guide includes all warning messages, what they
mean and examples of when you may encounter them.

Answer key

Question Type Sample answer Marking notes
1 SE An error message popped up and said that

the program cannot download because
there is a red warning message.

While a red message is displaying, the
program will not download. Student answers
must demonstrate an understanding of this.

2 SE I took the orange ‘wait 1 sec’ block out of
the purple blocks.

Removing the non-musical note block from
the stack will fix the issue. Other fixes which
result in the same outcome (such as deleting
all blocks) are technically correct but are not
ideal solutions.

3 EA The two blue ‘drive’ blocks (‘forwards for 10
cm at speed 2’ and ‘backwards for 17 cm
at speed 5’) will not be programmed into
Edison.

This answer is based off the program without
any changes applied.

https://meetedison.com/robot-programming-software/edscratch/
https://meetedison.com/robot-programming-software/edscratch/

www.edscratchapp.com
29

Focus in on the key computational concept of sequence in this unit. Students explore Edison’s abilities
to move using motors, plus use the robot’s LEDs and sound sensor/buzzer through a range of activities.
Computer programming fundamentals including inputs, outputs, bugs and debugging are introduced.
Students begin to develop their familiarity with programming Edison in EdScratch and with using Edison
as the base for creative robotic builds.

Learning objectives
Students will:

•	 be introduced to the idea of computational thinking and begin to use computational frameworks
when approaching tasks

•	 become familiar with the concept of sequence

•	 learn what inputs, outputs and input parameters are

•	 explore EdScratch’s core output blocks with Edison, including drive, LEDs and sound

•	 be able to create and modify sequential programs for Edison in EdScratch using basic output blocks
and the input parameters of those blocks

•	 begin to explore robotics applications to real-world situations through projects

Key ideas: computational thinking, sequence, programming (coding), inputs and outputs, input
parameters, bugs (errors), debugging, syntax

Unit 2 - Move it!

www.edscratchapp.com
30

Let’s explore how computers ‘think’

Activity size: Medium
Delivery recommendations: Consider delivering activity on page 27 prior to using this activity
Resources needed: Worksheet page 25, activity sheet on page 53

Overview

In this offline activity, students are introduced to the ideas of computational thinking and sequence.
Students do not need to fully understand what computational thinking entails at this point, but it is
valuable to use the term explicitly. Using computational thinking makes coding much easier, but it is a
bit different from how we normally approach and think about things in our lives. That’s why introducing
‘computational thinking’ as a way to think about things is a useful notion. Getting kids to ‘put on their
computational thinking hats’ can help them approach problems differently, finding solutions they may
otherwise overlook.

This activity has students practice following and giving good sequential instructions by being explicit
about each action and going step-by-step, one action at a time. Developing a sequential approach
to problem-solving is crucial for good computational thinking and success when programming in
EdScratch.

Sequence
The main focus of this lesson is on the foundational computational concept of sequence. Students
first learn what ‘computational thinking’ is and why it is a helpful framework for problem-solving and
working with computers. Sequence, one of the most critical building blocks of computational thinking,
is then introduced. Students begin to apply computational frameworks, especially sequential thinking,
when approaching tasks. The activities in this lesson offer students ample opportunities to practice
applying sequential logic, determining the exacting step-by-step instructions that they need to provide
in order to complete objectives. Students also begin to create their own programs for Edison using the
‘Drive’ category of blocks in EdScratch.

Tips and tricks

•	 Extension activities on pages 27 are both designed to introduce sequence in a fun, engaging way.
Both extension activity options are best done as a group or whole class as these activities generally
need an instructor to run effectively. You may choose to run one or both of the extension activities
before formally introducing the key concepts using this activity or use these activities to reinforce
the concepts after this activity. For example, you could run the first activitiy on page 27 as a class,
then have students work on activity page 25 individually, then do the 2nd activity on page 27 as a
small group reinforcement activity.

Answer key

Question Type Sample answer Marking notes
1 EA The car.

2 EA The car.

3 EA The ice cream cone.

4 SE Move forwards 3 squares. Turn left. Move
forwards 2 squares.

Any answer which meets the question’s criteria
is acceptable.

5 SE Move forwards 2 squares. Turn left. Move
forwards 2 squares. Turn right. Move
forwards 1 square.

Any answer which meets all of the question’s
criteria is acceptable.

6 SE Turn right. Move backwards 1 square. Turn
right. Move backwards 1 square. Turn right.
Move backwards 1 square.

Any answer which meets all of the question’s
criteria is acceptable.

www.edscratchapp.com
31

Make a PBJ sandwich

Activity size: Medium
Delivery recommendations: Consider delivering this activity prior to activity on page 25.
Resources needed: This activity is best done as a group or whole class as it will likely need an instructor
to run effectively.

Overview

This two-part offline activity is designed to be a fun way to have things go wrong if and when
instructions are not exactly right. Understanding that computers are super literal and require instructions
that are both exacting and sequential is crucial for success in coding. Helping build up students’
understanding of this concept will help them better problem-solve as they create programs of their own.

Running task 1
The first part of this activity asks students to write out instructions to make a sandwich. This can be
down individually or in pairs. The worksheet gives a few hints that this task may be more complicated
than it first appears, but there’s no need to belabour the point. Having some less-than-perfect
instructions will make the second part of the activity more fun and help drive home the key message of
the activity to all the students.

Running task 2

If you are using this activity as a whole class (recommended), this task should be done with the whole
class watching. Select one of the student-written instructions sets either at random or cherry-pick one
you can see has issues. Have a student volunteer read out each step one at a time. Follow each step
EXACTLY as it is written. For example, if the instruction says ‘put peanut butter on the bread’ but doesn’t
say to open the jar – don’t open the jar. Just put the whole jar onto the bread.

Early exposure to what can go wrong if our instructions aren’t exacting enough for a computer (or
robot) in this for-fun environment helps kids build up an understanding of the concept removed from
the act of coding. This can help kids learn to consider sequential thinking and carefully analyse what is
happening, enabling them to problem-solve issues they face when coding more effectively

Tips and tricks

•	 This activity is best done as a group or whole class as it generally needs an instructor to run
effectively, especially for task 2.

•	 You can see an example of this type of activity being demonstrated at https://www.youtube.com/
watch?v=RjHzD2sfWcQ

•	 You may choose to run this activity and/or extension activity Human robots, on page 27 to kickstart
your exploration of sequence before examining the key concept in detail.

•	 If your students are not familiar with peanut butter and jam sandwiches, or if you need to avoid
peanut butter in case of nut allergies, switch out the food. Choose something your students will be
familiar with that seems simple but also has multiple steps to make.

	 - Alternative sandwich ideas: Vegemite and cheese, cream cheese and cucumber, cream cheese 	
	 and jam.

	 - Other foods: rice balls, soft tacos, yogurt parfaits.

https://www.youtube.com/watch?v=RjHzD2sfWcQ
https://www.youtube.com/watch?v=RjHzD2sfWcQ

www.edscratchapp.com
32

Question Type Sample answer Marking notes
1 EA

RC
SE

Take two pieces of bread. Add peanut
butter to one piece of bread. Put jam on the
other one. Put the peanut butter and jam
together.

Any instructions – even full of errors – are
fine. Alternatively, you might have students
‘fix’ their answers and submit those to
demonstrate an understanding of the key
concepts of exacting and sequence.

2 SE It was not a sandwich – it was just jars of
peanut butter and jam stacked on bread!

Opinion based or descriptive answers are
acceptable.

Answer key

www.edscratchapp.com
33

Human robots

Activity size: Medium
Delivery recommendations: Consider delivering this activity in conjunction with ‘Let’s explore how
computers think on page 25’.
Resources needed: Worksheet on page 27, supplies for marking out the human robot grid.
NB: This activity is best done as a group or whole class as it will likely need an instructor to run
effectively.

Overview

This offline activity is designed to help students better understand the ‘robotic’ logic of sequence. Similar
to activity on page 25, this activity has students use a grid to give and receive sequential instructions. In
this activity, however, the students follow those instructions as ‘human robots’.

Understanding that computers are super literal and require instructions that are both exacting and
sequential is crucial for success in coding. Helping build up students’ understanding of this concept will
help them better problem-solve when they create programs of their own.

What to do

Set up a human-sized grid with a goal marker somewhere on the grid. Determine the start point and
have students work out the instructions needed to get the ‘human robot’ to that goal. Have students
work together to write down and then give the instructions to another student acting as the robot.
Remind students that the robot can only follow the instructions that the robot receives exactly as they
receive them. No fixing allowed!

Tips and tricks

•	 This activity is best done in groups or as a whole class as it generally needs an instructor to set-up
and run effectively.

•	 A great example of how to run this activity can be seen at https://csunplugged.org/en/topics/
kidbots/unit-plan/rescue-mission/

Answer key

Question Type Sample answer Marking notes
1 SE <series of steps leading the robot to the

goal>
Answers will depend on the grid and task
you set.

2 SE Yes, but we forgot to include some of the
turns, so we had to fix that first.

https://csunplugged.org/en/topics/kidbots/unit-plan/rescue-mission/
https://csunplugged.org/en/topics/kidbots/unit-plan/rescue-mission/

www.edscratchapp.com
34

Let’s explore going step-by-step in EdScratch

Activity size: Small
Delivery recommendations: Recommend if students are new to EdScratch
Resources needed: Basic supplies set, worksheet on page 28

Overview

This activity gets students to apply the idea of sequence and sequential programming to the EdScratch
environment. Exploring how changing the sequence of the blocks on the screen affects the robot’s
behaviour helps solidify the importance of sequence in programming.

The idea that each EdScratch block is one ‘action’ is introduced. Understanding this idea will help
students apply sequence when building programs. Students also experiment moving blocks around and
changing inputs inside blocks to gain confidence manipulating the EdScratch language.

Tips and tricks

•	 If students are struggling to get blocks to move from the block pallet, make sure that they are
dragging the blocks straight to the right into the programming area, not in another direction (such
as up or down inside the blocks pallet itself).

•	 Blocks must be attached to the start block to be downloaded to Edison. Floating blocks not attached
to a start block will not download to Edison.

•	 You can remove blocks you don’t want by dragging them into the trash bin in the lower right corner
of the programming areas or back into the block pallet.

•	 While the term ‘input parameter’ is not introduced until the next activity, beginning to refer to the
options inside a block as ‘input parameters’ is a habit you may want to get into straight away.

Answer key

Question Type Sample answer Marking notes
1 EA First, the robot will drive forwards for 2.5

seconds at speed 5. Second, it will beep.
Third, it will turn the left LED on. Fourth, it
will spin left for 120 degrees at speed 10.
Fifth, it will drive backwards for 2 seconds
at speed 2.

NOTE: Task 2 encourages kids to find and fix
any errors in what they have written in either
this answer or their program.

2 SE First, the robot will drive forwards for 2.5
seconds at speed 5. Second, it will drive
backwards for 2 seconds at speed 2. Third,
it will spin left for 120 degrees at speed 10.
Fourth, it will turn the left LED on. Fifth, it will
beep.

Student answers should only move the existing
blocks around – not add or change blocks.

www.edscratchapp.com
35

Let’s explore driving Edison

Activity size: Medium
Delivery recommendations: Consider using the activity ‘maze madness’ on page 31 and this activity as
a single lesson
Resources needed: Basic supplies set, worksheet on page 30, activity sheet on page 54.
Optional: supplies for making your own tracks

Overview

Get the robots moving by applying sequential coding to the ‘drive’ category of blocks in EdScratch. Kids
work through two programming tasks to get the robots to complete driving tasks – first, a straight track
and then a mini maze.

The mini-maze task requires students to use computational thinking to create a sequential program to
solve the maze. To complete the maze without ‘cheating’ students inevitably need to iterate different
versions of their initial program concept, experimenting with different blocks and input parameters.

Tips and tricks

•	 You can also have students make their own straight tracks or mazes to complete on large paper or
by using tape to mark out a track on the floor or desk.

•	 First attempts in programming are almost always ‘wrong’ – and that is perfectly okay! Persevering
and changing programs iteratively, testing as they go, will get students to the right answer.
Resilience is key!

•	 Due to minor mechanical differences in the motors and encoders inside different Edison robots,
some robots may not turn to exactly 90 degrees when given the input of 90. Encourage students to
try different values around 90 (e.g. 87 or 93) to find the input that works best for their Edison.

Answer key

Question Type Sample answer Marking notes
1 RC forwards for 26.5 cm at speed 5

OR
forwards for 10.5 inches at speed 5
OR
forwards for 1.05 seconds at speed 5

Student answers will depend on the input
parameters they select. Sample answers
assume completion on the provided activity
sheet using speed 5.

2 SE 1. Go straight.

2. Turn left.

3. Go straight.

4. Turn left.

5. Go straight.

6. Turn right.

7. Go straight then stop.

Students may miss steps in their initial plan
- creating the program will show them any
issues.

www.edscratchapp.com
36

Maze madness

Activity size: Small to medium (depending on the number of tasks attempted)
Delivery recommendations: Consider using this activity as a set of extra challenges for activity ‘Lets
explore driving Edison’ on page 30.
Resources needed: Basic supplies set, worksheet on page 31, activity sheet on page 54.
Optional: supplies for making your own tracks

Overview

Perfect for students who finish the activities on page 30 - 31 quickly or for students needing additional
task-based sequential programming practice, this set of 3 extension ideas offers variations on the
maze-driving task from activity ‘Lets explore driving Edison’ on page 30.

Tips and tricks

•	 If students are making their own mazes to complete, they will be most successful doing so on large
paper or by using tape to mark out a track on the floor or desk. First attempts in programming are
almost always ‘wrong’ – and that is perfectly okay! Persevering and changing programs iteratively,
testing as they go, will get students to the right answer. Resilience is key!

•	 Due to minor mechanical differences in the motors and encoders inside different Edison robots,
some robots may not turn to exactly 90 degrees when given the input of 90. Encourage students to
try different values around 90 (e.g. 87 or 93) to find the input that works best for their Edison.

•	 Encourage students to try both the ‘turn’ and ‘spin’ input parameters to see which works best.

www.edscratchapp.com
37

Self-walking pet

Activity size: Large
Delivery recommendations: This is a good activity to bring maker-space/crafting and coding together.
Resources needed: Basic supplies set, worksheet on page 32, maker-space/crafting supplies.

Overview

This fun activity asks students to use their creativity to make Edison into something else – in this case, a
pet which can walk itself.

The coding part of this activity can be quite simple: a program where the robot moves forward for a
while, turns around and comes back is sufficient. The real challenge lies in building Edison into a pet.

A few hints as to how this can be accomplished are included in the student worksheet, but the sky is the
limit! This is a creative activity for students to experiment with what will and will not work in terms of
design, materials and construction.

Tips and tricks

•	 To download and run the program, students will need to access the EdComm cable attachment area
and buttons. You may choose to caution students about this at the start of the activity or use any
designs which do not cater for this as a chance to explore design planning.

•	 This activity can be adapted as a home economic sewing project.

•	 There is no ‘right’ answer, but here is what one sample solution looks like:

www.edscratchapp.com
38

Lets explore Edison’s outputs

Activity size: Large
Delivery recommendations:
Resources needed: Basic supplies set, worksheet on page 33.

Overview

The input-process-output cycle is introduced and then experimented with in this activity with an
emphasis on observing the output results of sequential programming. Students begin to explore the
‘LED’ and ‘Sound’ categories of blocks in EdScratch and are introduced to their first control structure –
the ‘wait’ block.

Beginning to understand that the input-process-output cycle is at play in every program helps students
start to decompose programming into separate stages. This is an important skill for debugging in
coding and for the computational thinking skill of decomposing problems into smaller chunks.

Answer key

Question Type Sample answer Marking notes
1 EA • Turn Edison’s lights off -- LEDs

• Play a musical note -- Sound
• Spin Edison right -- Drive

2 SE The robot did all the steps, but it was really
fast, so it sort of seemed like it wasn’t doing
them in order but all at once.

Students may note that the execution of the
outputs is very quick.

3 RC What works ‘best’ is subjective, but students
should have a wait block in-between the LEDs
being turned on and being turned off at a
minimum.

Mini-challenge n/a The worksheet does not instruct students
to share their answer, but you may choose
to have students present their thinking or
resulting code.

www.edscratchapp.com
39

Drive the maze safely

Activity size: Small
Delivery recommendations: Complete activities ‘Let’s explore driving Edison’ on page 30 and ‘Let’s
explore Edisons outputs’ on pages 33 prior to this activity
Resources needed: Basic supplies set, worksheet on page 35, activity sheet on page 54.

Overview

Students will need to put their understanding of sequence into careful practice in this activity. Writing a
program that has the robot perform all the steps to complete the maze plus indicating turning direction
using the LED lights, the buzzer or both before making each direction change is a great way to let
students apply their understanding of sequence in a more creative programming challenge.

Tips and tricks

•	 Remind students that they can use ‘wait’ blocks to have the robot pause for a set amount of time.

•	 While the worksheet doesn’t ask students to capture their program, you may choose to have
students write down or demonstrate their program and explain their reasoning for using the blocks,
inputs, and sequence they chose.

•	 Due to minor mechanical differences in the motors and encoders inside different Edison robots,
some robots may not turn to exactly 90 degrees when given the input of 90. Encourage students to
try different values around 90 (e.g. 87 or 93) to find the input that works best for their Edison.

•	 Encourage students to try both the ‘turn’ and ‘spin’ input parameters to see which works best.

www.edscratchapp.com
40

Lets explore input parameters

Activity size: Small
Delivery recommendations:
Resources needed: Basic supplies set, worksheet on page 36.

Overview

This offline activity explores the concept of input parameters, building on the basic definition introduced
in the activities on page 30. This activity helps students understand the concept of input parameters and
establishes a framework for working out what any given input parameter is contributing to a program.
Being able to think critically about input parameters helps students to understand what is actually
happening in a program.

Input parameters contribute critical information to the inputs of programs. By explicitly examining input
parameters, students gain a deeper understanding of the inputs that they are using in their programs.
The ability to link the input components of any given program to the expected outputs of that program
is an important skill to develop for computational thinking and problem-solving.

Tips and tricks
•	 You may want students to use the programs in the worksheet with their Edison robots to see the

programs in action, helping to cement the connection between inputs and outputs.

•	 To further demonstrate the connection between input parameters’ effects on outputs, have students
adjust the input conditions of the worksheet programs in EdScratch, hypothesise on what those
changes to the inputs will do to the outputs, and then test the programs with their robots to
see the results.

Answer key

Question Type Sample answer Marking notes
1 EA Seconds

2 EA 7

3 EA Drive backwards for 6.5 seconds at speed 7.

4 EA 4 While this program has multiple blocks, only
one of the blocks has input parameters.

5 EA What direction do you want the robot to go? Any answer that shows an understanding that
this input parameter is related to direction is
acceptable.

www.edscratchapp.com
41

Teach Edison to count to 9

Activity size: Medium
Delivery recommendations: Complete activities on page 36 prior to this activity
Resources needed: Basic supplies set, worksheet on page 37, activity sheets on pages 56 - 59.

Overview

This extension activity offers programming challenges which put some of the skills students have been
developing to use. Creating programs for the Edison robot to ‘trace’ (i.e. drive in the pattern) the digital
display numbers of their choice requires the application of sequential thinking and an understanding of
the input-process-output cycle.

This activity calls attention to one particular input parameter (distance in the drive blocks) and
asks students to identify patterns regarding the input parameter’s effects on output. Students then
extrapolate from what they observe, applying their understanding to a different program challenge.

Tips and tricks
•	 Each segment in all of the digital display number activity sheets is the same length. However, when

Edison turns, the robot does not turn on the spot but travels a bit. As a result, the distance parameter
required to complete any segment after a turn will be smaller than the distance parameter needed
to complete a straight segment.

•	 Due to minor mechanical differences in the motors and encoders inside different Edison robots,
some robots may not turn to exactly 90 degrees when given the input of 90. Encourage students to
try different values around 90 (e.g. 87 or 93) to find the input that works best for their Edison.

•	 Encourage students to try both the ‘turn’ and ‘spin’ input parameters to see which works best.

•	 It is possible to write a program for any of the numbers in the activity sheets without the robot
needing to trace over the same segment twice. You may choose to mention this to help students
envision the sequence they need to use in their programs.

•	 If Edison’s wheels catch the edge of the activity sheet’s paper, this can throw the robot off slightly.
You can fix this by taping the activity sheet down or replicating the activity sheet’s pattern on a
larger piece of paper.

