

E-LINEMV Medium Voltage Busbar Systems

CONTENTS

E-LINE MV

General Introduction	2-3
12 kV	
Order Code System	4
Technical Characteristics	5
Standard Straight Length	6
Elbows	7
Horizontal & Vertical Cast Resin Busbar Applications	8
12 kV Medium Voltage Busbar Horizontal Application	9
12 kV Medium Voltage Busbar Vertical Application	10
General Product Specifications	
Project Design Form	12
24 kV	
Order Code System	13
Technical Characteristics	14-15
Standard Straight Length	
Elbows	
Horizontal & Vertical Cast Resin Busbar Applications	18
24 kV Medium Voltage Busbar Horizontal Application	
24 kV Medium Voltage Busbar Vertical Application	20
General Product Specifications	21
Project Design Form	22

Medium Voltage (MV) is manufactured within a single housing, the conductors of either copper or aluminium are embedded in DURACOMP insulation which is a composite material of epoxy resin and pure silica minerals with AI and Cu conductors specially selected and the epoxy resin.

Medium Voltage busbar systems are designed to operate at voltages of 12 kV and 24 kV. Manufactured as standard up to a rating of 5700 A. Please contact us for higher amperage applications.

Areas of Use

Exterior environments, industrial buildings, petrochemical buildings, regions with flood risk, oil and natural gas industry

MV System Benefits

- > Products tested in accordance with international standards
- ▶ Exterior environment IP 68 protection class
- Corrosion-resistant
- Chemical-resistant
- Resistance against insects and rodents
- ▶ Usable in tropical environments
- High mechanical strength
- Without stack effect
- Highly resistant to short circuit
- ► Low voltage drop when compared with cable

Short-Circuit Withstand

Short-circuit resistance values tested are presented on the table. High busbar resistance can be seen based on the short-circuit values to be calculated.

Busbar Drawings

You may receive professional assistance is available to our clients by contacting our nearest dealer, distributor or our Project & Design departments for Busbar drawings Blueprints and calculating cost estimates.

* Modules required for special situations can be manufactured in a short time.

2

 Special design for occupying minimum space based on ampere level.

- ► Electroerosion resistant
- ► UV resistant
- Designed to improve heat loss
- Maintenance-free busbar
- Easy Assembly
- An ideal high temperature environments

High IP Insulation

DURACOMP is a composite material of epoxy resin and pure silicon which gives the E-LINE MV busbar range a high mechanical strength and resistance to high temperatures and external effects as listed on Page 2

EAE Medium voltage busbar systems are manufactured using high density and high conductivity aluminum and copper conductors. Contact areas of copper and aluminum conductors can be coated by tin or optionally silver.

Ease of Heat Transfer

Heat forming on the additives used in the system with high heat transfer is easily dissipated to the environment by means of the housing.

Short-Circuit Withstand

High mechanical and thermal resistance thanks to the DURACOMP material.

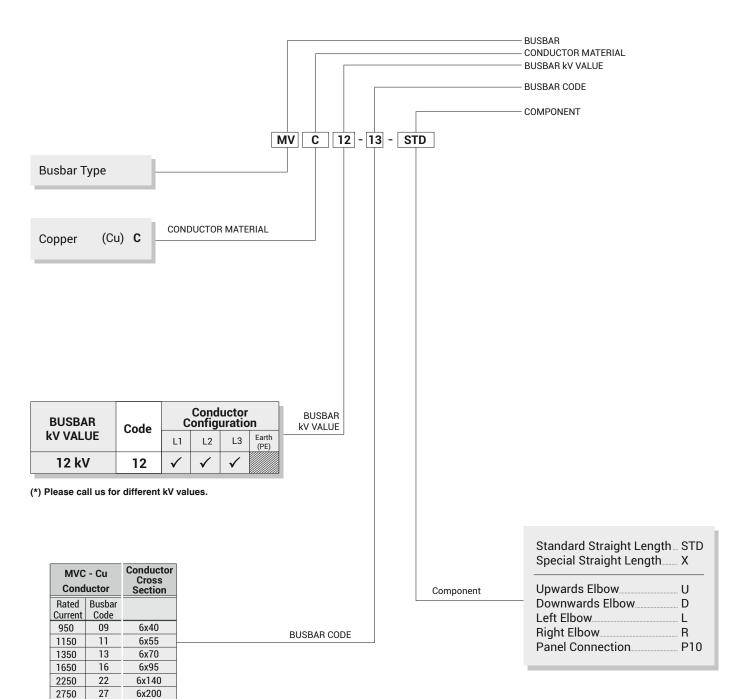
Housing:

E-Line MV busbar is produced by combining the Duracomp insulated conductors (Al or CU) within an extruded aluminium housing.

- Light aluminium case
- High Mechanical Strength and Chemical Resistance
- Adjustable support system
- Safety earth continuity
- Very less magnetic field

IP68: AFTER CASTING DURACOMP ON THE JOINTS AND THE ENTIRE FINISHING PARTS, IT IS CONSIDERED AS IP 68 - IK 10 CLASS.

IP68

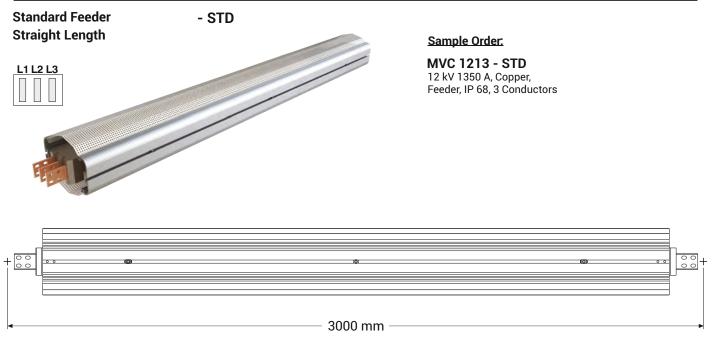

www.eae.com.tr

The "DURACOMP" is a composite material of epoxy resin and pure silicon which gives the E-LINE MV busbar range a high mechanical strength and resistance to high temperatures and external effects.

