×

# Arthrometer Assessment of Joint Laxity in People with Ehlers-Danlos Syndrome

| Journal:                         | Journal of Scleroderma and Related Disorders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                    | Draft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Manuscript Type:                 | Original Research Articles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Date Submitted by the<br>Author: | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Complete List of Authors:        | Iovine, Valerie; Strive! Physical Therapy Centers<br>Gulick, Dawn; Widener University, Physical Therapy<br>Palombaro, Kerstin; Widener University                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Keywords:                        | Connective tissue disorder, Ehlers-Danlos Syndrome, Hypermobility, Arthrometer, Joint laxity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Abstract:                        | Abstract<br>Background: Joint hypermobility is a condition in which synovial joints<br>move beyond normal limits. In children, 10% to 25% experience<br>hypermobility syndrome. Adult hypermobility is reported to range from<br>5% to 25% in the USA. Joint mobility syndrome includes inherited<br>connective tissue disorders such as Ehlers-Danlos Syndrome (EDS).<br>Typically, a score of 4 or 5 out of 9 on the Beighton scale is indicative of<br>hypermobility in adults. Whereas 6 out of 9 is the criteria for children.<br>No significant correlations were found between the systemic features of<br>EDS and the Beighton score.<br>Purpose: The purpose was to identify clinical techniques/data to<br>contribute to the identification of connective tissue disorders.<br>Methods: A Mobil-Aider arthrometer was used to quantify the anterior<br>and inferior translation of the glenohumeral joint, as well as the anterior<br>translation of the talocrural joint.<br>Results: Thirteen control participants without EDS and 14 participants<br>diagnosed with EDS participated. Significant between-group differences<br>and medium to large effect sizes were found for all 3 motions.<br>Conclusions: The Beighton score has known limitations as diagnostic<br>criteria for hypermobility syndrome and EDS. Testing with an<br>arthrometer provides objective data and can provide a magnitude of<br>hypermobility, not just dichotomous criteria.<br>Clinical Significance: Identification of techniques to obtain objective<br>clinical data are important in the prompt and accurate identification of<br>pathology. |

# SCHOLARONE<sup>™</sup> Manuscripts

| 1                                                                                                                                                                |                                                                |                                                                                                    |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 2<br>3                                                                                                                                                           | 1                                                              | Arthrometer Assessment of Joint Laxity in People with Ehlers-Danlos Syndrome                       |  |  |  |  |  |
| 4                                                                                                                                                                | T                                                              | Arthrometer Assessment of Joint Laxity in Leople with Emers-Damos Syndrome                         |  |  |  |  |  |
| 5<br>6                                                                                                                                                           | 2                                                              |                                                                                                    |  |  |  |  |  |
| 7<br>8 3 Valerie Iovine, PT, DPT <sup>1</sup><br>9                                                                                                               |                                                                |                                                                                                    |  |  |  |  |  |
| 10<br>11                                                                                                                                                         | <sup>0</sup> 4 Dawn T Gulick, PhD, PT, AT, CSCS <sup>2,3</sup> |                                                                                                    |  |  |  |  |  |
| 12<br>13                                                                                                                                                         | 5 Kerstin M. Palombaro, PhD, PT, CAPS <sup>2</sup>             |                                                                                                    |  |  |  |  |  |
| 14<br>15<br>16                                                                                                                                                   | 6                                                              | <sup>1</sup> Strive Physical Therapy, 23659 Columbus Rd, Columbus, NJ 08022 USA                    |  |  |  |  |  |
| <ul> <li><sup>16</sup></li> <li><sup>17</sup> 7</li> <li><sup>2</sup>Widener University, One University Place, Chester, PA USA</li> <li><sup>18</sup></li> </ul> |                                                                |                                                                                                    |  |  |  |  |  |
| 19<br>20                                                                                                                                                         | <sup>3</sup> Corresponding Author, <u>dtgulick@widener.edu</u> |                                                                                                    |  |  |  |  |  |
| 21<br>22<br>23                                                                                                                                                   | 9                                                              | 610-499-1287 (phone)                                                                               |  |  |  |  |  |
| 25<br>24<br>25                                                                                                                                                   | 10                                                             | 610-499-1232 (fax)                                                                                 |  |  |  |  |  |
| 26<br>27                                                                                                                                                         | 11                                                             |                                                                                                    |  |  |  |  |  |
| 28<br>29<br>20                                                                                                                                                   | 12                                                             |                                                                                                    |  |  |  |  |  |
| 30<br>31<br>32                                                                                                                                                   | 13                                                             |                                                                                                    |  |  |  |  |  |
| 33<br>34                                                                                                                                                         | 14                                                             | Author Contributions Statement: All authors have contributed to the research design, the           |  |  |  |  |  |
| 35<br>36<br>27                                                                                                                                                   | 15                                                             | acquisition, analysis, and interpretation of data, and all authors have read and approved the fina |  |  |  |  |  |
| 37<br>38<br>39                                                                                                                                                   | 16 submitted manuscript.                                       |                                                                                                    |  |  |  |  |  |
| 40<br>41                                                                                                                                                         | 17                                                             |                                                                                                    |  |  |  |  |  |
| 42<br>43                                                                                                                                                         |                                                                |                                                                                                    |  |  |  |  |  |
| 44<br>45<br>46                                                                                                                                                   |                                                                |                                                                                                    |  |  |  |  |  |
| 47                                                                                                                                                               |                                                                |                                                                                                    |  |  |  |  |  |
| 48<br>49                                                                                                                                                         |                                                                |                                                                                                    |  |  |  |  |  |
| 50                                                                                                                                                               |                                                                |                                                                                                    |  |  |  |  |  |
| 51<br>52                                                                                                                                                         |                                                                |                                                                                                    |  |  |  |  |  |
| 52<br>53                                                                                                                                                         |                                                                |                                                                                                    |  |  |  |  |  |
| 54                                                                                                                                                               |                                                                |                                                                                                    |  |  |  |  |  |
| 55<br>56                                                                                                                                                         |                                                                |                                                                                                    |  |  |  |  |  |
| 57                                                                                                                                                               |                                                                |                                                                                                    |  |  |  |  |  |
| 58<br>59                                                                                                                                                         |                                                                |                                                                                                    |  |  |  |  |  |
| 60                                                                                                                                                               |                                                                | https://mc.manuscriptcentral.com/jsrd                                                              |  |  |  |  |  |