Answer key

Question Type Sample answer Marking notes
1 SE 2

2 RC

www.edscratchapp.com
42

3 SE The distance input parameter for the first
drive block is slightly longer than all the
others. All of the other blocks use the same
number for the distance input parameter.
I think this means that any digital display
number will only need one of the two distance
input parameters: one for a straight segment
and one for after a turn.

Ideally, student answers will note a correlation
between the value needed in an input
parameter and the repeated real-world
distance the robot needs to travel.

4 SE 7

5 RC You may choose to see if students used the
same distance input parameters in each
program.

6 SE The distance input parameter for the first
drive block, which is straight, is the same in
both programs. Any drive blocks following a
turn are shorter, but the same as each other.
The distance input parameter in the turns
is always the same. The last block of the
program for ‘7’ is the same as the first drive
block in each program plus the drive block
after a turn because it is a combination of
two segments.

Ideally, student answers will note a correlation
between the value needed in an input
parameter and the repeated real-world
distance the robot needs to travel.

www.edscratchapp.com
43

Teach Edison to count to 9 out loud

Activity size: Small
Delivery recommendations: It is recommended to complete activity on page 37 prior to this activity.
Resources needed: Basic supplies set, worksheet on page 39, activity sheets on pages 56 - 59
Optional: supplies for making your own digital display numbers including appendix 1 (blank digital dis-
play sheet) from this guide

Overview

Bring multiple outputs together into a single sequential program in this semi open-ended challenge.

There’s no real ‘right’ or ‘wrong’ way to complete this programming challenge. Any program that meets
the criteria of ‘drive the number’ and ‘count the number’ is okay. This is an important concept for
students to begin to understand. Programming is highly creative, and there are often many solutions
possible. That’s part of what makes computer science so fun and interesting!

Tips and tricks
•	 Students can use the Sounds outputs, the LEDs outputs, both or a combination of the two to count.

(They can probably also use the Drive outputs to count if they can figure out a way to do it while
still tracing their display number.) For example, if the student has selected the number 5, their Edison
might drive a segment of the display number, beep, turn, then drive the next segment, beep, turn,
etc. Until it has driven all segments and beeped five times. Alternatively, the program could drive the
whole path, then flash the robot’s left LED on and off five times. Any program where the robot drives
the path and somehow signals the same value as that path is fine!

•	 If you want to highlight the idea that many different solutions are possible, split your students into
groups for this activity and give each group the same digital display number. Have each group
demonstrate their solution for the class. Discuss the differences and similarities in each group’s
program and highlight how, even if they are different, by meeting the criteria, they are still all correct.

•	 If you have students make their own numbers, you may want to give them a hint as to what
segments they have to work with: a standard display grid is fully lit up when displaying the number
8. Alternatively, you can provide them with the blank digital display number worksheet found in
appendix 1 in this guide.

www.edscratchapp.com
44

Let’s explore Edison’s musical talents

Activity size: Large
Delivery recommendations:
Resources needed: Basic supplies set, worksheet on page 40.

Overview

Simple musical tunes are a great example of sequence in action. Using Edison to create music ties
together sequence and inputs-outputs into programs that students love.

This activity is designed to mix the familiar with the unknown. By having students experiment using new
blocks without explicit instructions or detailed explanations, they apply computational thinking practices
and develop problem-solving mindsets.

The final task in this activity includes a semi open-ended programming challenge. This is a great
opportunity for students to experience the creative side of coding.

Tips and tricks
•	 The song used in task one in the worksheet is Mary Had a Little Lamb. Use this share-code to access

a program with more of the song: https://www.edscratchapp.com?share=Eb12x3Dm

•	 The third input parameter in the ‘music note’ block has three choices: (-), sharp, flat. The default (-)
input means to play a normal note, not a sharp or flat.

•	 The ‘tempo’ block sets the tempo to be played. Only blocks which come after a ‘tempo’ block will be
affected.

•	 Edison’s default tempo is ‘medium’. If no ‘set music tempo to’ block is used, the robot will play notes
at the default tempo.

•	 Use this share-code to access a program with more of The Hokey-Pokey song: https://www.
edscratchapp.com?share=v0wMx5D5

NB: This version of the song uses loops.

•	 You may want to wait to use this program until after students have studied repeating loops.

•	 Repeat loops cannot be used inside ‘play music in background’ blocks. To use the longer version of
the song in the background, duplicate the blocks inside the loop and add them into the program in
sequential order instead.

Answer key

Question Type Sample answer Marking notes
1 SE Very fast

2 SE It made the song play a lot quicker compared
to the original with the ‘medium’ input
parameter.

3 SE The ‘set tempo’ block sets the speed or tempo
of the music.

Students should identify that the block sets
the tempo of the music.

4 EA If the ‘set tempo’ block is at the end, it won’t
do anything. This is because Edison looks at
the blocks one by one and does them in the
order. If there are no music blocks after the
tempo block, then the tempo block has no
effect.

Ideally, students will identify that sequential
programming means things only go into
effect in order. Consider having students try
using the tempo blocks in different places
in the program to test and reinforce this
concept.

5 EA No, it played the music and then moved. I
think this is because the blocks are in order
with all the music first and then the drive
blocks.

Student answers should note that the robot
doesn’t move until after the music plays and
identify sequence as the reason.

https://www.edscratchapp.com?share=v0wMx5D5
https://www.edscratchapp.com?share=v0wMx5D5

www.edscratchapp.com
45

Play a song in a round

Activity size: Medium
Delivery recommendations: Complete activity on page 40 prior to this activity
Resources needed: Basic supplies set, worksheet on page 44, sheet music.
NB: This activity is best done as a group or whole class

Overview

Collaborating with other students on a programming project is at the heart of this activity. Highlighting
the ‘sound’ outputs in their robots and using the ‘wait’ block control structure, students work together to
get multiple robots to perform in harmony.

Tips and tricks
•	 Consider giving your students some song options or sheet music to use in this activity. Good options

for songs in a round include: Row, Row, Row Your Boat, Three Blind Mice, Frère Jacques, Farmer in
the Dell.

•	 Getting the timing just right so the robots are perfectly in harmony may be difficult as all robots
will need to start at exactly the same time. Activity on page 158, Change it up: The Edison chorus
addresses this problem by switching out the ‘wait’ blocks for IR messaging blocks. You may choose
to wait to use activity Change it up: The Edison chorus and this activity together, highlighting the
advantages and disadvantages of each approach.

•	 If you want to get really musical, get your students to sing along with their Edison robots so that the
students and the robots all play the song in a round together!

You are the conductor

Activity size: Medium
Delivery recommendations: Complete activity on page 40 prior to this activity
Resources needed: Basic supplies set, worksheet on page 44, sheet music.
NB: This activity is best done as a group or whole class

Overview

This free-form activity asks students to bring their favourite tune to life by programming it in EdScratch
for Edison to play. Music is a great way for kids to express themselves and their interests, and this
activity lets them marry that enthusiasm with programming, helping showcase the arts in STEAM
(science, technology, engineering, arts and maths).

Tips and tricks
•	 Having students search online for their favourite music opens up opportunities to discuss safe

search habits, copyright and attribution, and many other digital citizenship topics.

•	 Students with musical talent can choose to write their own original song to program instead of using
an existing song.

www.edscratchapp.com
46

Let’s explore bugs and debugging

Activity size: Medium
Delivery recommendations: Strongly recommended before students begin using programming control
structures (including loops and conditionals) or sensing in programs.
Resources needed: Basic supplies set, worksheet on page 46.

Overview

Brace yourself – this lesson has a lot more text and a lot more definitions than most, but don’t let that
scare you away! Understanding bugs and debugging is one of the most critical skills you need your
students to develop. Computational thinking is, in many ways, all about problem-solving. And problem-
solving in computer science is all about debugging.

Students and teachers alike often struggle when moving from purely sequential programming to
coding using more dynamic programming structures such as loops, branching and conditionals. A key
reason people struggle is that they lack the debugging skill-set needed to find, identify and fix errors
successfully.

The fundamentals of debugging are introduced in this lesson, and the practice is applied to the
EdScratch environment. This mainly offline activity will begin to develop debugging capabilities in your
students that are crucial for setting them up for success in activities in other units.

Tips and tricks
•	 While technology and computer science have developed the unfortunate reputation of being ‘for

males,’ the history of computer science is full of fascinating people both male and female. Grace
Murray Hopper (mentioned in this activity), Ada Lovelace, Margaret Hamilton, and Hedy Lamarr are
just some of the fabulous females who have contributed to making modern computing what it is
today. Any of these ladies make brilliant subjects for research projects and wonderful inspiration for
students of any gender.

•	 You can find a complete guide to the warning messages in EdScratch at https://meetedison.com/
robot-programming-software/edscratch/. This guide includes all warning messages, what they
mean and examples of when you may encounter them. Warning messages in EdScratch can help
you resolve any syntax errors and also give hints to help fix many common logical errors.

•	 All syntax errors that can be made in EdScratch will generate a red warning message in the bug box.
Not all red messages are syntax errors, however.

•	 When a program runs but doesn’t do what you expected, chances are there is a logical error in the
program. Get into the habit of asking students what they want their program to do, then having
them read out the program they have written in the same flow that the robot will. This will often
uncover the logical error.

https://meetedison.com/robot-programming-software/edscratch/
https://meetedison.com/robot-programming-software/edscratch/

www.edscratchapp.com
47

Answer key

Question Type Sample answer Marking notes
1 EA Syntax error: the tempo block cannot go

inside of the ‘play music in background’
grouping block. Only music note blocks can
go in that block.

Logical error: the problem is with the
sequential logic the programmer used. The
programmer needed to use the tempo block
to set the tempo before the music blocks in
order to have the music play at the very fast
tempo.

Any description that identifies and explains
the two errors correctly is acceptable.

2 EA To get the program to work as described the
following changes need to be made:

1 – the distance input in the ‘spin right’ block
needs to be 360, not 630. [logical error]

2 – the speed inputs for the ‘spin left’ and
‘spin right’ blocks need to be the same value.
[logical error]

3 – the ‘set tempo’ block needs to be outside
of the ‘play music in background’ grouping
block [syntax error]

4 – the ‘set tempo block’ needs to be before
the ‘play music in background’ block [logical
error]

5 – the ‘spin left’ and ‘spin right’ blocks need
to be after the ‘play music in background’
block [logical error]

Student answers should identify and fix all
five errors. The inclusion of the error type is
not requested in the worksheet but may be
helpful in reviewing the bugs with students.

www.edscratchapp.com
48

Let’s explore Edison’s motors

Activity size: Large
Delivery recommendations:
Resources needed: Basic supplies set, worksheet on page 48.

Overview

This lesson pulls together many of the key concepts from unit 2, including sequential programming,
inputs and outputs, input parameters and debugging. Students further explore how Edison’s motor
outputs are controlled through drive blocks and learn that the motors can operate, and be controlled,
independently. They are given a creative thinking challenge to imagine a use for this independent motor
movement in a robotics application.

This activity also has students apply their understanding of how inputs (including information input
through input parameters) affect outputs. They use this understanding to explore why some blocks in
the language are dependent on other blocks. They are then challenged to apply their knowledge to get
a program to work in an activity designed to push them, just a little bit, out of their comfort zone.

Tips and tricks
•	 The ‘set motors’ blocks only turn the motors on. These blocks require additional blocks to control the

motor’s activity by establishing a condition for the block. For example, this program says to turn the
motors on, set to move forward, then says to wait in that condition for 1 second.

•	 The ‘set motors’ blocks can be a bit tricky to use at first, but they are actually very powerful blocks
and are very helpful in many different robotics build projects using Edison.

•	 Even if you do not plan on using the ‘set motor’ blocks in other activities in this unit, this lesson
activity is a good opportunity for students to experience, and overcome, difficulties in programming.

www.edscratchapp.com
49

Answer key

Question Type Sample answer Marking notes
1 EA The left wheel moves backwards.

2 EA The right wheel moves forwards.

3 SE I think that the ‘set left motor’ and the ‘set
right motor’ blocks are the blocks that control
only one motor because they say which
motor is being affected.

Students may not select the correct blocks,
but they should have a reason to support the
choice they make.

Students may have discovered that the input
parameters for the ‘stop’ block can also be
set to affect only one motor at a time.

4 SE I would turn Edison into a fan, and the one
motor would spin the fan blades.

This is an exercise in the application of
creative thinking. Any idea that uses one of
Edison’s motors is acceptable.

5 EA Information In the program? Value

Direction yes forwards

Distance yes 3

Distance
units

yes cm

Speed yes 4

6 EA The robot drove forwards for 3 cm at the
speed of 4.

7 EA Information In the program? Value

Direction yes forwards

Distance no

Distance
units

no

Speed yes 5

8 SE The robot didn’t do anything. It couldn’t
because it did not have all the information it
needed.

The robot will not have the information to
know how far to move, so will appear to do
nothing.

Student answers may note that there is a
message in the bug box warning them that
they need additional blocks.

9 SE First, I tried adding a ‘set music tempo’ block
to the start of the program, but it still didn’t
move. I moved the ‘tempo’ block to the end
of the program but that still didn’t work. I
looked at the other Drive blocks and saw that
seconds was one of the distance units. That
made me think of the ‘wait’ block, so I added
that to the end of the program and it worked!

I was getting really frustrated when I couldn’t
get the program to work, but once I did figure
it out I was really happy!

The key here is developing resilience. Any
path students took and whether or not they
got the program to work is secondary.

www.edscratchapp.com
50

Spinning garden

Activity size: Large
Delivery recommendations: Complete activity on page 48 prior to this activity, this activity and the
activities on page 51 are both applied robotics projects. Consider using at least one as a robotics build
project for this unit.
Resources needed: Basic supplies set, worksheet on page 51, maker-space/crafting supplies, EdCreate
kits/LEGO bricks.

Overview

This open-ended project has students apply what they have learned about sequential programming,
inputs and outputs, and debugging into a physical computing project. This robotics build project asks
students to collaborate on the creation of a spinning garden. Students need to plan their garden, build
the different elements to attach to the robots and program each robot to spin its attachment.

Tips and tricks
•	 You can see a version of a spinning garden project using Raspberry Pi boards on YouTube at https://

youtu.be/4Fs7y7gZIag?t=424
(Jump to the 7:00-minute mark to see the final spinning build in action.)

•	 Part of the idea of this project is to turn the robots onto their sides and use the robot’s motors in a
way other than to ‘drive’. However, this project is also about unleashing students’ creative thinking
and problem-solving. If students decide to use the robots in ways other than with the robots on their
sides, but are still using them to create a spinning garden, that is fine!

Spinning solar system

Activity size: Large
Delivery recommendations: Complete activity on page 48 prior to this activity, this activity and the
activities on page 51 are both applied robotics projects. Consider using at least one as a robotics build
project for this unit.
Resources needed: Basic supplies set, worksheet on page 51, maker-space/crafting supplies, EdCreate
kits/LEGO bricks.

Overview

This project has students apply what they have learned about sequential programming, inputs and
outputs and debugging into a physical computing project. This robotics build project asks students to
collaborate on the creation of a model solar system. Students need to plan their approach, build the
different elements to attach to the robots and program each robot to spin its attachment.

Tips and tricks
•	 If you want your solar system to be a more accurate model, work with students to create the

different scales needed to develop a more representative model. For example, determine what scale
the planets are sized to and the scale for the distance each planet needs to be spaced from one
another and the sun.

•	 If you want to allow for more creativity, have students design their own star system instead of
making a model of the solar system. Students can create and name their own planets, and decide
on the composition of each planet including features like it’s dimensions, colouring, habitability, etc.
Have students write stories about this star system and any inhabitants which reside inside of it.

https://youtu.be/4Fs7y7gZIag?t=424
https://youtu.be/4Fs7y7gZIag?t=424

www.edscratchapp.com
51

Cartographer and navigator

Activity size: Large
Delivery recommendations: Recommended as a capstone activity following the completion of the
Let’s Explore activities from unit 2.
Both this activity and the activity ‘Writer and director’ on page 52 are designed to be used as capstone
project options for unit 2. Consider using at least one as a final project for this unit.
Resources needed: Basic supplies set, worksheet on page 52, maker-space/crafting supplies for mak-
ing the map.

Overview

Get your students to apply sequence to a project where they design the set-up, the challenges, and the
solutions. Students create a map large enough to use with their Edison robots, then design programming
challenges to be solved using that map. After testing their challenges to make sure a solution is possible,
they can then swap challenges with a classmate.

Designing the programming challenges and testing them for viability gets students to work with
sequence and the other concepts from this unit in a new way. This project can be used as a ‘showcase’
for students to demonstrate their learnings from the unit.

Tips and tricks
•	 This project works well in groups or even as a whole class. Students can trade programming

challenges with each other using the same or different maps.

•	 Consider linking this project to any relevant geography or world studies the students are doing by
having students make maps of places they are learning about in other subjects.

•	 If students make their map using a grid system, it will be easier to navigate, but might not be as
accurate. This is a good example of trade-offs in design and makes for a good example to discuss
the topic.

•	 Does your class have a ‘buddy class’ of younger students? Try this variation: have the older students
create a grid-system map and different driving challenges. (You may find it best to keep it simple
and skip using ‘Sound’ and ‘LED’ elements for these challenges.) The ‘cartographers’ can then work
with the younger students in the role of mentors, helping the other students to solve the challenges.
The younger students can either use a push-button robot, program Edison using the EdBlocks
programming language or help the older students program the robot using EdScratch. Whichever
way you do it, giving your students the chance to help teach the concept of sequence will cement
this key computation thinking concept for them.

www.edscratchapp.com
52

Writer and director

Activity size: Large
Delivery recommendations: Recommended as a capstone activity following the completion of the
Let’s Explore activities from unit 2.
Both this activity and activity ‘Cartographer and navigator’ on page 52 are designed to be used as
capstone project options for unit 2. Consider using at least one as a final project for this unit.
Resources needed: Basic supplies set, worksheet on page 52, maker-space/crafting supplies for
making the story map.

Overview

Story maps are helpful tools both for writing stories and for breaking down the stories we read to show
comprehension. Story maps are great examples of sequence in the real-world and that connection is the
basis for this open-ended capstone project.

Students create a story using a story map. They ‘illustrate’ the story using Edison – by programming
the robot to help bring the story to life! Students should use a combination of Edison’s outputs using the
robot’s motors, LEDs and sounds to highlight key moments in their story, add lighting or sound effects
or however else they like.

Tips and tricks
•	 A ‘story mountain’ style story map works well as a base design for this project as it creates a nice

linear pathway. You can see an example of this style of layout here https://www.tes.com/lessons/
wImfQ5vQh-8OPA/sequencing

•	 This project lends itself well to group work.

•	 This project lends itself well to mixed media by filming presentations – a great ‘showcase’
opportunity.

https://www.tes.com/lessons/wImfQ5vQh-8OPA/sequencing
https://www.tes.com/lessons/wImfQ5vQh-8OPA/sequencing

www.edscratchapp.com
53

Examine the key computational concept of loops in this unit, exploring different ways loops can be used
to control how the Edison robots behave. The topic of programming logic is examined more closely,
including how control structures can affect the flow of code. Students continue to discover the EdScratch
environment, learning more about the various block types in EdScratch and ways in which these blocks
can be used to create with Edison.

Learning objectives
Students will:

•	 be introduced to the computational thinking concept of repetition through the computer
programming structure of loops

•	 develop a working understanding of the difference between definite and indefinite loops

•	 combine the concepts of sequence and loops into working programs in EdScratch

•	 be introduced to the programming concept of interrupts

•	 experiment with new blocks in the ‘Control’, ‘Comments’ and ‘Events’ categories in EdScratch

•	 expand on their problem-solving abilities by creating and programming robotics projects

Key ideas: loops (definite and indefinite), repetition, programming control structures, logic, events,
interrupts, comments.

Unit 3 - Got loops?

www.edscratchapp.com
54

Let’s explore repeating steps

Activity size: Medium
Delivery recommendations: Consider delivering this activity along with ‘Drive a triangle’ or ‘Drive a
hexagon’ on page 63 as a single lesson.
Resources needed: Basic supplies set, worksheet page 61, activity sheet on page 82

Overview

Loops, the first programming control structure of this lesson, are introduced in this activity. Students
first write a program to have Edison drive in a square using only sequential programming, observing
the repeating pattern. Definite loops are then introduced, and students recreate their ‘drive in a square’
program using this more efficient coding method.

Loops
The computational thinking concept of repetition is the primary focus of this lesson. Students explore
repetition in programming and the idea of making code more efficient by using the computer
programming structure of loops. Both definite and indefinite loops are introduced and explored using
some of the loop blocks in the ‘Control’ section of EdScratch. Students increase their understanding
of programming logic by combining sequential programming with loop structures in various ways to
create programs for Edison using EdScratch.