Conductors are of 99.95% purity electrolytic copper or aluminium or electrolytic copper.

Technical Characteristics

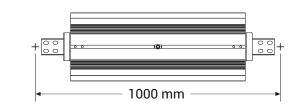
Copper Conductor (Cu)

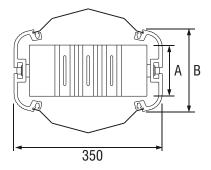

Rated Current	$\mathbf{I}_{\mathbf{r}}$	Α	950	1150	1350	1650	2250	2750
Busbar Code			09	11	13	16	22	27
Standards		271-200 Edition 2.0 2011-10; IEC 61439-6 Edition 1.0 2012-05; 271-307 Edition 1.0 2015-09; STL Guide to IEC 62271-200						
Rated Voltage	U,	kV	12	12	12	12	12	12
Rated power frequency withstand voltage	U _d	kV	28	28	28	38	38	38
Rated impulse withstand withstand voltage	Up	kV	75	75	75	95	95	95
Rated Frequency	f,	Hz	50	50	50	50	50	50
Partial Discharge		pC	< 20	< 20	< 20	< 20	< 20	< 20
Protection Degree	IP68							
External Mechanical Impacts (IK Code)*	50J, gre	eater than	IK10					
Rated Short-time Withstand Current (1s)	I _k	kA _{rms}	25	25	43	43	71.3	71.3
Rated Peak Withstand Current	I _{ke}	kA	65	65	112	112	185.5	185.5
Rated Short-time Withstand Current for PE Conductor (1s)	I _P	kA	15	15	26.3	26.3	42.4	42.4
Rated Peak Withstand Current for PE Conductor	I _{pe}	kA	39	39	72.4	72.4	110.2	110.2
MEAN PHASE CONDUCTOR CHARACTERISTICS AT RATED CURRENT I								
Resistance at a conductor temperature of 20°C	R ₂₀	mΩ/m	0,077	0,057	0,045	0,0352	0,0223	0,0162
Resistance at an ambient air temperature of 35°C	R	mΩ/m	0,104	0,078	0,061	0,0474	0,0304	0,0224
Reactance (Independent from Temperature)	х	mΩ/m	0,116	0,097	0,084	0,0788	0,0576	0,0442
Positive and negative sequence impedances at an ambient air temperature of 35°C	Z	mΩ/m	0,156	0,125	0,104	0,0919	0,0651	0,0496
Positive and negative sequence impedances at an ambient air temperature of 20°C	Z ₂₀	mΩ/m	0,139	0,113	0,096	0,0863	0,0618	0,0471
Rated Power Loss at 35°C		Watt	278	297,1	324	370,3	443,3	491,7
DC Resistance at a conductor temperature of 20 °C for Phases	R_{phdc}	mΩ/m	0,071	0,050	0,039	0,030	0,019	0,013
DC Resistance at a conductor temperature of 20°C for PE	R_{PEdc}	mΩ/m	0,012	0,012	0,012	0,009	0,006	0,013
SECTIONS								
Phase Conductor		mm²	240	330	420	570	840	1200
PE (Housing)		mm²	5944	5944	5944	8105	8905	9704
Conductor Cross Section		mmxmm	6X40	6x55	6x70	6x95	6x140	6x200
Busbar Weight (3 Conductors)		kg/m	48,32	56,85	63,89	76,18	97,13	124,54
MEAN FAULT-LOOP CHARACTERISTICS								
Zero-sequence Impedance								
Zero-sequence impedance at a conductor temperature of 20	Z _{(0)b20phPE}	mΩ/m	0,309	0,292	0,271	0,248	0,203	0,176
°CZero-sequence impedance at an ambient temperature of 35°C	Z _{(0)bphPE}	mΩ/m	0,328	0,307	0,285	0,258	0,210	0,182
Mean Resistances and Reactances								
Resistance at a conductor temperature of 20°C	R _{b20phph}	mΩ/m	0,150	0,112	0,088	0,073	0,049	0,035
Resistance at a conductor temperature of 20°C	R _{b20phPE}	mΩ/m	0,089	0,071	0,059	0,049	0,035	0,028
Resistance at an ambient air temperature of 35°C	R _{bphph}	mΩ/m	0,203	0,153	0,121	0,099	0,067	0,048
Resistance at an ambient air temperature of 35°C	R _{bphPE}	mΩ/m	0,120	0,096	0,081	0,065	0,048	0,038
Reactance (Independent from temperature)	X _{bphph}	mΩ/m	0,221	0,184	0,160	0,150	0,115	0,084
Reactance (Independent from temperature)	X _{bphPE}	mΩ/m	0,170	0,153	0,140	0,129	0,106	0,087

Standards

 $^{\scriptscriptstyle (1)}$ The weight per metre provided in table includes 1/3 of the weight of one block joint.

