
Tutorial

for

I/O Learning Card and Node-RED

Your Gateway to Home and Industrial Automation

(Preliminary)

Note: This document contains the first three chapters of the Sequent Microsystems I/O

Learning Card Tutorial. It has been designed so you can start learning about Node-RED

using only your Raspberry Pi.

Once you receive your I/O Learning Card the full Tutorial will teach you how to Implement

common tasks required for Home and Industrial Automation Systems

Learning Kit Workbook (version 1.4)
Chapter 1 - Introduction

Page 2 of 380

Chapter 1 - Introduction
This tutorial will introduce you to the world of home and industrial automation. You will learn about

widely used automation interfaces and about how to measure and control the world around you.

You live in a marvelous technical age. A very capable computer in the form of the Raspberry Pi is

available at very low cost. Node-RED, the software you will use, is available at no cost! In this tutorial

you will learn the basics of automation by using the Sequent Microsystems Learning kit, which contains

a Raspberry Pi card and example sensors and actuators. You will build systems that demonstrate the

basics of Node=RED and automation interfaces.

The tutorial is not a cookbook! You will be given some step-by-by step instructions for building the

example systems, but you will need to do your part. This means working carefully, being patient and

stopping to think about what you are doing. To help you along you will find engineering puzzles1 for you

to solve. Some are easy, some are hard, but the purpose is to help you extend your knowledge.

Before We Begin…
In this document you will find links (in blue) that will take you to websites with more information about

topics you will be learning about. These links are there to help you learn. However, when we give you a

link it does not mean that Sequent Microsystem necessarily endorses or recommends any products you

may find advertised there.

You may find this workbook to be too easy or too hard. Well, it is hard to please everybody. We have

put this workbook together to help you learn about home automation I/O, the Internet of Things, and

Node-RED. Our audience is the non-professional person who has some technical background and wants

to learn how to construct simple automation systems, for example, the hobbyist or the smart high

schooler.

 If you have absolutely no experience with programming and electronics you will find the going a bit

difficult. In Appendix ____ you will find some resources to help you learn basic electronics and

programming. Even if you have never programmed before you will find that with some patience you

can build very interesting systems using Node-RED alone. If you know how to program and have built

some circuits then you will find some of the idea here obvious, but you can always skip over anything

you already know.

If you are really a hard -core programmer who just made a bundle selling your latest smartphone App,

just jump to Appendix ____ and start building whatever you want in Python, Command Line scripting or

whatever other language is your favorite. You will still find the I/O Learning Board useful because it

gives you a full selection of the standard automation interfaces to prototype systems with.

Purpose
We will show you how to use your I/O Learning kit to carry out some basic automation tasks. To do this

you will be using programming language called Node-RED.

1 Puzzles? – well if they were called as “Exercises” would you do them or would you figure it was just more
drudgery? Sorry, at this time there are no “answers in the back of the book”. If you find a neat solution to any of
the puzzles, send it to us and we will add it to the collection.

http://www.nodered.org/

Learning Kit Workbook (version 1.4)
Chapter 1 - Introduction

Page 3 of 380

Your I/O Learning card kit will allow you to build and program a small system that can control devices

like lights, motors, valves and so on. You will learn to control these devices by sensing the environment,

making decisions and then sending a signal to the device, or devices, you wish to control.

What You Will Learn
Our objective is to help you learn about two main ideas. First, you will learn about the different types of

I/O signals that you can sense and control with the I/O Learning Card. Second, you will learn how to

sense, process and control these signals using Node-RED, a programming language that you may find

different from other languages you have used. Don’t worry… if you are not interested in using Node-

RED you can also use Python or even a Linux command line script in place of Node-RED. The appendices

will give you all the information you need electrically and program-wise.

The Learning I/O Card: This card is like a box of chocolates; it has several different I/O interfaces you

can sample. You will be able to sense contact closures, voltage levels and current levels, and you will be

able to control contact closures, LEDs, voltage outputs, current outputs and a small motor. Each of

these input and output types is compatible with widely used automation standards. Your I/O Learning

Card also includes a standard RS-485 interface, which is a standard in Industrial Automation allowing

you to communicate with devices over long distances and to link several systems with I/O Learning cards

together.

Node-RED: This is a language developed specifically for programming Internet-of-Things (IoT) devices. It

is likely that you will find this different from other languages you may have used. In the first place, it is

primarily a graphic- based approach to programming, in which you program by connecting different

types of nodes together with “wires” to build what are referred to in Node-RED as “flows”. Second, the

programming model is based on “events” and “messages”. This is very different from languages like

Python, C, C++ or Java, which you may have learned about already. You will find out that Node-RED is

very powerful when it comes to constructing automation and control system.

When you have completed the exercises in this workbook you will know how to:

• Use seven different types of standard automation interfaces

• Write basic control programs in Node-RED

• Debug your project

• Build control systems using each of the available I/O connections

• Extend our demonstration projects to larger practical systems.

Safety First!
Before you use your I/O Learning Card you should read and understand the following general safety

guidelines, which are really just common sense. If you are an adult, we assume that you know what you

are doing, but if you are not an adult remember this: nothing you can learn here is worth getting hurt

for. So, keep the following in mind:

• Some of the components on this board can control high voltages (greater than 24 volts). Do not

build setups that use high voltages unless you are certain that you know what you are doing.

• Automation means that your program can get along just fine without you watching it. Just make

sure that whatever you decide to control works in a safe manner. Common sense should tell

you not to turn on a space heater unless you know it is not going to start a fire. Remember,

Learning Kit Workbook (version 1.4)
Chapter 1 - Introduction

Page 4 of 380

Grandma may have just fallen asleep while reading the newspaper, which fell out of her hands

and onto the space heater. Your perfect Node-RED program is going to set the house on fire

when it turns the space heater on from your cellphone. Be careful with what you control and

remember the Peter Parker Principle: “With great power comes great responsibility”.

• For crying out loud… always use your tools: cutters, knives, soldering iron etc., etc., etc. safely.

You know you should always wear safety glasses when you cut wires and solder. Just do it!

Setting Up Your System
This tutorial is based on using your I/O Learning card with a Raspberry Pi processor board. In this

section you will attach the I/O learning card to your Raspberry Pi, load up a test program and make sure

everything works.

Make Sure You Have Everything in the Kit
Let’s start by making sure you have everything in the I/O Learning Card kit. When you open it up you

should find the following:

I/O Learning Card

Connector Plugs

• Two 2-pin plugs for the micro-motor and RS-485 ports

• Four 3-pin plugs for the four inputs on the left side of the board

• Four 3-pin plugs for the four outputs on the right side of the board

Figure 1-1: I/O Learning Card (Top View)

Figure 1-2: Connector Plugs

https://en.wikipedia.org/wiki/With_great_power_comes_great_responsibility

Learning Kit Workbook (version 1.4)
Chapter 1 - Introduction

Page 5 of 380

Mounting Hardware

What Else Will You Need?

Things You Must Have

Raspberry Pi and Power Adapter: The I/O learning card is compatible with Raspberry Pi 3 and 4. Of

course, you will need a power adapter for your Raspberry PI. We recommend using the Pi-4, which has

more processing power.

SD Card: If it is not already included with your Raspberry Pi, you will need an SD card. We recommend

that you purchase one the already includes the Linux based operating system of your choice. All

examples in this tutorial are based on the Canakit Raspberry Pi 4 Starter kit running Raspbian Buster.

Monitor: You will need a monitor so that you can see what you are doing and, you will also need the

right cable to connect the Raspberry Pi to the monitor. If you get desperate you can use the family’s TV

if it has an HDMI input. Just be sure that you are not keeping someone else from watching old reruns of

Gun Smoke or the Secret Life of Hamsters.

USB Keyboard: Of course!

USB Mouse: Of course!

Internet Connection: Of course!

Things That You Might Need

• Flat screwdriver

• Philips screwdriver

• Insulated wire (20 gauge)

• Wire stripper/cutter

Putting It All Together
Now it is time to mount the I/O Learning Card on your Raspberry Pi. But before you do that, put

together your Raspberry Pi, download the operating system and test it out. You can do this by playing

some of the provided games. Make sure that everything is working without the I/O Learning Card. Your

Raspberry Pi will come with instructions telling you how to set up your system and download the

operating system. Be sure to test your Internet access.

Now that you have tested the basic Raspberry it is time to mount the I/O Learning Card. Be a smart

engineer and unplug everything from the Raspberry Pi. If you mount the card with the power turned on

you may see some pretty sparks followed by a cute little puff of smoke. If you see this take a moment to

Figure 1-3: Mounting Hardware

Learning Kit Workbook (version 1.4)
Chapter 1 - Introduction

Page 6 of 380

admire its fleeting beauty because you will probably need to buy another processor board or I/O

Learning Card or both!

Once you have everything put together, but before you turn on the power do one final check. Make

sure that nothing on the Raspberry Pi Card is touching the bottom of the I/O Learning Card. Be

especially careful about the area where the I/O Learning Card over hangs the USB and Ethernet

connections. You might consider placing some plastic tape on top of the plugs just to be sure. Okay,

once you have done that, connect the monitor, keyboard, mouse and the power supply. Turn it on. If

your system comes up, you are in business.

Download the Software
Once you are happy that your Linux system on the Raspberry Pi is operating correctly it will be time to

download the software. This software will have several components:

• Drivers for Node-RED, Python and the Linux Command Line

• Updates to the firmware on the I/O Learning Card

• Test Program to verify that your I/O Learning Card works properly

[TBD - Downloading the Code]

Test Your System
It is always good engineering practice to test parts of your system before you jump in and build

something. So, start by testing the I/O Learning Card right after you install it. Testing is simple and only

Figure 1-4: Assembled Raspberry Pi with I/O Learning Card

Learning Kit Workbook (version 1.4)
Chapter 1 - Introduction

Page 7 of 380

takes a few minutes. Anytime you think there might be a problem with the card just go back and test it.

Follow the instructions in Appendix ____.

Testing is based on the loopback cable (below). You can buy it with the Option Kit or make your own.

Uh-Oh… It Doesn’t Work! What Do I Do Now?
We test every I/O Learning Card before it leaves the factory, so your board should work. We do this

using the same test program that you are using. If there is a problem with the card, you should be able

to locate it using the test program. If you built your own loopback cable, be sure to check it with an

ohmmeter.

The I/O Learning Card
Let’s talk about the I/O Learning Card, what it is, and what you can do with it. Below is an over head

view of the card. The connectors on the left and right ae where you will connect your sensors and

Figure 1-5:Loopback Cable

Figure 1-6: Measurements for Loopback Cable

Learning Kit Workbook (version 1.4)
Chapter 1 - Introduction

Page 8 of 380

actuators. Along the bottom edge you will find LEDs, some of which are programmable (GP1-GP4) and a

pushbutton (PB1).

The figure below is a block diagram of the I/O Learning card. You will find more details in the Appendix.

Node-RED – What’s it All About?

FBP – Flow Based Programming
If you already program then you are familiar with the dominant programming model, namely

“imperative” programming. This includes many languages such as Python, C, and even the educational

language Scratch. In the imperative programing model, you write programs as a list of instructions and

Figure 1-7: I/O Learning Card Connectors

Figure 1-8: I/O Learning Card Block Diagram

Learning Kit Workbook (version 1.4)
Chapter 1 - Introduction

Page 9 of 380

the program is executed one instruction at a time. All your data is stored in a big memory and the

program reaches into the memory and manipulates the data there. Imperative programming is very

powerful and well suited for many applications, which is why it is the dominant way we do

programming.

There are problems with the current programming approach when you are trying to build systems with

many asynchronous events. An asynchronous event is any event, like a button push, temperature

change and so on that can occur at any time. To handle this type of environment, which is typical of the

so-called Internet of Things (IOT), you need to be a very clever programmer. On reason is that your

program must continually check for these events. When you try to program in the imperative style it is

easy to get lost trying to handle events efficiently and in a timely manner. It is basically technical

juggling.

This is where a flow-based programming language, like Node-RED, comes to the rescue. In imperative

languages you model processing as the sequential execution of a single stream of instructions. Instead,

in Node-RED you set up a network of routines that are triggered by the appearance of data at their

inputs and which in response produce output data. When tied together the collection of these little

routines can handle many asynchronous events in a powerful and understandable way.

Before we get loaded down with lots of definitions, let’s first think about a simple situation that you

handle with the imperative programming approach. Then we will look at the same situation handled in

a flow-based programming system. We won’t even use programming here we will just use our

imagination and think about everything in terms of a little office with tiny little people doing all the

work.

A Simple System – getting water to Aquaville
Here’s the situation… (check out the figure below). The town of Aquaville is full of tiny people all from

the same extended family, called Water. There’s Jack Water, Jill Water, Shawna Water, Juana Water

etc. Fortunately, for everybody it is no longer necessary to fetch water from the river or in the case of

Jack and Jill to drag a bucket up hill to the well and risk breaking their crowns. With great foresight and

some expense, the town put in a central water tank and was able to tap into the river a few miles away.

Now when Juana needs water she just goes down to the tank and fills her bucket.

Learning Kit Workbook (version 1.4)
Chapter 1 - Introduction

Page 10 of 380

Of course, it would be a good thing if the tank always had water in it. This is no problem because Mo

Water has control of a big valve that has two positions: open and shut. When the valve is open water

from the river pours into the tank. In fact, it pours in so fast that the tank would overflow in a few

minutes if the valve was left open. This would be a waste of water and Aquaville would flood.

Unfortunately, Mo Water and his valve are located out by the river where he can’t see the tank but,

fortunately, there are two other folks, Hi Water and Lo Water, to help him out.

Hi Water is always watching a little window near the top of the tank, so she know when the water is too

high. Her brother Lo Water is watching another window near the bottom of the tank to make sure the

level is not too low. In charge of everything is Ma Water who was appointed by the Aquavillians to

make sure there was always water, and that their feet did not get wet from an overflow. How is Ma

going to keep the tank full but not too full?

The Imperative Approach
The thirsty residents of Aquaville have asked you to get Ma Water organized. You are pretty good at

writing programs, so you think to yourself… “Hmm, how about we have Ma run around and visit Lo, Hi

and Mo in turn, checking up on things and telling them what to do.” Ma is a little forgetful, so she has a

little piece of paper to write things on. Maybe your instructions for Ma look like this and if Ma had

taken programming in school, you might be able to write it out in Python or Scratch:

Write “close valve” on notepad

Visit Mo Water and show him the note pad

Erase the notepad

While the town Is thirsty:

Visit Lo Water

If Lo Water says “I can’t see any water in my window” then:

Figure 1-9: The Little Town of Aquaville

Learning Kit Workbook (version 1.4)
Chapter 1 - Introduction

Page 11 of 380

write “open valve” on the notepad.

Visit Hi Water

If Hi Water says “I see water in my window” then:

 write “close valve on the notepad

Visit Mo Water

Show Mo the notepad and he will do what it says.

Erase the notepad

Simple enough. Ma Water just has to run around all day checking with each of her children. It’s

exhausting, but the town has water. She’s always running around even when Aguaville is snoozing or

binge-watching old episodes of Hamster Wars. Of course, if Ma Water is not fast enough getting from

one place to the other the town might still flood or go thirsty.

If Ma is also supervising the sewage department, the electrical department, the street sweeping

department, the fire department and so on then the job is really complicated, and poor Ma Water

spends all her time running from one place to the other. If you have to tell her how to handle all this,

well the program is going to be very complex.

The Flow Based Approach
Now let’s look at the problem from a different perspective, the flow-based programming perspective.

Here we are going to allow the events to drive the program. In this approach Ma Water just sits with

her feet propped up on her desk reading the latest copy of Hydraulics World and doing the crossword

puzzle. Instead of running around to visit her workers Hi, Lo and Mo she has a little pneumatic tube

system connecting her to each one. In a pneumatic tube system you put slip of paper on a little round

canister and with a puff of air you send the canister to the other end of the tube. Very efficient. You

may have seen one in Home Depot or some other store. Long ago big cities, like London and Paris, even

used a system like this to send mail across town. It is said that mail could be delivered within an hour.