| 18 | Arthrometer Assessment of Joint Laxity in People with Ehlers-Danlos Syndrome                                   |
|----|----------------------------------------------------------------------------------------------------------------|
| 19 |                                                                                                                |
| 20 | Introduction                                                                                                   |
| 21 | Clinicians frequently strive to restore joint mobility and function. Yet, manipulations and                    |
| 22 | mobilizations may not be appropriate for all patents. <sup>1</sup> Individuals with hypermobile joints require |
| 23 | a different approach. It is important to distinguish the patient who is trained for muscular                   |
| 24 | flexibility from those with generalized articular instability. The value of this differential                  |
| 25 | diagnosis cannot be understated. <sup>2</sup> Systemic joint hypermobility is a chronic condition and          |
| 26 | requires lifelong support. <sup>2</sup>                                                                        |
| 27 |                                                                                                                |
| 28 | Joint hypermobility is a condition in which synovial joints move beyond normal limits. <sup>3</sup>            |
| 29 | Estimates of the frequency of hypermobility syndrome are significant. In children, 10% to 25%                  |
| 30 | experience hypermobility syndrome. <sup>4,5</sup> Adult hypermobility is reported to range from 5% to 25%      |
| 31 | in the USA, 25% to 38% in Iraq, and 43% in the Noruba tribe in Nigeria. <sup>6-10</sup> Cooper and Brems       |
| 32 | found 76% of surgical patients with multi-directional glenohumeral instability demonstrated                    |
| 33 | generalized joint hypermobility. <sup>11</sup>                                                                 |
| 34 |                                                                                                                |
| 35 | Joint mobility syndrome includes inherited connective tissue disorders such as Ehlers-Danlos                   |
| 36 | Syndrome (EDS). <sup>12</sup> EDS affects many systems of the body. <sup>13-22</sup> The 2017 International    |
| 37 | Classification recognizes 13 subtypes of EDS. <sup>23</sup> The Villefrache subtypes include: classical,       |
| 38 | hypermobility, vascular, kyphoscoliosis, arthrochalasia, and dermatosparaxis. <sup>24</sup> The                |
| 39 | hypermobility type (hEDS) is the most common and represents 80% to 90% of EDS cases. <sup>23,25</sup>          |
| 40 | Individuals with EDS often have poor muscle definition and adopt end-range postures. <sup>3</sup> A typical    |
|    |                                                                                                                |

Page 3 of 21

| 1<br>2         |    |                                                                                                              |  |  |  |
|----------------|----|--------------------------------------------------------------------------------------------------------------|--|--|--|
| 3<br>4         | 41 | standing posture may include flat feet, hyperextended hips and knees, increased lumbar lordosis,             |  |  |  |
| 5<br>6         | 42 | and "hip hanging," <sup>3</sup> Clinical diagnostic criteria have included the Beighton Scale (figure 1) and |  |  |  |
| 7<br>8<br>9    | 43 | Brighton Criteria (figure 2). However, the diagnosis of joint hypermobility should also include              |  |  |  |
| 10<br>11       | 44 | examination of skin elasticity, scars (thin), stretch marks (adolescent growth spurts), hernia,              |  |  |  |
| 12<br>13       | 45 | pelvic floor, varicose veins, Gorland's sign (tip of the tongue to the nose), and the absence of a           |  |  |  |
| 14<br>15<br>16 | 46 | frenulum. While some of these items do appear in the second criterion of the diagnostic criteria             |  |  |  |
| 17<br>18       | 47 | from 2017, a formal diagnosis cannot be made at this time if the Beighton Scale requirement is               |  |  |  |
| 19<br>20       | 48 | not met. Typically, a score of 4 or 5 out of 9 on the Beighton scale is indicative of hypermobility          |  |  |  |
| 21<br>22       | 49 | in adults, whereas 6 out of 9 is the criteria for children. No significant correlations were found           |  |  |  |
| 23<br>24<br>25 | 50 | between the systemic features of EDS and the Beighton score. <sup>26</sup> Furthermore, the Beighton         |  |  |  |
| 26<br>27       | 51 | Score does not differentiate between congenital articular instability versus trained hypermobility.          |  |  |  |
| 28<br>29       | 52 | Factors that influence the Beighton Score may include:                                                       |  |  |  |
| 30<br>31<br>32 | 53 | 1. A patient with EDS may not demonstrate a "positive" score because of muscular                             |  |  |  |
| 33<br>34       | 54 | guarding/tightening as a protective factor (e.g.: hamstrings in palms to floor test).                        |  |  |  |
| 35<br>36       | 55 | 2. Individual anatomy may limit people with true connective tissue disorders in instances                    |  |  |  |
| 37<br>38       | 56 | such as bony end feel (elbow extension or knee hyperextension).                                              |  |  |  |
| 39<br>40<br>41 | 57 | 3. People who may have trained for enhanced muscular flexibility (dancers, gymnasts) and                     |  |  |  |
| 42<br>43       | 58 | do not necessarily have joint instability. Thus, they may score high on this test without                    |  |  |  |
| 44<br>45       | 59 | the dangers of subluxation or dislocation.                                                                   |  |  |  |
| 46<br>47<br>48 | 60 | 4. The test currently examines a series of joints that are not most typical of                               |  |  |  |
| 49<br>50       | 61 | dislocations/subluxations. The Beighton Score does not address the shoulders, hips, or                       |  |  |  |
| 51<br>52       | 62 | ankles (most problematic lax joints).                                                                        |  |  |  |
| 53<br>54<br>55 | 63 |                                                                                                              |  |  |  |
| 56<br>57       |    |                                                                                                              |  |  |  |
| 58<br>59       |    |                                                                                                              |  |  |  |
| 60             |    | https://mc.manuscriptcentral.com/jsrd                                                                        |  |  |  |

Thus, the purpose of this study was to objectively quantify joint laxity of the shoulders and ankles in a control group and that of a group known to be diagnosed with EDS. The joint laxity was quantified with an arthrometer to compare the two groups as well as the magnitude of joint laxity compared to the Beighton Score.

#### 69 Methodology

Level of Evidence II. The consent form, approved by the Institutional Review Board for the Protection of Human Subjects (#87-22) was reviewed and signed by the potential participant. Each person was screened for inclusion criteria. All participants were over 18 years of age. All participants were assessed with the Beighton Scale. The testing researcher was blinded to the Beighton Scale score. Participants in the control group were required to have a "zero" score and no injury or surgery to the shoulder or ankle. Participants in the EDS group were expected to have a high Beighton score but shoulder or ankle joints with a current injury or prior surgery were eliminated from data collection. Thus, both shoulders and ankles were tested on some people but not all. Demographic data included age and gender. 