Standard Straight Length


Special Feeder Straight Length - X

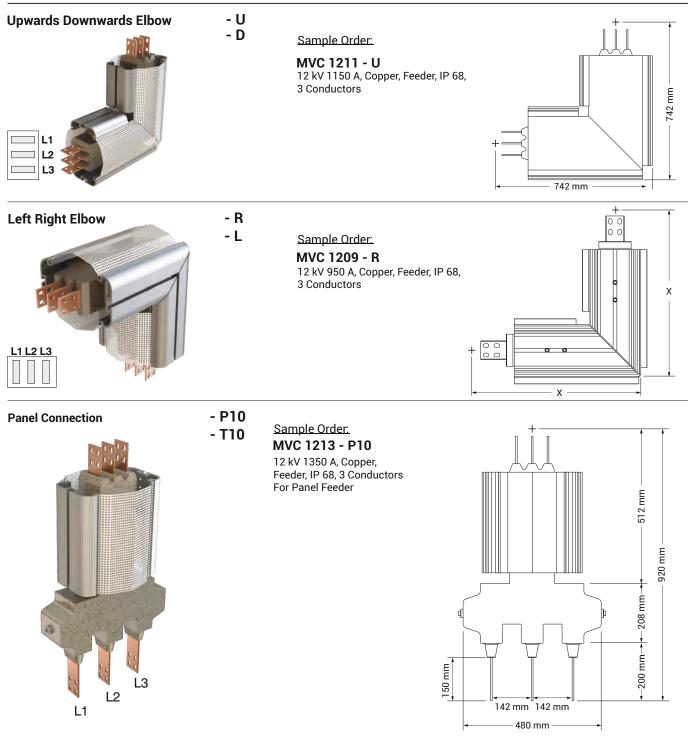

Sample Order:

MVC 1209 - X - 150 12 kV 950 A, Copper, Feeder, IP 68, 3 Conductors, 1500 mm Special Length

Information: Feeder Minimum Special length size = 1000 mm

www.eae.com.tr

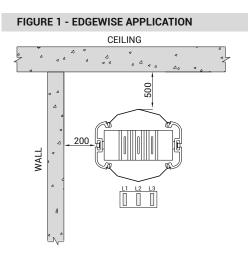
Table of Busbar Cross Section Sizes


MVC - Cu	Rated Current (A)	950	1150	1350	1650	2250	2750
Conductor	Busbar Code	09	11	13	16	22	27
Α	mm	90	105	120	145	190	250
В	mm	192	192	192	247	297	347

 \bigwedge

Attention ! The standard mounting of the MV busbar is with the conductors on edge. This allows for the easy application of the resin at the joint.

Elbows


Table of Busbar Cross Section Sizes

MVC - Cu	Rated Current (A)	950	1150	1350	1650	2250	2750
Conductor	Busbar Code	09	11	13	16	22	27
Х	mm	580	590	595	635	685	740

7

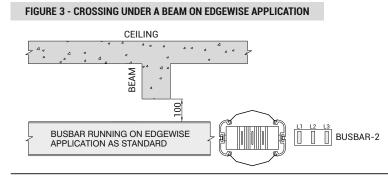
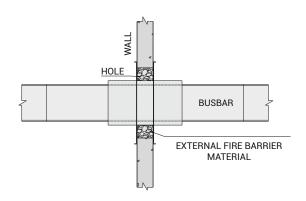
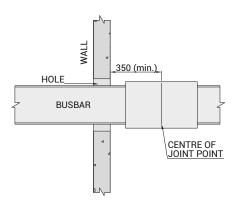

Horizontal & Vertical Cast Resin Busbar Applications

FIGURE 2 - EDGEWISE APPLICATION CEILING 4 4 ۵ 500 ۵ 200 BUSBAR-2 WALL 200 BUSBAR-1 9 9 Primarily on the installation phase;


BUSBAR-1 line should be installed before BUSBAR-2 line.


Cast Resin Installation Tools

Description	Order Code
CR Joint Area Mixer	5000132
CR Plastic Hammer	5000310
CR Spoon Brush	5000311
MV Allen Torque Set	5000664

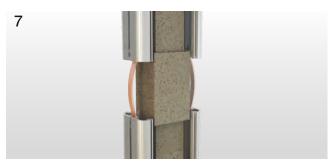
FIGURE 4 - SAMPLE WALL CROSSING WITH FIRE BARRIER

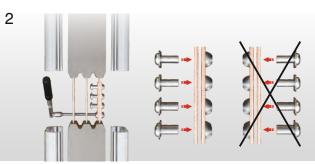
FIGURE 5 - STANDARD WALL CROSSING

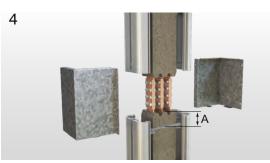
Attention !

- For correct installation, the dimension from the busbar to the ceiling should not be less than 500mm
- The joint should be not come across to Beams.
- The dimensions given above are minimum values.
- All dimensions are given in mm.

12 kV Medium Voltage Busbar Vertical Application


The ends of the conductors of the busbars are cleaned with a clean dry cloth. The busbars have to be fixed in the sameaxis, with a max. distance of 10 mm between the two conductors.


All bolts must be tightened to 72 Nm with torque wrench.

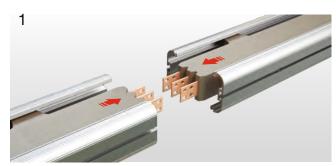

The prepared for casting should be cast from the same spot at all times.

After the curing of the cast material is complete the sheet metal moulds can be removed. (Reaction is completed within 8 - 24 hours based on the air temperature.)The flexibles are fitted to the profiles grooves for earth continuity.

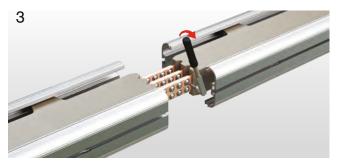
As shown on the figure, junction plates fixed as the bolts face the same direction at all times.

Support sheets are secured on the lower part of juncture area by stem bar. A min. 50-60 mm. The joint moulds are affixed on the support sheet by cleaning with a dry and clean piece of cloth.

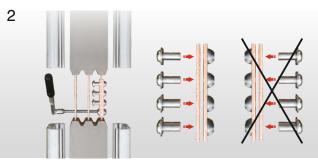
The material should be "vibrated" with the help of a plastic hammer to remove the air in the material. Then the air bubbles on the surface have to brushed.