When she first sits down Ma Water write “close valve” on a slip of paper and sends it through the

pneumatic tube to Mo Water. Mo reads the note and shuts the valve.

Now, Ma leans back, puts her feet on the desk and falls asleep doing a crossword puzzle.

Boom! A message comes in and falls on her desk. The message is from Lo and it says: “I don’t see any

water”. Ma quickly writes a new message saying: “open valve” and sends it to Mo Water. Mo gets the

message and does what it says by opening the valve. Ma and Mo go back to sleep.

Ker-Thunk!. A new message falls on her desk. It’s from Hi and says she sees water in her window. Ma

writes “close valve” on a slip of paper and sends it to Mo. Thud. The message lands at his feet waking

him up. After checking it out Mo does what it says and closes the valve. Mo goes back to sleep. Ma

works on her crossword puzzle.

And so, it goes. All day long Mo and Ma just wait for messages. Poor Hi and Lo have to pay close

attention to their tank windows, but maybe we can give them an alarm clock that wakes them up every

five minutes. When this happens, they check their windows and depending on the conditions send a

message to Ma. This way the whole family gets some sleep.

https://en.wikipedia.org/wiki/Pneumatic_tube#:~:text=Pneumatic%20tubes%20(or%20capsule%20pipelines,conventional%20pipelines%2C%20which%20transport%20fluids.

Learning Kit Workbook (version 1.4)
Chapter 1 - Introduction

Page 12 of 380

You can represent this program graphically by just showing Hi, Lo, Ma and Mo and the pneumatic tubes

connecting them. Of course, you will also have to write a few more instructions for each of them, like

telling Hi and Lo how often to check their windows in the tank and telling Ma what to do with each

incoming message. Here is what your system might look like:

You can see from this example that the process is driven by the events (water in the Hi’s window, no

water in Lo’s window) and the messages (From Hi, to Ma: “I see water in my window”, From Ma, to Mo:

“close the valve”, etc.). This is what flow-based programming is all about. When we start looking at an

Internet of Things application you will see that this is just like the flow-based programming of Aquaville:

everything is driven by messages and events.

Node-RED Basics
Node-RED is a type of flow-based programming language. Better yet it is graphically based, so it is very

pleasant to work with. A program in Node-RED looks a lot like figure above and is referred to as a

“flow”. The word “node” makes some sense because a node is a place in the flow where work gets

done. In the homey Aquaville example, Mo, Ma, Hi and Lo are all “nodes”. Strangely enough, the initials

RED in “Node-RED” do not seem to stand for anything in particular (see Why is it Called Node-RED).

The basic components of Node-RED are nodes, wires, messages and flows. Nodes are simply places

where information is originated, processed and consumed (Mo, Ma, Lo and Hi from Aquaville).

Messages are packets of information that can be passed from one node to another. Think about letters

or telegrams. This is done using “wires” which are just like the pneumatic tubes of Aquaville. The

terminology “wire” for a connection between nodes makes sense because the purpose of wires it to

define how messages pass between nodes, just like telegraph wires or telephone wires. Lay down some

nodes, connect them up with wires and you have a “flow”. Start it operating and an event will cause a

message to be generated. The message will pass from the node where it originates to another node. At

that node it will be processed or possibly cause some external action. It is almost like designing a circuit,

except that the messages that can be passed on a wire in Node-RED can be very complex.

Here is what a Node-RED flow might look like for Aquaville.

Figure 1-10: Node-RED Flow for Aquaville

https://nodered.org/about/

Learning Kit Workbook (version 1.4)
Chapter 1 - Introduction

Page 13 of 380

Nodes
Let’s talk about nodes.

Nodes are the places where things happen in Node-RED. There are many different types of nodes, but

here we will be thinking about groups of nodes, namely, Input Nodes, Output Nodes and Processing

Nodes. If you are a Node-RED expert you may have a different idea of how nodes might be grouped, but

for the purposes of learning let’s keep things simple. From these three groups of nodes, you can build

very complex systems. Within each group of nodes there are many different sub-groups each pre-baked

to carry out specific functions. Later you will find that you can even take off the covers of a node and

tinker with the way it works. For some sub-groups of nodes, you can even write conventional programs

to carry out complex processing.

Let’s look at each kind of node in more detail. Nodes may have one or more “ports” on their left and

right edges. Ports are places where you can connect wires to receive or send messages. Different kinds

of nodes have different port configurations depending upon what purpose the node serves. As you will

see the number of ports may change based on how you configure the node.

Input Nodes

Input Nodes receive events from the outside world and produce one or more messages related to these

events. An event can be the push of a button, a change in temperature, a mouse click on the Node-RED

screen or even a message from some other part of the Internet. When an event occurs the input node

generates a message at one of its output ports and passes it over the attached wire to the next node.

Here is a picture on a typical Node-RED input node, called an Inject node:

Figure 1-11: Example of an input node

Notice that there is a port only on the right side. This indicates that this particular node only produces

messages in response to some external stimulus. There is a little more to this… you can configure some

nodes to generate events periodically or even a single event at some future time.

Output Nodes

Output Nodes receive messages and generate events in the outside world. An output node may turn on

a light, indicate a meter reading, produce a sound or even send an email message. The typical output

node has an input port, but no output ports. When a message arrives at one of the input ports, the

node examines the message and performs the requested action, i.e., turning on a light. Below is an

example of a Node-RED output node.

Figure 1-12: Example of output node

Processing Nodes

Processing Nodes do the heavy lifting in Node-RED. Processing nodes usually have one or more input

ports and one or more output ports. When a message arrives on one of its input ports the processing

node wakes up and examines the message contents. Based on the contents, the processing node may

Learning Kit Workbook (version 1.4)
Chapter 1 - Introduction

Page 14 of 380

process the message and produce a new message (or messages) to be passed to the one or more of the

output ports. Processing nodes can do almost anything you can imagine. A simple processing node

might convert temperature from Fahrenheit to Celsius. A more complex node might parse an email and

find certain values in the email, for example a command to set the temperature of your furnace to a

toasty 75 degrees (Fahrenheit not Celsius!). Here is an example of a simple processing node:

Figure 1-13: Example of processing node

Messages
In Node-RED messages are the coin of the realm. If you think of messages as letters or telegrams, you

will not be too far off the mark. Messages can contain almost anything, numbers, text, sound files,

pictures, whatever. Messages may include other information, such as who sent them, what time they

were sent and where they should go, just like a letter. Messages may also include keywords that

identify various components of a message. You can use these keywords to reference different parts of

the message. In this sense a message is almost like a filled-out form where each item is identified by a

name. If you want to know more about messages, then check out Appendix ____.

Flows
A flow is a collection of nodes connected by wires. In addition, a flow includes all the defined aspects of

nodes. As you will find out later, that nodes can be configured to work in different ways. For example,

one commonly used node is the Change node. This node examines incoming messages and modifies

them according to various rules you define. It is almost as if there is a little clerk inside the node that

copies the message over making changes that you told them to make (just like Ma Water in her

Aquaville office). If the incoming message was an order the clerk might add up the total, compute the

tax, work out the shipping costs and pass this modified form message on to both the shipping

department and to the accounting department.

Becoming Familiar with the Node-RED System
Here is what you will learn in the section:

• Loading up Node-RED

• Starting Node-RED

• Components of the Node-RED Independent Development Environment (IDE)

• A few simple Node-Red operations

Time to roll up your sleeves and start working with Node-RED. You will not nee the I/O learning card

yet, just your Raspberry Pi system. Before we build anything, let’s just play with the system.

Loading Up Node-RED
First, check your system. Because Node-RED is free it is very popular. As a result, you probably already

have Node-RED on your system. If you do, then you should update it so that you are working with the

very latest version.

If you do not have Node-RED on your system now the go to Getting Started at Node-RED and follow the

instructions to download the latest version.

https://nodered.org/docs/getting-started/raspberrypi

Learning Kit Workbook (version 1.4)
Chapter 1 - Introduction

Page 15 of 380

Starting Up Node-RED
Startup Node-RED. Do this just the way you would start any other program. When you start Node-RED

you will see a window that looks like the one below.

This is the Node-RED system console. However, what you really want is the Node-RED IDE, which is an

Independent Development Environment where you can create flows graphically, and this is just plain

fun! To get to the IDE hold down the control key and click the link circled in the figure above (the

address is http://192.168.1.95:1880, which is on your local server). This will open your browser and you

will see a window like figure below.

Figure 1-14: Node-RED System Console

http://192.168.1.95:1880/

Learning Kit Workbook (version 1.4)
Chapter 1 - Introduction

Page 16 of 380

What you are looking at is the Node-RED IDE (Integrated Development System) which is just a

workbench with big box of tools and a bin full of parts to build your system with. At the left side you will

see an area called the “palette” (outlined here in red), which is like a big bin full of part. In this case, the

parts are different types of nodes arranged in groups. When you start, your palette will have a

collection of commonly used nodes, but you can add to your palette at any time from nodes that other

people have built. As you will learn later there are literally thousands of nodes available covering almost

anything you can imagine. In a few more pages you will begin working with the I/O Learning card for

your Raspberry Pi. This piece of hardware, like many other pieces of hardware you might use in the

future, has its very own set of specialized nodes to make the task of implementing your ideas easy.

The big grid in the center is the “workspace”, which is where you will build your flows. You will do this

by dragging nodes from the palette and dropping them into the workspace. Then using the mouse, you

will connect the nodes with wires to define how messages are to be passed between the nodes. The

workspace can hold many flows because you can add a new flow to the workspace by clicking the plus

sign on the top right of the workspace. This will create a new, empty tab for a new flow. You will find

Figure 1-15: Node-RED IDE Components

Learning Kit Workbook (version 1.4)
Chapter 1 - Introduction

Page 17 of 380

out later that you can connect nodes located on different flows, so the overall flow can be as complex as

you need but somewhat manageable because it is sub-divided into tabs. In fact, you can probably make

a flow so complex that you will not understand it anymore… be careful.

On the right side of screen (outlined in blue), you will see the output area (called the sidebar) that

contains several tabs representing different kinds of information you might be interested in. This is the

set of tools you will use to determine if your flow is working correctly and, if not, what might have gone

wrong.

At the top of the sidebar is a set of tabs as shown below.

 Although the tabs have tiny icons, you can always find out what a tab does by hovering the mouse over

the tabs. Here is summary:

• Information – the tab with the “I” symbol – provides you with current information about an

object you have selected in your workspace. For example, you can find out the unique serial

number of a node this way.

• Help – the tab with the little book icon – gives you a help file for the selected object in your

workspace. This is handy if you are trying to figure out how a node will handle a message.

• Debug Messages – the tab with the little bug icon. While your flow is running it will print out

messages here, especially if something goes wrong. It is like a tiny flight recorder.

• Configuration Nodes – the tab with the wee gear. This shows you all the Configuration nodes in

your flows. Configuration nodes allow you to establish useful parameters when your flows start.

This will make sense later when we make use of Configuration nodes.

• Context Data – the tab with the picture of a stack of disks. Sometimes nodes want to share

information outside of the messages that are passed. Context data definitions allow this.

Context data is an advance topic we will cover later.

Take a few minutes and poke around on the Node-RED IDE. You will find that most things you want to

do are intuitive. So, experiment away. Try to work with some nodes. Don’t worry about building

something that works, just play around with the IDE. Most things work the way you expect. So try the

following:

• Drag a node from the palette to the workspace and drop it some place.

• Move the node around in the workspace.

• Drag in some other different nodes.

• Can you delete one of the nodes in the workspace.

• Can you figure out how to copy a node?

• Look at one of the nodes you dragged in. It should have a small bubble on the left or right side.

Click and drag on the bubble. What happened?

Figure 1-16: Node-RED Sidebar

Learning Kit Workbook (version 1.4)
Chapter 1 - Introduction

Page 18 of 380

• Try clicking on a bubble of one node and drawing a wire from there to the bubble of another

node. Can you connect them? If you could not, try different nodes and different bubbles on

those nodes. Do you have some ideas about which nodes can be connected together and which

can’t?

• Some nodes have bubbles on the left, some on the right and some on both sides. Can you figure

out which bubbles can be connected to each other?

• Try adding more than one wire to a node and connecting it to some other place. Can you do

this? What are the restrictions, if any?

• Connect two nodes together with a wire. What happens if you move one of the nodes?

• Can you figure out how to create a new flow by creating a new tab in the workspace? Can you

switch between the different tabs?

Did you figure it out or are you completely frustrated? Either way it is okay because sometimes you just

have to try things. Now let’s talk about how things are done in Node-RED.

Placing a node in the workspace – Easy enough. Just click on the node you want from the palette, hold

down the left-hand mouse key (or the right mouse key if you and your mouse are lefthanded) and drag

the node to where you want it. If you want to move it to a different place in the workspace, just click on

it and drag it to its new home.

Getting rid of a node – Did you figure this one out. Click on the node to highlight it then hit the delete

key. Kapow… goodbye node (and any wires connected to it)!

Make a copy of a node – Later you will find that you can change how a node works so that you can

develop nodes that are specialized for your needs. Being able to copy a node will save you time and

effort. This works just like cut and paste in a text editor or spreadsheet. Click on the node to highlight it

then use ctl-c to copy and ctl-v to pop the copy onto the workspace wherever the cursor is currently

pointing.

Connecting nodes – Did this drive you crazy? Sometimes it worked and sometimes it did not? To do this

right you have to understand something about nodes. Nodes work from left to right. Technically, the

bubbles on the left and right of a node are called “ports”. There are two types of ports input ports and

output ports. A port located on the left side of a node is an input port and can only receive messages

from a connecting wire. Similarly, a port on the right side is an output port and is the point from which

messages may be place on a wire. A node may have no input ports (look at the Inject node, for

example), but if it does have an input port it may only have one. Nodes may have one or more output

ports on the right-hand side, but again some nodes, like the Debug node, have no output ports. And, of

course, some nodes may have both an input port and an output port, like a Function node.

Here is the important thing to remember. A wire can connect only one input port to one output port.

You cannot connect two output port together or two input ports together. However, you can use two

wires connect an input port of a node to two or more output ports on other nodes. What do you think

happens if you do this? Also, you can connect multiple input nodes to one output port. Again, what do

you think is going to happen to messages if you do this? Once you set up your first simple flow you can

try these arrangements and see what happens.

Learning Kit Workbook (version 1.4)
Chapter 1 - Introduction

Page 19 of 380

Creating a new flow – If you need a new place to create a flow, you simply click on the plus sign at the

top right of the workspace. You can move between flows by clicking on the tab of the flow you want.

That’s it. You now know enough to create your first flow.

Learning Kit Workbook (version 1.4)
Chapter 2 – Your First Flow

Page 20 of 380

Chapter 2 - Your First Flow – “Hello World”, What Else?
What you are going to learn:

• How to set up a simple flow

• How to use the Inject node

• How to use the Debug node

• How to change the way a node behaves

• How to change the name of a node

• How to name your flow

• How to leave a comment in your flow

Hello World – As Simple as it Gets
As is long standing tradition, your first program must be “Hello World” because if you don’t write this

flow first you risk upsetting the delicate balance of force throughout the programming sub-space.

Start by bringing up a blank flow tab in your workspace. If you got here by experimenting around you

might have a screen full of nodes, probably labeled Flow 1. Let’s get rid of it and start with a fresh

screen. To do that, first create a new flow by clicking the plus-sign in the upper right of the workspace.

Now if you have two tabs on the screen (one that you were experimenting with and one you just

created) double click the tab that you were experimenting with and you should see a new window giving

information on the flow, something like this:

Figure 2-1: Deleting an Old Flow

Learning Kit Workbook (version 1.4)
Chapter 2 – Your First Flow

Page 21 of 380

You will see that in the upper left there is a Delete button (see big blue arrow). Once you click this the

flow for the tab is deleted and gone forever. Now, here is an important thing to know: if you have only

one tab on the screen you cannot delete it, that is why you needed to create a new tab first. Also, we

blew up the old flow you were experimenting with because if you leave old flows laying around, they

might interfere with other work you are doing, and you will get strange and spooky results. What you

just did above is make sure you have a completely new flow to work with.