The device used in this study was the Mobil-Aider arthrometer (figure 3). This arthrometer has a stable side (red side with LED screen) and a side that moves linearly (black side without screen) via an internal rollerball mechanism. Each side of the main body of the device accommodates contoured attachments for a variety of joints. In this study ankles and shoulders were tested. For the ankle, the yellow convex attachment contours to the posterior distal tibia (gastroc/soleus/Achilles region) while the black concave attachment conforms to the talus/calcaneal region. Both pieces were locked into position on their respective sides of the

| 1<br>2                                 |     |                                                                                                     |  |  |  |
|----------------------------------------|-----|-----------------------------------------------------------------------------------------------------|--|--|--|
| 3<br>4                                 | 87  | device via a dovetail fit and plugger mechanism. The axis of the Mobil-Aider was aligned with       |  |  |  |
| 5<br>6                                 | 88  | the talocrural joint line. The proximal side (yellow) of the Mobil-Aider was stabilized against the |  |  |  |
| 7<br>8<br>9                            | 89  | posterior tibia. The distal side (black) of the Mobil-Aider was held in contact with the            |  |  |  |
| 10<br>11                               | 90  | talus/calcaneus. For the shoulder, an inferior translation was performed with the green contoured   |  |  |  |
| 12<br>13                               | 91  | attachment on the proximal side and the blue attachment was used for anterior translation.          |  |  |  |
| 14<br>15                               | 92  |                                                                                                     |  |  |  |
| 16<br>17<br>18                         | 93  | Participants were positioned comfortably for the three testing procedures.                          |  |  |  |
| 19<br>20                               | 94  | • Shoulder inferior translation = supine with arm relaxed at their side, hand on the                |  |  |  |
| 21<br>22<br>22                         | 95  | belly with forearm pronated, and a towel roll under the elbow.                                      |  |  |  |
| 23<br>24<br>25                         | 96  | • Shoulder anterior translation = prone with the arm at their side and a small                      |  |  |  |
| 26<br>27                               | 97  | wedge under the ipsilateral clavicle/anterior chest                                                 |  |  |  |
| 28<br>29                               | 98  | • Ankle anterior translation = prone with feet over the edge of the table and a small               |  |  |  |
| 30<br>31<br>32<br>33<br>34             | 99  | wedge placed under the distal lower leg                                                             |  |  |  |
|                                        | 100 | The axis of motion of each joint was identified with the passive range of motion performed by       |  |  |  |
| 35<br>36                               | 101 | the researcher. The Mobil-Aider arthrometer axis was aligned with the joint line. The proximal      |  |  |  |
| 37<br>38<br>39<br>40<br>41<br>42<br>43 | 102 | element of the Mobil-Aider was stabilized against the proximal bone as follows:                     |  |  |  |
|                                        | 103 | • Shoulder inferior translation = stabilize upper thorax/upper chest (figure 4)                     |  |  |  |
|                                        | 104 | • Shoulder anterior translation = stabilize scapula (figure 5)                                      |  |  |  |
| 44<br>45                               | 105 | • Ankle anterior translation = stabilize tibia (figure 6)                                           |  |  |  |
| 46<br>47<br>48                         | 106 |                                                                                                     |  |  |  |
| 49<br>50                               | 107 | The distal segment was mobilized as follows:                                                        |  |  |  |
| 51<br>52                               | 108 | • Shoulder inferior translation = apply a distal force through the humeral                          |  |  |  |
| 53<br>54                               | 109 | head/shoulder bone (figure 4)                                                                       |  |  |  |
| 55<br>56<br>57                         |     |                                                                                                     |  |  |  |
| 58<br>59                               |     |                                                                                                     |  |  |  |
| 60                                     |     | https://mc.manuscriptcentral.com/jsrd                                                               |  |  |  |

| 2                                      |                                                                                               |                                                                                                            |  |  |  |  |  |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 3<br>4                                 | • Shoulder anterior translation = apply an anterior force to the posterior hu                 |                                                                                                            |  |  |  |  |  |  |
| 5<br>6<br>7                            | 111 head/shoulder bone (figure 5)                                                             |                                                                                                            |  |  |  |  |  |  |
| 7<br>8<br>9                            | • Ankle anterior translation = apply an anterior force through the                            |                                                                                                            |  |  |  |  |  |  |
| 10<br>11                               | 113                                                                                           | talus/calcaneus/back of foot (figure 6)                                                                    |  |  |  |  |  |  |
| 12<br>13                               | 114                                                                                           |                                                                                                            |  |  |  |  |  |  |
| 14<br>15<br>16                         | 115 A few small amplitude test oscillations were performed to confirm proper positioning. The |                                                                                                            |  |  |  |  |  |  |
| 17<br>18                               |                                                                                               |                                                                                                            |  |  |  |  |  |  |
| 19<br>20                               | 117                                                                                           | ankle anterior translation) were performed with a 30-second rest between tests. Each data point            |  |  |  |  |  |  |
| 21<br>22<br>23                         | 118                                                                                           | was recorded. Measures were reported in millimeters of linear translation. After the testing of            |  |  |  |  |  |  |
| 24<br>25                               | 119                                                                                           | each individual, the surfaces of the Mobil-Aider <sup>TM</sup> and wedges were cleaned with anti-microbial |  |  |  |  |  |  |
| 26<br>27                               | 120                                                                                           | wipes.                                                                                                     |  |  |  |  |  |  |
| 28<br>29<br>30                         | 121                                                                                           |                                                                                                            |  |  |  |  |  |  |
| 31<br>32                               | 122                                                                                           | Results:                                                                                                   |  |  |  |  |  |  |
| 33<br>34                               | 123                                                                                           | Thirteen control participants without EDS and 14 participants diagnosed with EDS participated              |  |  |  |  |  |  |
| 35<br>36<br>37                         | 124                                                                                           | in the study. In the control group, 6 participants were male and 7 were female. In the EDS group,          |  |  |  |  |  |  |
| 37<br>38<br>39                         | 125                                                                                           | 1 participant was male, and 13 were female. The mean age of the control group was $24.1 (\pm 3.4)$         |  |  |  |  |  |  |
| 40<br>41                               | 126                                                                                           | and of the EDS group was 32.4 ( $\pm$ 12.1). In cases where the bilateral shoulder or ankle joint met      |  |  |  |  |  |  |
| 42<br>43                               | 127                                                                                           | inclusion criteria, these measurements were recorded as a separate case. Thus, for shoulder                |  |  |  |  |  |  |
| 44<br>45<br>46                         | 128                                                                                           | anterior translation there were 23 in the control and 26 in the EDS group. For shoulder inferior           |  |  |  |  |  |  |
| 47<br>48                               | 129                                                                                           | translation there were 21 in the control and 26 in the EDS group. Finally, for the ankle anterior          |  |  |  |  |  |  |
| 49<br>50                               | 130                                                                                           | translation, there were 22 in the control and 25 in the EDS group. An independent samples t-test           |  |  |  |  |  |  |
| 51<br>52<br>53<br>54<br>55<br>56<br>57 | 131                                                                                           | demonstrated a significant between-group difference for age (p = .026). The control group was              |  |  |  |  |  |  |