Tips and tricks

•	 If students are struggling to understand the loop concept, it can be helpful to draw out what is
happening in this program on paper or the whiteboard. Write down the ‘drive’ and ‘turn’ commands
in sequential order and wrap them in a loop. Write the numbers 1, 2, 3, and 4 next to the loop. Use
arrows to show that the robot will do the two commands in order, then move back to the top of the
loop. Cross out the number 1 and then repeat the process until you have moved through all four
repetitions of the loop.

•	 Loops make programming more efficient, but that doesn’t mean that programs that don’t use
loops are wrong. Programming both the eight-block and three-block program, observing that both
programs work equally well at getting Edison to drive in a square, is a good way for students to
experience the idea that ‘multiple solutions are possible in coding’ for themselves.

•	 By first writing the eight-block program, then the three-block program, students can see how
programming structures can make creating programs easier and more efficient.

•	 If Edison’s wheels catch the edge of the activity sheet’s paper, this can throw the robot off slightly.
You can fix this by taping the activity sheet down or replicating the activity sheet’s pattern on a
larger piece of paper.

•	 Due to minor mechanical differences in the motors and encoders inside different Edison robots,
some robots may not turn to exactly 90 degrees when given the input of 90. Encourage students to
try different values around 90 (e.g. 87 or 93) to find the input that works best for their Edison.

•	 When using programs that run multiple ‘drive’ commands consecutively, students may note that
their Edison robot’s accuracy is reduced as more and more commands run. Adding a pause (using
either a ‘wait’ with a very short input value or a ‘stop motors’ block as appropriate) between ‘drive’
commands allows the motors to fully stop moving, which will increase accuracy.

www.edscratchapp.com
55

Answer key

Question Type Sample answer Marking notes
1 EA 8 If students only have seven blocks, their robot

likely doesn’t complete the final turn, which
returns it to the starting position, as instructed
on the worksheet.

2 SE There is a pattern to the blocks. Only two
block types are being used with the same
input parameters, and they repeat four
times.

Students should note a pattern of repetition
regarding the blocks being used and/or the
order of the blocks in the program.

3 EA 4

4 SE The value needs to be 4 because a square
has four sides and four corners. So, the
code needs to drive each side and turn
each corner a total of 4 times.

Students will ideally note a correlation
between the number of looped actions
required and the shape’s sides/angles.

www.edscratchapp.com
56

Drive a triangle

Activity size: Small
Delivery recommendations: Complete activity on page 61 prior to this activity. Consider delivering this
activity along with ‘Drive a hexagon’ on page 63 as a single lesson.
Resources needed: Basic supplies set, worksheet on page 63.

Overview

Students practice using the definite loop programming structure to write an efficient program to get
Edison to drive a triangle. This activity is designed to be used in conjuncture with the activity on page
61 to help students master the connection between the number of loops in a definitive loop and the
resulting output.

Tips and tricks
•	 Working out the angle in degrees that the robot needs to turn to trace the triangle can be tricky.

Remind students that the sum of the interior angles of a triangle is 180° and that the triangle on the
activity sheet is an equilateral triangle.

•	 This activity lends itself well to a geometry extension lesson.

•	 If Edison’s wheels catch the edge of the activity sheet’s paper, this can throw the robot off slightly.
You can fix this by taping the activity sheet down or replicating the activity sheet’s pattern on a
larger piece of paper.

Answer key

Question Type Sample answer Marking notes
1 SE 3 The minimum number of blocks needed for

a successful program is 3: a loop, a drive
forward block and a turn block.

2 EA 3

3 SE The value needs to be 3 because a triangle
has three sides and three corners. So, the
code needs to drive each side and turn each
corner a total of 3 times.

Students will ideally note a correlation
between the number of looped actions
required and the shape’s sides/angles.

www.edscratchapp.com
57

Drive a hexagon

Activity size: Small
Delivery recommendations: Complete activity on page 61 prior to this activity. Consider delivering this
activity along with ‘Let’s explore repeating steps’ and ‘Drive a triangle’ on page 61-63 as a single lesson.
Resources needed: Basic supplies set, worksheet on page 63, activity sheet on page 83.

Overview

Students practice using the definite loop programming structure to write an efficient program to get
Edison to drive a hexagon. This activity is designed to be used in conjuncture with activity on page 61 to
help students master the connection between the number of loops in a definitive loop and the resulting
output.

Tips and tricks
•	 Working out the angle in degrees that the robot needs to turn to trace the hexagon can be tricky.

Remind students that the sum of the interior angles of a hexagon is 720° and that the hexagon on
the activity sheet is a regular (meaning that all sides are equal) 6-sided shape.

•	 This activity lends itself well to a geometry extension lesson.

•	 If Edison’s wheels catch the edge of the activity sheet’s paper, this can throw the robot off slightly.
You can fix this by taping the activity sheet down or replicating the activity sheet’s pattern on a
larger piece of paper.

Answer key

Question Type Sample answer Marking notes
1 SE 3 The minimum number of blocks needed for

a successful program is 3: a loop, a drive
forward block and a turn block.

2 EA 6

3 SE The value needs to be 6 because a hexagon
has six sides and six corners. So, the code
needs to drive each side and turn each corner
a total of 6 times.

Students will ideally note a correlation
between the number of looped actions
required and the shape’s sides/angles.

www.edscratchapp.com
58

Choose your shape

Activity size: Medium
Delivery recommendations: Complete activities on pages 61-63 prior to this activity
Resources needed: Basic supplies set, worksheet on page 64, supplies for making their own shape.

Overview

Students apply their understanding of the relationship between a definite loop and a regular shape by
choosing a shape and then writing an efficient program that gets Edison to drive that shape.
This activity asks students to articulate the patterns they have noticed about using definite loops with
shapes and extrapolate from that to explore other shapes.

Tips and tricks
•	 To complete a shape using a 3-block program consisting of a definite loop which contains a ‘drive’

block and a ‘turn’ block, students must select a regular shape. However, if students decide not to use
a regular shape, they can still attempt the challenge. You may want to run activity on page 67 first if
students want to use non-regular shapes.

Answer key

Question Type Sample answer Marking notes
1 EA 12

2 SE My shape was an octagon, which has eight
sides and angles. You always need to have
the input parameter be equal to the number
of repeating sides and angles that the shape
has, so I knew that I would need an 8 as the
repeat block’s input parameter.

Students will ideally note a correlation
between the number of looped actions
required and the shape’s sides/angles.

www.edscratchapp.com
59

Drive a circle

Activity size: Small
Delivery recommendations: Complete activities on pages 61-63 prior to this activity
Resources needed: Basic supplies set, worksheet on page 65, activity sheet on page 85.

Overview

This activity is a great exercise in creative problem-solving and an exploration of the limits of the definite
loop programming structure.

Students apply their understanding of the relationship between a definite loop and a regular shape in
this challenge by extrapolating, using the pattern they have observed to create a program where Edison
drives in a circle. This activity is designed to be used once students have realised that the number of
loops required to get the robot to drive a shape is equal to the number of sides of that shape. To drive
Edison in a circle, students need to expand on the idea and get a bit creative.

Tips and tricks
•	 If students are stuck, you can offer them the hint that ‘a shape with many very small sides can

closely approximate a circle’.

•	 The input parameter in the repeat block has a value cap of 1000. If students put in a larger number,
the block will automatically limit down to 1000.

•	 If Edison’s wheels catch the edge of the activity sheet’s paper, this can throw the robot off slightly.
You can fix this by taping the activity sheet down or replicating the activity sheet’s pattern on a
larger piece of paper.

Answer key

Question Type Sample answer Marking notes
1 RC

2 SE No, Edison isn’t actually driving in a circle,
but in a shape with lots of sides. It looks like a
circle, but it’s not a real circle.

Students may be able to get the robot to
approximate a circle closely. However, the
robot is not driving in one continuous arch
but making small forward movements and
turning slightly each loop.

www.edscratchapp.com
60

Drive a square?

Activity size: Small
Delivery recommendations: Complete activity on pgae 61 prior to this activity.
Resources needed: Basic supplies set, worksheet on page 66, activity sheet on page 82.

Overview

Switch up the definite loop by introducing the random number input block. This activity adds a bit of
variety to the definite loop and is a nice way to begin to showcase maths in coding. While the concepts
are not explicitly introduced, the random number input is stored in Edison’s memory as a variable value.
Variables, which are introduced in unit 5 of these lessons, are used extensively when using Edison’s
sensors in programs. This activity is a nice way to plant the seeds of what is possible with data and
Edison in your students’ imaginations.

Tips and tricks
•	 Due to minor mechanical differences in the motors and encoders inside different Edison robots,

students may need to adjust the input parameters of the drive blocks in this program to suit their
robots. To improve accuracy, students can also add a ‘wait’ block with a sort input value (e.g. .2 secs)
in-between the drive commands.

•	 You can ask students to watch the program run on the worksheet and count the number of sides the
robot drives. From this, they can determine the number of loops the program completed that run.

•	 While the number of loops the program will run is random, this is still a definite loop. The program
will loop for a definite number of times being one value of the set of (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).

•	 This activity lends itself well to a probability extension activity.

•	 If Edison’s wheels catch the edge of the activity sheet’s paper, this can throw the robot off slightly.
You can fix this by taping the activity sheet down or replicating the activity sheet’s pattern on a
larger piece of paper.

Answer key

Question Type Sample answer Marking notes
1 SE The first time I ran the program the robot

drove around the square one full time plus it
went 3 more sides, so it looped 7 times. The
second time it only made it halfway around
the square, so it only looped 2 times! Different
things happen every time because the
number of loops is random, not always 4.

www.edscratchapp.com
61

Doodle-bot challenge

Activity size: Large
Delivery recommendations:
Resources needed: Basic supplies set, worksheet on page 66, EdCreate kits/LEGO bricks and/or any
other maker space materials, felt-tip markers or equivalent.

Overview

This challenge adds an engineering build element to the task of getting the robot to drive in a way that
makes a shape. An open-ended challenge, this activity offers students very little guidance or limits.
Student’s apply their understanding of sequential programming and the definite loop control structure
to get the robot to drive in a shape. Designing and then building a way to attach a pen to the robot so
that this shape can be traced onto paper is the main challenge of this activity.

Tips and tricks
•	 Engineering a physical design that will put enough downward pressure on the pen to allow it to

mark the paper while still enabling the robot to drive is challenging. Using felt-tip markers or another
writing device that leaves ink behind it easily will make this challenge more achievable.

•	 This challenge can be run as an engineering design challenge. You can read more about using this
challenge to teach engineering design at https://meetedison.com/teach-engineering-design-with-
edcreate/

Answer key

Question Type Sample answer Marking notes
1 SE Getting the pen attached to the robot was

hard. My first plan didn’t work at all, and I had
to start over. My second plan used rubber
bands to attach the pen to the side of the
robot and that worked. I programmed the
robot to draw an octagon, but when I went to
run it, the rubber bands were over the wheel,
which meant that Edison couldn’t drive. I
finally attached the pen to the back of Edison
using some building beams and rubber bands
and got the robot to drive. Edison drove in the
octagon shape but not didn’t draw it very well
because there wasn’t enough pressure on the
pen to hold it down against the paper.

Student answers should cover some of the
challenges or problems they faced and how
they dealt with those problems.

https://meetedison.com/teach-engineering-design-with-edcreate/
https://meetedison.com/teach-engineering-design-with-edcreate/

www.edscratchapp.com
62

Let’s explore loops and sequence

Activity size: Medium
Delivery recommendations:
Resources needed: Basic supplies set, worksheet on page 67, activity sheet on page 86.

Overview

This activity has students write an efficient program that gets Edison to drive a non-regular shape.
Students need to use both their mastery of the concept of sequence and their understanding of the
definite loop structure to accomplish this task. Using a quadrilateral as the shape for Edison to drive is a
great way to look at the limits of loops and reinforce the importance of sequence in programming. By
choosing the correct starting point on a quadrilateral, a definite loop can still be used and will make the
program more efficient. However, the program needs additional blocks outside of the loop in order to
complete the shape.

Tips and tricks
•	 If students are struggling to determine what needs to go inside of the loop and what is outside of it,

work through the quadrilateral’s shape with your students. Look at what repeats in the shape and
what does not. Use this to determine what steps can be inside the loop as well as the sequential
order of all the code needed in the program.

•	 If Edison’s wheels catch the edge of the activity sheet’s paper, this can throw the robot off slightly.
You can fix this by taping the activity sheet down or replicating the activity sheet’s pattern on a
larger piece of paper.

Answer key

Question Type Sample answer Marking notes
1 SE

2 SE I started the robot on the corner with the
obtuse angle, pointing towards the corner
with the right angle. That meant that the first
two sides that the robot needed to drive were
the same length and the first two turns were
both 90 degrees. That is why the first part of
my code is a loop that repeats twice. The rest
of the program is individual blocks outside of
a loop because the other sides and angles do
not repeat on the shape, so cannot be used
with a loop in the program.

Student answers should note a correlation
between the start point they used and where
the program loops. NB: Some start points will
not allow the program to use a loop.

www.edscratchapp.com
63

Let’s explore forever loops

Activity size: Small
Delivery recommendations: It is recommended to introduce definite loops prior to this activity.
Resources needed: Basic supplies set, worksheet on page 68,

Overview

This activity introduces the second major type of loop structure: the indefinite loop. While definite loops
are generally easier to understand than indefinite loops, indefinite loops have a much wider range of
application in computer programming. The ‘forever’ loop, which is an indefinite loop, is introduced and
explored in this activity. Students use this new block in the semi open-ended egg-timer programming
task, allowing them to apply their understanding of sequence and loop structures.

Tips and tricks
•	 Any program can be stopped at any time by pushing the stop (square) button. This will end a

‘forever’ loop and send the robot back into standby mode.

•	 You may want to encourage students to test what happens if they put both a ‘wait’ and a ‘beep’
block inside the ‘forever’ loop compared to having the ‘wait’ block outside and the ‘beep’ inside
the loop.

This is a great example of a logical error: both and
appear to be in the correct sequence of ‘wait, then beep’, but the two programs will behave
completely differently.

Answer key

Question Type Sample answer Marking notes
1 SE I don’t think you will be able to have Edison

do anything else after the forever loop. For
one thing, ‘infinity’ doesn’t end, so this loop
with never stop repeating. Also, the shape of
the loop is different from other blocks – the
bottom is square, so there’s not a way to
attach a next step block.

Students answers will ideally note the block’s
function, shape or both as support for their
answer.

2 RC

www.edscratchapp.com
64

Earworm

Activity size: Small
Delivery recommendations: Complete activity on page 67 prior to this activity.
Resources needed: Basic supplies set, worksheet on page 69, Optional: sheet music.

Overview

This activity offers students another opportunity to use the ‘forever’ indefinite loop structure in a simple,
but meaningful, way. Using the ‘forever’ loop to repeat musical note blocks is a good way to represent
the common real-world phenomenon of getting a song stuck in our heads – i.e. an earworm. Practising
using programming structures with real-world connections helps students connect the structure to its
purpose, allowing them to identify uses for those structures in later activities when they tackle more
complex programming challenges.

Tips and tricks
•	 If you want students to practice using the ‘forever’ loop but don’t want to spend time on selecting

music, you can ask students to open the demo program Moving_with_music and modify the
program to create an earworm program using the tune in the demo program as their song.

•	 To emphasis where the loop ends, suggest students add a ‘wait’ block as the final block inside their
earworm program so that Edison will pause before beginning the song again.

www.edscratchapp.com
65

Let’s explore stacking and nesting loops

Activity size: Medium
Delivery recommendations:
Resources needed: Basic supplies set, worksheet on page 70, activity sheet on page 87.

Overview

Students are introduced to the concept of using multiple loops in a program both by stacking them
sequentially and by nesting one loop inside another. Nesting loops may seem like a new way of
manipulating the flow of a program, but it really is just layering sequence. Working with programs
with stacked and nested loops allows students to apply the computational thinking practices of
decomposition (chunking problems into smaller parts) and pattern recognition as well as the application
of sequential logic.

Tips and tricks
•	 If students are struggling to understand the loop concept, particularly nested loops, it can be helpful

to draw out what is happening on paper or the whiteboard. You can do this by writing down each
command one at a time in sequential order with your students or by writing down the program as it
appears and then use arrows to indicate each looping action.

•	 The activity in task 1 (looking at code and working out what it does without running the program)
is similar to a coding practice known as tracing. The formal practice of tracing involves stepping
through a program line by line, recording important values. It is often done to help find errors or
bugs in the code, but it is also useful when you just need to understand what is happening in a
program. While the concept isn’t explicitly introduced in this activity, and the need to record values
in EdScratch is limited, getting students into the habit of tracing through programs will help them
improve their ability to debug programs.

•	 If Edison’s wheels catch the edge of the activity sheet’s paper, this can throw the robot off slightly.
You can fix this by taping the activity sheet down or replicating the activity sheet’s pattern on a
larger piece of paper.

Answer key

Question Type Sample answer Marking notes
1 EA 3

2 EA Beeps

3 EA 15

4 EA LED flashes

5 SE It’s three squares in a row.

6 SE I think I can use a nested loop to get Edison to
drive a square (which uses a loop to drive and
turn 4 times) and then have that loop inside
another loop that repeats 3 times.

Ideally, students will see a correlation
between the repeating pattern and the
nested loop.

www.edscratchapp.com
66

Edison the designer

Activity size: Large
Delivery recommendations: Recommended to reinforce nested loops. Highly recommended if
students are struggling with loop structures.
Resources needed: Basic supplies set, worksheet on page 72, activity sheet on page 88, craft supplies
to make the test space.

Overview

Give students the chance to put loops and sequence to the test by getting Edison to drive in some
fabulous designs. This activity has students look at designs to identify repeating patterns, then construct
a code solution as effectively as possible using loops and nested loops.

Tips and tricks
•	 Physically creating the design by marking it out or drawing it can help students recognise the

repetitions that occur inside the pattern and better connect these to the loop structures they need
inside their EdScratch code solution.

•	 Having students make their own patterns is a great way to have them think critically about what
repetition looks like in practice. Creating a design which has a pattern inside a pattern is a great
chance to apply computational thinking to design.

Dance party!

Activity size: Large
Delivery recommendations:
Resources needed: Basic supplies set, worksheet on page 73. Optional: devices for playing music.

Overview

Get the robots moving by putting Edison’s outputs and the loop control structures into action. This
mini project has students apply their understanding of sequence, repetition and problem-solving in a
collaborative setting.

Tips and tricks
•	 This activity is designed to be used in groups to allow students to collaborate on a project. Students

may work together across each step of the design, coding, and testing phases. Alternatively,
students can divide up the work with certain team members in charge of specific tasks.

•	 The Hokey Pokey makes a great song choice if students are stuck for inspiration. The song lyrics lay
out a plan for what students can program the robots to do!

www.edscratchapp.com
67

Let’s explore interrupting the main program

Activity size: Medium
Delivery recommendations:
Resources needed: Basic supplies set, worksheet page 74.

Overview

This activity introduces a set of new terms and concepts all related to one key idea: interrupting the
main program. The fundamental computational thinking concept of sequence is given a new dimension
with the introduction of interrupts and subroutines. These important programming concepts are critical
for unlocking event-based programming with Edison, enabling the power of the robot’s sensors to be
utilised.

This lesson activity reviews topics previously introduced to help students grasp how event-driven
interrupts work. Students are introduced to the ‘Events’ block category in EdScratch and practice using a
program which has an interrupt and subroutine to create a ‘decider bot’ with their Edison robot.

Interrupts
Expand your understanding of computational logic by exploring interrupts in programming.
This lesson introduces new blocks from the ‘Events’ category in EdScratch and uses these blocks
to create subroutines. Students learn how interrupt-triggered subroutines work and apply their
understanding of sequence to follow programs which include these types of subroutines. The computer
programming practice of commenting is also introduced as a tool to help students track and explain
their code and logic.

Tips and tricks

•	 While interrupts disrupt the sequential flow of a computer program, they are still bound by the
same underlying logic. Subroutines will execute the commands contained within the subroutine in
sequential order. Once complete, the program will return to the exact point of the main program
where it was prior to the interrupt, then continue to run the main program in sequential order.

•	 The decider bot can be used to answer any binary question. You may elect to have students create
their own binary questions or create questions with two ‘a or b’ style options to answer with the
decider bot.

Answer key

Question Type Sample answer Marking notes
1 EA The main program uses an indefinite

‘forever’ loop to make the robot turn on the
right LED, wait .03 secs, turn the right LED
off, turn the left LED on, wait .03 secs, and
turn the left LED off. It will repeat that loop
of actions forever.