Now that you have a brand-new workspace, you are going to bring in two nodes from the palette. The

first is going to be an Inject node and the second is going to be a Debug node. You will see them at the

top of palette as shown below:

Grab the inject node and drag it to the left side of your workspace (do this by clicking on the Inject node,

holding down the mouse button, dragging the copy to where you want it and dropping it, remember?

Click, hold, drag, drop. Next grab a debug node and drop it on the right side of your workspace. Then

wire the two nodes together (click on the output port of the Inject node, drag the wire to the input port

of the Debug node and let go). Your flow should look like this:

Figure 2-3: Simple First Flow before Deployment

Figure 2-2: Inject and Debug Nodes in the Palette

Learning Kit Workbook (version 1.4)
Chapter 2 – Your First Flow

Page 22 of 380

If you have sharp eyes, you might have noticed that the Inject node does not say “Inject” anymore,

rather it says “Timestamp”. This is because all Inject nodes start off in life sending a timestamp message

on their output port. Later you will find out that you can make the Inject node send any sort of message

you want, which is a terrific help in debugging and testing.

Question: Why does the Inject node have an output on the right side of the little block and the Debug

node have an input port on the left side? It is because by convention engineering drawing usually (well,

almost always) show information flowing from left to right. Which brings us to…

Engineering Tip # 1: Since time immemorial, or at least since the invention of the telegraph (which ever

came first) engineers have been drawing process diagrams where the inputs are on the left side and

outputs are on the right side. Generally, air, water, coal, electrical signals, hamster chow pellets, or

whatever else is being processed starts on the left side and moves thorough steps to the right side. The

same applies to electrical diagrams and by extension to the kinds of message passing in the flows you

are creating. Of course, Node-RED does not care where you put your nodes and what direction the

message flow in, top to bottom, right to left, bottom to top, southwest to northeast, whatever you

want, because the messages know where to go: they just flow from the output of one node to the input

of the next node along the wires you drew. However, now is a good time to join the legions of engineers

that went before you and set things up so that generally messages flow from left to right. It will make

your flows easier for other to read. Actually, Node-RED does care a little bit because inputs are always

on the left side of node and outputs are on the right side. So, if you try to swim upstream against

tradition and set your flows up so that they work from right to left you will have an incomprehensible,

tangled mess.

Your flow is in the workspace and is all wired up. Is it ready to go? Not quite… did you notice the little

blue bubbles at the top of the two nodes? These indicate that these nodes have not been deployed.

Before your flow can help you out you must “Deploy” it, which means starting it up, just like you might

run other types of programs. Look at the top right of your screen and find the sidebar tabs.

Figure 2-4: Deploying Your Flow

Learning Kit Workbook (version 1.4)
Chapter 2 – Your First Flow

Page 23 of 380

• You will want to see the result of the flow. To do this go to the sidebar area on the right side of

the screen and click on the tab that has the little picture of a bug (see  on the figure above).

When you do this, the area under the tab will show the debugging messages that occur in your

flow. The Debugging tab is a tool you can use to inspect the operation of your flow, but right

now we are going to use it as a makeshift display area.

• Next, clear the Debug output by clicking on the little trashcan at the top right of the output area

(see  on the figure above). The output area should now be empty, which will make it easier

for you to see the results of your flow operating. If you don’t do this the messages from your

flow will probably be lost among messages from the operation of previous flows.

• If you make changes to your flow (even something as simple as moving a node to a new

location), or if it is a new flow, you must deploy it for the flow to become active. To do this. click

on the “Deploy” button  just above the top righthand side of your workspace. When you do,

all the blue dots indicating nodes that have not been deployed will disappear and a message will

drop down above your workspace hopefully say: “Successfully deployed”. Your flow is now

almost ready to test.

At this point your workspace should look like this (more or less):

This is the big moment… take your mouse and click on the little tab sticking out of the left side of the

Inject Node (Click Here!). If you set everything up properly you should see a message appear in the

Debug output area on the right. It will look something like the figure below.

Click Here!

Figure 2-5: Deployed Flow

Learning Kit Workbook (version 1.4)
Chapter 2 – Your First Flow

Page 24 of 380

Well, that is a little disappointing… the date, giant strings of numbers. No “Hello World” and just a little

bit of rumbling in program sub-space because you are breaking the rules. What’s going on? Time for a

little debugging.

Engineering Tip # 2: Debugging… As you do more and more with Node-RED, electronics, programming,

robotics or any other task where you are building something you will find that, sadly and predictably,

most great ideas do not work out the first time you try them. In fact, a great deal of engineering time is

spent in testing and correcting your work. This is the process of debugging. We will talk quite a bit

about this later because this is one of the things engineers must do, it is part of the practice of

engineering. If you are skilled at debugging you will never be out of work, so start building good habits

right now. Debugging is the process of removing “bugs” from your design and “bugs” are behaviors that

you did not expect. The term “bug” is thought to have originated with Thomas Edison, but there are all

sorts of apocryphal stories (yes, get the dictionary and look this word up, it will be on the SAT). Check

out https://en.wikipedia.org/wiki/Bug_(engineering).

Debugging: the first thing to do is try to understand what is happening. Certainly, something happened

because the Debug output shows a little message. In fact, this is the message received by the Debug

node over the wire from the Inject node when you clicked on it. So, try clicking the Inject node again.

What happened? You should have seen a message just like the first message, but just a tiny bit different.

The Debug Node is doing exactly what it is supposed to do, which is to print on the Debug output tab

every message it receives at its input port. This is a very useful feature of Node-RED. The Debug

message allows you to listen in on messages being passed around between the nodes. In this simple

case the only message the Debug node is receiving is the message that is sent every time you click the

Inject node

Figure 2-6: Debug Output for First Flow

https://en.wikipedia.org/wiki/Bug_(engineering)

Learning Kit Workbook (version 1.4)
Chapter 2 – Your First Flow

Page 25 of 380

Messages in Node-RED are a bit like telegrams or mail, that is, they contain a time, the name of the node

who receives the message, possibly who sent the message and contents of the message. The contents

of messages in Node-RED are referred to as the “payload”, which is similar to the terminology we use for

rockets. The payload is the valuable part of the rocket that you want to get into orbit. In Node-RED the

message payload is the valuable part that you want delivered somewhere, all the rest of the information

you usually don’t care about unless something goes wrong, like right now. Let’s look at the message you

just passed to the Debug node. Here is an example of a message from working with this simple flow,

hopefully yours looks similar:

In the top right of the message are the date and time when the message was received by the Debug

node ( in the figure). To the right of that is the word “node” followed by a big mysterious number (

in figure). This number is in hexadecimal and is a unique serial number identifying the node that

received the message. In this case it is the serial number of the Debug node and is unique throughout

your flow (and probably unique throughout the known universe). Thankfully, you do not need to check

every node in your flow (or the known universe) to find out which node has the serial number. Instead

click on the serial number and an animated outline will appear around the node that received the

message, in this case he Debug Node. Try it!

The next line identifies the type of the message payload. In this case the payload is a number the value

of which is shown directly below ( in figure). What on earth is this number? It is the payload of the

message, the important part, and it is a “timestamp”, which is a number that encodes the exact time the

message was generated by the Inject node. This in turn, was the exact time that you clicked the tab on

the Inject node. If it doesn’t look to you like a time of day that is because it is just a number representing

the number of milliseconds since January 1st, 1970 at the Prime Meridian in Greenwich, England. Say

what? That’s not very helpful. Well actually, it is pretty useful because you can do arithmetic on these

timestamps if you want to find out how much time has passed between two points in time or find out

what time it will be two weeks from now. But… not so helpful if you want to know what time it is in the

real world.

Fortunately, Node-Red helps you out here. Put your cursor on the timestamp number (the blue

number) in the message and click. Bingo, the time stamp is converted to a more useful format. Every

Figure 2-7: Debug Message from your First Flow

https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/wiki/Millisecond#:~:text=A%20millisecond%20(from%20milli%2D%20and,these%20names%20are%20rarely%20used.
https://en.wikipedia.org/wiki/Prime_meridian

Learning Kit Workbook (version 1.4)
Chapter 2 – Your First Flow

Page 26 of 380

time you click the timestamp it will be converted into a different format, so pick the one that makes

sense to you. This will probably be the one that shows your local time.

By now you’re thinking, “This is all very interesting, but really, I wanted to see “Hello World”, especially

because I can already feel little rips and tears in the sub-space of programming.” Think! Where is that

timestamp coming from? The answer is that it is coming from the Inject node. The Inject node is

another useful tool. When you click on the tab, the Inject node will generate whatever message you

would like. It just happens that the default message (that is the message you get if you don’t do

anything else) is the timestamp of the time when you clicked the Inject node. It is a bit like sending an

envelope to someone with a note inside saying “I sent this to you at 1:06PM on 9/14/2021”. Not all that

helpful because they can see when you sent the letter by looking at the cancellation on the outside, like

 in the figure. What you really would like to do is change the message that is being sent so that it

says, “Hello World”.

When we first started talking about nodes, we mentioned something about being able to modify nodes.

That is what you are going to do here, you are going to modify the Inject node so that it sends the

message we want, namely “Hello World”. To modify the node, you must take off the covers, so to

speak, and tinker around with the message it generates. It’s easy: try this.

Double click on the Inject node in your flow. This will open a little editor that will allow you to make

changes to many aspects of your node, for example, the appearance, how it functions and the message

it will send. Here is what you should see:

If you do not see this, select the Properties tab, which is the tab with the little gear symbol on it (see

blue arrow). By now you have probably figured out that if you see an icon, like the little gear, and you

don’t know what it means, all you need to do is hover the cursor over the symbol and a little box will

appear telling you what the symbol relates to. In this case, the little gear brings up the Properties

window.

Now, you can change many aspects of the node, including the message contents. Keep in mind that

different nodes will have different properties for you to fill in. For the Inject node you want to change

Figure 2-8: Edit Window for Inject Node

Learning Kit Workbook (version 1.4)
Chapter 2 – Your First Flow

Page 27 of 380

the message because rather than sending the timestamp, you really want to send “Hello World!” to the

next node.

The line in the properties menu labeled msg.payload defines the payload of the message generated by

the Inject node. Right now, it is showing that you are putting the timestamp in the payload, but let’s

change that. First, click on the dropdown button ( in figure above) to the right of the equal sign. This

will open up a big list of options for the types of payloads you can send. Select “String” because you

want to enter a string, like “Hello World!”, in the payload part of the message. Next, to the right fill in

the value of the string, namely “Hello World!” ( in figure). You don’t need to use quotes around the

string because you already specified that the payload type was string. To finish up, click DONE ( in

figure).

Look at your Inject Node. Now it says “Hello World” inside the node. This is because the name of the

node is just the message payload unless you specify otherwise. Later, we will talk about how to

personalize the node, like changing the name, the color and so forth.

Remember, you have just changed one of the nodes in your flow, and this means that your flow is now

out of sync with what you deployed earlier. You know this because the Inject node has a blue dot on the

upper right of the node figure. This means you have made a change to the node that has not been

deployed yet. Deploy the node again by clicking the Deploy button.

Figure 2-9: Inject Node After Editing

Learning Kit Workbook (version 1.4)
Chapter 2 – Your First Flow

Page 28 of 380

Now it is time for a test. Select the debug output (the little bug icon) and clear the debug window (the

little trash can. Now click the tab on the left side of your Hello World! flow. When you do this the node

generates a message with a payload of “Hello World! and sends it to the Debug node. The only job the

Debug node has is to display the message. When you click the tab, you should see something similar to

this:

If you see the message, then Congratulations! You have just written your first flow, and you should feel

good because programming sub-space it at peace again or at least until someone else tries to learn a

new language.

Click the Hello World node a few more times. Each time you do this you should see a new debug

message in the output. You can see the message is new because it will have a unique time and date on

it.

Dreaded Documentation
Time to move on to greater things. Before you do, think for a minute about whether or not other

people will understand your flow if you leave it like it is. Which brings us to the topic of

“Documentation”, perhaps one of the most despised words in the engineering world. It’s no fun, it’s

boring, it’s tedious, but it is necessary.

Engineering Tip # 3: Help other understand your work! Now that you have a working flow you will

want to save it for later use. Before you put it away, ask yourself this, “Am I going to remember what I

did two years from now, or even next week?”. Your memory might be great, but what if someone else

wants to use your flow and you are on an expedition snorkeling in search of sea hamsters in the South

Pacific 500 miles from the nearest cell tower? What are your poor co-workers going to do? Better put

some comments in your code so that others know what it is. Also, you might want to put in comments

for anything unusual, clever, tricky, strange, obtuse or bizarre that you implemented in your flow.

Figure 2-10: Debug Output from Debug
Flow

Learning Kit Workbook (version 1.4)
Chapter 2 – Your First Flow

Page 29 of 380

Before we leave this simple flow behind, let’s do a few things to make it more understandable. The first

thing to do is put a name on your flow tab that means something. When you open a new tab Node-RED

just put “Flow 1” or Flow 2” and so on, in the tab name, which is not very helpful. Let’s change it to

“Hello World”. Do this by double clicking on the name “Flow 1” in the tab, which will open a window

where you can give the flow a new name by replacing “Flow 1” in the Name box (blue arrow) with “Hello

World” (without the quotes, of course)

Better document your code, which means leaving a description of what your code does, how to use it

and how it works. Documenting your work can mean many things. Using clear and meaningful names

for nodes and flows is one aspect. Another aspect is to add descriptive material to your flow. In Node-

RED you can do this in several ways. One of the easiest approaches is to add comments to your code,

which is done by inserting Comment nodes at appropriate places in you flow. A Comment node is a

“dummy” node that has no input or output ports. Its only purpose is to display text explaining some

aspect of your flow. You handle a Comment node just like any other node: drag and drop it where you

want it to appear, like this:

Figure 2-11: Editing the Flow Tab

Figure 2-12: Hello World Flow with Comment Node

Learning Kit Workbook (version 1.4)
Chapter 2 – Your First Flow

Page 30 of 380

Next, edit the Comment node to provide the reader with some useful information. Do this by double

clicking the Comment node to open the description tab (see figure below). This tab contains a mini

editor.

The node editor allows you to write out somewhat sophisticated descriptions of your node. We will not

go into the details of how to use the editor here, but you should know that descriptions, such as the one

above, are written in the Markdown language, which is a very simple formatting system. Click the link in

the last sentence for more details, or simply poke around at the editor and see what it can do. Briefly, to

control formatting of the text you add characters, like # and *, to the basic text. The editor does this for

you. For example, if you highlight a word and click the big “B” button the editor will surround the word

with two asterisks (e.g., **Who**) which means it will show up as a bold word in the information

window. Below is an example of comment text as it appears in the editor.

When you click Done, the comment will say “Who, When, What” and if you double click on the

comment node you can read the description. In a well-designed flow all nodes, not just the comment

nodes, will have appropriate descriptions to help the user understand what the node does. In this way

the flow is self-documenting meaning that folks don’t have to go someplace else to find out what is

going on with your flow.

Figure 2-13: Comment Node Editor

https://www.markdownguide.org/

Learning Kit Workbook (version 1.4)
Chapter 2 – Your First Flow

Page 31 of 380

You do not need to open the node directly to read the description. If you select the node (single click on

the node) you can read the description in the information tab of the sidebar section (click the tab with

the little “I”). Try it by clicking on the Flow Description comment node and then clicking the information

tab. You should see something like this:

Notice that the information display above no longer contains the weird Markdown characters and

instead shows the formatting that those characters define.

Packing up, Cleaning House and Moving On
We interrupt this program to bring you a public service announcement from the Better Engineering

Council.

Engineering Tip # 4 – Save your work early and often! One good habit you should develop when you

work with Node-RED, or any other language for that matter, is to save your work periodically. Don’t just

save it to the same file, but periodically save a copy to a file with a new name, like my-precious-project

(backup 1).json. This way if you make a mistake or find out that a change you have made to your project

is not working the way you expected, you can go back and start from the last working version. There are

many systems (like github) to help you keep track of your work in an organized way, but for the time

being we will just use a simple approach of saving a copy of the flow every now and again.