| 2<br>3                                    | 132                                                  | required to have a Beighton score of 0; the EDS group was required to have a Beighton score                                             |  |  |
|-------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 4<br>5                                    |                                                      |                                                                                                                                         |  |  |
| 6<br>7                                    | 133                                                  | greater than 6. The EDS group had a mean Beighton score of 8.0 ( $\pm$ 1.2).                                                            |  |  |
| 8<br>9                                    | 134                                                  |                                                                                                                                         |  |  |
| 10<br>11                                  | 135                                                  | The average of 3 trials was taken for each motion and then Mann-Whitney U tests were                                                    |  |  |
| 12<br>13                                  | 136                                                  | performed to identify between-group differences for all three joint translations measured:                                              |  |  |
| 14<br>15<br>16                            | 137                                                  | anterior and inferior shoulder glide and anterior ankle glide. Effect sizes were calculated using                                       |  |  |
| 17<br>18                                  | 138                                                  | Cohen's d formula: Cohen's $d = M_1 - M_2 / s_{\text{pooled}}$ where $s_{\text{pooled}} = \sqrt{[(s_1^2 + s_2^2) / 2]^2}$ . Effect size |  |  |
| 19<br>20                                  | 139                                                  | $r_{Y1}$ was then calculated using the formula $r_{Y1} = d / \sqrt{(d^2 + 4)}$ . Significant between-group                              |  |  |
| 21<br>22                                  | 140                                                  | differences and medium to large effect sizes were found for all 3 motions (table 1).                                                    |  |  |
| 23<br>24<br>25                            | 141                                                  |                                                                                                                                         |  |  |
| 26<br>27                                  | 142                                                  | A priori power analysis concluded that 42 total participants would be needed given an assumed                                           |  |  |
| 28<br>29                                  | 143                                                  | effect size of 0.8, the desired power of 0.8, and an alpha level set at 0.05. <sup>28,29</sup> The post-hoc                             |  |  |
| 30<br>31                                  | 144                                                  | analysis affirmed that the study was sufficiently powered with 99% power for all data.                                                  |  |  |
| 32<br>33<br>34                            | 145                                                  |                                                                                                                                         |  |  |
| 35<br>36                                  | 146                                                  | Discussion                                                                                                                              |  |  |
| 37<br>38<br>39<br>40<br>41                | 147                                                  | Joint hypermobility is a topic of interest in the arts, sports, and medical communities. <sup>30</sup>                                  |  |  |
|                                           | 148                                                  | However, the lack of awareness of hypermobility syndrome among healthcare providers can lead                                            |  |  |
| 42<br>43                                  | 149                                                  | to significant delays in gaining a diagnosis. <sup>31</sup> Individuals are told the problems are "growing                              |  |  |
| 44<br>45                                  | 150                                                  | pains," "all in your head," or they are "malingerers." <sup>31</sup> Some individuals have reported they feel                           |  |  |
| 46<br>47<br>48<br>49<br>50<br>51<br>52    | 151                                                  | their healthcare provider is dismissive or has "given up" on them. <sup>31</sup> Furthermore, when an                                   |  |  |
|                                           | 152                                                  | individual has hypermobility syndrome, they may be conflicted on whether to participate in                                              |  |  |
|                                           | 153                                                  | sports activities or protect themselves from injury. This can be particularly problematic for                                           |  |  |
| 53<br>54                                  | 154 parents of children with hypermobility syndrome. |                                                                                                                                         |  |  |
| 55<br>56<br>57                            |                                                      |                                                                                                                                         |  |  |
| 58                                        |                                                      |                                                                                                                                         |  |  |
| 5960https://mc.manuscriptcentral.com/jsrd |                                                      |                                                                                                                                         |  |  |

| 1<br>2                     |     |                                                                                                                         |
|----------------------------|-----|-------------------------------------------------------------------------------------------------------------------------|
| 3<br>4                     | 155 |                                                                                                                         |
| 5<br>6                     | 156 | To date, the Beighton scoring system is the most common tool used for the identification of                             |
| 7<br>8<br>9                | 157 | generalized joint hypermobility (GJH). When it was developed in 1973, it was proposed as an                             |
| 10<br>11                   | 158 | epidemiological screening tool, not a clinical tool. <sup>32</sup> The Beighton Score is one of the two major           |
| 12<br>13                   | 159 | components of the Brighton Criteria and is used for the diagnosis of joint hypermobility                                |
| 14<br>15<br>16             | 160 | syndrome and the hypermobility type of EDS. <sup>33</sup> However, despite numerous studies, the cut-offs               |
| 17<br>18                   | 161 | that differentiate individuals with and without GJH have not been well defined. The range in the                        |
| 19<br>20                   | 162 | literature is from >4 to >8. $^{34,35}$ When using a Beighton cut-off score of >4 for the entire                        |
| 21<br>22                   | 163 | population, a high false-positive rate of 60% occurred, suggesting an overestimation of                                 |
| 23<br>24<br>25             | 164 | prevalence. <sup>30</sup> Singh et al (2017) studied 1000 individuals from 3-101 years of age. <sup>32</sup> A logistic |
| 26<br>27                   | 165 | regression indicated a false-positive rate of 60.0% and a false-negative rate of 12.4%, with the                        |
| 28<br>29                   | 166 | Beighton scoring system having a sensitivity of 0.8% and a specificity of 99.3% if a cut-off of $>4$                    |
| 30<br>31<br>32             | 167 | was used to determine GJH. Based on the Australian cohort for females are suggested the                                 |
| 33<br>34                   | 168 | following Beighton scores for GJH:                                                                                      |
| 35<br>36                   | 169 | • >6 for females & >5 for males aged 3-7 years                                                                          |
| 37<br>38<br>39             | 170 | • >5 for females & >4 for males aged 8-39 years                                                                         |
| 40<br>41                   | 171 | • >4 for females & >2 for males aged 40-59 years                                                                        |
| 42<br>43                   | 172 | • >3 for females aged 60-69 years; >1 for males 60+ years                                                               |
| 44<br>45<br>46             | 173 | • >2 for females aged 70+ years                                                                                         |
| 47<br>48                   | 174 | Thus, a single cut-off score does not appear to be appropriate. In addition, the Singh et al <sup>32</sup> study        |
| 49<br>50<br>51<br>52<br>53 | 175 | did not address ethnic differences. The Beighton system also samples a limited number of joints                         |
|                            | 176 | in a single plane of motion. Commonly lax joints which as shoulders, hips, and ankles are not                           |
| 54<br>55                   | 177 | assessed. The purpose of this study was to demonstrate the ability to quantify the magnitude of                         |
| 56<br>57                   |     |                                                                                                                         |
| 58<br>59<br>60             |     | https://mc.manuscriptcentral.com/jsrd                                                                                   |
| 00                         |     |                                                                                                                         |