Students can word the answer differently
but they should identify the main program’s
actions as described.

2 SE All the Event category blocks are yellow and
shaped the same as the ‘Start’ block.

Students should identify similarities between
the Event blocks and the default Start block.

www.edscratchapp.com
68

Try a clap instead

Activity size: Small
Delivery recommendations: Complete activity on page 74 prior to this activity
Resources needed: Basic supplies set, worksheet page 76.

Overview

This extension activity is designed to be used in conjunction with activity on page 74. Students once
again program their Edison robots to be decider bots. This time, instead of the interrupt being caused
by a button press, it is caused when the robot detects a clap.

While the primary objective of this activity is to reinforce the concepts of interrupts and subroutines,
the activity also serves as a good soft introduction to using Edison’s sensors. This can be used as a
preparatory activity to help students become comfortable using sensors in programming before they
begin to work with Edison’s other sensors.

Tips and tricks

•	 The robots may struggle to detect sounds when there is a high level of background noise. Having
students tap a finger near the sound sensor on their Edison will create the same effect as clapping.

•	 Pressing the ‘play’ (triangle) button to run a program in Edison can create a small amount of noise
which can trigger ‘Clap detected’ interrupts. If students have a ‘wait’ directly after the ‘Clap detected’
event (as in this example program https://www.edscratchapp.com?share=pbz13M0a) this can
make it look like the program isn’t working correctly immediately after the ‘play’ (triangle) button is
pressed. In actual fact, the event has just triggered, causing the ‘wait’. Have students wait until the
set time has elapsed, then they will see the program will jump back to the main program, waiting for
the next event trigger.

Cheater bot

Activity size: Small
Delivery recommendations: Complete activity on page 74 prior to this activity
Resources needed: Basic supplies set, worksheet page 77.

Overview

This extension activity is designed to be used in conjunction with activity on page 74. Students once
again program their Edison robots to be decider bots.
This time, in addition to the standard ‘pause’ subroutine running when triggered by an interrupt from
one of the buttons (round or triangle) being pressed, they need to add a second subroutine to be a
‘cheat’ which gives a set answer whenever the other button is pressed.

In addition to reinforcing the concepts of subroutines and interrupts, students learn that they can have
more than one subroutine per program. While not explicitly introduced, this activity demonstrates
branching in programming and serves as a soft introduction to the concept of branching.

Tips and tricks

•	 An EdScratch program can only ever have one subroutine start with any given event. That’s why any
event block, such as the ‘round button pressed’ event block, disappears from the block pallet when it
is in the programming space.

•	 One possible answer to the cheater bot activity can be seen at https://www.edscratchapp.
com?share=K072a7Ym

ttps://www.edscratchapp.com?share=pbz13M0a
https://www.edscratchapp.com?share=K072a7Ym
https://www.edscratchapp.com?share=K072a7Ym

www.edscratchapp.com
69

Challenge up: Pick one

Activity size: Large
Delivery recommendations: Complete activity on pagr 74-75 prior to this activity
Resources needed: Basic supplies set, worksheet page 77, maker space materials to build the box.

Overview

This extension activity is designed to be used in conjunction with activity on pages 74-75. Students
once again program their Edison robots to be decider bots. This activity then asks students to create a
physical box or another system to use with their decider bot. This physical design should allow Edison to
‘light up’ a choice. For example, students could design a box with two windows cut out of the front that
words or pictures can be slid into. When the decider bot program runs, one of the two options will be lit
up by the LEDs.

This physical design activity reinforces the concepts of subroutines and interrupts in programming and
requires students to engage in problem-solving to create a tangible use for such a program.

Tips and tricks

•	 Students may find they need to increase the wait time in their subroutine depending on their design.

•	 The physical design needs to allow the robot’s buttons to be pressed in order to trigger the
subroutine. Remind students of this as they create their designs.

www.edscratchapp.com
70

Let’s explore comments in coding

Activity size: Medium
Delivery recommendations:
Resources needed: Basic supplies set, worksheet page 78.

Overview

The practice of commenting in programming, and the ‘Comment’ block category in EdScratch, are
introduced in this activity. Students see what comments look like in EdScratch and use an example
program to help understand how comments are a helpful tool.

Some professional programs dislike comments, claiming that comments are a waste of time and
arguing that ‘good code should be self-documenting’. Good comments help make great code, however,
and from an educational perspective, commenting is a very helpful practice. Having students get
into the habit of articulating what they are trying to achieve, especially when working with more
complex code structures, allows them to be far more independent problem-solvers when debugging.
Commenting also allows for easier collaboration, as other students and facilitators can more quickly
understand the programmer’s intentions. Moreover, commenting helps students practice explaining
their ‘coder-thinking’ in human-readable terms. Being able to communicate about technological work
effectively is a key skill in any digital literacy arsenal.

Tips and tricks
•	 If students are struggling to understand what comments are, consider explaining comments using a

printed document and some sticky-notes. Show how you can add sticky-notes to the document so
that someone else can have some ‘hints’ about what is inside the document at specific points. The
sticky-notes are a helpful way to leave notes about the ‘code’ (the document) but are not actually a
part of the document.

•	 Remind students that Edison will ignore the comment blocks entirely. The robots cannot understand
these blocks no matter what is put inside them.

•	 Adding a comment that says what you want the program to do won’t make the program do that
thing: the actual code still needs to work.

•	 Simply adding comments doesn’t ‘debug’ a program. Comments can, however, be a great tool for
students to use to find and fix logical errors, help them to work through their own thinking and to
make changes to their code when debugging.

•	 How to use comments in coding isn’t something that is strictly defined and varies depending on
the individual programmer. There are a few best practice rules, however, which you may want to
introduce:

	 - Comments should be easily understood – i.e. they should be ‘human readable’
	 (rather than being code snippets).

	 - Comments should generally be at the top of the code they are explaining.

	 - Comments only need to be added if the section of code is not self-evident.

www.edscratchapp.com
71

Answer key

Question Type Sample answer Marking notes
1 SE I think that Edison will drive between 1 and

5 squares going forwards slowly, then drive
between 1 and 5 triangles going backwards
quickly. Edison will then repeat that whole
set of actions 2 more times (a total of
3 times). If I clap at any time while the
program is running, Edison will beep.

2 SE Yes, the comments do help because with
so many loops it is a bit tricky to see what
is going to happen. Having the comments
made the code for driving the squares and
triangle with the random number loop for
each easier to understand.

This is an opinion-based answer but should be
supported by sound reasoning no matter the
student’s opinion.

3 SE The program mostly worked the way I
expected but the robot beeped the whole
time, and I didn’t think that it would because
I never even clapped.

Any student experience is fine, but you may
choose to see if the student’s answer from
question 1 aligns with the experience noted
here.

4 EA The bug box has a warning that explains
this: ‘Driving the motors creates noise which
may cause the ‘clap’ event to trigger. This
may cause the ‘clap event’ blocks to trigger
repeatedly while Edison is driving.’

The cause noted in the sample answer is the
reason this is occurring. Student answers must
note this cause.

www.edscratchapp.com
72

Challenge up: Create and comment

Activity size: Large
Delivery recommendations: Recommended as a capstone activity following the completion of the
‘Let’s Explore’ activities from unit 3
Resources needed: Basic supplies set, worksheet page 80. Optional: maker space materials

Overview

Students demonstrate their learnings from the unit and flex their creative thinking in this open-ended
capstone project. This activity challenges students to create a program of their own design using the
programming structures, coding practices and computational thinking skills they have learned. While
a few parameters are given to set minimum requirements for what the programs need to include,
students are free to design the program’s purpose.

Tips and tricks
•	 Remind students that Edison has three types of outputs: sounds, LEDs and motor outputs.

•	 You may choose to encourage students to take a robotics build approach to this project,
designing a program that uses their robot as a part of an engineered solution including some
sort of physical build.

•	 Rather than having students copy out their programs manually, you can opt to have them use
screen-shot software to capture and print an image. Alternatively, you can ask students to save their
program as a file and provide the location of the file or a link to where they save it on a shared drive
as their answer. Having a saved file will be beneficial if you are having students complete activity
‘Share your comments’ on page 81.

Answer key

Question Type Sample answer Marking notes
1 SE I want my program to turn Edison into a

quiz guide bot. This will be a little like a
decider bot, but instead of giving a random
answer, I want to use it to be able to show
someone if they answered a question
right or wrong when I quiz them. It will
have 2 subroutines, one to show that the
answer was correct and one to show it was
incorrect. When the program runs, Edison
will flash the LEDs on and off. Once the
person answers the question, I will be able
to push the triangle button to play a tune
and turn the lights off if the answer is wrong
or push the round button to play a different
tune while the robot spins with the lights on
if the answer is correct.

For reference, this link shows the program
initially devised by the programmer being
described in the sample answer.

2 SE I used comments to label the subroutines,
so I knew which was for the correct answer
and which was for the wrong answer. One
comment is at the top of the triangle button
subroutine and says ‘wrong answer’.

You may want to confirm students are using
good commenting practices in their choice of
location and comment content.

https://www.edscratchapp.com/?share=j0d9PEbJ

www.edscratchapp.com
73

Question Type Sample answer Marking notes
3 SE One problem I had was that the music was

still playing when the subroutine’s control
of the LEDs had ended. I fixed this in the
triangle button subroutine by removing the
‘play in background’ block. Another problem
I had was that the round button subroutine
made the robot spin forever. I fixed this by
changing the block to a drive block with a
set time instead of using a wait block and
the ‘set motors’ block.*

Any experience is acceptable, but generally
speaking, students will encounter issues. If
a student has noted that they encountered
no problems, you may want to check their
program and encourage them to take risks
and think creatively if the program they
devised is very simple.

4 RC Sample program available at https://www.
edscratchapp.com/?share=GDLRNg0X

Having students provide a link to their locally
saved file instead of writing out their programs
will enable them to reuse the program if you
are having students complete activity on page
81.

NB: the student also could have fixed the issue of the robot spinning forever by adding a ‘stop both
motors’ block to the end of that subroutine. This is a good example of multiple coding solutions being
equally viable to debug a problem.

https://www.edscratchapp.com/?share=GDLRNg0X
https://www.edscratchapp.com/?share=GDLRNg0X

www.edscratchapp.com
74

Challenge up: Share your comments

Activity size: Medium
Delivery recommendations:
Resources needed: Basic supplies set, worksheet page 81.

Overview

Collaboration is at the heart of professional programming. Not only do teams of people within an
organisation come together on programming projects, individuals from around the world swap and
share code on-line. Good communication is key to enabling collaboration in coding to be successful.
This activity explores just that, challenging students to use critical thinking to evaluate their own and a
partner’s approach to commenting.

Tips and tricks
•	 This activity can also be run with small groups instead of pairs.

•	 If students completed and saved their programs from activity ‘Create and comment’ on page 80,
you can have them use the saved files to swap programs and get into the second part of this activity
more quickly.

•	 Students do not need to run their programs in the Edison robots for this activity, but it can be helpful
if they want to see what a program does in order to decide about the comments included.

•	 You may want to provide students with some best-practice rules used in commenting professionally.
Alternatively, you may ask students to compare their answers with these ‘best practices’ and discuss
any differences:

	 - Comments should be easily understood – i.e. they should be ‘human readable’
	 (rather than being code snippets).

	 - Comments should generally be at the top of the code they are explaining.

	 - Comments only need to be added if the section of code is not self-evident.

Answer key

Question Type Sample answer Marking notes
1 SE 1. Comments should be kept pretty short

2. Comments should not repeat what’s
already clear in the code

3. Comments should always be included in
tricky or confusing sections

4. If the comment is because you aren’t
sure about something (e.g. for debugging),
include a question mark in the comment.

The rules students come up with are far less
important than the process – you may want
to have students explain how they came
up with their rules to understand how they
collaborated and their logic.

www.edscratchapp.com
75

Explore selection and branching in computer programming through the key computational concepts
of conditionals and events. Key computer programming skills, such as developing pseudocode, are
introduced in this unit to help students further their problem-solving abilities as they unlock the Edison
robots’ various sensor capabilities. Students learn about algorithms and use this understanding to create
programs enabling more autonomous behaviour from the robots. Conditionals, sensing, interrupts and
event-based programming are brought to life through the physical computing activities in this unit.

Learning objectives
Students will:

•	 be introduced to the computational thinking concept of conditional selection (i.e. branching)

•	 explore how inputs work with Edison using new blocks in the ‘Control’, ‘Sensing’ and ‘Events’
categories in EdScratch

•	 experiment using Edison’s sensors and input capabilities in working programs

•	 combine the concepts of sequence, loops and selection into working programs in EdScratchdevelop
a practical understanding of how to use pseudocode and comments to plan, track and debug
programs

•	 be introduced to the idea of algorithms in computer programming and learn how algorithms differ
from programs

•	 expand their understanding of robotic applications through projects using sensing and inputs

Key ideas: conditionals (i.e. selection and branching), events, sensing and sensors, pseudocode,
algorithms

Unit 4 - What if...

www.edscratchapp.com
76

Let’s explore using conditionals

Activity size: Large
Delivery recommendations:
Resources needed: Basic supplies set, worksheet page 90.

Overview

Conditionals, one of the most basic building blocks needed to start writing meaningful programs in any
computer language, are introduced in this activity. Conditionals in code are just like conditionals in life:
one thing is conditional on another thing happening first.

Although ‘if’ statements are the type of conditional structure most frequently used in coding, this activity
uses the ‘until’ blocks in EdScratch to introduce the concept of conditionals. The ‘until’ blocks are used
because the idea of an action happening ‘until’ a certain condition is met can be easier for students to
grasp initially.

The worksheet first walks students through a program using an indefinite ‘repeat until’ loop, which
serves as the perfect starting point for understanding the overall concept of conditionals. Students then
use different sample programs to explore the concept further, gaining practice using the diamond-
shaped event conditions in different ‘until’ blocks. The final question in the worksheet asks students to
try to identify a possible use of an ‘until condition’ structure in the technology they see in their daily lives,
helping them to begin to connect what they are learning with the programming that surrounds us in the
real world.

Conditionals
Along with loops, conditionals are some of the most important building blocks needed to create
meaningful code in any computer programming language. This lesson introduces this fundamental
computational thinking concept, known as ‘conditional selection’ or ‘branching’. Developing a firm
understanding of conditionals is critical for success in the unit’s second lesson, which dives into Edison’s
sensors.

Students develop an understanding of how sequential programming and programming logic work in
programs which use conditional structures. Conditional structures make multiple options possible inside
a program – different things will happen depending on whether or not the condition is met. Both ‘until’
conditionals and ‘if statement’ structures, as well as these structures’ corresponding EdScratch blocks,
are introduced in this lesson. Students create programs in EdScratch using previously explored condition
inputs (specifically, keypad button presses and claps) with both ‘until’ and ‘if’ conditional structures to
explore how conditions function in practice.

Tips and tricks

•	 If students are struggling with the concept of conditionals, work through daily life examples that
use conditionals. For example, the chore of washing dishes can be thought about as ‘keep washing
dishes until they are all clean’ and putting away laundry as ‘keep folding the washing until the
laundry basket is empty’.

•	 Using programs that have button presses as events inside the program can become confusing.
Remind students that to run a program, they need to press the ‘play’ (triangle) button once. This
initial press ONLY starts the program – it will not be considered a button press inside of the program.
In other words, once the program is running, the robot views the current condition as ‘triangle button
pressed? – NO’.

www.edscratchapp.com
77

Answer key

Question Type Sample answer Marking notes
1 EA The ‘operators’ and ‘events’ categories

have blocks that I think can be used as
conditional input parameters. I think this
because they have diamond-shaped blocks
and the ‘until’ blocks have diamond-shaped
holes.

Student answers should note the diamond-
shape correlation at a minimum.

2 EA You need to press the ‘round’ button while
the program is running. This gives the
condition for the ‘repeat until’ loop and ends
the loop. The program then moves on to the
next block in order, which is the ‘beep’ block.

Student answers should identify that the round
button push fulfils the conditional and that the
program then continues in normal sequential
order.

3 EA 4

4 SE One real-life example of a program
that would be good to start with a ‘wait
until condition’ block is a burglar alarm.
The event condition would be a motion
detection event. The program would tell the
alarm to wait until motion was detected.
Then, if motion is detected, it would sound
an alarm.

This question pushes students to try to tie the
programming concepts of event conditions
and the ‘until’ conditional structure in with the
world around them. It is not expected that they
will explain existing technology accurately
– only that they attempt to apply their
understanding to technology.

•	 The syntax of EdScratch uses ‘until’ rather than ‘while’ (which is common in many general-purpose
coding languages), but the code structure performs the same conditional function. If you are
teaching EdScratch along with another language that uses ‘while’ conditionals, you may want to
explain this connection to students, noting that there is no functional difference between ‘while
condition = true’ and ‘until condition = false’.

	 - Example: (while x < 4) is the same as (until x = 4). In both cases, the condition breaks when x = 4.

www.edscratchapp.com
78

Change it up: Robot error or human error?

Activity size: Medium
Delivery recommendations: Complete activity on page 90 prior to this activity, recommend to practice
debugging with conditionals, strongly recommend if students are struggling with conditionals.
Resources needed: Basic supplies set, worksheet page 93.

Overview

Students work through a program which uses sequence, loops and conditionals to uncover why the
robot is not behaving the way the programmer expects. While this may appear to be just a debugging
activity, it is actually more about looking at computational thinking in action. The activity walks students
through an exercise of decomposing a program and it’s ‘problems’ into smaller parts. Students then
work through the underlying logic of each issue. In doing so, students reinforce their understanding of
how conditionals work in combination with other elements of code.

The idea that there are limits to a computer’s capabilities is also introduced. While the issues in this
activity both turn out to be ‘human’, knowing that it is possible that an issue is a limit of the robot’s
capabilities is valuable for students to keep in mind when working with more complex projects and
programs.

Tips and tricks

•	 Using programs that have button presses as events inside the program can become confusing.
Remind students that to run a program, they need to press the ‘play’ (triangle) button once. This
press ONLY starts the program – it will not be considered a button press inside of the program. In
other words, once the program is running, the robot views the current condition as ‘triangle button
pressed? – NO’.

•	 Problem-solving is a major part of coding. This activity can help students practice problem-solving
to fix a ‘broken’ program without feeling as frustrated as they might if they had written the program
themselves.

•	 Collaboration can make finding solutions in coding a lot easier. Consider having students work on
this activity in pairs or groups.

•	 You can set-up this activity in a different way to make it a more explicit lesson on decomposition.
Have students work in groups or as a whole class, first looking at the programmer’s comments.
Have students identify and break out the two separate issues without the aid of the worksheet.
Work through each issue in turn, breaking each problem down into smaller pieces as needed. Have
students collaborate to try to solve each small chunk, then see how that solves the initial comments
from the programmer as a whole.

www.edscratchapp.com
79

Answer key

Question Type Sample answer Marking notes
1 EA The robot is spinning left slowly.

2 SE Yes, because that is what the first block
inside the loop tells the robot to do.

If students did not expect this behaviour, you
might want to review how loops work.

3 EA The robot starts spinning right because the
condition of the ‘spin left’ block has been
met, and so the robot moves on to the next
block in the program which is ‘spin right’.

If students do not understand why it is
moving left again, you may want to review
conditionals.

4 SE The logical error is that the programmer
expected that as soon as they pushed the
round button, the loop would break and
the robot would move on to the next line of
code (the beep). However, that’s not how
loops work. The program needs to have
each line of code inside the loop complete,
then return to the top of the loop to check
if the loop condition has been met. If the
condition has been met, then the program
will move on. When the programmer
pushed the round button, but then didn’t
push the triangle button, the program was
stuck on the first line of code inside the
loop.

Student answers should correctly identify the
logical error.

5 SE Dear future-me,

First off, don’t give up. Coding takes
practice and problem-solving. Here are
some other things you can try: a) Walk
through the code line by line, following what
each block is telling the robot to do. b) Look
at where the problem is and test another
program with just that bit of code, to see
what’s happening. c) Ask a friend to look at
my program and see if they can spot the
issue.

Resilience is key to coding! You may want to
remind students to include ‘don’t give up’ in
their list of suggestions!

www.edscratchapp.com
80

Let’s explore if statments

Activity size: Medium
Delivery recommendations:
Resources needed: Worksheet page 96, activity sheet on page 129.

Overview

This off-line activity introduces students to both ‘if’ and if-else conditionals. The idea that programs
can branch is explored, and students practice the concept using an off-line ‘treasure map’ with if-else
instructions. The idea that conditionals allow a computer to decide something is more evident when
using ‘if’ statements than it is when using ‘until’ conditional code blocks. Branching becomes especially
clear when using if-else conditionals.