8


Joint protection pieces of perforated aluminium should be fitted.

12 kV Medium Voltage Busbar Horizontal Application



The ends of the conductors of the busbars are cleaned with a clean dry cloth. The busbars have to be fixed in the same axis, with a max. distance of 10 mm between the two conductors.

All bolts must be tightened to 72 Nm with torque wrench.

As shown on the figure, junction plates fixed as the bolts face the same direction at all times.

Before assembling the casting moulds, inner surfaces of casting moulds have to be wiped with clean dry cloth.

The prepared for casting should be cast from the same spot at all times.

The material should be 'vibrated' with the help of a plastic hammer to remove the air in the material. Then the air bubbles on the surface have to brushed.

After the curing of the cast material is completed the sheet metal moulds can be removed. (Reaction is completed within 8 - 24 hours based on the air temperature.)The flexibles are fitted to the profiles grooves for earth continuity.

Joint protection pieces of perforated aluminium should be fitted.

950 A TO 2750 A MEDIUM VOLTAGE BUSBAR SYSTEMS (E- LINE MV) **GENERAL PRODUCT SPECIFICATIONS**

1- Standards & Certification:

- Busbar trunking system shall be designed in accordance with the international standards IEC 62271-200 and IEC 61439-6, type tests thereof shall be conducted and manufactured in accordance with the standard. Type tests shall be conducted by independent and accredited testing and certification bodies with international validity and certified accordingly. Short-circuit type tests and the following 3 main type tests shall be conducted for each current rating of busbar system and conformity certificate for the standards shall be obtained.

2- Overall System Structure

Busbar system should be with low impedance complying with the following specifications. This should be accomplished by placement of the tin coated conductors within the material with no entrapped air within.

For Cu Conductors:

950-2750A : phase-phase 1 sec. value 25kA, peak value 65kA

2.1- Electrical Values

- Nominal insulation voltage of 12kV busbar trunking

system should be 28kV.

- For the tin coated aluminum or copper, the environmental temperature should be maximum 40 °C while the maximum temperature rise should be 90 K.

- Minimum short circuit values of busbar should be as follows

2.2- Housing and Overall Structure

- Housing of busbar lengths is a special design and should be manufactured from a cast material.

- The structure of the busbar lengths shall have tin plated conductors along their complete length within the housing.

- In the busbar trunking system, there should be down-up and right-left turning elements, panel, transformer and cable connection elements, closure, horizontal and vertical expansion elements as a standard. Special modules and special size busbar lengths that may be required during the implementation of the project should be able to be manufactured within a short time and in accordance with the standard specification and technique.

- If busbar runs pass through the building expansion joint a horizontal expansion element shall be used in the run. Besides, horizontal dilatation element should be used at each 40 m on the horizontal lines.

2.3-**Conductors and Phase Configuration**

- Busbar trunking systems conductors shall be high conductivity copper with 99.95% / 99.99%? between 950-2750A.

- Busbar trunking system should be in the following conductor number and phase configuration

a) 3 Conductors / PE housing

- Copper conductors should be 99.95% electrolytic copper. Minimum conductivity value should be 56 m/mm². Entire surfaces of the electrolytic copper conductors should be tin-coated.

2.4-Insulation Structure

- Bars with high conductivity value should be insulated with a special composite material composed of allot of specially selected sand, calcite and epoxy resin. This material should be compliant with temperature changes and thermal expansion. It should ensure high protection against external impacts.

2.5- Modular Joint Structure

- The phase conductors shall be joined using two junction plates per phase of suitable cross section to maintain the rating integrity of the conductors. These plates shall be secured using bolts with non-sharp tips torqued to 72 Nm. The joint shall be completed using a mixture of epoxy and silicon to match the material of the busbar lengths. This materialshould be compliant with temperature changes and thermal expansion. It should ensure high protection against external impacts. Juncture point bolts should be tightened with torque wrench set to 72 Nm (55 lbft)

2.6- Protection Class

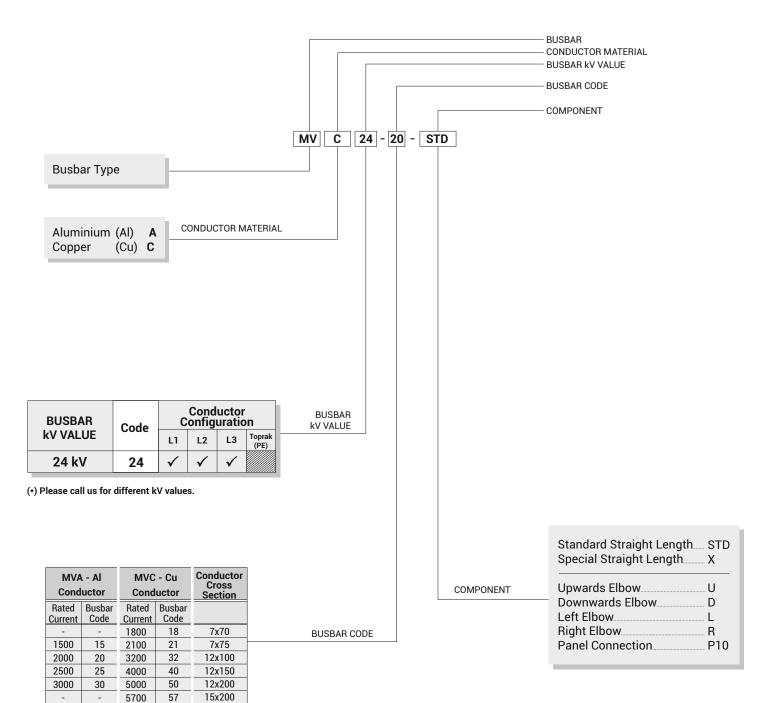
- Busbar installations shall have the protection class of IP 68

3-Assembly and Commissioning Tests

- The assembly of the busbar trunking system should be performed in accordance with the electrical project, electrical single line diagram, layout plans and detailed busbar application projects in line with the type and current values indicated on these plans, instructions provided by the manufacturer should be strictly abided with during the assembly process. Joint bolts shall definitely be tightened by the torgue wrench set to correct values and insulated accordingly.