1

| 1<br>2         |     |                                                                                                                |
|----------------|-----|----------------------------------------------------------------------------------------------------------------|
| 3<br>4         | 178 | joint laxity instead of a dichotomous (all-or-nothing) presentation. Technology is available to                |
| 5<br>6         | 179 | assist clinicians with the quantification of joint laxity. This study used a Mobil-Aider arthrometer           |
| 7<br>8<br>9    | 180 | to demonstrate the ability to test multiple joints (ankle in 1 plane & shoulder in 2 planes) and               |
| 10<br>11       | 181 | revealed a statistically significant difference between the individuals with and without high                  |
| 12<br>13       | 182 | Beighton Scores. The mean joint translation of the EDS group was close to double that of the                   |
| 14<br>15       | 183 | control group (table 1).                                                                                       |
| 16<br>17<br>18 | 184 |                                                                                                                |
| 19<br>20       | 185 | In conclusion, testing with an arthrometer has the potential to yield results across multiple joints           |
| 21<br>22       | 186 | in different planes to substantiate the diagnosis of GJH. Given the recent availability of a joint             |
| 23<br>24<br>25 | 187 | arthrometer to test joints other than the knee (KT1000), it will take time to populate the data with           |
| 25<br>26<br>27 | 188 | normative values across multiple joints. Recent arthrometer publications related to knee laxity,               |
| 28<br>29       | 189 | ankle sprains, shoulder comparisons to electromagnetic devices, and wrist inter/intra-rater                    |
| 30<br>31       | 190 | reliability are steps in that direction. <sup>36-40</sup> Objective data enhances our ability to make clinical |
| 32<br>33<br>34 | 191 | decisions and the use of an arthrometer can contribute. Future work needs to continue to expand                |
| 35<br>36       | 192 | this database in both normal and conditions of pathology.                                                      |
| 37<br>38       | 193 |                                                                                                                |
| 39<br>40<br>41 | 194 | Acknowledgments: The authors wish to thank Erich Herkloz and John Walker of Strive                             |
| 42<br>43       | 195 | Physical Therapy for their assistance in providing the facility to collect data.                               |
| 44<br>45       | 196 |                                                                                                                |
| 46<br>47       | 197 | Ethics and consent: The consent form, approved by the Institutional Review Board for the                       |
| 48<br>49<br>50 | 198 | Protection of Human Subjects (#87-22) was reviewed and signed by each participant.                             |
| 51<br>52       | 199 |                                                                                                                |
| 53<br>54       |     |                                                                                                                |
| 55<br>56<br>57 |     |                                                                                                                |
| 58             |     |                                                                                                                |
| 59<br>60       |     | https://mc.manuscriptcentral.com/isrd                                                                          |

Journal of Scleroderma and Related Disorders

1

| 2<br>3<br>4                      | 200                         | Funding: Dr. Dawn T Gulick was the recipient of a Phase II National Science Foundation Grant |                                                                                              |  |  |
|----------------------------------|-----------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| -<br>5<br>6                      | 201                         | (#                                                                                           | (# 1923614) for the development of the Mobil-Aider arthrometer. A portion of these funds was |  |  |
| 7<br>8                           | 202 allocated for research. |                                                                                              |                                                                                              |  |  |
| 9<br>10                          | 203                         |                                                                                              |                                                                                              |  |  |
| 11<br>12<br>13                   | 204                         | Conflict of interest: Dr. Dawn T Gulick holds the Mobil-Aider arthrometer patent.            |                                                                                              |  |  |
| 14<br>15                         | 205                         |                                                                                              |                                                                                              |  |  |
| 16<br>17<br>18                   | 206                         | Re                                                                                           | ferences:                                                                                    |  |  |
| 19<br>20                         | 207                         | 1.                                                                                           | Boudreau PA, Steinman I, Mior S. 2020. Clinical management of benign joint hypermobility     |  |  |
| 21<br>22                         | 208                         |                                                                                              | syndrome: a case series. Journal of Canadian Chiropractic Association. 64(1): 43-53          |  |  |
| 23<br>24<br>25                   | 209                         | 2.                                                                                           | Robbins K. 2022. The underrecognized conditions of hypermobile Ehlers-Danlos Syndrome        |  |  |
| 25<br>26<br>27                   | 210                         |                                                                                              | and hypermobility spectrum disorders in women. Nursing for Women's Health. 26(3):174-        |  |  |
| 28<br>29                         | 211                         |                                                                                              | 183                                                                                          |  |  |
| 30<br>31                         | 212                         | 3.                                                                                           | Simmonds JV, Keer RJ. 2007. Hypermobility and the hypermobility syndrome. Manual             |  |  |
| 32<br>33 213 Therapy. 12:298-309 |                             |                                                                                              | Therapy. 12:298-309                                                                          |  |  |
| 35<br>36                         | 214                         | 4.                                                                                           | Biro F, Gewanter HL, Baum J. 1983. The hypermobility syndrome. Pediatrics. 72(5):701-706     |  |  |
| 37<br>38                         | 215                         | 5.                                                                                           | Umit S, Birkan S, Ozlem Y, Iker Y, Hatic B, Tansu A. 2005. The prevalence of joint           |  |  |
| 39<br>40<br>41                   | 216                         |                                                                                              | hypermobility among high school students. Rheumatology International. 25:260-263             |  |  |
| 41<br>42<br>43                   | 217                         | 6.                                                                                           | Birrell FN, Adebajo A, Hazleman BL, Silman AJ. 1994. High prevalence of joint laxity in      |  |  |
| 44<br>45                         | 218                         |                                                                                              | West Africans. British Journal of Rheumatology. 33:56-59                                     |  |  |
| 46<br>47                         | 219                         | 7.                                                                                           | Jesse EF, Owen DS, Sagar KB. 1980. The benign hypermobility syndrome. Arthritis and          |  |  |
| 48<br>49<br>50                   | 220                         |                                                                                              | Rheumatology. 23:1053-1056                                                                   |  |  |
| 50<br>51<br>52                   | 221                         | 8.                                                                                           | Al-Rawi ZS, Al-Rawi ZT. 1982. Joint hypermobility in women with genital prolapse.            |  |  |
| 53<br>54                         | 222                         |                                                                                              | Lancet. 1:1439-1441                                                                          |  |  |
| 55<br>56                         |                             |                                                                                              |                                                                                              |  |  |
| 57<br>58<br>59                   |                             |                                                                                              |                                                                                              |  |  |
| 60                               |                             |                                                                                              | https://mc.manuscriptcentral.com/jsrd                                                        |  |  |