Practicing the concept of branching off-line helps students become more familiar with the idea and see
how branching works in combination with other computational thinking processes, such as sequence
and repetition.

Tips and tricks

•	 Some students may note that the ‘if-then’ pattern used in ‘if’ statements appears to be the same as
causality. In a way, this is an accurate comparison. Once the code is written, the ‘THEN’ statement
will run if the ‘IF’ condition is met. However, in code, there are not locked if/then rules. You may want
to explain that students set the ‘causality’ by determining the conditions (the IF) and the conditional
code (the THEN).

•	 The instructions to find the treasures are all written in a format that could be considered rough
pseudocode. The concept of pseudocode is introduced on page 105. You may choose to introduce
the concept formally with this activity or reference the two activities as you use each.

Answer key

Question Type Sample answer Marking notes
1 SE IF my brother goes into my room, THEN I

tell on him.
Any if-then situation which makes sense is
acceptable.

2 EA E

3 EA B

4 SE D

www.edscratchapp.com
81

Let’s explore if statments and sequence

Activity size: Small
Delivery recommendations:
Resources needed: Basic supplies set, worksheet on page 98.

Overview

Building on students’ basic understanding of both ‘if’ and if-else conditionals, this activity explores
how ‘if’ statements work in EdScratch programs in relation to sequence. Like all code, ‘if’ and if-else
blocks follow fundamental computer logic, including executing in sequential order. When the program
encounters ‘if’ statements, the blocks are resolved in step-by-step sequential order. However, because
the code inside an ‘if’ block is conditional on that block’s condition being met, it is possible for the
program to skip the conditional code. Understanding this behaviour is crucial for students to fully
comprehend conditionals and be able to apply the logic of conditions in their computational thinking.

This activity also examines if-else blocks in sequential programs in EdScratch. Understanding that only
the ‘if’ or ‘else’ section of code will run is critical for students to be able to write and follow programs
using this structure.

Tips and tricks

•	 If students are struggling to follow what is happening in a program with ‘if’ or if-else blocks, you may
want to encourage them to add comments into their programs. Writing out notes in their own words
can help students understand a program’s conditional flow.

•	 Remind students that they can always run a program in EdScratch with Edison to check their
thinking and to see how a program works.

Answer key

Question Type Sample answer Marking notes
1 EA The round button needs to be pressed for

the ‘if’ condition to be met.

2 SE I couldn’t get the conditional code to run,
even when I pressed the round button.
When I ran the program, it beeped, then
spun 60 degrees to the right. It skipped the
code inside the ‘if’ block.

Students are unlikely to be able to get the
conditional code to run as there is not enough
time between when they press the triangle
button to start the program and when the
program is checking for the round button
press for them to have the button press
completed. If they can complete the button
press in time, their answers should note that all
code runs in sequence.

3 SE I think that the conditional code (the stuff
inside the ‘if’ block) gets skipped if the
condition is not met and the program
moves on to the next item of code after the
‘if’ block in sequential order.

Student answers will ideally note that
conditional code is skipped if the condition is
not met.

4 EA No, the robot would not beep. This is
because the beep is inside the ‘if’ part of the
block which will only run if the robot detects
a round button press.

5 EA There are 3 actions the robot will always
take: 1) wait .5 secs, 2) check to see if a
round button press has occurred and 3)
turn the left LED on.

If students only identify 1) and 3), you may
want to explain that the if-statement condition
check always occurs, regardless of the
outcome.

www.edscratchapp.com
82

Let’s explore stacking and nesting if statements

Activity size: Large
Delivery recommendations:
Resources needed: Basic supplies set, worksheet on page 101.

Overview

Using conditionals effectively allows students to create meaningful programs and tap into Edison’s
powerful sensors. This means that students need to have a clear understanding of how conditionals,
especially ‘if’ and if-else structures, work in programs, including when these structures are stacked
or nested. Being able to follow the flow of a program which contains conditionals and loop control
structures can seem like quite an imposing task at first. This activity challenges students to work through
different programs, following the flow of the code to understand how the programs work. Putting
their computational thinking skills to work, students will decompose programs to understand what will
happen in different conditional situations. They then see the power of branching programs nested in
loops by writing and testing a clap-controlled driving program.

Tips and tricks

•	 Nesting sensor-based conditionals in loops is a very common way to use Edison’s sensors. You
may want to spend extra time on this activity to ensure students are comfortable using nested and
stacked ‘if’ statements.

•	 For the clap-controlled driving program: the robots may struggle to detect sounds when there is a
high level of background noise. Having students tap a finger near the sound sensor on their Edison
will create the same effect as clapping.

•	 Having students add comments to their clap-controlled driving program can help ensure that
students understand what is happening inside the code.

•	 The clap-controlled driving program in this activity functions the same way as the clap-controlled
driving program activated by the clap-controlled driving barcode program. You may choose to have
students revisit that barcode to see this for themselves.

Answer key

Question Type Sample answer Marking notes
1 EA If you never press the round button, the condition will

never be met, so the ‘else’ code will run each repetition
of the loop. The robot will spin right 60 degrees, then
beep, and repeat those actions forever.

2 EA If you never press the round button, the condition will
never be met, so the ‘if’ code will be skipped each
repetition of the loop. The robot will beep each loop
forever.

3 EA To get the robot to drive backwards, first, you need to
press the round button while the program is running.
The robot will wait for .5 seconds then check if the
triangle button has been pressed. Since it has not, it will
run the ‘else’ code and drive backwards.

4 SE I think that the program uses the ‘forever’ block so that
the program will keep running loop after loop as long
as you want. If you didn’t have the forever block, the
program would tell the robot to wait for a clap, and
then check for a second clap, but it would only do this
one time. Once it detected either one or two claps and
moved accordingly, the program would end.

Students should identify that
without the forever block, the
program would only run once.

www.edscratchapp.com
83

Challenge up: Build a pulley

Activity size: Large
Delivery recommendations: Recommend as a capstone activity following the completion of the Let’s
Explore activities.
Resources needed: Basic supplies set, worksheet on page 104, maker space/crafting supplies, EdCreate
kits/LEGO bricks

Overview

This open-ended engineering and programming challenge has students apply their understanding of ‘if’
statements to create a working pulley system using Edison.

Tips and tricks

•	 This activity works well in pairs or small groups.

•	 By design, this challenge offers minimal instructions and only a few hints. This is to encourage
creativity and experimentation. You may choose to add more structure (for example, working
through the physical design process with students) to the activity as best fits your students’ needs.

•	 This challenge can be run as an engineering design challenge. You can read more about teaching
engineering design at https://meetedison.com/teach-engineering-design-with-edcreate/

•	 There is no ‘right’ answer to what the pulley build and program should look like, but here is what one
sample solution looks like:
- EdScratch pulley program: https://www.edscratchapp.com?share=wbJRrQbj
- Physical design: (adapted from the EdCrane EdBuild)

Answer key

Question Type Sample answer Marking notes
1 SE Regarding the program, my first version had the ‘if’

statements nested the wrong way. Both were in the ‘if’
part of the if-else block, so the only way to move the
pulley backwards was to push the round button and
THEN the triangle button. I got a classmate to look at
my program, and she spotted this error. Once I moved
the triangle button ‘if’ block to the ‘else’ section of the
if-else block, it worked!

The best part of this project was working with other
people. When I got stuck and frustrated, I was able
to get help from classmates, and then we fixed the
problems together! That was a lot of fun.

Any student experience is
acceptable. You may also choose
to have students provide photos
or diagrams of their pulley
designs and submit their program
solutions.

https://meetedison.com/teach-engineering-design-with-edcreate/
https://www.edscratchapp.com?share=wbJRrQbj

www.edscratchapp.com
84

Let’s explore pseudocode

Activity size: Small
Delivery recommendations:
Resources needed: Worksheet on page 105, activity sheet on page 130.

Overview

This offline activity introduces pseudocode, a helpful tool for tackling the important task of
planning programs. Planning out programs effectively is an important skill for students to develop
when mastering computational thinking. Being able to plan effectively requires students to apply
the computational thinking concepts that they have learned (including sequence, repetition and
conditionals) into a logical flow. Pseudocode is one of the most efficient tools for planning computer
programs and is used by many professional programmers.

Developing a level of comfort with pseudocode allows students to plan out programs and algorithms
with confidence. Working from a plan makes coding faster and debugging and problem-solving more
effective. The ability to create program plans in pseudocode also allows students to concentrate
on the logic their program needs without getting caught up in minor details or syntax. This will
allow students far more clarity when planning programs using sensors, data, or complex control
structures. Competency with pseudocode also improves students’ abilities to apply their computational
understanding to other programming languages, including text-based languages.

Sensing
This relatively large lesson expands students’ understanding of conditionals, loops, sequence, and
interrupts by using Edison’s various sensors in programs. Students further explore how inputs work in
Edison using new blocks in the ‘Control’, ‘Sensing’ and ‘Events’ categories in EdScratch.

In addition to discovering how Edison’s individual sensors work and can be programmed, this lesson
uses Edison’s sensor capabilities to explore key computer science concepts and skills in practical
applications. This lesson introduces the computer science practice of pseudocode, the idea of
algorithms, and the important but often misunderstood concept of how algorithms differ from
programs. Students practice using pseudocode and algorithms both to plan out programs and to
help in debugging their work. By experimenting with Edison’s sensors and input capabilities in working
programs, students expand their understanding of robotics applications and autonomous robotic
behaviours in real-world contexts.

Tips and tricks
•	 The pseudocode in the worksheet questions uses indentation to indicate when actions are inside of

control structures. Following the left-most alignment of the pseudocode in the worksheet questions
will help show where a loop or ‘if’ statement ends and the next command after that control structure
begins.

•	 Remind students that indented pseudocode is inside a loop or ‘if’ statement. In cases where there are
nested conditionals or loops, the pseudocode will show this ‘nesting’ by being indented more than
one level.

•	 The instructions to find the treasures in activity on page 96 are written in a format that could be
considered rough pseudocode. You may choose to reference this activity as another example of
pseudocode or use the two activities in conjunction.

Answer key

Question Type Sample answer Marking notes
1 EA The letter E

2 EA The number 4

3 EA The number 4.

www.edscratchapp.com
85

Change it up: Find the answer

Activity size: Small
Delivery recommendations: Complete/use in conjunction with activity on page 105
Resources needed: Worksheet on page 107, activity sheet on page 130.

Overview

This activity builds students’ understanding and competency with pseudocode. Students practice writing
pseudocode instructions, then reading and following pseudocode written by a classmate.

Tips and tricks
•	 While this activity requires students to work with at least one partner, you can also have students

work in small groups divided into teams. Each team can work together to plan, write and test the
pseudocode before exchanging with the opposite team.

Answer key

Question Type Sample answer Marking notes
1 SE Start on 8 facing north

repeat 3 times

forwards until letter

right 90

repeat 2 times

forwards 2

if animal

right 90 degrees

else

left 90 degrees

forwards until letter

Lands on the answer of: C

You may choose to have students
also submit where their program is
meant to end to check accuracy.

www.edscratchapp.com
86

Let’s explore Edison’s line tracker

Activity size: Medium
Delivery recommendations:
Resources needed: Basic supplies set, worksheet on page 108, activity sheets on pages 131 - 132.
Optional: EdMats, supplies for making your own lines.

Overview

This two-part activity kick-starts students’ exploration of using Edison’s line tracker in EdScratch
programs. Students first become familiar with the Edison robot’s line tracking sensor technology,
learning the fundamentals of how the sensor works. By experimenting with the line tracker’s red LED
on different coloured surfaces, students learn how the robot can use the sensor to detect whether it is
driving on a reflective or non-reflective surface.

Students then practice using the line tracking sensor in an EdScratch program to get the robot to drive
until it detects a black (i.e. non-reflective) line.

Tips and tricks
•	 If you want to explore more about how Edison’s line tracking sensor works, consider having a

breakout session to explore how light reflection and absorption works, including for coloured light.

•	 You can also use EdMats or make your own test space to run the ‘drive until black’ program.

•	 Remind students to develop the habit of checking the bug box in EdScratch. This can be especially
helpful when working with sensors.

Answer key

Question Type Sample answer Marking notes
1 EA A white surface reflects more light back to

Edison than a black surface reflects. I think
this because the spot from the red LED is
brighter on a white surface (compared to
black) and that means more of the light is
being reflected (rather than absorbed).

The light will appear brighter on a white
surface. If students note black, consider
reviewing this with them.

2 EA Colour Reflective or non-
reflective?

Red reflective

Blue non-reflective

Green non-reflective

www.edscratchapp.com
87

Change it up: Drive inside a border

Activity size: Medium
Delivery recommendations: Complete activity on page 108 prior to this activity
Resources needed: Basic supplies set, worksheet on page 110, activity sheets on pages 133.
Optional: EdMats, supplies for making your own lines/borders

Overview

Students put their understanding of pseudocode and Edison’s line tracker to the test in order to
create a program that gets Edison to drive inside a black border. By first planning out their program,
students apply algorithmic thinking to how the line tracking sensor can be used to create a program
where Edison will not cross a black line. Students then translate their plan into EdScratch and test their
program with the robot.

Tips and tricks
•	 You can also have students use EdMats or make their own test space to run their ‘drive inside a

black border’ programs.

•	 The barcode program ‘bounce in borders’ has Edison drive inside a black border. You may choose to
have students run the barcode program and compare the robot’s behaviour when using the barcode
program to the behaviour displayed when running their ‘bounce in borders’ style program.

•	 Encourage students to work out the source of any errors they encounter. Two common logical
errors students may make when creating this program are: 1) forgetting to turn on the line detection
sensor, or 2) forgetting to use an indefinite loop.

•	 This activity can be used as an extension activity following activity ‘Let’s explore algorithms’,
emphasising that students can create an algorithm for getting Edison to drive inside any border.

Answer key

Question Type Sample answer Marking notes
1 SE turn on line detection

forever

drive forwards until non-reflective

drive backwards

turn

Student answers may not be completely
correct compared to the final program – that’s
okay.

www.edscratchapp.com
88

Let’s explore algorithms

Activity size: Medium
Delivery recommendations:
Resources needed: Basic supplies set, worksheet on page 111, activity sheets on pages 133, EdMats or
supplies for making your own lines/borders

Overview

The concept of algorithms is introduced in this lesson along with the important but often misunderstood
concept of how algorithms differ from programs. Students learn that algorithms are a tool for solving
sets of problems and can guide the logic used in computer programs. They explore an algorithm for
getting Edison to follow any black line using the robot’s line tracking sensor and see how the logic of the
algorithm translates into an EdScratch program.

Learning that algorithms can inform computer programs, but that not all programs are algorithms,
is an important concept to enable students to be able to practice so-called ‘algorithmic thinking’.
Understanding that some problems need a specific, dedicated program to solve while others can be
solved using an algorithm is an important skill for students to develop.

Tips and tricks
•	 For the line tracking program to work, the difference between the dark and light surfaces needs to

be easily understood by the robot, and there needs to be enough white space between any curves in
the line. The lines that students make for Edison to follow need to be dark (e.g. black), approximately
1.5cm (0.6 inches) wide, and on a white background. Alternatively, they can use an EdMat.

•	 Make sure students start by placing Edison with the line tracking sensor on white. The robot can start
near the black line but not on top of it.

•	 You may choose to have students run the barcode program ‘follow a line’ to see the same algorithm
from the worksheet at work in that barcode program.

•	 Activity ‘Drive inside a border’ on page 110 can be used as an extension activity following this activity.
You can demonstrate to students that they can create an algorithm for getting Edison to drive inside
any black border.

Answer key

Question Type Sample answer Marking notes
1 EA The robot ‘waddles’ along the edge of the line. This is because the

algorithm says that the robot should drive forwards to the left
until the line tracking sensor is on a non-reflective (black) surface.
That pushes the sensor along until it finds a black line to the left.
Then the logic says that the robot should drive forwards to the
right until the line tracking sensor is on a reflective (white) surface.
That pushes the sensor off black, onto white. The robot alternates
this behaviour, moving back and forth on the edge of the line. This
makes the robot ‘waddle’ left and right as it goes along the line.

Students should identify
the robot’s waddle is
caused by the program
logic going back and
forth between the two
‘until’ blocks.

2 SE Edison was able to follow my line except in one spot where the
line curved very sharply. The robot kept missing the curve and
catching the other part of the line. I think this happened because
the two parts of the line were really close together, so the robot
would just find a non-reflective spot and start following it, even
though it wasn’t the part of the line I wanted it to follow.

www.edscratchapp.com
89

Challenge up: There’s more than one way to follow a line

Activity size: Large
Delivery recommendations: Complete activity on pahe 111 prior to this activity
Resources needed: Basic supplies set, worksheet on page 113, activity sheets on pages 133, EdMats or
supplies for making your own lines/borders

Overview

The idea that there is no one ‘right’ way to program is brought to life in this activity. Students look
at the algorithm for getting Edison to follow any black line using the robot’s line tracking sensor and
use its logic to come up with multiple programs. This semi open-ended programming challenge asks
students to think about different ways the same underlying logic can be manifested in an EdScratch
program. Having an appreciation that there are many ways to program a solution is an important
skill for students to develop and will make them better able to collaborate effectively on coding
projects. Thinking of multiple ways to apply the algorithm’s logic also challenges students to apply their
understanding of conditionals, interrupts and sensor inputs into working programs.

Tips and tricks
•	 Encourage students to work through the logic of the algorithm looking at different blocks in

EdScratch. Testing things that do not end up working is fine! Explore why an attempt doesn’t work
and iterate to develop a program that does.

•	 For the line tracking program to work, the difference between the dark and light surfaces needs to
be easily understood by the robot, and there needs to be enough white space between any curves in
the line. The lines that students make for Edison to follow need to be dark (e.g. black), approximately
1.5cm (0.6 inches) wide, and on a white background. Alternatively, they can use an EdMat.

•	 Make sure students start by placing Edison with the line tracking sensor on white. The robot can start
near the black line but not on top of it.

•	 You may want to have students compare answers with each other to see all the different variations
of programs that are possible.

Answer key

Question Type Sample answer Marking notes
1 RC Program 1: This program uses an if-else statement to get Edison to

follow a line https://www.edscratchapp.com?share=7bx9x9DZ
Any program that gets
Edison to follow any
line is acceptable.

2 RC Program 2: This program uses events to get Edison to follow a line
https://www.edscratchapp.com?share=pDmX9Jbq

Any program that gets
Edison to follow any
line is acceptable.

https://www.edscratchapp.com?share=7bx9x9DZ
https://www.edscratchapp.com?share=pDmX9Jbq

www.edscratchapp.com
90

Let’s explore Edison’s obstacle detection

Activity size: Large
Delivery recommendations:
Resources needed: Basic supplies set, worksheet on page 115, objects for making obstacles.

Overview

This three-part activity kicks off students’ exploration of using obstacle detection with Edison in
EdScratch programs. Students first become familiar with the Edison robot’s infrared light sensor
technology, learning the fundamentals of how the sensor works and how it can be used to detect
obstacles. A basic program using obstacle detection is also introduced to explain how the sensor can
be used to detect obstacles in EdScratch programs. Finally, students practice using obstacle detection
by creating an algorithm to detect and avoid obstacles, then translate the logic of the algorithm into an
EdScratch program.

Tips and tricks
•	 If any of the Edison robots are not detecting obstacles or are reacting to obstacles only when they

are very close to the obstacle, you may need to calibrate the obstacle detection in that robot. Use
the barcode and instructions in Appendix 2 of this guide to calibrate a robot’s obstacle detection.

•	 Obstacles need to be opaque but not too dark (e.g. not black) and at least as tall as Edison for the
robot to detect them.

•	 You may choose to have students run the barcode program ‘avoid obstacles’ to see the same
algorithmic logic at work in that program.

•	 You may choose to have a breakout session on the electromagnetic spectrum and where IR and
visible light fall within the spectrum in conjuncture with this activity.

Answer key

Question Type Sample answer Marking notes
1 EA turn obstacle detection beam on

loop forever

drive forwards

if obstacle detected anywhere

drive backwards

turn

Student answers should have the basic logic
of the sample answer but can be explained
differently.

2 SE When I first went to write my algorithm,
I had to think about what behaviour the
robot needed to take to avoid any obstacle.
This stumped me initially. I picked up my
robot and pretended to drive it towards
different obstacles on the desk, moving to
avoid each one. By doing this a few times, I
realised that if the robot backs up and then
turns away, it will always avoid the obstacle.