- Upon the completion of the assembly of the busbar system and controlling of the compliance to the project thereof and assembly instructions;

a) Di-Electric test with very low frequency should be conducted.


b) Joint resistances and Line resistances should be measured.

c) Phase sequences should be checked.

		NEMV It Design Form					E/ E L E K	L T R İ İ
	Quantity							
Component List	Component							. ei
	ltem		Company :	Project :	Project No :	 Name sq pλ		다 signature :

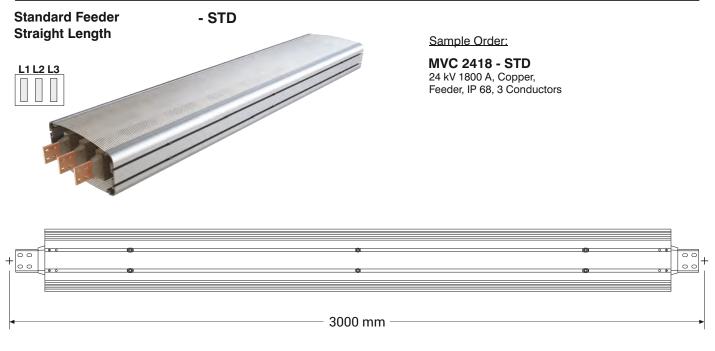
Technical Characteristics

► Aluminium Conductor (Al)

Rated Current	I,	Α	1500	2000	2500	3000
Busbar Code			15	20	25	30
Standards	IEC 62271-200 Edition 2.0 2011-10; IEC 61439-6 Edition 1.0 2012-05 IEC 62271-307 Edition 1.0 2015-09; STL Guide to IEC 62271-200 Edit					on 2.0 2011-10
Rated Voltage	U,	kV	24	24	24	24
Rated power frequency withstand voltage	U _d	kV	50	50	50	50
Rated impulse withstand withstand voltage	U _p	kV	125	125	125	125
Rated Frequency	f,	Hz	50/60	50/60	50/60	50/60
Partial Discharge		рС	<20	<20	<20	<20
Protection Degree	IP68					
External Mechanical Impacts (IK Code)*	50J, >	К10				
Rated Short-time Withstand Current (1s)	I _k	kA _{rms}	50	72	72	72
Rated Peak Withstand Current	I _{ke}	kA	130	187	187	187
Rated Short-time Withstand Current for PE Conductor (1s)	I _P	kA	30	43	43	43
Rated Peak Withstand Current for PE Conductor	I _{pe}	kA	78	112	112	112
MEAN PHASE CONDUCTOR CHARACTERISTICS AT RATED CURRENT I						
Resistance at a conductor temperature of 20°C	R ₂₀	mΩ/m	0.0608	0,0309	0,0234	0,0170
Resistance at an ambient air temperature of 35°C	R	mΩ/m	0.0799	0,0391	0,0309	0,0213
Reactance (Independent from Temperature)	х	mΩ/m	0.1313	0,1098	0,0884	0,0749
Positive and negative sequence impedances at an ambient air temperature of 35°C	Z	mΩ/m	0.1537	0,1165	0,0937	0,0779
Positive and negative sequence impedances at an ambient air temperature of 20°C	Z ₂₀	mΩ/m	0.1447	0,1140	0,0915	0,0768
Rated Power Loss at 35°C		Watt	517.3	457.3	558	554.8
DC Resistance at a conductor temperature of 20 °C for Phases	R_{phdc}	mΩ/m	0,056	0,026	0,021	0,013
DC Resistance at a conductor temperature of 20°C for PE	R _{PEdc}	mΩ/m	0,009	0,009	0,008	0,008
SECTIONS						
Phase Conductor		mm²	525	1200	1800	2400
PE (Housing)		mm²	8515	8515	9394	10194
Conductor Cross Section		mmxmm	7x75	12x100	12x150	12x200
Busbar Weight (3 Conductors)		kg/m	95	100	120	143
MEAN FAULT-LOOP CHARACTERISTICS						
Zero-sequence Impedance						
Zero-sequence impedance at a conductor temperature of 20	Z _{(0)b20phPE}	mΩ/m	0.273	0,268	0,219	0,195
°CZero-sequence impedance at an ambient temperature of 35°C	Z _{(0)bphPE}	mΩ/m	0.293	0,283	0,231	0,201
Mean Resistances and Reactances						
Resistance at a conductor temperature of 20°C	R _{b20phph}	mΩ/m	0.132	0,068	0,059	0,037
Resistance at a conductor temperature of 20°C	R _{b20phPE}	mΩ/m	0.084	0,061	0,046	0,033
Resistance at an ambient air temperature of 35°C	R _{bphph}	mΩ/m	0.173	0,087	0,078	0,047
Resistance at an ambient air temperature of 35°C	R _{bphPE}	mΩ/m	0.111	0,077	0,060	0,041
Reactance (Independent from temperature)	X _{bphph}	mΩ/m	0.258	0,215	0,174	0,146
Reactance (Independent from temperature)	X _{bphPE}	mΩ/m	0.165	0,151	0,125	0,109

Technical Characteristics

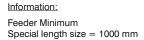
Copper Conductor (Cu)