| 2                    |     |     |                                                                                            |
|----------------------|-----|-----|--------------------------------------------------------------------------------------------|
| 3<br>4               | 223 | 9.  | Ross J, Grahame R. 2011. Easily missed? Joint hypermobility syndrome. British Medical      |
| 5<br>6               | 224 |     | Journal. 342:c7167, https://doi.org/10.1136/bmj.c7167                                      |
| 7<br>8<br>9          | 225 | 10. | Warner JJP, Micheli LJ, Arslanian LE, Kennedy J, Kennedy R. 1990. Patterns of flexibility, |
| 10<br>11             | 226 |     | laxity, and strength in normal shoulders and shoulders with instability and impingement.   |
| 12<br>13             | 227 |     | American Journal of Sports Medicine. 18(4):366-375                                         |
| 14<br>15<br>16       | 228 | 11. | Cooper RA, Brems JT. 1992. The inferior capsular-shift procedure for multi-directional     |
| 10<br>17<br>18       | 229 |     | instability of the shoulder. Journal of Bone & Joint Surgery. 74(10):1516-1521             |
| 19<br>20             | 230 | 12. | Grahame R. 2009. Joint hypermobility syndrome pain. Current Pain and Headache Reports.     |
| 21<br>22<br>22       | 231 |     | 13(6):427-433                                                                              |
| 23<br>24<br>25       | 232 | 13. | Bravo JF, Wolff C. 2016. Clinical study of hereditary disorders of connective tissues in a |
| 26<br>27             | 233 |     | Chilean population: Joint hypermobility syn-drome and vascular Ehlers-Danlos syndrome.     |
| 28<br>29<br>20       | 234 |     | Arthritis and Rheumatism. 54(2):515–523.                                                   |
| 30<br>31<br>32       | 235 | 14. | Byers PH, Murray ML. 2014. Ehlers-Danlos syndrome: A showcase of conditions that lead      |
| 33<br>34             | 236 |     | to understanding matrix biology. Matrix Biology. 33:10-15.                                 |
| 35<br>36             | 237 | 15. | Fikree A, Aziz Q, Grahame R. 2013. Joint hypermobility syndrome. Rheumatic Diseases        |
| 37<br>38<br>39       | 238 |     | Clinics of North America. 39(2):419–430.                                                   |
| 40<br>41             | 239 | 16. |                                                                                            |
| 42<br>43             | 240 | 17. | Rombaut L, Malfait F, Cools A, De Paepe A, Calders P. 2010. Musculoskeletal complaints,    |
| 44<br>45<br>46       | 241 |     | physical activity and health-related quality of life among patients with the Ehlers-Danlos |
| 46<br>47<br>48       | 242 |     | syndrome hypermobility type. Disability and Rehabilitation. 32(16):1339–1345.              |
| 49<br>50             | 243 | 18. | Rombaut L, Malfait F, De Wandele I, Cools A, Thijs Y, De Paepe A, Calders P. 2011.         |
| 51<br>52<br>53<br>54 | 244 |     | Medication, surgery, and physiotherapy among patients with the hypermobility type of       |
| 55<br>56<br>57<br>58 |     |     |                                                                                            |
| 59<br>60             |     |     | https://mc.manuscriptcentral.com/jsrd                                                      |

| 1<br>2         |     |
|----------------|-----|
| 2<br>3<br>4    | 245 |
| 5<br>6         | 246 |
| 7<br>8<br>9    | 247 |
| 9<br>10<br>11  | 248 |
| 12<br>13       | 249 |
| 14<br>15<br>16 | 250 |
| 16<br>17<br>18 | 251 |
| 19<br>20       | 252 |
| 21<br>22       | 253 |
| 23<br>24<br>25 | 254 |
| 25<br>26<br>27 | 255 |
| 28<br>29       | 256 |
| 30<br>31<br>32 | 257 |
| 32<br>33<br>34 | 258 |
| 35<br>36       | 259 |
| 37<br>38       | 260 |
| 39<br>40<br>41 | 261 |
| 42<br>43       | 262 |
| 44<br>45       | 263 |
| 46<br>47<br>48 | 264 |
| 49<br>50       | 265 |
| 51<br>52       | 266 |
| 53<br>54<br>55 |     |
| 56             |     |
| 57<br>58       |     |
| 59             |     |
| 60             |     |