Having students articulate problems they
encounter as well as the actions they took to
resolve the issues helps bring explicit attention
to their problem-solving skills.

www.edscratchapp.com
91

Challenge up: If line, go right. If obstacle, go left

Activity size: Medium
Delivery recommendations: Complete activities on pages 108 and 115 prior to this activity
Resources needed: Basic supplies set, worksheet on page 118, activity sheet on page 143, objects for
making obstacles. Optional: supplies for making your own sensor-driven ‘mazes’

Overview

Designed to be used after students have explored both Edison’s obstacle detection beam and line
tracking sensor, this programming challenge gets students to apply computational thinking to use the
sensors to solve a ‘grid maze’. Students explore using multiple sensors in a single program. This task
also requires that they combine multiple computational elements, including sequence, conditionals,
input-outputs, and repetition.

The activity also lays out the option for students to design their own physical setup to be solved using
the same basic idea of ‘if line, do X. If obstacle, do Y.’

Tips and tricks
•	 If any of the Edison robots are not detecting obstacles or are reacting to obstacles only when they

are very close even at low speeds, you may need to calibrate the obstacle detection of that robot.
Use the barcode and instructions in Appendix 2 of this guide to calibrate a robot’s obstacle detection.

•	 Obstacles need to be opaque but not too dark (e.g. not black) and at least as tall as Edison for the
robot to detect them.

•	 An example solution using the activity sheet can be seen at https://www.edscratchapp.
com?share=8DQGkG0B

Change it up: Where is the obstacle?

Activity size: Small
Delivery recommendations: Complete activity on page 115 prior to this activity
Resources needed: Basic supplies set, worksheet on page 118, objects for making obstacles.

Overview

This activity reinforces students’ understanding of how Edison’s infrared sensor can be used to detect
objects and further explores Edison’s ability to detect the location of an obstacle relative to the robot.
With the requirement to use interrupts from the ‘events’ category of blocks in EdScratch, students use
their creativity to make three different subroutines for the robot to run, outputting different reactions
depending on the location of the obstacle it detects.

Tips and tricks
•	 If any of the Edison robots are not detecting obstacles or are reacting to obstacles only when they

are very close, you may need to calibrate the obstacle detection of that robot. Use the barcode and
instructions in Appendix 2 of this guide to calibrate a robot’s obstacle detection.

•	 One of the best obstacles for this activity is actually students’ own hands! Have students face their
Edison away from them, then test the program by putting a hand down in front of Edison to the
right, then repeat on the left. Finally, have them put their hand right in front of the robot.

•	 An example solution to this activity can be seen at https://www.edscratchapp.com?share=Eb2X7wYq

https://www.edscratchapp.com?share=8DQGkG0B
https://www.edscratchapp.com?share=8DQGkG0B
https://www.edscratchapp.com?share=Eb2X7wYq

www.edscratchapp.com
92

Challenge up: 3D maze

Activity size: Medium
Delivery recommendations: Complete activity on page 115 prior to this activity
Resources needed: Basic supplies set, worksheet on page 119, supplies for building the 3D maze.

Overview

By creating and then solving their own three-dimensional mazes, students apply computational thinking
and their understanding of Edison’s infrared-driven obstacle detection to this ‘real-world’ project, getting
Edison to operate like a driver-less car. Just as driver-less car technology is yet to be perfected, getting
Edison to drive autonomously through a 3D maze using obstacle detection is not without pitfalls.
This project is a great challenge for students to practice problem-solving, decomposition and
collaboration.

Tips and tricks

•	 A great example of a 3D maze that can be readily solved using obstacle detection can be seen in
the video Meet Edison - Autonomous Robotics Maze Challenge #1 available at https://www.youtube.
com/watch?v=caVNQYKr-_4

•	 Remind students of the trade-off between speed and accuracy with obstacle detection: the faster
Edison drives, the less time there is for the robot’s obstacle detection process to take place. The less
time for the process, the worse the robot’s ability to detect obstacles.

•	 Edison’s obstacle detection uses infrared light which, when Edison is moving, can be far from perfect.
As the robot moves, its position relative to objects changes. ‘Old’ infrared light bouncing off a wall
can be detected from a new position, causing the robot to react in a way the programmer might not
expect or want. Experimenting with using location-based obstacle detection events in different ways
will let students create different options to get their robots autonomously through their maze.

https://www.youtube.com/watch?v=caVNQYKr-_4
https://www.youtube.com/watch?v=caVNQYKr-_4

www.edscratchapp.com
93

Let’s explore messaging with Edison

Activity size: Medium
Delivery recommendations: It is recommended to complete activity on page 115 prior to this activity
Resources needed: Basic supplies set, worksheet on page 120.

Overview

This activity introduces students to using the Edison robot’s infrared sensor to send and receive IR
messages. The robot’s IR receiver can be used in multiple ways: to detect IR light reflected back to
the robot from objects as part of Edison’s obstacle detection beam, to detect IR messages from other
Edison robots, and to detect IR messages from paired TV/DVD remote controls. Students learn the
basics of how IR messages work in this activity, practising sending and receiving messages between
multiple Edison robots.

Tips and tricks
•	 This activity requires sets of at least two robots, so students should work in pairs or groups. The

activity can also be done as a whole class activity, with one robot sending out a message for all the
others to detect.

•	 Edison’s messaging uses infrared which has a limited range, similar to that of a TV remote control. If
students are struggling to get a ‘receiving’ robot to detect the message, have the students move the
‘receiving’ robots in closer to the ‘sending’ robot.

•	 If multiple groups are running this activity near each other, students may encounter ‘cross-talk’ with
robots reacting to the messages being sent out by other groups.

•	 To learn more about TV/DVD remote controls and Edison, consider using activity ‘Change it up: TV
remote control barcodes’ and/or activity ‘Change it up: Remote-controlled flag machine’.

Answer key

Question Type Sample answer Marking notes
1 EA The ‘send IR message’ block is in the LEDs

category in EdScratch because it is an
output that uses Edison’s infrared LEDs.

www.edscratchapp.com
94

Change it up: Remote-controlled flag machine

Activity size: Medium
Delivery recommendations: Complete activity on page 120 prior to this activity.
Extension activities on pages 121 - 128 are all robotics build projects using IR messaging. Consider using
at least one.
Resources needed: Basic supplies set, worksheet on page 122, activity sheet on page 135, TV/DVD
remote controls, maker-space supplies for creating the flags, EdCreate kits and/or other supplies for
attaching the flags

Overview

Students learn how to use Edison’s programmable TV remote codes in this activity and then apply this
knowledge into a robotics build project to create a remote-controlled flag machine. This semi open-
ended project challenges students to create a physical computing solution with real-world application,
applying their understanding of coding concepts, including conditionals and sensing.

Tips and tricks
•	 Students are welcome to build a flag machine in a different way to the project description in this

activity or to come up with their own remote code detecting creation.

•	 You may want to familiarise students with using TV/DVD remote controls and Edison using activity
‘Change it up: TV remote control barcodes’ prior to this activity.

•	 A variation of this activity using IR messaging with variables is included in Unit 5, activity ‘Challenge
up: Edison-controlled flag machine’. You may choose to reference these two activities when using
either or run them as two programming challenges for the one build design.

There is no ‘right’ answer, but here is what one sample solution looks like:
	 - Program: https://www.edscratchapp.com?share=RDaeaaDV
	 - Physical design:

https://www.edscratchapp.com?share=RDaeaaDV

www.edscratchapp.com
95

Challenge up: Build and control the EdCrane

Activity size: Medium
Delivery recommendations: Complete activity on page 120 prior to this activity.
Extension activities on pages 121 - 128 are all robotics build projects using IR messaging. Consider using
at least one.
Resources needed: Basic supplies set, worksheet on page 123, activity sheets on page 135,
TV/DVD remote controls, 1 EdCreate kit per EdCrane, EdCrane build instructions set (available at https://
meetedison.com/content/EdCreate/EdBuild-EdCrane-instructions.pdf)

Overview

Using Edison to create programmable robotic builds is one of the most exciting things students can do
with the robots. The EdBuild projects using the pre-set instructions and EdCreate kits are an excellent
way to give students exposure to interactive engineering. Like other EdCreate EdBuilds, the EdCrane
responds to a TV or DVD remote control. However, the EdCrane uses the programmable TV remote
codes, not the pre-set action barcodes. The EdCrane uses remote control commands in combination
with a downloaded program from EdScratch, telling the EdCrane what action to perform when a specific
remote code is detected.

Tips and tricks
•	 Students may find it easiest to first lay out all of the EdCreate pieces onto their work surface and

organise the parts into groups of the same piece type and colour. This can help students identify and
use the correct pieces as they work through the build.

•	 It is strongly recommended that the magnetic hooks be set up in advance of the build with adult
supervision to ensure that these are set up correctly. Once the hook is set up the first time, it can be
used as a single part over and over in the EdCrane build.

•	 The magnetic hook’s spool can spin both clockwise and counter-clockwise. Whenever the string of
the hook is fully extended out from the spool (i.e. the string is released all the way), whichever way
the hook starts to wind will become the ‘raise hook’ direction. The opposite direction will be the ‘lower
hook’ direction.

•	 If multiple students are running programs using the remote-control codes in close physical proximity
to each other, they may experience ‘cross-talk’ where one robot receives and reacts to the remote-
control code from a different group. Try spacing students away from each other to minimise the
issue.

•	 Students can download their EdScratch programs into the EdCrane before or after they build the
crane, but they will need to pair the robot with a remote control using the barcodes before they
build.

•	 The EdCrane build instructions also have programming instructions, including a link to a share-
code. You may opt to have students use this code, modifying the program to match their plan and
adjusting inputs as needed. Alternatively, you can give students a modified set of the EdCrane build
instructions without the share-code and have students attempt to program the solution on their
own. The worksheet assumes students do NOT have the share-code. The share-code can be seen at
https://www.edscratchapp.com?share=5DMQ3XDw

Answer key

Question Type Sample answer
1 SE EdCrane action Remote code Remote control button

Spin the magnetic spool clockwise 1 Volume up

Spin the magnetic spool counter-clockwise 2 Volume down

Spin the crane clockwise 3 Keypad right

Spin the crane counter-clockwise 4 Keypad left

https://meetedison.com/content/EdCreate/EdBuild-EdCrane-instructions.pdf
https://meetedison.com/content/EdCreate/EdBuild-EdCrane-instructions.pdf
https://www.edscratchapp.com?share=5DMQ3XDw

www.edscratchapp.com
96

Challenge up: Firefighting water cannon

Activity size: Medium
Delivery recommendations: Complete activity on page 120 prior to this activity.
Extension activities on pages 121 - 128 are all robotics build projects using IR messaging. Consider using
at least one.
Resources needed: Basic supplies set, worksheet on page 124, 1 EdCreate kit per EdTank, 2 Edison
robots per EdTank, EdTank build instructions set (available at https://meetedison.com/content/EdCre-
ate/EdBuild-EdTank-instructions.pdf), supplies for marking out the situation set-up

Overview

This programming challenge asks students to apply their understanding of coding concepts, including
conditionals and sensing, to a real-world application. The EdBuild programming challenge projects use
the pre-set instructions and EdCreate kits to create whichever EdBuild is needed for the scenario. This
scenario uses the EdTank. By using the EdTank as the base for their firefighting robots, students do not
need to design the engineering component and can concentrate on the programming component of
their solutions.

Students must design two programs which will work in conjunction with each other in order to control
the two robots in the EdTank and solve the firefighting scenario.

Tips and tricks
•	 This project is ideal for pair or group work.

•	 The building challenge in both this activity and activity ‘Challenge up: Build and control the EdTank’ is
the same.

•	 Students may find it easiest to first lay out all of the EdCreate pieces onto their work surface and
organise the parts into groups of the same piece type and colour. This can help students identify and
use the correct pieces as they work through the build.

•	 You will need to reset the cannon and reload a rubber band each time you fire the cannon. This
should be done manually to ensure the new band is loaded properly and that the firing ‘pin’ is
pushed completely back into the starting location.

•	 For best results, use the orange bands that come with your EdCreate kit in the cannon.

•	 Just like many real tanks, the EdTank’s design means it will be slow to turn left or right. When the
EdCreate tracks are brand new, they may be extra grippy, which will make the EdTank turn even
slower. You can reduce the grip by removing the tracks and lightly dusting them with talcum powder.
Be sure to knock any excess powder off the tracks before putting them back onto the EdTank.

•	 Additional information about this programming project can be found in the EdCreate teaching guide
at https://meetedison.com/content/EdCreate/EdCreate-teachers-guide.pdf

•	 There is no ‘right’ answer, and solutions will vary depending on student-created set-ups. However,
here is what one sample solution looks like https://www.edscratchapp.com?share=80vBNQ0d

https://meetedison.com/content/EdCreate/EdCreate-teachers-guide.pdf
 https://www.edscratchapp.com?share=80vBNQ0d

www.edscratchapp.com
97

Challenge up: Semi-automated digger

Activity size: Medium
Delivery recommendations: Complete activity on page 120 prior to this activity.
Extension activities on pages 121 - 128 are all robotics build projects using IR messaging. Consider using
at least one.
Resources needed: Basic supplies set, worksheet on page 125, 1 EdCreate kit per EdDigger, 2 Edison
robots per EdDigger, EdDigger build instructions set (available at https://meetedison.com/content/Ed-
Create/EdBuild-EdDigger-instructions.pdf), supplies for creating the situation set-up

Overview

This programming challenge asks students to apply their understanding of coding concepts, including
conditionals and sensing, to a real-world application. The EdBuild programming challenge projects use
the pre-set instructions and EdCreate kits to create whichever EdBuild is needed for the scenario. This
scenario uses the EdDigger. By using the EdDigger as the base for their semi-automated digger robots,
students do not need to design the engineering component and can concentrate on the programming
component of their solutions.

Students must design two programs which will work in conjunction with each other in order to control
the two robots in the EdDigger and solve the scenario.

Tips and tricks
•	 This project is ideal for pair or group work.

•	 The building challenge in both this activity and activity ‘Challenge up: Build and control the EdDigger’
is the same.

•	 Students may find it easiest to first lay out all of the EdCreate pieces onto their work surface and
organise the parts into groups of the same piece type and colour. This can help students identify and
use the correct pieces as they work through the build.

•	 In this build, the top robot connects to the bottom robot on the third row of studs from the front of
the bottom robot. Thus, the top robot overhangs off the back of the bottom robot by approximately
2 cm.

•	 Additional information about this programming project can be found in the EdCreate teaching guide
at https://meetedison.com/content/EdCreate/EdCreate-teachers-guide.pdf

•	 There is no ‘right’ answer, and solutions will vary depending on student-created set-ups. However,
here is what one sample solution looks like https://www.edscratchapp.com?share=5DMe54Dw

www.edscratchapp.com
98

Challenge up: Hazardous material removal

Activity size: Medium
Delivery recommendations: Complete activity on page 120 prior to this activity.
Extension activities on pages 121 - 128 are all robotics build projects using IR messaging. Consider using
at least one.
Resources needed: Basic supplies set, worksheet on page 127, 1 EdCreate kit per EdRoboClaw, 2 Edison
robots per EdRoboClaw, EdRoboClaw build instructions set (available at https://meetedison.com/con-
tent/EdCreate/EdBuild-EdRoboClaw-instructions.pdf), supplies for creating the situation set-up

Overview

This programming challenge asks students to apply their understanding of coding concepts, including
conditionals and sensing, to a real-world application. The EdBuild programming challenge projects use
the pre-set instructions and EdCreate kits to create whichever EdBuild is needed for the scenario. This
scenario uses the EdRoboClaw. By using the EdRoboClaw as the base for their hazardous material
removal robots, students do not need to design the engineering component and can concentrate on the
programming component of their solutions.

Students must design two programs which will work in conjunction with each other in order to control
the two robots in the EdRoboClaw and solve the scenario.

Tips and tricks
•	 This project is ideal for pair or group work.

•	 The building challenge in both this activity and activity ‘Challenge up: Build and control the
EdRoboClaw’ is the same.

•	 Students may find it easiest to first lay out all of the EdCreate pieces onto their work surface and
organise the parts into groups of the same piece type and colour. This can help students identify and
use the correct pieces as they work through the build.

•	 In this build, the top robot connects to the bottom robot on the second row of studs from the front of
the bottom robot. Thus, the top robot overhangs off the back of the bottom robot by approximately
1 cm.

•	 The claw in the articulated arm of the EdRoboClaw is composed of 3 ‘fingers’ – two parallel fingers
which are stationary (made from grey beams) and the frontmost finger which moves. The row of
gears in the articulated arm controls this forward finger, including its positioning relative to the
stationary fingers. The alignment of the forward most two gears can affect how the moving finger
sits relative to the stationary fingers when the claw is fully open. When the claw is fully open, and
the EdRoboClaw is sitting on a flat surface (such as a table or desk), the moving finger should be
high enough that one of the EdCreate grey beams can slide under it between the finger and the
table. If the moving finger is not this high, try gently separating the front of the arm and rotating the
frontmost gear by one or two teeth clockwise independently of the next gear. You will be able to see
this move the front finger. Reconnect the gears and the arm.

•	 The EdRoboClaw can pick up objects with some flat surfaces. Students may find that they are not
as able to pick up and carry objects which are round, such as a pen. Try using the 7-hole long grey
beam from the EdCreate kit.

•	 It will be easiest to start the robot with the claw already hovering open over the 7-hole long grey
beam from the EdCreate kit representing the hazardous material.

•	 Additional information about this programming project can be found in the EdCreate teaching guide
at https://meetedison.com/content/EdCreate/EdCreate-teachers-guide.pdf

•	 There is no ‘right’ answer, and solutions will vary depending on student-created set-ups. However,
here is what one sample solution looks like https://www.edscratchapp.com?share=rDGRoBba

https://meetedison.com/content/EdCreate/EdCreate-teachers-guide.pdf
https://www.edscratchapp.com?share=rDGRoBba

www.edscratchapp.com
99

Challenge up: Homing pigeons

Activity size: Medium
Delivery recommendations: Recommended as a capstone activity following the completion of the
Let’s Explore activities from unit 4
Resources needed: Basic supplies set, worksheet on page 128, supplies for creating the situation set-up

Overview

This chiefly unstructured challenge asks students to create both the physical set-up and programming
solution to get their robots to ‘act like homing pigeons’ and find their way ‘home’. The worksheet
instructions are intentionally a bit vague. There are few set limitations, and only a minimal level of
guidance is provided. This challenge aims to simply give students a start-point from which to explore
using their creativity, ingenuity and computational thinking skills.

Tips and tricks
•	 This activity works best in groups.

•	 This is NOT a ‘fail-proof’ activity. The physical limitations of the robot, the design of the set-up, the
precision of the programming solutions, and other related factors all mean that even the best of
solutions may not work ‘perfectly’. Encourage students to take these limitations in stride and find the
best solution they can. This can be used as an opportunity to discuss how in the real-world, situations
are frequently ‘messy’, with factors that require compromise. Real-world applications often need us
to engineer ‘as-good-as-possible’ solutions which may never be 100% perfect.

•	 Programming solutions will depend heavily on the physical set-up design that students create.
Having students explain how their programming solutions and physical designs work together is a
great exercise in thinking through real-world physical computing.

www.edscratchapp.com
100

Dive into the key computational concepts of variables, data and expressions while applying prior
learning from previous units. Students round out their exploration of EdScratch in this unit. Earlier
concepts are revisited and expanded on using the additional flexibility afforded by including variables
and operators to manage data within their programs.

Learning objectives
Students will:

•	 be introduced to the computer science fundamentals of variables and data

•	 explore how data and variables can be used with Edison using new blocks in the ‘Data’ and
‘Operators’ categories in EdScratch

•	 further explore Edison’s sensors and input capabilities using variables and operators to refine and
modify behaviours in working programs

•	 apply computer science fundamentals such as tracing and debugging to work through projects
using sensing and variables

Key ideas: variables and storing values, data, operators and computations in programs, tracing

Unit 5 - Versatile variables

101010 001 1010 0101 11001 111
00

 0
10

10
1

10
10

1 1
00

10
 10001110 10101 10101 1100 1

101010 001 1010 0101 11001 111
00

 0
10

10
1

10
10

1 1
00

10
 10001110 10101 10101 1100 1

101010 001 1010 0101 11001 111
00

 0
10

10
1

10
10

1 1
00

10
 10001110 10101 10101 1100 1

www.edscratchapp.com
101

A special note about this lesson

The primary focus of this lesson is variables and data, two of the most fundamentally important parts
of general purpose programming languages. It’s not uncommon for students (and instructors!) to feel
like there is a bit of a stretch between prior units and the contents of this lesson, especially if this is your
first time working with variables. Learning about variables and maths in programming is an important
step in meaningful computer science education. Just like anything that is brand new, becoming
comfortable with maths and variables in programs can take some time. Encourage students to be
patient with themselves as they work through the activities. They will soon see the creative potential
these new skills unlock inside programming!

www.edscratchapp.com
102

Let’s explore messaging expressions

Activity size: Small
Delivery recommendations:
Resources needed: Worksheet page 137, Optional: Programming devices to look at ‘operators’ in
EdScratch

Overview

This off-line activity introduces the concept of expressions in coding and demonstrates how
computations can be used inside of expressions. The fact that all computer languages use numbers and
mathematics is also discussed. Developing an understanding of how expressions and maths work off-
line builds students’ capacity to engage in more complex computational thinking, enabling them to use
these elements with confidence in EdScratch programs in later activities.