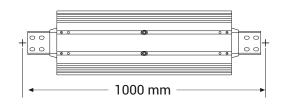

Rated Current	I,	A	1800	2100	3200	4000	5000	5700
Busbar Code			18	21	32	40	50	57
Standards			tion 2.0 201 tion 1.0 201		C 61439-6 E TL Guide to IE		12-05; D Edition 2.0 :	2011-10
Rated Voltage	U,	kV	24	24	24	24	24	24
Rated power frequency withstand voltage	U _d	kV	50	50	50	50	50	50
Rated impulse withstand withstand voltage	Up	kV	125	125	125	125	125	125
Rated Frequency	f,	Hz	50	50	50	50	50	50
Partial Discharge		рС	<20	<20	<20	<20	<20	<20
Protection Degree	IP68							
External Mechanical Impacts (IK Code)*	50J, > I	К10						
Rated Short-time Withstand Current (1s)	I _k	kA _{rms}	65	65	90.7	90.7	90.7	90.7
Rated Peak Withstand Current	I _{ke}	kA	169	169	236	236	236	236
Rated Short-time Withstand Current for PE Conductor (1s)	I _P	kA	39	39	55.7	55.7	55.7	55.7
Rated Peak Withstand Current for PE Conductor	I _{pe}	kA	102	102	144	144	144	144
MEAN PHASE CONDUCTOR CHARACTERISTICS AT RATED CURRENT I								
Resistance at a conductor temperature of 20°C	R ₂₀	mΩ/m	0,0425	0,0401	0,0210	0,0126	0,0100	0,0103
Resistance at an ambient air temperature of 35°C	R	mΩ/m	0,0568	0,0547	0,0289	0,0172	0,0138	0,0142
Reactance (Independent from Temperature)	х	mΩ/m	0,1343	0,1303	0,1084	0,0879	0,0806	0,0716
Positive and negative sequence impedances at an ambient air temperature of 35°C	Z	mΩ/m	0,1458	0,1413	0,1121	0,0896	0,0818	0,0730
Positive and negative sequence impedances at an ambient air temperature of 20°C	Z ₂₀	mΩ/m	0,1408	0,1363	0,1104	0,0888	0,0813	0,0723
Rated Power Loss at 35°C		Watt	529	703,3	867,3	797,5	1010,5	1353,3
DC Resistance at a conductor temperature of 20 °C for Phases	R _{phdc}	mΩ/m	0,034	0,034	0,017	0,012	0,009	0,009
DC Resistance at a conductor temperature of 20°C for PE	R _{PEdc}	mΩ/m	0,009	0,009	0,009	0,006	0,013	0,013
SECTIONS								
Phase Conductor		mm²	490	525	1200	1800	2400	3000
PE (Housing)		mm²	8515	8515	8515	9394	10194	10194
Conductor Cross Section		mmxmm	7x70	7x75	12x100	12x150	12x200	15x20
Busbar Weight (3 Conductors)		kg/m	104	106	122	152	187	205
MEAN FAULT-LOOP CHARACTERISTICS								
Zero-sequence Impedance								
Zero-sequence impedance at a conductor temperature of 20	Z _{(0)b20phPE}	mΩ/m	0,269	0,253	0,220	0,211	0,192	0,161
°CZero-sequence impedance at an ambient temperature of 35°C	Z _{(0)bphPE}	mΩ/m	0,284	0,253	0,230	0,220	0,199	0,167
Mean Resistances and Reactances								
Resistance at a conductor temperature of 20°C	R _{b20phph}	mΩ/m	0,089	0,055	0,047	0,032	0,025	0,023
Resistance at a conductor temperature of 20°C	R _{b20phPE}	mΩ/m	0,062	0,056	0,041	0,033	0,026	0,025
Resistance at an ambient air temperature of 35°C	R _{bphph}	mΩ/m	0,119	0,075	0,046	0,044	0,035	0,032
Resistance at an ambient air temperature of 35°C	R _{bphPE}	mΩ/m	0,083	0,076	0,041	0,045	0,036	0,034
Reactance (Independent from temperature)	X _{bphph}	mΩ/m	0,264	0,246	0,209	0,170	0,143	0,132
Reactance (Independent from temperature)	X _{bphPE}	mΩ/m	0,169	0,156	0,142	0,122	0,108	0,099

Standards

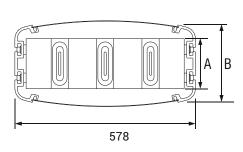
⁽¹⁾ The weight per metre provided in table includes 1/3 of the weight of one block joint.