| 45 | Ehlers-Danlos syndrome. Archives of Physical Medicine and Rehabilitation. 92(7): 1106-       |
|----|----------------------------------------------------------------------------------------------|
| 46 | 1112                                                                                         |
| 47 | 19. Rombaut L, Malfait F, De Wandele I, Taes Y, Thijs Y, De Paepe A, Calders P. 2012.        |
| 48 | Muscle mass, muscle strength, functional performance, and physical impairment in women       |
| 49 | with the hypermobility type of Ehlers-Danlos syndrome. Arthritis Care & Research             |
| 50 | (Hoboken). 64(10):1584–1592.                                                                 |
| 51 | 20. Scheper M, Rombaut L, de Vries J, De Wandele I, van der Esch M, Visser B, Malfait F,     |
| 52 | Calders P, Engelbert R. 2017. The association between muscle strength and activity           |
| 53 | limitations in patients with the hypermobility type of Ehlers-Danlos syndrome: The impact of |
| 54 | proprioception. Disability and Rehabilitation. 39(14):1391–1397.                             |
| 55 | 21. Voermans NC, Knoop H, Bleijenberg G, van Engelen BG. 2011. Fatigue is associated with    |
| 56 | muscle weakness in Ehlers-Danlos syn-drome: An explorative study. Physiotherapy.             |
| 57 | 97(2):170–174.                                                                               |
| 58 | 22. Voermans NC, Knoop H, Bleijenberg G, van Engelen BG. 2010. Pain in Ehlers-Danlos         |
| 59 | syndrome is common, severe, and associated with functional impairment. Journal of Pain and   |
| 60 | Symptom Management. 40(3):370–378.                                                           |
| 61 | 23. Zeitoun JD, Lefevre JH, de Parades V, Sejourne C, Sobhani I, Coffin B, Hamonet C. 2013.  |
| 62 | Functional digestive symptoms and quality of life in patients with Ehlers-Danlos syndromes:  |
| 63 | Results of a national cohort study on 134 patients. 8(11), e80321                            |
| 64 | 24. Malfait F, Francomano C, Byers P, Belmont J, Berglund B, Black J, Bloom L, Bowen JM,     |
| 65 | Brady AF, Burrows NP, Castori M, Cohen H, Colombi M, Demirdas S, De Backer J, De             |
| 66 | Paepe A, Fournel-Gigleux S, Frank M, Ghali N, et al. 2017. The 2017 international            |
|    |                                                                                              |
|    |                                                                                              |

Page 13 of 21

| 1              |     | 15                                                                                           |
|----------------|-----|----------------------------------------------------------------------------------------------|
| 2<br>3<br>4    | 267 | classification of the Ehlers-Danlos syndromes. American Journal of Medical Genetics. Part    |
| 5<br>6         | 268 | C, Seminars in Medical Genetics. 175(1):8–26.                                                |
| 7<br>8         | 269 | 5. Beighton P, De Paepe A, Steinmann B, Tsipouras P, Wenstrup RJ. 1998. Ehlers-Danlos        |
| 9<br>10<br>11  | 270 | syndromes: Revised nosology, Villefranche, 1997. Ehlers-Danlos National Foundation (USA)     |
| 12<br>13       | 271 | and Ehlers-Danlos Support Group (UK). American Journal of Medical Genetics. 77(1): 31-       |
| 14<br>15       | 272 | 37.                                                                                          |
| 16<br>17<br>18 | 273 | 6. Reychler G, DeBacker M-M, Piraux E, Poncin W, Caty G. 2021. Physical therapy treatment    |
| 19<br>20       | 274 | of hypermobile Ehlers-Danlos syndrome: A systematic review. American Journal of Medical      |
| 21<br>22       | 275 | Genetics. 185(10):2986-2994                                                                  |
| 23<br>24<br>25 | 276 | 7. Chan C, Krahe A, Lee YT, Nicholson LL. 2019. Prevalence and frequency of self-perceived   |
| 25<br>26<br>27 | 277 | systemic features in people with joint hypermobility syndrome/Ehlers-Danlos syndrome         |
| 28<br>29       | 278 | hypermobility type. Clinical Rheumatology. 38 (2); 503-511.                                  |
| 30<br>31       | 279 | 8. Cohen J. 1988. Statistical Power Analysis for the Behavioral Sciences. 2nd ed Hillsdale:  |
| 32<br>33<br>34 | 280 | Erlbaum Associates.                                                                          |
| 35<br>36       | 281 | 9. Rosner B. 2011. Fundamentals of Biostatistics. 7th ed. Boston, MA: Brooks/Cole.           |
| 37<br>38       | 282 | 0. Soper DS. 2022. A-priori Sample Size Calculator for Student t-Tests [Software]; Available |
| 39<br>40<br>41 | 283 | from https://www.danielsoper.com/statcalc                                                    |
| 42<br>43       | 284 | 1. Simmonds J. 2017. Generalized joint hypermobility: a timely population study and proposal |
| 44<br>45       | 285 | for Beighton cut-offs. Rheumatology. 56(11):1832-1133                                        |
| 46<br>47<br>48 | 286 | 2. Bennett SE, Walsh N, Moss T, Palmer S. 2019. The lived experience of joint hypermobility  |
| 48<br>49<br>50 | 287 | and Ehlers-Danlos Syndromes: A systematic review and thematic synthesis. Physical            |
| 51<br>52       | 288 | Therapy Reviews. 24(1-2):12-28                                                               |
| 53<br>54       |     |                                                                                              |
| 55<br>56<br>57 |     |                                                                                              |
| 57<br>58<br>59 |     |                                                                                              |

| 1              |     |        |
|----------------|-----|--------|
| 2<br>3         | 200 | 22 G   |
| 4              | 289 | 33. Si |
| 5<br>6         | 290 | sc     |
| 7<br>8         | 291 | R      |
| 9<br>10        | 292 | 34. G  |
| 11<br>12<br>13 | 293 | ot     |
| 13<br>14<br>15 | 294 | 35. C  |
| 16<br>17       | 295 | E      |
| 18             |     |        |
| 19<br>20       | 296 | th     |
| 21<br>22       | 297 | 36. Ja |
| 23<br>24       | 298 | cł     |
| 25<br>26<br>27 | 299 | 37. H  |
| 27<br>28<br>29 | 300 | Pa     |
| 30<br>31       | 301 | 38. T  |
| 32<br>33       | 302 | А      |
| 34<br>35       |     |        |
| 36<br>37       | 303 | 39. T  |
| 38<br>39       | 304 | in     |
| 40<br>41       | 305 | 40. W  |
| 42<br>43       | 306 | D      |
| 44<br>45       | 307 | Т      |
| 46<br>47       | 308 | 41. O  |
| 48<br>49       | 309 | ar     |
| 50<br>51<br>52 | 310 | ot     |
| 53             | 244 |        |
| 54<br>55       | 311 |        |
| 56<br>57       |     |        |
| 57<br>58       |     |        |
| 59             |     |        |
| 60             |     |        |