Many people have a fear that computer programming requires intense amounts of complicated
mathematics. For many programming languages, including EdScratch, this is simply untrue. However,
using expressions is required to do some things in EdScratch and to use some of Edison’s sensors
in meaningful ways. Likewise, being able to use basic maths, such as arithmetic, inside EdScratch
programs allows students to do more interesting things with the robots and use Edison’s sensors and
data in more creative and exciting ways.

The idea of tracing is also introduced in this activity. The formal practice of tracing involves stepping
through a program line by line, recording important values. Code traces are often done to help debug
code but can also be useful when you just need to understand what is happening in a program, or what
will happen when an input has a different value. While the need to record values in EdScratch is limited,
this activity gets students familiar with working through computations, enabling them to develop the
habit of tracing through programs in future activities.

Maths and data in EdScratch
This lesson, which introduces the final unexplored sections of the EdScratch language, focuses on data.
While block-based programming languages often remove the need for users to get into the details of
data in programming, developing a basic working understanding of this fundamental computer science
component is a critical part of developing students’ digital literacy and in preparing them for text-based
programming languages.

Variables, which can be created and utilised through the special ‘Data’ category in EdScratch, are
introduced and then explored in this lesson. Students learn how variables are used to store values.
Students experiment with using and manipulating data in working EdScratch programs, including using
data gathered with Edison’s inbuilt sensors. The concept of using maths in programming, including the
important practice of using expressions, is introduced along with the related blocks from the ‘Operators’
category in EdScratch. The practice of tracing code is also explored and practised.

Tips and tricks

•	 Binary is not taught in the EdScratch lessons. This activity does make mention of the fact that
‘without a computer language, you would need to write every single command using nothing but
1s and 0s,’ which is a nod to the fact that all computers operate using binary. If you are teaching
binary, consider tying a separate lesson on binary into this activity.

•	 When it comes to expressions and any mathematics in EdScratch programs, it is important to note
that Edison can only handle integers. Likewise, Edison can only work in ‘real’ mathematics. If students
put in computations which, for example, divide by zero, they may get errors, or the robot may
behave in unexpected ways.

www.edscratchapp.com
103

•	 While not required in the worksheet, you may choose to have students look at the ‘operators’
category in EdScratch to find the six blocks used in expressions and begin to piece together how the
blocks can be used in EdScratch programs.

Answer key

Question Type Sample answer Marking notes
1 EA Meaning: Is 2*2 the same as 4?

Resolves to: True

2 EA Meaning: Is 2 greater than or equal to 4?
Resolves to: False

3 EA Meaning: Is 2 + 2 not equal to 4?
Resolves to: False

4 EA Meaning: Is 2-1 less than 4-1?
Resolves to: False

www.edscratchapp.com
104

Let’s explore Edison’s light sensors

Activity size: Large
Delivery recommendations: Complete activity on page 108 and 137 prior to this activity
Resources needed: Basic supply set, worksheet on page 140.

Overview

This activity introduces Edison’s visible light sensors, explains how the sensors work, and then explores
using the sensors with expressions to make two different EdScratch programs. In order to effectively
use Edison’s visible light sensors, which detect visible light and feed the result back to Edison as a light
reading, students need to understand the concepts of events and conditionals as well as be able to use
expressions in EdScratch programs.

More than with any other sensor, using the light sensors exemplifies the idea that sensors create
data and that it is this data which is used by the robot. Using the visible light sensors in programs
helps students begin to see that there are layers of information ‘behind the scenes’ of block-based
programming languages. Developing an appreciation for this fact helps prepare students to work with
more creative and complex programs in EdScratch as well as setting the groundwork for moving into
text-based languages, such as EdPy.

Tips and tricks
•	 When it comes to expressions and any mathematics in EdScratch programs, it is important to note

that Edison can only handle integers. Likewise, Edison can only work in ‘real’ mathematics, so if
students put in computations which, for example, divide by zero, they may get errors, or the robot
may behave in unexpected ways.

•	 If an operator input parameter is left blank in an EdScratch program, it will be read as ‘0’ (zero) by
the robot.
	 - The operator may display NaN in the input parameter space in this case, which stands for ‘not 	
	 a number’.

•	 Edison will detect all ambient visible light and is unable to determine the source of the light. Take into
consideration how bright or dark the room is when testing programs using Edison’s light sensors.

•	 Encourage students to test different values in the expressions they are using with light sensor
readings to find what works best with their robot in the environment where they are running their
program.

Answer key

Question Type Sample answer Marking notes
1 RC

http://EdPy.

www.edscratchapp.com
105

Change it up: Edison the moth

Activity size: Medium
Delivery recommendations: Complete activity on opage 140 prior to this activity
Resources needed: Basic supply set, worksheet on page 142, torches (flashlights)

Overview

Students explore how to use Edison’s light sensors together to create a program for Edison which
makes the robot mimic photo-trophic behavior. The fact that the light sensors store light readings as
numerical values, enabling those values to be compared to each other using operators in an expression,
is demonstrated in this activity.

Tips and tricks
•	 You will need a torch (flashlight) and a flat surface located away from any other sources of bright

light, such as sunlight or overhead fluorescents.

•	 Once Edison ‘sees’ the bright source of light, the robot will drive towards it. By moving the torch, you
can control where Edison drives.

•	 If the environment is brighter than the torch, Edison won’t be able to detect the torch, and will not
respond as expected.

•	 The ‘moth’ program in this activity should function the same way as the program activated by the
‘follow a torch’ barcode program. You may choose to have students revisit that barcode to see how
their program compares to the barcode program.

•	 One programming solution can be seen at https://www.edscratchapp.com?share=80vEnJYd

www.edscratchapp.com
106

Challenge up: Edison the cockroach

Activity size: Medium
Delivery recommendations: Complete activity on page 140 prior to this activity. This activity builds on
concepts demonstrated with more explanation in the activity on page 142 ‘Edison the moth’. Consider
using this as an extension to that activity.
Resources needed: Basic supply set, worksheet on page 143, torches (flashlights)

Overview

Students explore how to use Edison’s light sensors together to create a program for Edison making
the robot mimic negative phototrophic behaviour. The fact that the light sensors store light readings as
numerical values, enabling those values to be compared to each other using operators in an expression,
is demonstrated in this activity.

Tips and tricks
•	 You will need a torch or flashlight and a flat surface located away from any other sources of bright

light, such as sunlight or overhead fluorescents.

•	 Once Edison ‘sees’ the bright source of light, the robot should drive in the opposite direction. By
moving the torch, you can control where Edison drives.

•	 If the environment is brighter than the torch, Edison won’t be able to detect the torch, and will not
respond as expected.

•	 The ‘cockroach’ program is effectively the same as the previous ‘moth’ program, but the logic of how
the robot should respond to light is inverse.

Answer key

Question Type Sample answer Marking notes
1 SE Forever

if right light sensor > left light sensor

go left

else

go right

www.edscratchapp.com
107

Let’s explore variables

Activity size: Large
Delivery recommendations:
Resources needed: Basic supply set, worksheet on page 144

Overview

The concept of variables, one of the fundamental components of code, is introduced in this activity.
The worksheet explains how variables work, then has students trace a program using a variable to
understand the value of that variable at different points in the program. Understanding how variables
work and how the value of a variable can change will allow students to create their own programs using
variables.

Even though EdScratch enables students to write many programs without using variables, the full scope
of the language can only be tapped into by using variables. Created and managed using the ‘Data’
category in EdScratch, variables function differently than other blocks in the language. Spending the
time to work through this somewhat explanation-heavy activity will help students gain mastery over
creating and using variables in meaningful programs.

Tips and tricks
•	 Only variable names using legal characters will be able to be compiled and sent to Edison. If

students get error messages when they try to download a program with variables, check the
variable’s name.

•	 For a refresher on using Edison’s ‘set motors’ blocks, refer to activity U2-2.5 Let’s explore Edison’s
motors.

•	 Binary is not taught in these lessons and, therefore, the ‘bit shift’ blocks are not included in the
student worksheets. If you are teaching binary, you might choose to use the ‘bit shift’ blocks in an
extension lesson on variables and binary.

•	 When it comes to expressions and any mathematics in EdScratch programs, it is important to note
that Edison can only handle integers. Likewise, Edison can only work in ‘real’ mathematics, so if
students put in computations which, for example, divide by zero, they may get errors, or the robot
may behave in unexpected ways.

•	 If an operator input parameter is left blank in an EdScratch program, it will be read as ‘0’ (zero) by
the robot.

	 - The operator may display NaN in this case, which stands for ‘not a number’.

•	 Whenever students want to use a variable or an operator block inside a ‘wait’ block, they must
use the ‘wait () milliseconds’ block. (The other wait block cannot except bubble-shaped blocks
as input parameters). The reason this block is in milliseconds instead of seconds has to do with a
limit regarding how Edison can compute math. Essentially, Edison doesn’t know what decimals are.
Therefore, 0.3 seconds when stored in Edison is rounded and becomes 0 seconds. This makes doing
any sort of maths wildly inaccurate. By using milliseconds, we can represent 0.3 seconds as 300
milliseconds, which is a number Edison understands. This enables computations to be performed
without gross rounding errors.

	 - The other inputs which are in seconds in EdScratch can accept decimals in the input 		
	 parameters. The compiler that converts the EdScratch code before it is sent to Edison converts 	
	 all time inputs in these blocks into milliseconds before the values are sent to Edison.

•	 If your students have already studied basic algebra, you may choose to demonstrate that the values
table in this worksheet can be filled out by thinking of the three columns as n, n*200, and n+1.

www.edscratchapp.com
108

•	 Due to minor mechanical differences in the motors and encoders inside different Edison robots,
students may need to adjust the input parameters of the drive block related to the turn in this
program to suit their robots. To improve accuracy, students can also add either a ‘stop motors’ block
or a ‘wait’ block with a sort input value (e.g. .2 secs) in-between the drive commands (including at
the bottom of the code inside the loop).

•	 If students are struggling to see the pattern Edison makes when running this program, try attaching
a pen to Edison so that the robot ‘draws’ the shape as it moves. To make attaching a pen quick and
easy, consider making a 3D-printed pen holder, such as the one available at https://www.thingiverse.
com/thing:2949946

Answer key

Question Type Sample answer Marking notes
1 EA In loop # Starting value

of DriveLength

Wait block input

value in milliseconds

New value of

DriveLength

1 1 200 2

2 2 400 3

3 3 600 4

5 5 1000 6

7 7 1400 8

10 10 2000 11

2 SE This program makes Edison drive in a right-angled spiral
that grows out from the middle.

Students should note that the
robot drives in an outward
spiralling pattern.

3 SE The code uses a variable which increases by 1 in each loop
repetition. Because the variable is multiplied by 200 and
that becomes the value of the ‘wait’ block, the ‘wait’ time
grows longer each loop. This means the robot ends up
driving longer each loop, causing the robot to drive in an
outwards spiral.

Students should identify
that the increasing value of
the variable increases the
time the motors ‘wait’ while
‘set to drive forwards’ which
increases the distance of each
leg driven.

https://www.thingiverse.com/thing:2949946
https://www.thingiverse.com/thing:2949946

www.edscratchapp.com
109

Challenge up: Spiralling spider trap

Activity size: Medium
Delivery recommendations: Complete activity on page 144 prior to this activity
Resources needed: Basic supply set, worksheet on page 147, Optional: Supplies for making the
spider silk

Overview

Building on the programming concepts explored in the page 144 activity this extension activity asks
students to re-imagine the ‘spiral-out’ program to be a spiral-in program instead. Designed to be a
stepping-stone activity to help students explore using variables and computations in self-created
programs, this activity challenges students to think through the logic of the ‘spiral-out’ program in order
to modify and reapply its main components.

An extra ‘mini challenge’ attached to this activity offers students an opportunity to mix computer
programming and physical engineering to turn their robots into trap-laying, spiralling spiders.

Tips and tricks
•	 You may want to review the ‘spiral-out’ program from activity U5-1.3 to help students begin to work

out their ‘spiral-in’ programs.

•	 Remind students to use good variable names and avoid illegal characters in their variable’s name.

•	 Engineering a way to leave the ‘spider silk’ AND get that ‘silk’ to stay in place (rather than get
pulled along and out of shape by the robot as it moves) is not a fail-proof activity. Many factors;
including the types of materials that students use, the way they attach (or don’t attach) the string
(or other substance) to the robot and driving surface, the speed at which the robot drives, etc; will
affect how successful they are in this bonus activity. Students may not be able to create a way of
completing this extra challenge ‘perfectly’. That’s fine! The key learnings will come from the process
of experimentation and problem-solving, not the final outcome.

	 - If students want to see the shape their robot makes but skip the string, consider having them 	
	 attach a pen to the robot instead.

•	 An example programming solution can be seen at https://www.edscratchapp.com?share=rDBEwzbR

https://www.edscratchapp.com?share=rDBEwzbR

www.edscratchapp.com
110

Change it up: Drive a random square

Activity size: Small
Delivery recommendations: Complete activity on page 144 prior to this activity.
Resources needed: Basic supply set, worksheet on page 148

Overview

This activity uses a variable with the ‘random’ number block so that the value of the variable is
randomly set each time the program runs. This activity demonstrates another way of using variables
in programs in EdScratch using just set values (as opposed to sensor data) and provides students with
another opportunity to practice using computation inside a program.

The extra ‘mini challenge’ pushes students to think about how data is being stored in the program and
challenges students to create a secondary way of using this data in the program by getting Edison to
‘signal’ the value.

Tips and tricks
•	 If students are completing the mini challenge, you may want to remind them that a variable can be

used multiple times in a program.

•	 An example programming solution for the mini challenge can be seen at https://www.edscratchapp.
com?share=7bxNWWYZ

Answer key

Question Type Sample answer Marking notes
1 EA If the random number is: Squre side length will be:

1 500

2 1000

3 1500

4 2000

5 2500

6 3000

https://www.edscratchapp.com?share=7bxNWWYZ
https://www.edscratchapp.com?share=7bxNWWYZ

www.edscratchapp.com
111

Let’s explore using variables with sensor data

Activity size: Medium
Delivery recommendations:
Resources needed: Basic supply set, worksheet on page 149, activity sheet on page 163.
Optional: Supplies for making out a test area.

Overview

This activity introduces how variables and sensors can be used in combination. There are two main
ways sensor data can be used with variables: the data from sensors can be stored in a variable, and
sensor events can be used to affect variables. The programming example in this activity focuses on the
second way of using variables and sensors together. The program increments a variable each time an
event is detected. Students see this capability in action by reading, then running a program which gets
Edison to drive, counting the black lines it detects.

While an explicit example is not shown in this activity, the idea that the value from a sensor can be
stored in a variable is important. Variables can be set to specific values by the programmer, but can
also be set by other inputs, such as a sensor reading.

Tips and tricks
•	 Activity ‘Edison the sprinter’ is an extension to the example program in this activity. You may choose

to have students try this extra programming challenge while they have their test area for this activity
set up.

•	 Questions 3 and 4 on the worksheet ask students to come up with their own idea for using sensor
data in a variable in a working EdScratch program. If you want to keep this activity shorter, consider
using these questions as a class discussion, rather than having students work on their own ideas and
program design.

Answer key

Question Type Sample answer Marking notes
1 EA This program first tells Edison to turn on the line tracker and set the

variable LineCount to zero. It then tells the robot to drive forward
until LineCount is equal to four. There is an interrupt ‘event’ in this
program with a subroutine that says that any time Edison detects a
non-reflective (black) line, the robot should increment (add 1 to) the
value of LineCount. Once that event has triggered 4 times, the ‘until’
condition will be met and the robot will stop driving.

Student answers should
identify the key ideas
noted in the sample
answer.

2 SE I think that the variable is called ‘LineCount’ because the information
that this variable is storing is related to how many black lines the
robot has detected, or ‘counted’.

Student answers should
identify that the lines
detected by the robot
are being ‘counted’ using
this variable to store the
ongoing count.

3 SE My idea is to use Edison’s obstacle detection to track how many
people walk into my room when I’m not home. I can store the
number of obstacles detected (i.e. people who walk past Edison)
in a variable, increasing the value by 1 for each obstacle detected.
Then I can get the program to beep a number of times equal to that
variable when I push the round button, telling me how many people
came in.

4 SE My first version didn’t have the ‘forever’ loop with the main program,
so it ended really quickly and didn’t work. I also realised I needed to
reset the variable once I had checked the detector so that it wouldn’t
just keep adding all of the new obstacles to old ones. In testing, I did
notice that sometimes just one person walking in front of Edison
would get stored as multiple obstacles detected, so this system isn’t
perfect, but it does work!

It’s possible that students
will have come up with
an idea that cannot be
brought to fruition.

www.edscratchapp.com
112

Challenge up: Edison the sprinter

Activity size: Medium
Delivery recommendations: Complete activity on page 149 prior to this activity
Resources needed: Basic supply set, worksheet on page 150, activity sheet on page 163.
Optional: Supplies for making out a test area.

Overview

Designed as an extension activity, this programming challenge has students apply their understanding
of sensor events and variables to get the robots to track events and modify outputs accordingly. By
changing the robot’s output each time a variable’s value changes, students can see that the variable’s
value is actually changing, helping to make the idea of data in variables more tangible.

Tips and tricks
•	 To see the speed change clearly, it is best to use a larger test area. You may also want to advise

students to change speed by more than one each time. For example, start at speed 1, then increase
to speed 3 from the first line.

•	 This activity is an extension to the example program on page 149. You may choose to have students
try both programming challenges while they have their test area set up.

•	 An example programming solution can be seen at https://www.edscratchapp.com?share=Eb1j5aDm

https://www.edscratchapp.com?share=Eb1j5aDm
https://www.edscratchapp.com?share=Eb1j5aDm

www.edscratchapp.com
113

Change it up: Edison-controlled flag machine

Activity size: Large
Delivery recommendations: Complete activity on page 149 prior to this activity. Activities on pages 153
- 162 all use variables to store and use IR messaging values. Consider using at least one.
Resources needed: Basic supply set, worksheet on page 151, maker space supplies for creating the
flags, EdCreate kits and/or other supplies for attaching the flags

Overview

This activity dives into storing data from one of Edison’s sensors as a value in a variable. Edison’s IR
messaging allows multiple Edison’s to send and receive messages. The robots can send and detect 256
different messages. These unique messages can be used to trigger different behaviours in the receiving
robot, depending on what message it detects.

This semi open-ended project challenges students to create a physical computing solution with real-
world applications, applying their understanding of coding concepts, including conditionals, sensing,
and using variables to store data. Students collaborate using two Edison robots to create a controller
bot (message sender) and flag machine (message receiver) which work together. The sending robot
needs to be able to send out one or two separate messages, depending on the button that is pressed.
The receiving robot needs to react differently to each of those messages, generating a different output
depending on which message it receives.

A special note on variables and IR message data

When using IR messages in programs using specific messages to trigger different events, students
might set up their programs without a variable, using just an expression to check the IR message value:

As far as programming procedure goes, this isn’t ideal.

The convention in computer programming is to save any sensor data into a variable. Then, if your
program uses multiple ‘if’ checks in the code, you have the program check the variable multiple times,
rather than read the sensor multiple times. This is because the sensor could change while the checks are
occurring.

In EdScratch in particular, students will discover that the ‘IR message = 20’ code in the above program
will never run. This is due to how Edison deals with IR message data in EdScratch. Once the robot
processes the ‘if’ statement in the ‘if-else’ code block, the value of the message has been read, and so
the value is cleared from the register. If that message did not equal 10, the ‘if’ code will not run, but the
IR register is still reset to ‘0’. Therefore, the second ‘if’ (inside the ‘else’) only ever sees a value of ‘0’ and
never runs.