In Node-RED you do not save your work directly, as you might do in a text editor. Instead, you “export”

it to a file and then save the file in any way that you wish to. To restore a flow you have saved, you

“import” the file from your file system into the Node-RED workspace.

Figure 2-14: Information Display for Comment Node

https://github.com/

Learning Kit Workbook (version 1.4)
Chapter 2 – Your First Flow

Page 32 of 380

Putting It Away: Exporting a Flow
To export your flow first click on the tab of your Hello World flow to select it. Next, click on the menu

symbol  at the far right of the black bar above the workspace. When you do this a list of choices will

drop down. Now click Export .

After you click Export on the main menu you will get the window in the figure below. Your choices are

given in the tabs at the top and include exporting only a node, exporting one particular flow or exporting

all the flows in your workspace. Let’s export your Hello World flow. Do this by selecting “current flow”

from the tabs . When you do this, you will see the code for the Hello World flow in the window. It

looks like a mess, but it is really a very organized description of your flow in JSON, a sort of lingua franca

for passing information between different systems. It is human readable, but to make sense of it you

will need to learn much more about the underlying structure of Node-RED than we will cover here.

Figure 2-15: Exporting a Flow

https://www.json.org/json-en.html
https://en.wikipedia.org/wiki/Lingua_franca

Learning Kit Workbook (version 1.4)
Chapter 2 – Your First Flow

Page 33 of 380

Click Download  and the current flow, Hello World, will be downloaded as a text file with the file

extension .JSON. Now you can save the file some place safe. Notice that the downloaded file has a

rather bland name, like flow(1).JSON. When you save the file, you will want to give it a descriptive

name, like “Hello World.JSON” indicating what it is supposed to do. If you are making a backup copy you

might give you file a name like Hello World (bak 3).jason.

If you are curious about the structure of the flow, click the formatted tab in the lower right corner and

the JSON file will be laid out in a more understandable way. No need to do this, it is just if you are

curious, which is almost always a good thing in engineering.

Cleaning House: Deleting a Flow from Your Workspace
Okay… you have saved your precious first flow. Now let’s clean up the workspace and see if we can get

Hello World back. Here is how you delete a flow from your workspace, which is a bit non-intuitive.

Strangely, you cannot delete a flow if it is the only one in your workspace. Thus, if you are trying to

delete a particular flow and it is the only flow you must first create a new empty flow tab. You do this by

using the technique we talked about earlier.

Figure 2-16: Downloading a Flow

Learning Kit Workbook (version 1.4)
Chapter 2 – Your First Flow

Page 34 of 380

First and foremost, make sure the flow you want to delete is selected. If you don’t do this you might

remove some other flow that you still want, so check it twice. You have been warned! Next…

Click the menu icon at the far right of the black header bar . This will drop down several options. Put

the mouse on Flows and you should see this  :

Move the mouse over to “Delete”  and click. Poof! The flow has been sent to the great bit bucket in

the sky and is gone forever. Of course, it’s not really because you exported and saved it before you

deleted it didn’t you?

Figure 2-17: Deleting a Flow

Learning Kit Workbook (version 1.4)
Chapter 2 – Your First Flow

Page 35 of 380

Bringing it Back – Importing a Flow
Time to see if you can retrieve your Hello World flow. The process is the opposite of exporting and is

called “importing”. When you import a flow you have stored, you will simply be dropping it back in your

workspace. You can also import nodes that you may have saved using a similar approach. Here is the

magic formula: Click on the menu icon  and select Import from the drop down .

This will open a window like the one in figure below.

Figure 2-18: Importing a Flow

Figure 2-19: Importing a Flow

Learning Kit Workbook (version 1.4)
Chapter 2 – Your First Flow

Page 36 of 380

First, you will need select Clipboard from the three tabs on the left  . At the bottom you should select

Import to new flow , otherwise you might accidentally overwrite one of your current flows. Now click

on Select a file to import  near the top of the window and locate the file you want from your

directory.

Use the file system on your particular system to locate and open the file you want to import. When you

have done this you should see window full of text which represents the JSON code for the flow in the

window as below. Click Import  and voila! Your flow should be ready to use in a new tab. Easy! Don’t

forget that before you can use the flow you must Deploy it.

Graduation Time!
You have now used all the tools that you will need to start building flows with the I/O Learning card!

Let’s move on!

Figure 2-20: Importing the Hello World Flow

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 37 of 380

Chapter 3 - Using the Humble Pushbutton
What you will learn:

• Using the pushbutton on the Learning Kit Board

• Using Change Nodes

• Using Switch Nodes

• Simple Data Types

• Generating Sound

• Sending Emails

• Sending SMS Messages

Crawl, Walk Run
Now that you have written the mandatory “Hello World” flow it is time to move on to doing something

at least semi-useful. Before we jump into projects that require external connections to the I/O Learning

card, let’s see what we can do with just what is on the board. In fact, we are going to start with the

simplest device of all, the humble pushbutton and see how far we can get with just this one device.

Crawl, walk, run… let’s start by crawling and after writing a few more flows you will be able to stand up

and walk. Later you will run.

Crawling – Pushbutton to Debug Output

Inject and Debug Nodes
Back to the Hello World flow. It’s simple. Let’s see if you can modify this into something a bit more

complex. Hmmmmm… one push button. What could we do? How about this, let’s see if we can replace

the Inject node with a pushbutton. Yes, it’s not that exciting, but ya gotta start somewhere. Before we

start, think about what you would like the flow to do. A good objective would be to have the flow

output Hello World when and only when the button is pushed. Let’s go, one step at a time. Now for a

commercial break and a word from our sponsor The World Engineering and Programming Council…

Engineering Tip # 5: Keep a notebook! While it sometimes feels like it is slowing you down, in the end it

will make you a much more effective engineer. An engineering notebook is a place to record what you

are doing and ideas you have about future projects. The reason to write stuff down is that you will

forget things, important things. Your notebook is the place to go when you forgot where, when and

how you downloaded that really effective application, circuit, hamster wheel brake design, whatever.

Many very skilled engineers use a bound notebook and record everything on paper. If you do this keep

the following in mind:

• Write you name on the inside cover, just like grade school. If you lose your notebook then there

is at least the possibility it will be returned.

• Use ink. If you use pencil, you will start erasing things so that you can’t be sure of what you did.

If you later work in some big company, you will probably be required to keep a notebook and

you will be required to keep it in ink because sometimes your notebook is a record of when you

invented something important.

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 38 of 380

• Date everything. When you start the day write down the date. This will be a big help if you

need to go find something in the past.

• Try to write neatly. Yes, it is exciting to get your program running, but if you just scribble down

that web site name in your notebook you are never, ever going to find it again. Deep breath,

exhale slowly, write carefully.

• Don’t blot things out. If you make a mistake, don’t scrawl all over it with your pen, but rather

just put a single line through it. You will be surprised how many times you will go back to

something you crossed out and later found out it was actually correct. If you obliterate it so that

you can’t read what you wrote, then it won’t be much help.

• Follow your notes. One of the important things to keep in your notebook is procedures, that is,

recipes for how to do something, like how to download a program from Github. You might do

this a dozen or more times. After you write down a procedure, next time you need to do that

procedure follow the steps in your notebook to make sure it is still correct. Make changes to

reflect anything that is new or different.

A paper notebook is not the only way to keep notes, you can always keep notes using a word processing

program or text editor. Just be sure you make your work permanent by saving it often and making

backup copies. Using a remote service like Google Drive, Dropbox etc. is a good idea, although it does

give one pause to imagine what these folks are doing with all that data they store for free.

OK, back to the task at hand. Start out this way. Follow the directions above and save your Hello World

flow. Be sure to give it a descriptive name and if you are smart you will also write it down in your

notebook so you can find it again. Now rename the Hello World flow in your workspace from “Hello

World” to “Pushbuton”. You still have the tiny flow from “Hello World” in your workspace, but next you

are going to modify it a little bit at a time until the push button activates the Hello World output,

thereby solidifying your command of the programming subspace.

At this point you should have the Sequent Microsystems I/O Learning card installed on your Raspberry

Pi. If not, go back and set that up.

To make the task of writing a Node-RED programs for the I/O learning card Sequent Microsystems has

developed special nodes for you to use. These nodes understand how the I/O Learning card works and

make it easy for you to control its features. Now is the time to download them.

Proceed as follows. First, click the menu icon at the top left of your workspace ( in figure below). This

will open the main menu. Now select “Manage Palette” from the dropdown ().

Note: In this Preliminary version of the Tutorial you

will not have received you I/O Learning card yet.

When you need to use the pushbutton, we will show

you how to proceed without the learning card

pushbutton.

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 39 of 380

Once you have done this you will see a User Settings window, like the one below:

Figure 3-1: Main Menu

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 40 of 380

Now, click the “Palette” tab on the left-hand side ( in figure). Then click the “Install” tab (). Enter

“lkit” in the search box (). When you do this the window below the tab will become a buffet of nodes

to pick from. In this case, you should see “node-red-contrib-sm-lkit”, which is a package of nodes for the

I/O Learning card. Click the tiny “Install” button to the right of the description . This will cause a small

dialog box to pop up showing that you are about to install the lkit nodes. Don’t pay any heed to the

warning, it is for more complex installation. Instead, click “Install” .

Figure 3-2: User Settings for Node Installation

Figure 3-3: Install Popup Dialog

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 41 of 380

Time will pass as the lkit nodes are installed. Take a break, have some coffee, take a nap, feed Mr.

Nibbles. After a while the installation will be complete, and you can click the “Close” button .

To make sure that you have the nodes, scroll the palette down to the bottom and you should see a

selection of nodes under the heading “Sequent Microsystems” as outlined in blue in the figure below.

Now you are ready to start using the I/O Learning card. While you are here, think for a minute about

what you have just done. Node-RED has literally thousands of nodes that have been contributed by real

Masters of the Programming Sub-Space from around the universe. When you enter a search term like

“lkit” in the search box  you are asking for a list of all the contributions that match that term. Just

remember, these are free contributions by the Node-RED community and because they are free you

must always be aware that you get what you pay for. Set your expectations accordingly and always be

careful about what you allow node you have downloaded to do. If a node starts asking for your bank

account number and password, well that should be a warning sign, but then again it is amazing the risks

people will take in the name of convenience.

Working with the Pushbutton
Time to build a flow that works with the outside world, or at least something tangible on the I/O

Learning card. The new guy on the block is going to be the pushbutton.

Figure 3-4: Installed LKit
Nodes

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 42 of 380

First, find the pushbutton on your card. It is on the side opposite the big connector as shown below:

The push button is that tiny little black dot on the edge (yellow arrow). It is no different than a doorbell

button except that it is just very, very small.

Preliminary Version: In this preliminary version of the tutorial, we assume that you do not yet have your

Sequent Microsystems I/O Learning card. Despair not! You can do everything in this preliminary tutorial

by using a key on your keyboard as a substitute for the I/O Learning card pushbutton. Here’s how:

Below you will be asked to load the LKit Button node. If you do not have the I/O learning card you

should do every thing below, but when you are asked to down load the LKit Button node you should

down load the LKit Key node instead. Here is what it looks like:

You can use this node exactly as you would the LKit Button node. The only difference is that instead of

pushing the button on I/O Learning card you will push the grave/tilde key on the keyboard. It does not

Figure 3-5: I/O Learning Card Pushbutton

Figure 3-6: LKit Key Node

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 43 of 380

make any difference whether the shift key is pressed. Usually, this key is in the upper left corner of your

keyboard.

You can use this key in the same way you would use the pushbutton in the examples below. We are

using this specific key because it is probably the least used typewrite key; that’s why it is so nice and

shiny.

Instead of issuing messages by clicking the mouse on the Inject node, in this new flow you are going to

issue them by pushing a button. Use your newly acquired knowledge of Node-RED to do the following:

• Bring in the Hello World Flow if it is not already on the screen. (if you forgot how to do this, see

______)

• Delete the Comment Node if there is one, you will document this flow using a different

technique later (see ___)

• Deploy your Hello World Flow (see ___)

• Go to the debug screen (see ____)

• Click the Inject node and make sure that you see Hello World in the debug window (see ___)

Now that you are sure you have the right flow and that it works you can modify it using the following

steps.

• Change the name of the flow on the tab to “Pushbutton Hello World”. (see ______)

• Delete the Inject Node from the flow (see ____)

• Copy the LKit button node from the palette to your flow (see _____)

• Connect the pushbutton to the inject node (see ___).

• Deploy your flow!

After you deploy your flow, you should see something similar to this in your workspace:

Figure 3-8: LKit Pushbutton Node

Figure 3-7: Grave Accent and Tilde Key

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 44 of 380

Open the debugging window (the little bug icon) and clear the debug window (the little trash can icon).

And now for the big moment… while you are watching the debug window push the button and release

it.

TA-DA! If everything worked right, then you should see a little set of messages like this:

What happened? Is it what you expected? Every time you push and release the button you will get two

messages. Try it again, but this time push the button and hold it down. Look at the message. It is telling

you that the pushbutton node is sending message with a single number zero in the payload.

Your finger is getting tired, so release the pushbutton. Bingo! You get another message, but this time

the payload has the number one in it.

Figure 3-9: Pushbutton Node Flow

Figure 3-10: Pushbutton Debug
Output

Push Message

Release Message

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 45 of 380

Try this a few times. Each push and release of the button should give you two new messages, one for

the push and one for the release. In the case of the push button the 0 indicates the button has been

pushed in and the 1 indicates that the button has been released. Maybe you think it should be the

other way around and a push should cause a one and a release should cause a zero. If you are curious

about why the pushbutton behaves the way it, you should go and read Card Electronics: Pushbutton

section in the Appendix.

Hopefully, at this point everything is behaving as described above. You can also see the basic idea of

Node-RED in this flow: Input nodes generate messages when something happens and send them to

other nodes that act on them. All the pushbutton node is doing is sending a message every time the

button is pushed or released. All the Debug node is doing is displaying the payload of the message it

receives (along with the time and sending node). Simple!

The next step: let’s see if we can get the button pushes to put up the “Hello World” message again.

Specifically, we want the “Hello World” text to appear in the debug window only when we push the

pushbutton, but not when we release it. Let’s see if we can sneak up on the solution one step at a time

(most of engineering is incremental, working from something that functions in a known manner toward

something that functions the way you want it to).

Remember when we constructed the Hello World flow? We had the Inject node send the text “Hello

World” in the payload and the Debug node dutifully displayed the payload. In our pushbutton flow,

however, the Pushbutton node is only sending zero and one. What you might like to do is change the

message so that the payload says something more interesting. Like “Hello World”. In some nodes you

can change the payload that is generated, but in the Pushbutton node is stubborn node and only wants

to talk in ones and zeros. What are you going to do?

Time to go to the bench and bring another player into the game… the Change node! This node allows

you to modify the payload of a message on the fly. A message comes in one side and the Change node

checks the payload according to the rules you give it and pumps out a message on the output with a

new payload. This is a very powerful concept, so pay attention.

Figure 3-11: Change
Node

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 46 of 380

Go to the palette and under the “Function” category drag a Change node in and drop it right on top of

the line connecting the Pushbutton node to the Debug Node. (Before you do this you might need to

spread the Pushbutton node and the Debug Node apart so that the change node will fit in between).

When you are done your workspace should something look like this.

The change node is going to inspect every arriving message and, if necessary, make changes that you

specify to the message. Deploy your flow and give it a try by pushing and releasing the pushbutton.

Look at the debug window. What do you get? Does it look like the messages below? Why? What do you

think is happening? Yes, there is not much there. Look very closely at the debug messages next to the

“message payload :” which indicates the “type” of the payload, in this case “string[0]”, which means that

the message is a string with of length zero, which means the message is empty. Also look at the part of

the message circled in blue. Just two quotes (“”). This is another indication that your message contains

no characters.