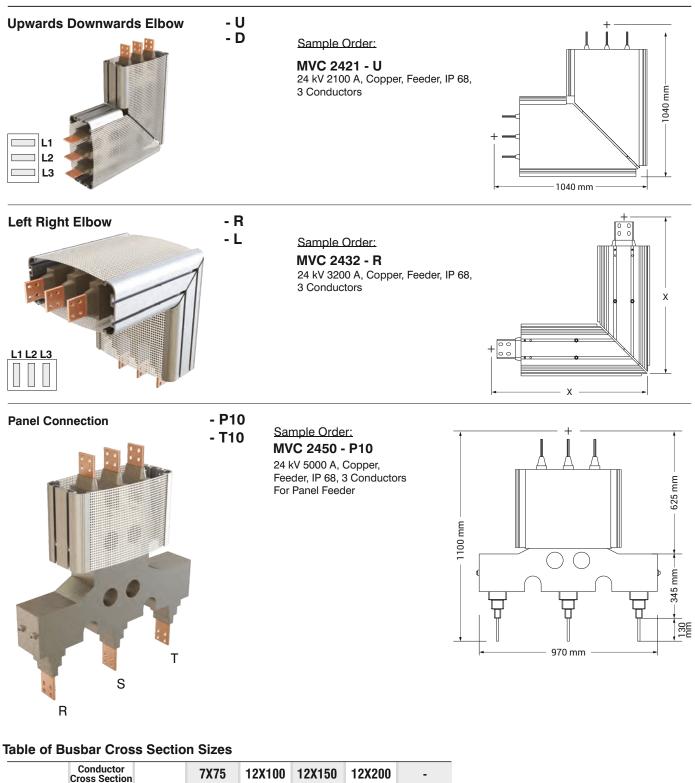
Standard Straight Length



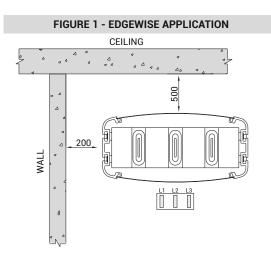

Special Feeder Straight Length - X

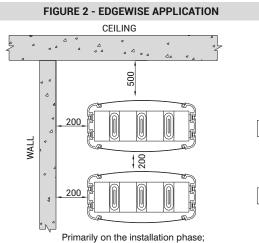
Conductor Cross Section Sample Order:

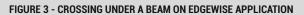

MVC 2432 - X - 150 24 kV 3200 A, Copper, Feeder, IP 68, 3 Conductors, 1500 mm Special Length

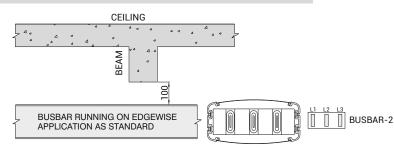

Table For Outer Dimension of Busbars

	Conductor Cross Section		7X75	12X100	12X150	12X200	-
MVA - AI Conductor	Rated Current (A)		1500	2000	2500	3000	-
	Busbar Code		15	20	25	30	-
	Conductor Cross Section	7X70	7X75	12X100	12X150	12X200	15X200
MVC - Cu Conductor	Rated Current (A)	1800	2100	3200	4000	5000	5700
	Busbar Code	18	21	32	40	50	57
Α	mm	160	160	160	210	260	260
В	mm	247	247	247	297	347	347

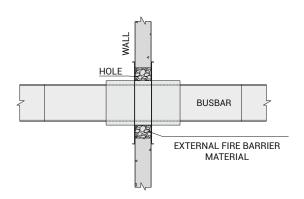

Elbows

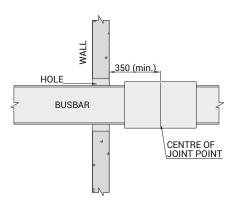



	Cross Section		7X75	12X100	12X150	12X200	-
MVA - AI Conductor	Rated Current (A)		1500	2000	2500	3000	-
	Busbar Code		15	20	25	30	-
	Conductor Cross Section	7X70	7X75	12X100	12X150	12X200	15X200
MVC - Cu Conductor	Rated Current (A)	1800	2100	3200	4000	5000	5700
	Busbar Code	18	21	32	40	50	57
Х	mm	690	690	690	740	790	790



BUSBAR-1 line should be installed before BUSBAR-2 line.



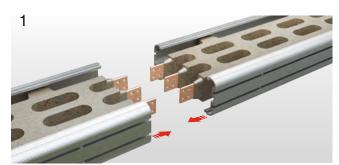

Cast Resin Installation Tools

Order Code
5000132
5000310
5000311
5000664

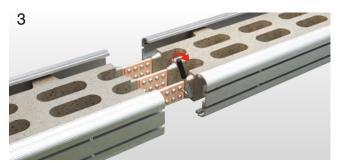
FIGURE 4 - SAMPLE WALL CROSSING WITH FIRE BARRIER

FIGURE 5 - STANDARD WALL CROSSING

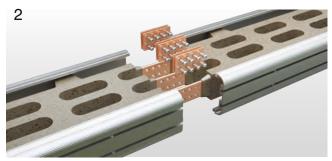
BUSBAR-2

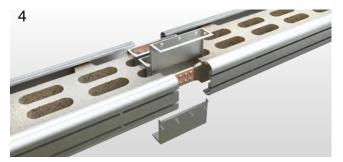

BUSBAR-1

- For correct installation, the dimension from the busbar to the ceiling should not be less than 500mm
- The joint should be not come across to Beams.
- The dimensions given above are minimum values.
- All dimensions are given in mm.



24 kV Medium Voltage Busbar Horizontal Application




The ends of the conductors of the busbars are cleaned with a clean dry cloth. The busbars have to be fixed in the same axis, with a max. distance of 10 mm between the two conductors.

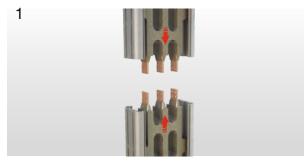
All bolts must be tightened to 72 Nm with torque wrench.

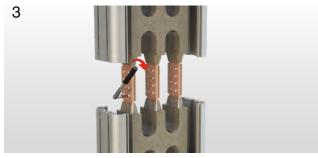
As shown on the figure, junction plates shall be fixed as the bolts face the same direction at all times.

Before the casting moulds assembling, inner surfaces of casting mouldshave to wiped with clean dry cloth.

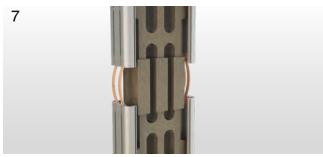
The mixture prepared for casting should be cast from the same spot at all times.

The material should be 'vibrated' with the help of a plastic hammer to remove the air in the material. Then the air bubbles on the surface have to brushed.

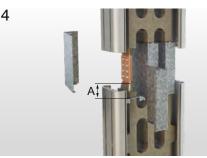

After the curing of the cast material is complete the sheet metal moulds can be removed. (Reaction is completed within 8 - 24 hours based on the air temperature.) The flexibles are fitted to the profiles grooves for earth continuity.


Joint protection pieces of perforated aluminium should be fitted.