Computers which use sensors often clear the sensor registry in similar ways, making this an excellent
example of why it’s much better to get into the habit of using variables to store data, rather than rely on
a sensor read directly.

www.edscratchapp.com
114

Tips and tricks
•	 You may want to review how IR messaging works with Edison prior to this activity using activity U4-

2.5 Let’s explore messaging with Edison.

•	 Students are welcome to build a flag machine in a different way to the project description in this
activity or to come up with their own IR message detecting creation.

•	 A variation of this activity using TV/DVD remote controls is included in Unit 4, activity U4-2.5a
Change it up: Remote-controlled flag machine. You may choose to reference these two activities
when using either or run them as two programming challenges for the one build design.

•	 There is no ‘right’ answer, but here is what one sample solution looks like:

	 - Program set: https://www.edscratchapp.com?share=V0eg4KDa
	 - Physical design:

Answer key

Question Type Sample answer Marking notes
1 SE When you press the round button on the controller bot, it will send IR

message _10_, and that will tell the flag machine to show the _’no’_
side of the flag.

When you press the triangle button on the controller bot, it will send
IR message _20_, and that will tell the flag machine to show the
’yes’ side of the flag.

Students should use this
to help them in their
design process. Values
and movement should
be reflected in their
‘flag machine’ program.

https://www.edscratchapp.com?share=V0eg4KDa

www.edscratchapp.com
115

Change it up: Hey Edison, where do I go?

Activity size: Large
Delivery recommendations: Complete activity on page 149 prior to this activity. Activities on pages 153
- 162 all use variables to store and use IR messaging values. Consider using at least one.
Resources needed: Basic supply set, worksheet on page 154, maker-space materials for creating the
test space

Overview

This activity dives into storing data from one of Edison’s sensors as a value in a variable. Edison’s IR
messaging allows multiple Edison’s to send and receive messages. The robots can send and detect 256
different messages. These unique messages can be used to trigger different behaviours in the receiving
robot, depending on what message it detects.

This semi open-ended project challenges students to design a test space and create multiple programs
getting two Edison robots to use IR messaging to complete a branching maze. Designed to be done as
a collaborative project, students need to work together to design their treasure maze, program their two
robots in line with their maze, and be able to change the sending commands to get the driver bot to any
end location in the maze. To create a successful outcome in this project, students need to combine the
various concepts they have learned including sequence, conditionals, sensing, and using variables with
data.

Tips and tricks
•	 This project can be done in pairs but is ideal for groups.

•	 If this is your first activity using variables and IR message data, you may want to read the Special
note on variables and IR data in the overview of activity on page 122 of this guide.

•	 A great way to test students when they have completed this project is to assign the students the
location of the treasure. Students should be able to then demonstrate a successful outcome by
changing just the navigator bot’s program to send the correct sequence of messages to the driver
bot. When both bots run their respective programs, the driver bot should get to the assigned finish
spot.

•	 Remind students to get the receiving robot running its programs before the sending robot starts its
program.

•	 Students’ programs will depend heavily on their treasure map design. A set of example programs
using the ‘base design’ from the worksheet as the treasure map are included for reference:

	 - Driver bot: https://www.edscratchapp.com?share=RDgmq30B

	 - Navigator bot: https://www.edscratchapp.com?share=RDaGLj0V

•	 In a classroom environment, when a lot of robots are blasting IR messages, you might have
problems with cross-talk between groups. One way to address this is to assign a limited number of
IR codes (five should suffice, depending on the student’s map) to each group for use so that their
driver bot only listens to their navigator bot (and not any other robots). Sample programs of how to
set this up follow.

•	 N.B.: In the following examples, the first student is IR codes 0-4, the second is 5-9, 10-14, 15-19 and so
on follow. This solution will work for class sizes up to 51.

	 - Driver bot: https://www.edscratchapp.com?share=B0jd35Dq

	 - Navigator bot: https://www.edscratchapp.com?share=wbJv8ebj

•	 N.B.: The above samples also include a ‘a Round Button Pressed’ event so that the driver can tell the
navigator when they are ready to start.

https://www.edscratchapp.com?share=RDgmq30B
https://www.edscratchapp.com?share=RDaGLj0V
https://www.edscratchapp.com?share=B0jd35Dq
https://www.edscratchapp.com?share=wbJv8ebj

www.edscratchapp.com
116

Answer key

Question Type Sample answer Marking notes
1 SE Our map has three paths coming out of each junction, so we will

need a total of 4 IR messages:

IR message value Sending Edison Receiving Edison will...

10 Navigator Go left

20 Navigator Go straight

30 Navigator Go right

100 Driver Send out next command

www.edscratchapp.com
117

Change it up: The Edison chorus

Activity size: Large
Delivery recommendations: Complete activity on page 149 prior to this activity. Activities on pages 153
- 162 all use variables to store and use IR messaging values. Consider using at least one.
Resources needed: Basic supply set, worksheet on page 158, sheet music

Overview

This activity dives into storing data from one of Edison’s sensors as a value in a variable. Edison’s IR
messaging allows multiple Edison’s to send and receive messages. The robots can send and detect 256
different messages. These unique messages can be used to trigger different behaviours in different
receiving robots.

This semi open-ended project challenges students to collaborate to get multiple Edison robots to use
IR messaging to trigger different actions. This project highlights what is possible when programming
using multiple different IR messages by using the various messages to not only trigger different
outputs but also to have multiple robots check and react to messages. To create a successful outcome
in this project, students need to combine the various concepts they have learned including sequence,
conditionals, sensing, and using variables with data.

Tips and tricks
•	 This project needs a minimum of 3 Edison robots, but works great with 4+ robots, making it ideal for

groups.

•	 If this is your first activity using variables and IR message data, you may want to read the Special
note on variables and IR data in the overview of activity U5-1.4b of this guide.

•	 Consider giving your students some song options or sheet music to use in this activity. Good options
for songs in a round include:

	 - Row, Row, Row Your Boat
	 -Three Blind Mice
	 - Frère Jacques
	 - Farmer in the Dell

•	 To help minimise the chance of robots missing IR messages, suggest students run this program with
the performer bots in an arch facing the conductor bot.

•	 If multiple groups are running programs near each other using the same message values, they may
experience cross-talk between groups.

•	 Remind students to get the receiving robots running their programs before the sending robot starts
its program.

•	 A similar programming challenge to this activity is included in Unit 2 in activity ‘Change it up: Play
a song in a round’. That activity has students use wait blocks to time each robot’s start. You may
choose to use activity ‘Change it up: Play a song in a round’ and this activity together, highlighting
the advantages and disadvantages of each approach.

•	 Clearing IR data with the ‘clear IR message data’ block after a variable has been set with the IR
massage value helps minimise issues when using multiple IR messages in a program by clearing old
data from the robot’s memory. Encourage students to clear the IR data as a next action after setting
the variable’s value with that IR data.

•	 Students’ programs will depend heavily on their song choice. A set of example programs using four
robots playing Row, Row, Row Your Boat are included for reference:

	 - Conductor bot: https://www.edscratchapp.com?share=ZDRedPby
	 - Performer bots: https://www.edscratchapp.com?share=QbOQ3OYk

https://www.edscratchapp.com?share=ZDRedPby
https://www.edscratchapp.com?share=QbOQ3OYk

www.edscratchapp.com
118

Answer key

Question Type Sample answer Marking notes
1 SE Our performer bots will play ‘Row, Row, Row your boat’, and each new

bot will join in when its predecessor finishes the first verse.

2 SE We have three performer bots, so we will need a total of 5 IR messages:

IR message
value

Sending Edison Receiving Edison Receiving Edison’s action

10 Conductor Performer #1 Play

1 Performer #1 Conductor Send play command
to performer #2

20 Conductor Performer #2 Play

2 Performer #2 Conductor Send play command
to performer #3

30 Conductor Performer #3 Play

www.edscratchapp.com
119

Put all of your Edison and EdScratch knowledge into action! By designing and developing projects of
their own using iterative cycles of planning, making and testing, students put the key computational
thinking, problem-solving, programming, and physical computing concepts they have learned to work in
this culmination unit.

Learning objectives
Students will:

•	 learn about the design-build-test cycle and strategies, such as decomposition and iterative testing,
for physical computing problem-solving

•	 demonstrate their understanding of key computational thinking and computer science principals
through open-ended projects

Key ideas: the design-build-test cycle, decomposition and problem solving, iterative testing

Unit 6: Inventor’s time!

www.edscratchapp.com
120

Let’s explore the design-build-test cycle

Activity size: Large
Delivery recommendations:
Resources needed: Basic supplies set, worksheet on page 165, activity sheet on page 178.
If doing the build too: maker-space supplies

Overview

This lesson formally introduces a structured process for creating robotic inventions using Edison
robots. While many of the activities throughout the EdScratch lessons afford students chances to
think creatively and create using Edison, this activity provides an explicit framework for approaching
physical computing projects. The primary purpose of this activity is to introduce the creation process in
a structured way and demonstrate the value of taking the time to plan (design) – which is a major part
of programming and engineering practice. Students brainstorm possible ideas for ‘inventions’ using
Edison, then work through the process of designing both the physical engineering component and the
programming component of their chosen idea.

Learning the design-build-test cycle and practising the design component will enable students to
achieve greater success in open-ended engineering and programming projects, including the other
activities in this lesson. Having a framework for approaching open-ended projects helps students to
focus, plan, and apply learnings as they go. For students with lots of ideas but unfocused energy, using
a framework enables them to channel their creativity into the iteration process. For students who lack
confidence with open-ended challenges, having a structure to refer to can help embolden them to try
new things and unlock their creative potential.

Design, build, test, repeat
With the whole of the EdScratch language explored, this lesson focuses on creative problem-solving
across both programming and physical design challenges. Students learn about the design-build-test
cycle and formal strategies for physical computing problem-solving, including decomposition and
iterative testing. These skills are then put to the test as students demonstrate the knowledge they have
gained around key computational thinking, programming, and computer science principals through
open-ended projects.

Tips and tricks

•	 If you are running this activity as a group or whole class, consider managing the timer for the
brainstorming session. Forcing students to move onto their next idea when the time is up will keep
them on task and help get them into the flow. It also allows you to spot any students who may have
given up and encourage them to keep going. No bad ideas in brainstorming!

•	 The initial brainstorming task is best done as individuals, but the review of ideas and design portions
of this activity can easily be done in partners or groups.

•	 If students have decomposed their project into more than two parts, have them use extra paper or
make separate sections to design and plan each part.

•	 While students do not need to actually build and program their creations to complete the base tasks,
having access to Edison and EdScratch may prove helpful for their design process.

•	 The core of this activity only goes through the ‘design’ stage. The ‘mini challenge’ is not mini –
actually building and testing the ideas students have come up with will turn this activity into a major
project.

www.edscratchapp.com
121

•	 Student ideas may or may not be possible. If you do have students attempt to build and program
their designs, remind them that even if their design is not achievable, that doesn’t make it a failure.
Look at why it is not achievable. For example, is there a limit to how the robot works or the materials
that they used that caused it to be unsuccessful?

	 - Unsuccessful designs can teach just as much, if not more than, successful designs.

Answer key

Question Type Sample answer Marking notes
1 SE Project name: EggBeater Bot. My

idea is to attach whisks to Edison’s
powered sockets and turn Edison
into a hand mixer.

2 SE There are two main parts: the
physical design and the program.
Each of these has two parts: Physical
design – 1) making the whisks and
2) attaching the whisks to Edison.
Program design – 1) getting the
program to be able to start and stop
and 2) getting the program to move
the whisks at different speeds.

The project should have a
physical engineering and software
programming component.

3 SE Whisks: I think I will use a pencil for
the staff for the main shaft of the
whisk, then make the blades using
strips of cut plastic from recycled
bottles. I will glue these to the pencil.

Attaching the whisks: I think I will use
mostly EdCreate parts to attach the
whisks to the wheels of Edison. That
way I won’t need to have a separate
way of attaching them into the
powered socket too.

Any combination of drawings,
diagrams, written plans, etc is
acceptable so long as the students’
design plan is detailed.

The sample answer has been
deliberately kept short – it is
intended to serve as a possible
partial example only.

4 SE The program should use button
press events. If the triangle button
is pressed, the motors should start
turning forwards. If the round button
is pressed, the motors should move
faster one speed. The motors should
move faster each round button press
up to a top speed of 5.

Anytime the triangle button is
pressed while the motors are
moving, they should stop.

Pseudocode or any combination of
drawings, diagrams, written plans,
etc is acceptable so long as the
students’ design plan is detailed.

The sample answer has been
deliberately kept short – it is
intended to serve as a possible
partial example only.

www.edscratchapp.com
122

Challenge up: Invent an imaginary creature

Activity size: Large
Delivery recommendations: Complete activity on page 165 prior to this activity.
Activities on pages 169 - 171 all offer an open-ended project idea that requires students to apply the
design-build-test cycle. Consider using at least one.
Resources needed: Basic supplies set, worksheet on page 169, maker-space/crafting supplies,
EdCreate kits/LEGO bricks

Overview

Open-ended projects, including this challenge, promote creative problem solving and give students
opportunities to find STEM applications to real-world scenarios. One of five project options, the objective
of this challenge is for students to build an imaginary creature that can move and react to the world
using at least one of Edison’s sensors.

Students apply the design-build-test cycle to this open-ended challenge. With a set end-goal and only a
few established success criteria, this activity is designed to encourage creative problem-solving through
the meaningful application of learned skills. Students must apply their programming and computational
thinking skills to this challenge, but also need to experiment with the physical creation, which adds an
engineering component to this project.

Tips and tricks

•	 This project works well in pairs or small groups.

•	 Remind students that unsuccessful designs can teach just as much, if not more than, successful
designs. Encourage students to look at what isn’t working in their creation through the lens of the
design-build-test cycle. Decompose what’s going on into smaller parts and problem-solve each
component.

•	 There is no single ‘best way’ of approaching the problem or a set solution. Student creations can
vary wildly as will the programming component of their solutions.

www.edscratchapp.com
123

Challenge up: Invent a burglar alarm

Activity size: Large
Delivery recommendations: Complete activity on page 165 prior to this activity.
Activities on pages 169 - 171 all offer an open-ended project idea that requires students to apply the
design-build-test cycle. Consider using at least one.
Resources needed: Basic supplies set, worksheet on page 170, maker-space/crafting supplies,
EdCreate kits/LEGO bricks

Overview

Open-ended projects, including this challenge, promote creative problem solving and give students
opportunities to find STEM applications to real-world scenarios. One of five project options, the objective
of this challenge is for students to build a burglar alarm that uses at least one of Edison’s sensors to
detect a ‘threat’ and then produce some output to frighten off the would-be thief.

Students apply the design-build-test cycle to this open-ended challenge. With a set end-goal and only a
few established success criteria, this activity is designed to encourage creative problem-solving through
the meaningful application of learned skills. Students must apply their programming and computational
thinking skills to this challenge, but also need to experiment with the physical creation, which adds an
engineering component to this project.

Tips and tricks

•	 This project works well in pairs or small groups.

•	 Remind students that unsuccessful designs can teach just as much, if not more than, successful
designs. Encourage students to look at what isn’t working in their creation through the lens of the
design-build-test cycle. Decompose what’s going on into smaller parts and problem-solve each
component.

•	 There is no single ‘best way’ of approaching the problem or a set solution. Student creations can
vary wildly as will the programming component of their solutions.

www.edscratchapp.com
124

Challenge up: Invent a mousetrap

Activity size: Large
Delivery recommendations: Complete activity on page 165 prior to this activity.
Activities on pages 169 - 171 all offer an open-ended project idea that requires students to apply the de-
sign-build-test cycle. Consider using at least one.
Resources needed: Basic supplies set, worksheet on page 170, maker-space/crafting supplies,
EdCreate kits/LEGO bricks

Overview

Open-ended projects, including this challenge, promote creative problem solving and give students
opportunities to find STEM applications to real-world scenarios. One of five project options, the objective
of this challenge is for students to build a mousetrap that uses at least one of Edison’s sensors to trigger
the trap and then produce some output to alert the creator that the trap has been sprung.

Students apply the design-build-test cycle to this open-ended challenge. With a set end-goal and only a
few established success criteria, this activity is designed to encourage creative problem-solving through
the meaningful application of learned skills. Students must apply their programming and computational
thinking skills to this challenge, but also need to experiment with the physical creation, which adds an
engineering component to this project.

Tips and tricks

•	 This project works well in pairs or small groups.

•	 Remind students that unsuccessful designs can teach just as much, if not more than, successful
designs. Encourage students to look at what isn’t working in their creation through the lens of the
design-build-test cycle. Decompose what’s going on into smaller parts and problem-solve each
component.

•	 There is no single ‘best way’ of approaching the problem or a set solution. Student creations can
vary wildly as will the programming component of their solutions.

www.edscratchapp.com
125

Challenge up: Invent a combination safe

Activity size: Large
Delivery recommendations: Complete activity on page 165 prior to this activity.
Activities on pages 169 - 171 all offer an open-ended project idea that requires students to apply the de-
sign-build-test cycle. Consider using at least one.
Resources needed: Basic supplies set, worksheet on page 171, maker-space/crafting supplies,
EdCreate kits/LEGO bricks, TV/DVD remotes (as an option for the safe code)

Overview

Open-ended projects, including this challenge, promote creative problem solving and give students
opportunities to find STEM applications to real-world scenarios. One of five project options, the objective
of this challenge is for students to build a combination safe that only opens when the correct sequence
(code) is entered. The code that opens the safe can be a sequence of triangle and round button presses,
a sequence of TV/DVD remote code signals, a sequence of IR messages from a different Edison robot,
or some combination of all these options.

Students apply the design-build-test cycle to this open-ended challenge. With a set end-goal and
choice of the objective as the only established success criteria, this activity is designed to encourage
creative problem-solving through the meaningful application of learned skills. Students must apply their
programming and computational thinking skills to this challenge, but also need to experiment with the
physical creation, which adds an engineering component to this project.

Tips and tricks

•	 This project works well in pairs or small groups.

•	 Remind students that unsuccessful designs can teach just as much, if not more than, successful
designs. Encourage students to look at what isn’t working in their creation through the lens of the
design-build-test cycle. Decompose what’s going on into smaller parts and problem-solve each
component.

•	 There is no single ‘best way’ of approaching the problem or a set solution. Student creations can
vary wildly as will the programming component of their solutions.

www.edscratchapp.com
126

Let’s explore a haunted house

Activity size: Large
Delivery recommendations: Recommended as a capstone project for both unit 6 and the EdScratch
lesson set
Resources needed: Basic supplies set, worksheet on page 172, maker-space/crafting supplies,
EdCreate kits/LEGO bricks, a black work surface, white masking tape or alternative

Overview

More reminiscent of a ‘Change it up’ or ‘Challenge up’ activity, this project differs from all the other ‘Let’s
explore’ activities in the lesson plans. Designed as a capstone project for both unit 6 and the whole of
the EdScratch lessons, this activity asks students to let their imaginations flow. By creating their own
scenarios, test environments, inventions, and programs, students have the opportunity to apply creative
problem solving and their programming and computational thinking skills.

Part design challenge, part programming challenge and part exercise in collaboration, this project is
intended to be done in groups with very few limitations or parameters for success being pre-set. To help
students get into the experimental mindset, the first task in this project (the ghost hunter challenge)
presents a more structured scenario. What the room (test space) needs to be is established already,
and there are hints as to what needs to be included in the programming solution. Moreover, the need
to build a physical creation is removed. Once students have solved this room, however, the boundaries
disappear.

Programming is inherently creative, and much of technology exists outside of the computer screen.
This project has students finish their EdScratch experience with a challenge that allows them to be
imaginative, resourceful, and have fun. In so doing, students solidify what they have learned, strengthen
their resilience and problem-solving capacities, and are emboldened to take the next steps in their
coding and robotics adventures.

Tips and tricks

•	 This project is intended to be done in groups.

•	 A possible solution to the ghost hunting room can be seen at https://www.edscratchapp.
com?share=B05j61bZ

•	 Remind students that unsuccessful designs can teach just as much, if not more than, successful
designs. Encourage students to look at what isn’t working in their creation through the lens of the
design-build-test cycle. Decompose what’s going on into smaller parts and problem-solve each
component.

Answer key

The worksheet does have spaces for ‘answers’, but these areas do not require marking.
Have students use these areas as a loose framework and working space to capture their designs. There
are no ‘right’ answers in this project. Encourage students to be creative, take risks, apply what they’ve
learned, and have fun!

https://www.edscratchapp.com?share=B05j61bZ
https://www.edscratchapp.com?share=B05j61bZ