Whoa! Say what… “types”, “strings”, double quotes! What is all this stuff anyway? Don’t panic (yet). If

you have done any work with programming languages then you will already have an idea of what a

Figure 3-12: Pushbutton Flow with Change Node

Figure 3-13: Debug Messages for
Pushbutton Flow with Change Node

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 47 of 380

“type” is, what a string is and how sting and number types differ from each other. If you have no idea

what is going on with types, strings and numbers then read the Appendix on Types.

Briefly, a message payload contains information, sorry, you already knew that. Just as in the everyday

world information comes in different forms. Think about this: someone tells you that they live at 924

Hamster Avenue and that there are 924 pellets in left in the bag of premium pet chow. You know

intuitively that 924 in a street address is different from the count of 924 pellets. The number 924 looks

the same when you say it or write it out, but you know in your heart of hearts that they are not the

same thing. For example, if you drop another pellet in the bag then you know that the bag now contains

925 pellets. However, you can’t figure out the address of the next house on the street by adding one to

924. House number and counting number are two different things and cannot be handled in the same

way. In the world of computer programming we say that they are of two different “types”. In the Node-

Red examples here if a number is shown as 924 it is a number if it is surrounded by quotes, like this:

“924”, then it is a string. Numbers and strings are just two of many “types” that are available in Node-

RED (and many other programming languages).

A string is simply a sequence of characters, just like a strip of paper with characters written on it. In the

example debug message in the figure above, the quotes indicate that the message payload is a string.

The fact that there is nothing between the quotes means that the payload string has no characters, it is

a string with 0 characters, in the real world a blank strip of paper. Go back to figure ___ from your first

flow. Look carefully just above the payload and you will see string[12], which indicates that the message

is a string of 12 characters. Now, look at the payload. It says, “Hello World!”. Count the characters

between the quotes and you will find that there are twelve of them. Compare this to the message in

figure ___ above.

For now, all you need to know is this: Node-RED data has different types, and you need to be careful

how you handle each type. More details later.

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 48 of 380

Back down to work. Sometimes it helps if you clear the debug window (click the little trash can icon) so

that you can see each message on a clean sheet of pixels, so to speak. At this point we do not have

exactly what we wanted. Now every time you push and release the button you get two “empty”

messages, just “”, which indicates a message with no contents. It sure looks like the change node is

taking each message and replacing the payload with nothing. Not all that helpful. What we really want

is for the change node to replace the zero in the message it gets from push button node with “Hello

World”. So, let’s open up the change node by double clicking on it. Presto!

What you see here is a table with a single “rule” (see blue outline). A “rule” is just the description of

how you want to modify the incoming message. As you will see there are different types of rules, and

you can have as many rules as you want applied to the incoming message2. The “default” rule, that is

the rule you get when you first drop the change node into your flow, is very simple. The figure below

breaks out each part of the default rule”

2 But be on your toes. When there are rules in a chain they are applied one at a time starting at the top of the
table. If a rule changes a part of the message payload the next rule will act on the changed information, which
may not be what you had in mind.

Figure 3-14: Edit Change Node Window

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 49 of 380

Here is what the rule says, step by step:  “set”  “the payload of the message”  “to”  “a new

value whose type is a string”  “with the value of nothing”. In other words, whatever is in the

payload of the message replace it with a string with no characters. For every message received

this rule modifies the message and sends via the output port to the next node. Now, go back to

the debug output for this flow (figure ___) and see if you can explain the output you got.

What do you think you might do to get the change node to convert an incoming message with a payload

of zero to an outgoing message with the string “Hello World” in it? Go ahead poke at the rule and the

other features on the change node settings. You might make a mess of things, but you can always

cancel the editing, or if worse comes to worse, you can delete the change node and start with a fresh

change node. Sometimes, but not always, a fast way to learn about something is to poke at it with a

small stick. Of course, you will want to use good engineering judgement. Poking at a sleeping hamster

is okay, a sleeping cougar, not so much.

Enough poking, let’s try this recipe.

• Click on the little drop down that says “Set”

[see figure at right]. A little menu will drop

down saying “Set”,“Change”, ”Delete” and

“Move”.

• Click on “Change” because that certainly

sounds like what you want to do, namely,

change the message. You should get a new

rule block that looks like that in figure ___.

Figure 3-15: Reading the Set Rule

Figure 3-16: Drop Down for
Change Node Rule

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 50 of 380

The rule just says, “ change the payload in the message in two steps:  search for something in the

payload and,  replace it with something new”. When this process is done the Change node sends the

new message to the node connected to its output port. What we want to do is to replace the number

zero in the message with the message “Hello World”.

Now, back to the Change node. The payload of the incoming message is a number, it is either a one or a

zero. If you look at incoming message, as we did above with the debug node (see fig. ____), you will

see that when you push the button a zero (0) appears in the output. It does not have quotes around it,

so you know for sure that its type is a number not a string and right above the 0 it says it’s a number.

So, in our rule we want to search for the number 0 and not the string “0”. To do this click the type

dropdown (see  in figure ___ below) and you should see this:

Figure 3-17: Change Rule Components

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 51 of 380

From the choices click on number (see ) The little 0 and 9 digits indicate that you are going to search

for a number type (squint, they really are a 0 and a 1). Now go to the box to the right of the type

dropdown and  enter 0, which is the value of the payload you want to look for because it is the value

the message contains when the button is pushed.

Next, let’s set up the “replace with” value. We want to replace the number 0 in the payload with the

string “Hello World”. The type of the replacement is already a string. You can tell this because the type

dropdown shows (see  in figure ___), the microscopic a and z characters indicate that the type is a

string, just like the 0 and 1 characters indicated the type in the “search for” block is a number. In the

“Replace with” block  type in Hello World!. it is not necessary to surround Hello World! with quotes

Figure 3-18: Setting the "Type" of a Search

Figure 3-19: Replace Block

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 52 of 380

as you might do in other programing languages. In NodeRED the type dropdown  indicates that Hello

World is a string. This will be very clear in a moment. Finish up by clicking DONE.

Deploy it!

Now press the button and hold it down. What do you see? If everything is working, then you should see

this:

Looking pretty good! By now your finger is getting tired, so release the button. Whoa! What happened?

It’s another message. What is it where did it come from??? Look at the debug window closely you will

see the message looks something like this:

If you think about this for a minute you will realize that the number one is a message from the

pushbutton that was passed through the change node without being affected. This is important to

remember when you use a change node: any message that you do not explicitly change is passed to the

output unchanged.

Suppose that you really don’t want to see the message that occurs when you release the button.

Happily, there is a way to destroy a message. You can do this by using the Switch Node.

 Figure 3-20: Message When Button Pushed

Figure 3-21:

 Message When Button Released

Figure 3-22: Switch Node

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 53 of 380

By now it might have occurred to you that Node-RED is like a little model railroad where small trains

carry messages from one place to another. The nodes are stations, and the wires are the tracks.

Wouldn’t it be nice if you could switch the messages from one track to the next based on the contents

of the message? Well that is what the Switch node is for. It allows you to switch messages at the input

port of a node to one of several output ports just like this model railroad switch yard.

The switch node is just like the switch in a train yard; it allows you to direct a message to different places

based on the contents of the message. Let’s see if the switch node is up to the task.

Drag the switch node from the palette and drop it right between the pushbutton node and the change

node. If there is enough space it should connect itself up to both nodes. If not, you may need to delete

the connection between the pushbutton node and then connect everything back up. When you are

done it should look something like This:

Look closely at the Switch Node. It only has one output port, so it is not quite like the train yard shown

in figure ___, but we are going to fix that in a moment.

Figure 3-23: Model Railroad Switchyard

Figure 3-24: Pushbutton Flow with Switch Node

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 54 of 380

Now, you must tell the switch node what to do with incoming messages. In our flow the switch node

receives one of two incoming messages: a message containing the number zero when the button is

pushed and a message containing the number one when the button is released. Start by defining the

first rule. Open the message node by double clicking and you will see this:

There is one rule which is going to be activated when the message payload is equal to something, but

what? Well, right now nothing, but you can change this. First , change the type in the rule from a

string to a number as you did before (reference to previous change of type). Now,  enter the number

zero in the block next to the type. The definition should look like this:

Figure 3-26: First Rule for Switch Node

Figure 3-25: Switch Node Editor

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 55 of 380

Stop for a moment and look at the rule. Look especially at the right side of the rule where there is a

little arrow pointing to the number 1 (circled in blue). This is telling you that when a message comes in

that has a payload with only the number zero in it the message will be sent to output port number 1.

Right now, these is only one output, but we are going to change that by adding another rule.

To add a new rule, click the little add button at the bottom of the rule window ( in figure___ above).

This will add another undefined rule block, but this time the rule is pointing to the number 2, which

means that if the rule matches the message it will go to output port 2.

Do the same thing as you did before:  change the type selection from string to number and then 

put the number 1 in the value window. When you are done the list of rules should look like this:

If you are satisfied that your rules are like the rules above, then click the DONE button.

Now look at the switch node. Does it look different? If you did everything correctly, then the switch

node will now have two output ports on the right side and your flow will look like this:

Figure 3-27: Completed Rules for Switch Node

Figure 3-28: Completed Pushbutton Flow

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 56 of 380

Notice that the change node is connected to the top output bubble representing the original port (check

out the blue arrow). The ports on switch nodes are numbered from top to bottom starting at 1, so the

change node is connected to the number 1 port of the switch node. Remember that this where

incoming messages are going to go if they have numeric value of 0.

Deploy it! Try it! Go ahead push the button and release it. Is it doing what you would expect? If you did

everything correctly the debug output should look like this:

A Hello World message is only displayed when you push the button. Take a moment and see if you can

explain why the flow behaves this way. What happened to the message from the pushbutton that was

generated when the button was released? That’s right, it went to terminal number 2 of the switch node

and because nothing is connected to that terminal it is gone forever. You can check this out if you want

to by hooking up a debug node to the second terminal. Push and release the pushbutton and see what

happens. Was it what you expected?

At long last! The Hello World! flow that you wanted where pushing the button generates only one Hello

World! message and nothing else. Hallelujah! Now for the part that separates real engineers from

engineer wanna-bes… the documentation. Rather than cover this beautiful flow with comment nodes

let’s put in a description that is part of the flow.

Start off by double clicking on the tab at the top of your flow. This will open an editing window for your

flow.

Figure 3-29: Output from Pushbutton Flow

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 57 of 380

You have seen this before when you were working with the comment node. Everything is the same, it is

just a simple Markdown editor. With it you can define different headers, bold text, underlined text,

bullet lists and so forth. In the Markdown editor you can either enter special characters to control

formatting or you can use the formatting options shown in the blue box. For example, h1, h2 and h3 will

set up formatting of headers at different levels. B and I will format your text as bold or italic. Below is

example documentation for the Pushbutton Flow.

Figure 3-30: Markdown Editing Window

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 58 of 380

In the Markdown editor are a number of strange symbols, like #, ---, * and so on. You can either type

these in with your text or use the option buttons (h1, h2, ….) at the top of the window to format your

text. What you type will remain in markdown format until you hit the DONE button. Then it will be

included in the pushbutton flow as part of the information for the flow. To see the results, click on the

information tab (I) in the sidebar. Beautiful! Now you can book your cruise on the SS Mesocricetus

knowing that your poor colleagues back home have some idea about what is going on with your flow.

Figure 3-32: Completed Markdown Documentation

Figure 3-31: Completed Markdown Documentation

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 59 of 380

Puzzles
Now that you have some experience see if you can solve these puzzles using what you have learned.

Puzzle 1: Can you think of a way to get the same behavior as in the example above, but by reversing the

position of the change node and the switch node? In other words, the output of the push button node

is going to go first to the change node and then then the output of the change node is going to go to the

switch node. Finally, one of the outputs of the switch node is going to go to the debug node. If you can

get this to work, you will have demonstrated to yourself that there is more than one way to solve the

same problem in Node-RED.

Puzzle 2: Can you set up a flow using so that World is printed when you push the button and Goodbye

World is printed when you release the node? Your output should look something like this as you push

and release the pushbutton:

 Figure 3-33: Information Window
 for Pushbutton Node

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 60 of 380

Do this only using Pushbutton, Change, Switch and Debug nodes, but you can make as many copies of

each node type as you need. As above there are probably many different solutions. See if you can find

one or more of them.

Puzzle 3: In section _____ you used the Inject node to create a message when you click on it. Open the

inject node edit window (i.e. double click on an inject node). Look at the bottom and you will see some

other options that you can use to configure the inject node. Using just the inject node and a debug

node (like figure ___) see if you can figure out how to make the inject node act on its own? Can you

think of some way to use these features? Could you build a flow that would print the local time every

minute in the debug window?

For example, could you use an inject node and debug node to create an alarm clock that printed “Rise

and Shine Buttercup!” every morning at 7:30 AM? Could you think of a way to make a simple sprinkler

timer that would water your favorite Ficus plant for 10 minutes every Wednesday (well, it is just going to

print “water on” and “water off” 10 minutes apart on Wednesdays at 11:45 AM). Try making a simple

flow that will wish you a Happy Birthday in the debug window at noon on your birthday.

Puzzle 4: Investigation for the Curious: Whenever you plop a node down in your workspace it is already

configured for some behavior. Technically we call this the “default configuration”. In this chapter you

have worked with two new nodes: the change node and the switch node. When you first brought them

in to the workspace they were already set up for a basic operation. Strangely, there is no clear

documentation (for shame) about what the default behavior is. However, if you are the curious type

maybe you can figure out what the default behavior is. You have all the tools you need to do this,

namely the Inject node and the Debug node. You can use the inject node to send different messages to

a node and use the debug node see what sort of messages it generates (or maybe it does nothing!).

Load an inject node, Change node and Debug node into a fresh workspace. Open up the Change node

and look at the default rule (you did this before here ____). Try sending different messages to the

Change node from the Inject node. What happened? Can you see a pattern? How would you describe

the behavior of the change node in its default state?

Suppose you opened the Change node and deleted the default rule so that there are now no rules

defined. How do you think it will behave? Try sending different messages to the Change node. What

happened? Was it what you expected?

Figure 3-34: Output Example

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 61 of 380

Messy, messy, messy. Sometimes in engineering when you do not have all the information you need

you must just roll up your sleeves and test the node, device, component or whatever in an organized

way to find out what it does. Caution here… if the default behavior of something, like the Change node

is not documented then that means it might change in the future. As a general rule you rely on

undocumented behaviors at your peril.

Puzzle 5: Investigate the Switch Node. In particular when a switch node has only one output how does it

handle various types of messages. What is the default behavior? Suppose you only define one message,

what happens to all the other messages the switch node receives that are different? Can you give a

clear description of what is happening?

Puzzle 6: Markdown for Dummies: The descriptions of nodes and flows in Node-RED are defined using

the mini-Markdown editor. Markdown is a very simple language for defining text formatting and is

quite popular for lightweight documentation. Open up the Markdown editor for flow (double click on

the flow tab, remember?). Play with the editor. Try each of the formatting functions and see if you can

understand what they are doing. Do you think you could write your class next essay in Markdown and

print out the formatted results? You might need to get a Markdown viewer to do this. Try some simple

examples in Markdown. Do you think it would be worth your time to learn Markdown?

Puzzle 7: Mr. Nibbles is eating way too much hamster chow. It is going to take a few more weeks to

save up or an I/O Learning card, but you would like to work with this workbook now. Can you think of a

way to replace the switch with two Inject nodes, so that when you click one it sends the number zero

and when you click the other it sends the number one to the same place. Replace the Learning Kit

pushbutton node with your new arrangement. Does it work? If you got it to work then you can build all

the flows in this preliminary workbook.

Walking – Pushbutton Says “Hello World!” Out Loud

The Node-RED Console
Time to stand up a walk! So far you have managed to do some simple things in the Node-RED IDE. The

IDE is powerful, but it is just an editing and debugging tool. Once you deploy a flow you don’t need the

IDE anymore because the flow is operating directly on your Raspberry Pi. In fact, you can close the IDE

and send debug results directly to the Node-RED console window. Later you will learn about fancy ways

to display your data, but for now let’s see if we can get by with just the Node-RED console.