24 kV Medium Voltage Busbar Vertical Application


The ends of the conductors of the be busbars are cleaned witha clean dry cloth. The busbars have to fixed in the sameaxis, with a max. distance of 10 mm between thetwo conductors.

All bolts must be tightened to 72 Nm with torque wrench.


The prepared for casting should be cast from the same spot at all times.

After the curing of the cast material is complete the sheet metal moulds can be removed.(Reaction is completed within 8 - 24 hours based on the air temperature.)The flexibles are fitted to the profiles grooves for earth continuity.



As shown on the figure, junction plates shall be fixed as the bolts face the same direction at all times.

2

Support sheets are secured on the lower part of juncture area by stem bar. A min. 50-60 mm. The joint moulds are affixed on the support sheet by cleaning with a dry and clean piece of cloth.

The material should be 'vibrated' with the help of a plastic hammer to remove the air in thematerial. Then the air bubbles on the surface have to brushed.

8

Joint protection pieces of perforated aluminium should be fitted.

1500A TO 5700 A MEDIUM VOLTAGE BUSBAR SYSTEMS (E- LINE MV) GENERAL PRODUCT SPECIFICATIONS

1- Standards & Certification:

- Busbar trunking system shall be designed in accordance with international standards IEC 62271-200 and IEC 61439-6, type tests thereof shall be conducted and manufactured in accordance with the standard. Type tests shall be conducted by independent and accredited testing and certification bodies with international validity and certified accordingly. Short-circuit type tests and the following 3 main type tests shall be conducted for each current rating of busbar system and conformity certificate for the standards shall be obtained.

2- Overall System Structure

Busbar system should be with low impedance complying with the following specifications. This should be accomplished by placement of the tin coated conductors within the material with no entrapped air within.

2.1- Electrical Values

- Nominal insulation voltage of 24kV bu	sbar For Al Conductors;
trunking system should be 50kV.	1500 A : phase-phase 1 sec. value 50 kA, peak value 130 kA
 For the tin coated aluminum or copper temperature should be maximum 40 °C 	
temperature rise should be 90 K.	For Cu Conductors;
 Minimum short circuit busbar lengths should be as follows. 	1800-2100 A : phase-phase 1 sec. value 65 kA, peak value 169 kA 3200-5700 A : phase-phase 1 sec. value 72 kA, peak value 187 kA

2.2- Housing and Overall Structure

- Housing of busbar lengths is a special design and should be manufactured from a cast material.
- The structure of the busbar lengths shall have tin plated conductors along their complete length within the housing.
- In the busbar trunking system, there should be down-up and right-left turning elements, panel, transformer and cable connection elements, closure, horizontal and vertical expansion elements as a standard. Special modules and special size busbar lengths that may be required during the implementation of
- the project should be able to be manufactured within a short time and in accordance with the standard specification and technique.
- If busbar runs pass through the building expansion joint a horizontal expansion element shall be used in the run. In addition horizontal expansion elements should be used at each 40 m on the horizontal lines.

2.3- Conductors and Phase Configuration

- Busbar trunking system should be aluminum conductive between 1500-3000A.
- Busbar trunking system should be copper conductive between 1800-5700A.
- Busbar trunking systems conductors shall be high conductivity copper with .

a) 3 Conductors / PE housing

- Aluminum conductors must be in the EC-Grade class. The minimum conductivity must be 34 m/mm²..... Entire surfaces of the aluminum conductors should be tin-coated.

- Copper conductors should be 99.99% electrolytic copper. Minimum conductivity value should be 56 m/mm². Entire surfaces of the electrolytic copper conductors should be tin-coated.

2.4- Insulation Structure

- Bars with high conductivity value should be insulated with a special composite material composed of allot of specially selected sand, calcite and epoxy resin. This material should be compliant with temperature changes and thermal expansion. It should ensure high protection against external impacts.

2.5- Modular Joint Structure

The phase conductors shall be joined using two junction plates per phase of suitable cross section to maintain the rating integrity of the conductors. These plates shall be secured using bolts with non-sharp tips torqued to 72 Nm. The joint shall be completed using a mixture of epoxy and silicon to match the material of the busbar lengths. This material should be compliant with temperature changes and thermal expansion. It should ensure high protection against external impacts. Juncture point bolts should be tightened with torque wrench set to 72 Nm (55 lbft)

2.6- Protection Class

- Busbar installations shall have the protection class of IP 68.

3- Assembly and Commissioning Tests

- The assembly of the busbar trunking system should be performed in accordance with the electrical project, electrical single line diagram, layout plans and detailed busbar application projects in line with the type and current values indicated on these plans, instructions provided by the manufacturer should be strictly abided with during the assembly process. Joint bolts shall definitely be tightened by the torque wrench set to correct values and insulated accordingly. - Upon the completion of the assembly of the busbar system and controlling of the compliance to the project thereof and assembly instructions;

- a) Di-Electric test with very low frequency should be conducted.
- b) Joint resistances and Line resistances should be measured.

c) Phase sequences should be checked.

ELINEMV Project Design Form								
	Quantity							
Component List	Component				0	: e:		Signature :
	ltem		Company :	Project :	Project No :	: Name :		

PRODUCT TYPES

BUSBAR ENERGY DISTRIBUTION SYSTEMS

CABLE TRAYS

TROLLEY BUSBAR ENERGY DISTRIBUTION SYSTEMS

INDOOR SOLUTIONS

EAE Elektrik A.S. Akcaburgaz Mahallesi, 3114. Sokak, No:10 34522 Esenyurt - Istanbul - TURKEY Tel: +90 (212) 866 20 00 Fax: +90 (212) 886 24 20

Please visit our website for the updated version of our catalogues. www.eae.com.tr/EN

Catalogues 35-ENG. / Rev 01 1.000 pcs 23/01/2020 S.S.

EAE has full right to make any revisions or changes on this catalogue without any prior notice.