| 9 | 33. Singh H, McKay M, Baldwin J, Nicholson L, Chan C, Burns J, Hiller CE. 2017. Beighton        |
|---|-------------------------------------------------------------------------------------------------|
| 0 | scores and cut-offs across the lifespan: cross-sectional study of an Australian population.     |
| 1 | Rheumatology. 56(11):1857-1864                                                                  |
| 2 | 34. Grahame R, Bird HA, Child A. 2000. The revised (Brighton 1998) criteria for the diagnosis   |
| 3 | of benign joint hypermobility syndrome (BJHS). J Rheumatology. 27:1777.                         |
| 4 | 35. Clinch J, Deere K, Sayers A, Palmer S, Riddoch C, Tobias JH, Clark EM. 2011.                |
| 5 | Epidemiology of generalized joint laxity (hypermobility) in fourteen-year-old children from     |
| 6 | the UK: a population-base14 evaluation. Arthritis & Rheumatology. 63(9):2819-2827               |
| 7 | 36. Jansson A, Saartok T, Werner S et al. 2004. General joint laxity in 1845 Swedish school     |
| 8 | children of different ages: age- and gender-specific distributions. Acta Paediatrics. 93:12026. |
| 9 | 37. Hammoud S, Palombaro K, Gulick DT. 2022. Use of a New Arthrometer to Assess Knee            |
| 0 | Pathology. Global Journal of Orthopedic Research.                                               |
| 1 | 38. Taweel NR, Gulick DT, Palombaro KM. Assessing Lateral Ankle Sprains with a New              |
| 2 | Arthrometer. Foot & Ankle Specialist. In Press                                                  |
| 3 | 39. Tuzson A, Tarleton G. 2021. Validating the Mobil-Aider to Measure Joint Accessory Motion    |
| 4 | in Healthy Adult Shoulders. Journal of Health, Science & Medicine.                              |
| 5 | 40. Wise CH, O'Donohue JM. 2022. Intra-Rater and Inter-Rater Reliability of the Mobil-Aider®    |
| 6 | Device for Measurement of Linear Translation: Implications for Clinical Practice and            |
| 7 | Teaching. World Journal of Physical & Rehabilitation Medicine.                                  |
| 8 | 41. O'Donohue JM, Wise CH. 2021. Measurement of Accessory Motion of the Glenohumeral            |
| 9 | and Radiocarpal Joints: Intra-Rater Reliability of the Mobil-Aider® Device for Measurement      |
| 0 | of Linear Translation. Ann Physiother Clin. 3(1): 1014.                                         |
| 1 |                                                                                                 |
|   |                                                                                                 |

#### Figure 1. Beighton Scale

- 1. right thumb to radius
- 2. left thumb to radius
- 3. right 5th digit hyperextension >90 degrees
- 4. left 5th digit hyperextension >90 degrees
- 5. right elbow hyperextension >15 degrees
- 6. left elbow hyperextension >15 degrees
- 7. right knee hyperextension >15 degrees
- 8. left knee hyperextension >15 degrees
- 9. palms touch the floor with legs straight

# Figure 2. Brighton Criteria

## Major Criteria: • Beighton so

- Beighton score ≥ 4 out of 9
- Arthralgia present in ≥ 4 joints for 3 months Minor Criteria:
  - Beighton score ≤ 3 out of 9
  - Arthralgia present in ≤ 3 joints (or back pain) for ≥ 3 months
  - Dislocation/Subluxation of ≥ 1 joints, ≥ 1 times
  - ≥ 3 soft tissue lesions (bursitis, epicondylitis, tenosynovitis)
  - Marfanoid habitus
    - Wingspan to height ratio > 1.03
    - Upper:Lower segment ratio < 0.89</li>
    - (+) Steinberg sign
  - Abnormal skin: hyperextensibility, scarring
  - Eye signs: eyelids drop, myopia
  - Varicose veins; hernia, uterine, or rectal prolapse

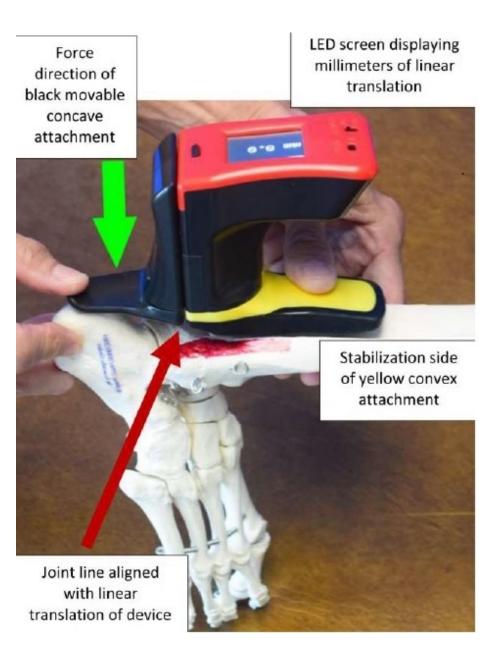



Figure 3. Function of the Mobil-Aider Arthrometer 83x107mm (144 x 144 DPI)



Figure 4. Shoulder Inferior Translation with the Mobil-Aider 107x79mm (118 x 118 DPI)



Figure 5. Shoulder Anterior Translation with the Mobil--Aider 107x90mm (118 x 118 DPI)



Figure 6. Talocrural Anterior Translation with the Mobil-Aider  $107 \times 91 \text{mm}$  (118 x 118 DPI)

**Inferior shoulder** 

translation

**Anterior ankle** 

translation

|                   | Control |      | EDS   |      |         |        |
|-------------------|---------|------|-------|------|---------|--------|
|                   | Mean    | SD   | Mean  | SD   | p-value | Effect |
|                   |         |      |       |      |         | size   |
| Anterior shoulder | 5.45    | 1.43 | 10.56 | 1.74 | <.001   | .85    |
| translation       |         |      |       |      |         |        |

1.60

1.19

8.51

8.07

ee peries

1.63

1.84

<.001

<.001

.80

.66

### Table 1. Between-group differences of joint laxity as tested with an arthrometer

4.27

5.36