Wait a minute, what Node-RED console? Where is it? What are we talking about here? Go waaaaaaay

back and look at how you started up Node-RED (see section ___). The Node-RED console has probably

been sitting unobtrusively beneath your Node-RED IDE all along.

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 62 of 380

If you are running the Node-RED IDE now look up at the top of your Raspberry Pi screen where you will

find a list of the open windows. One of them will say “Node-RED Console”.

Click on it and Raspberry Pi will bring it to the top of the windows heap on your screen.

The Node-RED console shows high level messages from Node-RED, like when a flow is started or

stopped, which typically occurs when you deploy a flow, because you are stopping the previous flow and

starting a new one. All of these messages are continually collected in the Node-RED console window,

and you can scroll up and down through them. What is really happening here is that certain events that

occur during the operation of your flows are printed out here. This process is called “logging” and is a

very powerful debugging tool that we will discuss later. For the time being think of it as a little “flight

recorder” or “black box3” that is keeping track what is happening in your flow. If you flow crashes and

burns you can go back to the Node-RED console and review the messages and maybe find out what

happened. Now we are going to use it to print out “Hello World!” when you press the pushbutton.

3 Yes, yes, we all know that the black boxes on airplanes are really orange.

Figure 3-35: Node-Red System Console

Figure 3-36: Node-Red System Console

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 63 of 380

Do this: go to your Pushbutton flow (or bring it back by importing it from where you saved it. You did

save it didn’t you?) Push the button and make sure the flow still shows “Hello World!” in the debug

sidebar every time you push the little button.

Now pop open the Debug node (double click on it) and look at the options:

You can send the output to different places, including the system console. Click on the box next to

“debug window” to deselect it . Then click on “system console’ to select it . Click DONE and don’t

forget to deploy your new flow.

Figure 3-37: Edit Debug Node

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 64 of 380

Press the button. What happened? Did you get the Hello World! message on the Node-RED console? If

everything went according to plan you should see something like this at the bottom of your Node-RED

console window.

Try this: close the IDE window and see if pushing the button still prints on the Node-RED console. If it

does this means that your flow is still running. Nice!

Making Noise – The Sound of Hello World!
Your Hello World! flow is slowing making contact with the outside world. How about using the push

button to generate some sound? Easy to do. Let’s see if you can modify the Pushbutton flow to say

Hello World! rather than just printing it on the screen.

Your humble Raspberry Pi can produce sound, all you need is a headphone of external speaker, so,

rummage around in the closet, find an old pair of ear buds and plug them in.

And now it is time for a word from our sponsor “The Engineering Good Practices Council”:

Engineering Tip # 6: Step by Step. Adding sound to your program should be simple, however there are

all sorts of things that can go wrong. First, stop and think about all the parts you are going to put

together: headphones, a sound file, a new sound node and your old flow. If you put them all together,

press the button and nothing happens you are going to have a big debugging problem on your hands.

Instead, remember our motto: “Engineering is an incremental process”. Don’t build everything at once

and try it out. If aeronautical engineers built a whole airplane at once it would probably fall out of the

sky on its first flight, assuming that it did not just fall apart on the ground.

To avoid these sorts of expensive failures, engineers start by testing each part, then testing groups of

parts and finally testing everything together. Sometimes, we refer to this by fancy names like “unit

test”, “sub-system test”, ‘system test”. Now there is not much to test for this little flow, but let’s do

Figure 3-38: Hello World! on System Console

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 65 of 380

things right. For example, that old pair of ear buds you found on the street last year after they were run

over by a truck: do they work? That sound file you just downloaded: does it play? You get the idea.

• Headphones – Check’em. Plug them into something you know works like your smart phone. Do

they work? Great! Move on.

• Raspberry Pi – Plug your headphone is and see if you can hear something. Maybe you could try

playing a game you know generates sound. If you don’t hear anything better stop here and

figure out what is wrong. How you test your sound will depend upon what operating system

you are using. For Raspbian (and probably all other Raspberry Pi systems) you can enter the

command:

~ $ speaker-test -tsine

 If your headphones and the Raspberry Pi is configured properly you will hear a nice tone (a sine

wave) in both ears. If you don’t hear anything, check the volume level on the main screen. Right click

on the speaker icon and check the volume of the analog (headphone output) and HDMI (if you have

speakers in your HDMI connected screen).

• Download the HelloWorld.wav file from the Sequent Microsystems site. {We will need to set this

up and provide some instructions) and park it in a directory (write it down in your notebook!).

Here we will park the sound file in /home/pi/sounds.

• Check that it works. This is easy to do by using the aplay application on the Raspbian OS (and

probably all the other versions of Linux for Raspberry Pi.

~ $ aplay /home/pi/sounds/HelloWorld.wav

• Once you have the sound playing you are ready to go.

• Scroll down on the palette and find the Audio Play node and drag it into your workspace,

Figure 3-39: Play Audio Node

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 66 of 380

• You might be thinking: “My, my this is something new. I wonder how it works.” You know how

to find out: click on the node and then click tab with the book icon in the sidebar. This will give

you the help file for the node.

• Check it out. What does this Play Audio node want as input? Right! It wants a stream of data

from the sound file in .wav format (see the blue ellipse). This means you are going to need

some way to read in your sound file, read it out, and connect it to the Play Audio node. Sure

sounds hard. Time to go back to the palette and find a node to do the heavy lifting. How about

the File In node?

• Bring it in and open up the help file (select the node, click the little book icon).

• It’s always a good idea to check the help information for a node. Unfortunately, these

descriptions can be a little thin on details, but at least you get some idea of what the node does.

If there is not enough information, then you will just have to experiment around with the node.

Happily, in this case the File In node looks like it will help us out.

Figure 3-40: Help File for Play Audio Node

Figure 3-41: File In Node

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 67 of 380

The input message should have a name of the file to read identified by the name “filename” .

The output payload is going to be a buffer (i.e. a stream of data), just what the Play Audio node

input is looking for . Hot Dog!

Notice under “Details” that the file name should be an absolute path (i.e. /home/pi/….) because

otherwise it will be considered as a path name relative to the working directory of the Node-RED

process, which is harder to locate. Now it is time to configure the File In node. Open the node

by double clicking it and fill it in so that it matches the figure below.

Figure 3-42: Help for File In Node

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 68 of 380

• Leave the Filename block  blank because the filename is going to be specified by the message

from the prior node. In the dropdown for output  select “a single buffer object”. This means

that the message from this node to the next node will be one “buffer” of data, basically a really

long message. This buffer will be the contents of the sound file. Finally, fill in the Name block

with a nice simple name . Click Done and you are ready to go.

• Bring in an Inject node. Double click the inject node to open the editor and configure your Inject

node as shown in the figure below.

Figure 3-43: Configured File In Node

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 69 of 380

• To configure the node, first delete the second rule which says “msg.topic”. You won’t need that

now. Then, change the name of the inject node to Hello World  because that is what it is

going to do. Next, in the first rule  change the property next to msg. from payload to

filename. You need to do this so that the File In node can identify the filename property in the

message. If you are confused or want to learn more go Appendix ___ Message Properties.

Finally,  fill in the block next to msg.filename with the location of your sound file. Remember

this must be an absolute path to the file. Click Done!

• Almost there… create your flow by wiring up the nodes as shown below.

• Now is the time! Deploy it! Click the tab on the left side of the Inject node and you should hear

“Hello World”. When a file plays a little blue square will appear below the Play Audio node, and

the file being played will appear below the File In node. The blue square will remain until the

audio finishes playing. If something goes wrong a little red square will appear with an error

message. The usual problem is that the file name you provided in the Inject node was not

correct and there is no sound file there.

At this point you have a kind of prototype, it is not working with the pushbutton, but it is simple, and it

works. When you first work with a new node, like Play Audio and File In, it is a good idea to start with a

simple situation and expand from there because there are fewer places to make mistakes.

You already have a working flow using the push button that prints out a debug message. Let’s use parts

of that flow to replace the Inject node in this flow with part of the pushbutton flow so that when you

put the button your Raspberry Pi will introduce itself to the world. Here is the recipe..,

• Go to the tab with the flow you just completed (see figure ___) where clicking the Inject node

plays the Hello World audio file.

• Import (see ______) the Flow you built earlier (figure ____) where pushing the button caused a

debug message of “Hello World! to be printed). The flows will be on two separate tabs. Time to

learn how to copy nodes from one tab to another. There are three ways to identify the nodes

you want to copy:

• Method 1 – hold down the control key and right click on each node you want to copy.

• Method 2 – hold down the shift key and right click on a node and all nodes associated

with that flow will be selected.

Figure 3-44: Initial Hello World Audio Flow

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 70 of 380

• Method 3 – draw a box around the nodes you want to select by holding down the right

mouse button and dragging over the nodes.

• Now that you have selected all the nodes from the Pushbutton to Debug flow type ctl-c to copy,

click on the tab for the Inject to Play Audio flow and type ctl-v to insert it. You can then drag it

to where you want to and click to drop it in place. You should have a workspace that looks like

the figure below.

• Go back and delete tab with the Pushbutton to Debug flow. This is very important because if

you deploy both flows there will be two copies of the Pushbutton to Debug flow present and

you will get two messages every time you push the button, one from each flow.

• Go back to tab with the combine flow (figure ____). At this point everything you need is in the

same tab you just need to connect it up and make a few adjustments. Remember… small steps.

• Deploy the combined flow above and test each flow separately. Pushing the button should

print “Hello World” in the debug sidebar window. Clicking the Inject node should still play

“Hello World” over your headphones or speakers. Remember… test the piece like this before

you hook them up.

• Stop for a moment… Deep Breath… Slow Exhale… imagine you are a beach with the sound of

waves in the background. Now, think about how you might combine these two flows into one

flow where pushing the button causes “Hello World to play in the speaker. You know that every

time you push the button (but not when you release it) the Change node labeled set

msg.payload will send a payload to the debug node. You also know that the Inject node labeled

Hello World is sending the filename to the File In Node (labeled File to Buffer). Doesn’t it seem

like connecting the output of the Change Node to the input of the File Input node is part of the

solution. Make it so!

Figure 3-45: Combined Flows

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 71 of 380

• Delete the two unused nodes and your flow should look like this:

• Do you think this will work or not? Why? Can’t hurt to try, so deploy it and push the button.

• Opps… did you get an error in the debug window. It looks like the File to Buffer node is

complaining that it is not getting the file name. Did you notice that rather than some cryptic

number that the debug message actually gave you the name of the node where the error

occurred? That is why it is a good idea to name every node in some clear way. It will make

debugging much easier.

• At this point you could try debugging with the Debug node. Alternatively, you could apply the

most powerful debugging tool available… you could think about the problem a bit more. The

error is that the File to Buffer node is not getting a file name at the input… Hmmm… Aha! The

Figure 3-46: Pushbutton to Audio - Initial Attempt

Figure 3-47: Combined Flow Error
Message

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 72 of 380

Change node is sending the payload of the message to the File to Buffer node where it should be

a message with the property filename set to the sound file name. Let’s fix it4.

• Double click on the Change node (labeled set msg.payload) to open the node editor. Here is

what you will see:

• First, change the message property () from payload to filename. Second, change the string

from Hello World! to the file name where your audio file is, which may be different than what is

shown below. Now your Change node configuration should look like the figure below:

4 If you are curious. and you should be, you can verify this by simply attaching a debug node to the output of the
change node and checking the message. You will see that the message contains a payload of the 1- character
string “Hello World!”

Figure 3-48: Editing the Change Node

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 73 of 380

• Click Done! Deploy it! Push the button! Do you hear the sweet, sweet sound of Hello World! If

so, congratulations! This is a complicated flow that uses almost everything you have learned.

You are ready to start running.

• Don’t forget – document your work. Now is the time to change node names to something

descriptive. Write out a description of what you did so that when you need this flow next time

you will be able to figure out what was going on. Save a copy in your archive.

Puzzles for You to Solve
Sound is fun to work with. Here are some little puzzles for you to solve. There are many places on the

Internet where you can find free sound samples. As always be careful, because if you sign up for

something you might start getting lots of emails. A reliable place is the BBC Sound Effects Library. Also

Free Special Effects seems like a safe site with all sorts of sounds. If you want to edit sounds you can

download Audacity. It’s free and works on all the platforms. [Text to speech translators if we can find a

safe site that does not require registration]

Puzzle #1: Sound Effects Box – You must supply sound effect for a play. Build a flow to produce one of

five sound effects on demand. Use a separate Inject node to trigger each sound when you click on it.

Puzzle #2: Buzzer – build a flow that will play a buzzer (or siren or whatever) sound as long as you hold

down the button. You might need to learn more about the Play Audio node to do this. By changing the

message topic you send to the Play Audio node you can start and stop the playing of a sound file.

Puzzle #3: Old Fashioned Doorbell – the old electric doorbells were set up so that when you pushed the

button the bell would Ding and when you released the button the bell would Dong. Can you build a flow

that does this?

Figure 3-49: Updated Change Node Configuration

https://sound-effects.bbcrewind.co.uk/
https://freespecialeffects.co.uk/
https://www.audacityteam.org/

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 74 of 380

Puzzle #4: Simple Alarm Clock – remember how the Inject node can be programmed to produce a

message at a particular time (see ___). Can you build an alarm clock that will go off at a particular time

and continue until you hit the pushbutton to stop it?

Puzzle #5: Workday Alarm Clock – Extend your alarm clock from Puzzle 4 to wake you up at a different

time each day. So maybe you have to straggle out of bed at 6:30 AM Monday through Friday, but you

can sleep until 8:00 AM on Saturday and Sunday. Can you build the flow? Do you trust your flow

enough to use it? How are you going to test it? Can you play a particular alarm sound on weekdays and

a different one to wake up to on the weekends!

Puzzle #6: Your Idea – Can you think of an interesting sound-based problem that will work with either

the pushbutton, the Inject node or both.

Time to RUN!

Running – Pushbutton Controls the World

Pushbutton Sends Email
With each flow you have created, the little pushbutton has touched a bit more of the wider world. Now

it is time to run. Let’s see if you can get the push of a button to send an email. You are now embarking

on the real Internet of Things, IoT. If you can send an email whenever the button is pushed, then you

can be anyplace in the world and know almost instantly about an event, a worldwide doorbell! This is

the real deal because if you go on Amazon, you can buy a little button that will reorder a box of pet

food5 anytime you push it. You are now going to build something very similar.

Now for a word from one of our sponsors: Peter Parker Proverbs, Inc. Remember the Parker Principle

from above (section ___)? Yeah, yeah great power, great responsibly, that sort of thing. Time to apply

it. If you are going to send messages over the internet, make sure that you work carefully. Make sure

you know where you email is going, don’t send messages willy-nilly to any old internet address, try not

to create a program that sends 10,000 message a minute.

Okay, enough said. First you are going to need an internet address to experiment with. It is easy to get

a Gmail address from Google. If you are going to experiment you should use a newly created Gmail

address rather than your own email address. The reason is that to make things easy we are going to cut

a few corners on security. Your personal email should be as secure as you can make it, so for goodness

sakes, don’t compromise the email you use to do your banking, make airline reservations, order

Hamster Habitats from Amazon and so forth. Use an email address that you can shut down any time.

5 Important – if you ever purchase an Amazon Dash button for this purpose do not leave it in the cage with your
pet. Otherwise, you might wake up some morning and find a trailer truck full of Nature Farm Hamster Treats
parked outside your house, a $14,930.43 charge on your Amazon account and a pet with a very sore paw.

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 75 of 380

Create a Gmail account just for experimenting. No instructions here because it is easy to do and if you

can’t create a Gmail account on your own then you should not be trying this. Got your Gmail account?

Good, now you need to configure it so that you can use it from Node-RED. In this section we are going

to do a very simple thing, namely send a Hello World! message from this new Gmail account to your

personal email account. Believe it or not there is a Node-RED node just for this purpose, in fact it is right

in the palette.

The problem is that it needs to work directly with your email account using your username and

password. Normally, Gmail likes to know that the application that is telling it to send an email is

trustworthy, and the work of thousands of careful, dedicated and well-fed programmers, something like

Microsoft Outlook. Gmail does not consider the Email Send node above to be all that trustworthy. To

make use of it in your new email account you will need to allow “less secure apps” access to your Gmail

account.

Open your Gmail screen. In the upper right there will be an icon  that represents your account (It will

probably be different from the purple “C” shown here).

Click on the account symbol, which will open a window identifying your account. Now click  on the

“Manage your Google Account” button.

Figure 3-50: Email Send Node

Figure 3-51: Google Account Symbol

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 76 of 380

On the left side of the screen select  “Security” from the menu.

Scroll down until you see a block labeled “Less Secure App Access”;

Figure 3-52: Account Details

Figure 3-53: Account Management Menu

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 77 of 380

Click the link at the bottom  “Turn on access (not recommended)”, which will open the screen below.

Remember… Google does not recommend this, but they will allow you to do it, got it?

Click to the right of the check mark to turn on less secure access . Now you should see that the less

secure app access is on.

The next time you return to your Gmail inbox you will probably find a security alert stating that your

account now allows access by less secure apps. You should acknowledge this message. When you lower

the security of your account it is not permanent. If your low security Node-RED app does not use your

account for some period of time Google may turn the access off automatically.

Figure 3-54: Less Secure App Access Option

Figure 3-55: Turn on Less Secure Apps

Figure 3-56: Less Secure Access is Allowed

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 78 of 380

Remember: you have lowered the security of all applications on this Google account, so do not connect

this account to any other account you have or store anything important on the Gdrive. You should make

sure your password is at least 10 characters long and is just random characters. Don’t use the name of

your pet which is already posted on your Facebook page.

At this point you should have a pretty good idea what to do. Import your pushbutton flow that sends

messages to the Debug node. All you need to do is replace the Debug node with the Email Send node.

Well, you need to do a bit more because the Email Send node needs to know how to use your email

server and you also need to build up the message you are going to send.

After you bring back your Pushbutton flow, deploy and test it to make sure it still works (remember

Engineering Tip #___?) Now replace the Debug node and with the Send Email node, and while you are

at it rename the flow to be “Gmail – Hello World”. You should have something like the figure below.

Don’t deploy your flow yet because you need to make some changes. By the way, don’t you just love

the way the wires between nodes have that beautiful, curvy, almost sensuous look? When you are

bored look up Bézier curves on Wikipedia.

Figure 3-57: Initial Email Flow

https://en.wikipedia.org/wiki/B%C3%A9zier_curve

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 79 of 380

First, let’s fix up the Send Email node so that it can work with your email server, which is the remote

program that will sends and receives your emails. As usual, double click on the Email Send node and it

will open an editing window:

This window is set up for Gmail and you only need to fix a few things. Number one, put in your Userid

 . Number two, carefully fill in your password. You will not be able to see the password , so type

carefully. Number three, enter the email address where you want your message to end up in the “To”

box . That’s all there is to it!

Deploy it! Push the button! If everything worked out a little blue square will appear near the bottom

left of the Email Send node that says in teeny-tiny print “sending”. If things don’t go right a red box will

appear with the dreaded word “error”. Go back and check everything.

Assuming everything went right, go to you’re the email where you sent the message and see what you

received. It will look something like the figure below. If you do not see your message the first thing to

Figure 3-58: Configuring Email Send Node

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 80 of 380

check is the junk folder. You may need to “whitelist” the address you are sending from to sneak by the

spam filter on your email system.

Hmmmm… the subject line is a little cryptic. Maybe you would like to change it. Maybe you would like

to send the email to more than one person. Maybe you would like to put the name of your device in the

window. Click on the Email Send node to select it and then open the Help window (tab with the little

book) in the sidebar window. Here is part of what the help file says:

Figure 3-59: Button Push Message

Figure 3-60: Email Node Help

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 81 of 380

Up to this point you might have been thinking that the message just has a payload, which you set to

Hello World! The complete picture is that a message can have many components each identified by a

name. As the figure above shows the message can contain “to” addresses (msg.to), “cc” addresses,

(msg.cc) and a topic (msg.topic) among other things. You can adjust all these within the Change node so

that the message the Email Send node receives can control more aspects of the email process.

We will give the email a topic, which will appear as the subject line. We will also set the “to” address in

the change node rather than in the Email Send node. You can do all this by defining parts of the message

payload in the Change node.

First, open the Email Send node and delete the address in the “To” block. You are going to supply this

address in the message that the change node will generate and send to the Email node. This is

convenient because all your email parameters are in one place, the Change node rules. Now, open the

Change node and set up the rules as shown below for your specific situation.

Deploy! Push the button! Check your email! Do you see something like this?

Figure 3-61: Updated Change Node

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 82 of 380

Pushbutton Sends SMS Message
Are you thinking “Email is nice, but I am going to hook that button up to my hamster’s cage door so that

I know when she kicks it open. I don’t want to wait for an email. I want to know right now!”? No

problem, if you can send an email you can send an SMS message right to your phone. Many cellphone

carriers have a way for you to send them an email and they will automatically forward it to your phone

(or any other phone for that matter). All you need to do is go your carrier’s web site and find out the

email address. If you are using a US carrier you can go to FreeCarrierLookup.com (Remember: they have

ads and heaven only knows what sort of cookies they are going to leave on your system). Here is what

the results look like:

 Figure 3-62: Hello World Email

Figure 3-63: Result of SMS Gateway Search

https://freecarrierlookup.com/

Learning Kit Workbook (version 1.4)
Chapter 3 - Pushbutton

Page 83 of 380

All you need to do is go to the Change node in your flow and plug in the SMS Gateway Address as your

“msg.to” address and next time your pet pops the cage door in the middle of the night6 you will get a

text message. Give it a try! Nibbles is out:

Of course, if you want the Nibbles’ cage door to push the button on your I/O Learning card it is going to

take some rather weird mechanical arrangement. Wouldn’t be nice if you could just run a wire from the

cage door switch and connect it directly to the card? Stay tuned. One or two more chapters and you

will be able to do this!

6 Hamsters are nocturnal animals, and just like students, they would rather sleep during the day and play at night.

September 26, 2021 1:04 PM

Mesocricetus365@gmail.com

Hello World - Nibbles has

escaped!

Figure 3-64: Hamster Alert SMS

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 84 of 380

Chapter 4 - Let There be Light – LEDs

What you will learn:

• Using on-board LEDs

• Delay Node

• Subflows

• Link In and Link Out nodes

• Context Variables

• Set up initial conditions

• Loops

• Link In and Link Out Nodes

• Random Number Node

• Controlling Operations from Email Messages

• Retrieving Information from the Internet

• Range Node

Introduction
Your Learning card contains four onboard Light Emitting Diodes (LEDs). LEDs are very simple devices. On

the Learning card the only thing you can do with the LEDs is to turn them on and off. Just like with the

pushbutton in the previous chapter let’s take these simple devices and see how far you can push them.

As usual you will start with simple steps and proceed to some quite complicated setups. While you do

this you will learn more and more about the capabilities of Node-RED, which is the important objective

of this chapter.

Crawling Once Again – Controlling One LED

Locating the LEDs
First things first… find the LEDs on your Learning Card. Take a look at the card on the edge that has the

pushbutton. You will see nine LEDs and on the top of the card in tiny little print you will see the names

of the LEDs (check out Figure 4-1).

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 85 of 380

The LEDs are green and are located on the bottom side of the Learning card, and although the light

shines out from the side you will find that you can easily see the lit LEDs through the board, so the

visibility is very good. The Learning Card has nine LEDs:

Label Purpose

PWR Flashes when power is on

IN1 ON when input circuit 1 is closed (see Chapter 5)

IN3 ON when input circuit 3 is closed (see Chapter 5)

GP1 User controlled 1

GP2 User controlled 2

GP3 User controlled 3

GP4 User controlled 4

RL1 ON when relay 1 is activates (see Chapter 6)

RL2 ON when relay 2 is activates (see Chapter 6)

LEDs GP1 to GP3 are available for you to control. The other LEDs are control in response to inputs or to

the operation of the relays, which means that you cannot explicitly control them (more on this later).

Controlling the GP1 to GP4 LEDs
You can control the GP1 to GP4 LEDs directly from Node-RED. You do this by using the LKit LED node

(Figure 4-2).

Figure 4-1: LEDs on Edge of Learning Card

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 86 of 380

The LKit LED node is an output node and has only one port, the input port. LEDs may be controlled in

two ways depending upon the mode of operation you select. An LKit LED node can be placed in one of

two modes “single” and “group”. In the “single mode” the node only controls one LED, whereas, in

“group” mode the node controls all four GP1 to GP4 LEDs at once.

Start by bring in a copy of the LKit LED node and dropping it in the middle of your workspace. Now…

Opps! Time for a commercial break from the Council of Good Engineering Practice.

Engineering Tip # 7: Read the Documentation!! Yes, really, take the time to look at the documentation.

Whenever you start to use a new node, new subroutine, new chip, new component, new language or

new type of hamster water dispenser, it pays to at least glance at the documentation. Read it and make

sure you really understand what it is saying. This will save you from making your life miserable when you

hook something up wrong and spend all day improving your debugging skills. To paraphrase a famous

author7: “An afternoon of debugging can often save you 15 minutes of reading the documentation”.

Also, remember to get the latest documentation if it is available. Many projects have foundered on the

rocks of ignominy when the engineers were using out of date documentation for design. Don’t let this

happen to you. On the other hand, don’t trust the documentation until you have made sure that the

behavior of your node, circuit, subroutine etc. behaves the way the documentation says it should. Be

wary, be cautious, be skeptical. And now back to our normal programming…

You have done this before… click on the LKit LED node and then click on the Help icon (the cute little

book) in the sidebar. This will bring up the information about how to use the node. Sadly, you will find

that many contributed Node-RED nodes are a bit thin on documentation, but, happily for you, the

Sequent Microsystems Learning Kit nodes come with adequate documentation (at least we think it does,

but you be the judge). Here is what you should see:

7 Frank Westheimer – American chemist (1912- 2007): “a couple of months in the laboratory can frequently save
you an afternoon in the library”

Figure 4-2: LKIT LED node

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 87 of 380

LED Node – “Single” Mode Operation
Start simple! Hook up the LKit LED node to an Inject node and see if you can control just one LED, the

one named GP1. You are going to be using the “single” mode where the node only controls one LED.

Here is how to do it.

• Bring in a copy of the LKit LED node from the palette.

• Double click to open the node editor

• Set the mode to “single” because you just want to control one LED rather than all four (In a new

copy of the node it will already be set because it is the default, but it is always good practice to

check).

• Set the LED to 1 indicating that you will be controlling the LED labeled GP1.

• Change the name of the node to LED 1 (Why not? It will make things easier to understand)

Now you should see this configuration for the LED Node:

Figure 4-3: LKIT LED Help Window (Partial)

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 88 of 380

• Click Done to close the editor for the LED node.

• Relax………………

• Now Focus!

• Now bring in an Inject Node and drop it to the left of the LKit LED node.

• Connect the two nodes

• Double click on the Inject node to open the node editor

• Change the name of your Inject Node to “ON” .

• Delete the msg.topic rule because you will not need it here .

• Edit the msg.payload rule so that the payload is type number with value 1 .

When you are done the Inject node edit should look like this.

• Click DONE to close the editor and…

Figure 4-5: ON Inject Node Edit

Figure 4-4: LKIT LED Edit Window

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 89 of 380

Deploy It! Yes, Yes, Yes, don’t forget this step!

Click on the ON Inject node. What happened? Did LED GP1 turn on or was it on already and nothing

happened?

Okay, so maybe you need a way to turn the LED off. To do this add another Inject node and wire it to the

input of the LKit LED node (See Figure 4-7)

Open the node editor for this new node by double clicking it and edit it the way you did for the ON Inject

node above:

• Change the node name to “OFF”.

• Delete the msg.topic rule. (Don’t need it here)

• Set the msg.payload rule so that the payload is type number with value 0

• When you are done it should look like this:

• Close the editor (click DONE)

• Your finished flow should look like this:

Figure 4-6: OFF Inject Node Edit

Figure 4-7: Turning LED 1 On and Off

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 90 of 380

Deeeeeeplooooy It!

Now when you click the ON Inject node the LED 1 should turn on and when you click the OFF LED node

the LED should turn off. Is this how your flow is behaving? If not, then you will need to drag out the

Debug node and look at the messages you are sending the node. If you hook a debug node up to the ON

and OFF nodes you should see a message every time you click one of the nodes in the debug sidebar

(Remember? The tab with the little bug on it.) This message should be either a 0 or a 1 in the form of a

number. Also, check that the configuration of the LKit LED node is set to control LED 1 (GP1).

If everything is working, go into the LKit LED node and change the LED to 2. Deploy it. Click OFF and ON

and see if LED 2 is changing. Now rinse and repeat for LED 3 and LED 4.

Okaaaaaay. Now you probably just turned each LED on and off a few times. Did you try to see whether

you could turn on one LED and then turn another one on and off? This is the essence of the “single”

mode that you are currently using with the LKit LED node: each LED works independently of the other

LEDs.

Try this:

• Modify the LKit LED node of your flow so that it controls LED 1.

• Make a copy of your first flow and drop it below the first flow (ctl-c, ctl-v)

• Modify the LKit LED node of the second flow so that it controls LED 2

• While you are at it open each LKit LED node and change the names to something like LED 1 and

LED 2, just so that you know which is which.

• DEPLOY it for heaven’s sake!

Your workspace should look something like the figure below.

Figure 4-8: Controlling Two LED Nodes

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 91 of 380

Experiment with turning the LEDs on and off. Can you create every pattern of two LEDs? Here is a little

test table:

LED 2 LED 1 Did It Work?

OFF OFF

OFF ON

ON OFF

ON ON

When you are working on your flow, it is always important to have an idea of how you are going to test

it completely. Does the table above cover all the possibilities? What would the table look like if you

were to build a flow like the one above but for four LEDs? Okay, extend the flow above to control all

four GP1 to G4 LEDs and test it. If your flow had 10 LED how many rows would there be in your test

table? Sorry, no extra credit for your answer, just the satisfying feeling of accomplishment. That’s

enough, isn’t it?

Many Outputs to One Input
Inputs can receive messages from multiple sources. You can see this in the flows you just completed

because the LKit LED node is receiving messages from two different Inject nodes. There is no limit to

how many other nodes a node can receive messages from other than making your flow so complicated

that even you, the creator, cannot understand it anymore.

Take your last flow and modify it so that it looks like the figure below. All you have to do is move the

wires around.

Note: the LED 2 node is not connected to anything, so it is not involved in the flow.

Figure 4-9: Four Nodes Controlling One LED

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 92 of 380

Ask yourself this: “Is this going to work? If it does work, what is going to happen?” Take a mental break

and think about this. Breath. Center. Think. Okay… click the Inject nodes. Does it work the way you

thought it would? If not, first ask yourself, “Did I deploy the flow after I made the changes?” Oh, yeah!

Those little blue dots mean you did not deploy the flow. Try again. If it still does not work, then you

should drag out a Debug node and see if the messages going into the LKit LED node for LED 1 are what

you thought they should be. Just remember that you cannot connect the Debug node directly to the

input of the LKit LED node for LED 1, which would certainly be convenient. Rather you, must connect it

to the outputs of all four Inject nodes. Messy, but at least you can see what is going on. Here’s what

your debugging arrangement might look like:

Make sure all the messages going to the LKit LED node are what you expect.

What have you learned from this exercise? If you did not know this before then you now know that you

can connect as many wires as you want to a single input node as long as the wires all come from the

outputs of other nodes. Good to know, important to know, don’t forget.

One Output to Many Inputs
Before we leave this simple system behind, let’s see if it is possible to connect a single output to the

input of more than one node. Do you think this is possible? How do you think it will behave?

Try this set up.

• Open a new tab

• Drag in one LKit LED node and drop it on the right side of your flow.

• Open the LKit LED node and make the following edits:

o Set the Name Field to LED 1

Figure 4-10: Capturing Messages

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 93 of 380

o Set the LED field to 1

• Now make three more copies of this node one below the other

• Edit Each of these nodes so that it controls a different LED and just to make things clear, change

the name of each LED node to be the number of the LED

• Now copy the ON and OFF Inject nodes from your previous flow (Figure 4-10).

Once you have a flow that looks like the figure above D…E…P…L…O…Y I…T…!

Now what do you think will happen if you click the ON Inject node? Try it. Was it what you expected or

are you totally confused? Now click the OFF Inject node. Did it work the way you expected?

LED Node - Group Mode Operation
Now that you have the “single” mode operation down it is time to explore how “group” mode works. In

this mode your LED Node will control all four LEDs at once. This is handy if you want to show a binary

number or maybe a moving meter, like the LED sound level meter on a piece of audio equipment.

When you select group mode for the LED node the way you use the msg.payload property changes. In

“single” mode the value of the msg.payload is either 0 or 1 depending upon whether you want the

selected LED to be on or off. However, in “group” mode the msg.payload is a number between 0 and 15

which and is the decimal representation of a binary number to be displayed. The number zero means all

LEDs are off and the number 15 means all the LEDs are on. On the Learning card GP4 LED is the least

significant bit of the binary number and the GP4 LED is the most significant bit. This means that if you

look at the board edge in GP4 will be on the righthand side and GP1 will be on the left. This is the

Figure 4-11: A Node Controls Multiple Nodes

https://en.wikipedia.org/wiki/Binary_number

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 94 of 380

natural way to look at a binary number. Of course, everything will be backwards if you look at the LEDs

through the top of the board from the other edge.

Here is a table showing how the decimal number in the msg.payload property translates to a particular

LED pattern as you view it from the edge of the board.

msg.payload LED Pattern

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

As is tradition, at least in this tutorial, whenever something new comes along we will begin with a simple

flow so that you can check your understanding. With that in mind set up a simple flow like the one in the

figure below (which you have done before)

Now, edit each node in this basic arrangement…

• Edit the LED Node (double click on the LED Node)

• Change the node name to “ALL LEDs” so that you know it is different from what you did before.

• Change mode to “group”

• Click DONE.

• It should look like this:

Figure 4-12: LED Group Mode - starting flow

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 95 of 380

• Edit the Inject node (double click on it)

• Delete the msg.topic rule (click the little X beside the rule)

• Change the msg.payload to:

o Type of number (select it from the drop down)

o A payload value of 5

Figure 4-13: LED Node Edit

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 96 of 380

• When you are done your edit window should look like this:

• Click DONE.

DEPLOY IT! Once you do you should see this flow:

Now click on the tab of the inject node. What pattern did you get in the LEDs? Is it the same as the

pattern shown in the table for the number 5? If not, it is time to debug. You know what to do… check

the configuration of each node in the node edit window. If that looks good attach a debug node to the

output of the Inject node and make sure the msg.payload is 5 and that it is numeric.

Once everything is working properly, open up the Inject node again and change it to another number,

like 10 or 3 or 8. Deploy it and check the results when you click the Inject node. Compare your results to

the table. If this works then try adding another Inject node to the input of the LED node. Configure this

node the way you did above, but with a different number. Deploy it (always). Now click one Inject node

and then the other. Does the light pattern change the way you expect? Add one more Inject node and

configure it with a different number. Deploy it. How does it behave?

Figure 4-14: Inject Node Edit

Figure 4-15: Group Mode Example - Completed Flow

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 97 of 380

Simple LED Puzzles
Time to demonstrate8 your prowess in using the group mode for the LED node.

LED Puzzle # 1 - Warning Lights – You’ve seen them on the highway when the patrol car pulls over a

miscreant9, hopefully not you. There are four lights in a row on top of the patrol car and they flash back

and forth between these two patterns:

(Yeah…, as if tiny flashing green LEDs on the Learning card are going to get anybody’s attention, but ya

gotta use whatcha got on hand.)

Your task: using two inject nodes and one LED Node set up a flow so that when you click one inject node

you get one pattern and when you click the inject node you get the other pattern. In another few pages

you will learn how to automate this, so practice on this little example now.

Once you finish this puzzle build a flow to do the same thing, but this time do not use the LED group

mode but rather use the LED single mode. This means you will need two Inject nodes and four LED

nodes. Now, ask yourself this: “Self, I need to turn ON some LEDs and turn OFF others. How in the world

am I going to do that with one Inject Node?” (Hint – you might need to use one of the other nodes you

have learned about, like… the Change10 node.)

Here is an example of how you might create the same function, but individual LED nodes in single mode.

Can you figure out how this works and build your own copy? How does the complexity of this

arrangement compare to using the group mode?

8 Demonstrate – if the word had been “test” then your hands would have become sweaty, your lips would have
started trembling and your brain would have frozen up like a block of ice at 74 N,94 W on December 21st.
9 Miscreant – Yes, it will be on the SATs.
10 If you have some experience in logic circuit design, you will see that you can use a Change node as a kind of
inverter. There are several ideas from circuit design that apply in the Node-RED environment because messages
are a bit like signals. Just remember that Node-RED is a different kind of beast and something that works well in
logic design might be a little weird to use in Node-RED.

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 98 of 380

LED Puzzle # 2 - Thermometer – Well, not quite, but it is a starting point and later, when you are

running, you will turn it into a real one. With four LEDs you can make a little bar display that will display

the magnitude of the value. Later you will use a real input source to control this mini meter, but for now

you will just be demonstrating the concept using Inject nodes. You will want to set things up so that you

have five Inject nodes arranged from top to bottom. When you click the particular node, you will get the

pattern (seen from the edge) shown in the table below.

Figure 4-16: Flashing Light Example in Single Mode

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 99 of 380

Inject Node Pattern

A

B

C

D

E

Here is what your flow might look like, but because you are now an expert in using the Inject and LED

nodes you will know how to configure these nodes without being given the details.

Okay, now you have built a simple demonstration. How about extending it so that the display shows

when the temperature is within a given range? In a few more chapters you will find out how to measure

temperature, but for now just enter the temperature using number using an Inject node. Yes, it is

clunky, but it’s a start.

When you click the Inject node you are going to generate a message with a number representing the

temperature. Your flow should convert the temperature into an LED pattern indicating the range the

temperature falls into according to this table:

Temperature Pattern

>90

70-90

50-70

32-50

< 32

Figure 4-17: Simple Thermometer Flow

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 100 of 380

To get you started here is what the flow should look like:

You will enter a temperature by putting it in the Inject node. The Switch node will figure out the range

and the nodes labeled “0 Bars” to “4 Bars” are change nodes that will control the LEDs. You know how

to configure the Inject, Change and LED nodes. Here is the configuration of the Switch node:

Your previous use of the switch node was very simple (see Chapter 3). This configuration is more

complex. The message you are sending from the Inject node is a temperature value. The Switch node is

going to figure out which range the temperature is in and then pass the message to one (and only one)

of the Change nodes that will in turn generate a message to the LEDs.

Figure 4-18: Thermometer Flow with Switch Node

Figure 4-19: Thermometer Flow Switch Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 101 of 380

There are five rules in this Switch node. A rule can have many options, which you can see if you click on

the drop down, like this:

In this case you want to compare the number received from the Inject node (the faux-temperature) to

different ranges. For example, the rule for output 3 (circled in Figure 4-19) checks if the temperature is

between 70 and 50. If it is then the message is routed to the third output port from the top of the node.

See if you can determine what rules 1 and 5 are doing?

Build up your flow based on Figure 4-18 and configure each node. Set a temperature in the inject node

and please, please, please DEPLOY IT! Click the inject node. Did it work? Change the temperature in the

Inject node to a different value. Remember, after you change the temperature value in the Inject node

you must DEPLOY IT for the change to take effect. Try various temperature values. Try some negative

values. Try five different values each of which should produce one of the five LED patterns from the

table.

Now if only you could measure a real temperature value. Be patient you will get there in Chapter 7.

However, later in this chapter you will learn how to pick up the outside temperature over the Internet.

Enough with the crawling, time to stand up and start…

Figure 4-20: Switch Node Options

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 102 of 380

Walking with LEDs – Pushbuttons, Delays, Subflows and Loops
Inject nodes are great for debugging and experimentation, but not really that great for real world use.

After all, if Mr. Nibbles breaks out of his cage, we really can expect him to click the “Cage Door Open”

Inject node on the way out. How about replacing the Inject nodes in some of the flow you developed

above with the pushbutton from Chapter 3? Not super exciting, but it’s a start.

What was that??? You hear a little voice in your head saying start simple? Good, the subliminal

messages from dozens of whispering hamsters inhabiting this tutorial are finally getting through. Start

Simple.

What could be simpler than one push button and one LED? But before you press on, it is time for a

commercial break brought to you by Rodent World – A Store for All Your Hamster Need!

Engineering Tip # 8 - Cook Up a Spec! One of the seductive things about all the wonderful tools at your

disposal is that it is very tempting to just jump into build a flow and think things out on the fly. However,

resist the Sirens’11 call, slow down and think carefully about what you want to do. For simple things, like

this flow, you can probably figure everything out with a quick sketch on the back of an old gum wrapper.

However, in the larger world of engineering, where you are working with colleagues, it is always helpful

(nay, necessary) to have a written specification for what you want to do. Mostly, this is so everybody is

on the same page(s), so to speak. A good specification tells the reader how everything is going to

behave, including all the strange usages that should not happen but probably will.

Returning now to our regularly scheduled broadcast…

How about a quick sketch of what you want to do in this flow? Like this perhaps:

• The name of the flow will be “Button to LED”

• Pushing the button should turn on LED 1.

• While you hold the button, down LED 1 should stay on

• When you let go of the button LED 1 should turn off

• As long as you are not pushing the button LED 1 should remain off.

• Whatever happens with LED 1 the other LEDs should not change.

Not bad, seems to cover all the cases. Well, not quite… What about when you first turn on the system or

start up Node-RED? Should LED be ON or OFF? Probably it should be OFF, but let’s ignore this for the

time being because you do not, yet, have the tools to set the startup conditions.

With this sketch in mind, it’s time to get down to work.

• Be smart. Save your current flows.

11 Sirens – No, not the noise makers on top of police cars and ambulances. Rather, the Sirens, who were
mythological creatures in the ancient Greek world whose beautiful singing would lure sailors to their death. Listen
to those thoughts about how easy it is to build a flow without any planning and your flow will lead you down to the
dark pit of total confusion. Take time to plan, Sailor!

https://en.wikipedia.org/wiki/Siren_(mythology)

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 103 of 380

• Then open a new flow and name it something like “Button to LED” per the specification.

• Delete all the other flows so that you are only working with one flow12.

• Drag and drop the LED node on the right side

• Drag and drop the LKIT Button node on the left side.

• Connect them with a wire.

Now pause and think for a minute… You know how the pushbutton node works and what sort of

messages it generates. You also know how the LED node responds to messages. How are you going to

configure your nodes? For the LED node your first question might be: “Am I going to use single mode or

group mode?” How are you going to decide? Well, it sure sounds like a job for a node in single mode

because in the specification only one LED is changing and all the other LEDs stay the same. So…

• Open the editor for the LED node and set the mode to single

• Name the node “LED 1” or something you think is descriptive.

• Set the node number to 1

 The Edit window for the LED node should look something like this:

12 Always be careful with other flows you have open because when you push the button there might be a node on
some other flow that is “listening” to the button. If you click on a flow tab and look at the bottom you will find a
very tiny button that allows you to disable the flow. Once you do your flow will look a bit sepulchral because
everything will be grayed out. This is a useful feature allowing you to break down you testing and debugging, or
keep an old flow around for reference.

Figure 4-21: LED Node Edit in Single Mode

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 104 of 380

• What does the LED node want to receive as a message? If you are not sure you can select the

LED node and open the Help tab in the sidebar (the little book icon). Right… The payload

controls the state of the LED: number 1 means ON and number 0 means OFF.

• Sounds good!

• Your flow should look like this:

• DEPLOY or FAIL!

Testing, testing, testing: Push the button. What happens to LED 1? Say whaaaat! It turns OFF? Check you

specification. When you push the button LED 1 should turn on. Opps. Stop for a moment and think:

“Hmmmmm… how did that pushbutton work? Go back to Chapter 3 (or select the Button node and

select the Help Tab). Yes, indeed, when you push the button the message payload has the number 0 in

it, which turns off the LED. If you don’t trust the documentation (and you probably should be wary) you

can use a Debug node to check the output of the Button node.

How are you going to fix the problem? Check the palette out. Maybe the change node will work.

• Insert a Change node between the Button node and the LED node.

• It looks like you are going to have to change the number 0 to a 1 and the number 1 to a 0. Your

first impulse is probably to write two rules in the change node. One to search for a 0 and replace

it with a 1 and another rule to search for a 1 and replace it with a zero. How confident are you

that this will work? Did you read the footnote back on page 48? Okay, you are uber-confident so

give it a try.

• Double click on the change node.

• Change the name to something like “1 to 0; 0 to 1” because that is what you want to do.

• Fix the first rule so that it searches for the number 1 in the payload and changes it to the

number 0. (You’ve done this before in Chapter 3

• Add another rule and set this one to change the number 0 to the number 1 like you did above.

The edit window in the change node should look like this:

Figure 4-22: Button to LED - Initial Flow

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 105 of 380

• Click DONE and see if your flow looks like this:

• Deploy that flow and see what happens.

Did it work? Probably not. Depending upon the order in which you wrote the rules in the Change node

you either turned LED 1 on one time or turned it off one time and then it was stuck. You were drawn

into the whirlpool by the Siren call of Expediency, and now you are in the Underworld of Doubt.

What went wrong? The answer is that the Change node may not behave exactly like you thought it

would (or should). Here is the problem: rules in the Change node are executed one at a time from the

Figure 4-23: Change Edit Window - First Attempt

Figure 4-24: Button to LED Flow - First Attempt

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 106 of 380

top of the list to the bottom of the list. Importantly, every rule is executed. In this flow each rule is

applied to the msg.payload property and changes that property. Effectively, the Change node grabs the

payload, puts it on the operating table and knocks it out with some anesthesia13. Then the Change node

brings out a scalpel and goes to work. Let’s listen in.

Dr. Change Node: “Okay, I am now applying the first rule. No problem, cut out this nasty

number 1 and stitch in a 0. Alright, second rule: look for a 0 and change it to a 1. Looky

here! there is the 0 I just put in, but the second rule says to cut it out and stich in a 1.

Great. I just follow the rules. Top to bottom. Out with the 0 and in with the 1. Nice job!

All done. You can close Nurse.”

Nurse: “Yes Doctor, but that sure was a pointless operation”

Dr. Change Node: “We just follow the rules here, all the rules.”

All that work and all that happened was that the payload is still the same except it is a little groggy from

the anesthesia. Beware, this is how the Change node works. Every rule is carried out, in order from top

to bottom on the payload and if you are not careful you can undo something you did in a previous rule.

Here is one way to fix the problem. Use three rules as shown below:

13 Look it up and while you are at it look up the origin of the word.

Figure 4-25: Button to LED Edit - Second Attempt

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 107 of 380

Here’s what is going to happen. The first rule is checked. If the payload contains a 0 then nothing

happens. However, if it contains a 1 then that is converted to the number 2. At this point the payload

will contain either the number 0 or the number 2. Now the second rule is checked. If the payload

contains a 2 then nothing happens, but if it contains a 0 then that will be changed to a 1. At this point

the payload has either the number 1 or the number 2 in it. Finally, the last rule searches for the number

2 and converts it to a 1. Of course, if there is no number 2 in the payload nothing happens. Read this

over a few times and make sure you understand it because you will need it later.

• Go back and fix the rules so that the Change node edit window looks like this.

• Click DONE

• Deeeeeploy it!

Test your flow. Does everything work like the specification says? If so, pat yourself on the back and have

a cup of coffee. Otherwise… no coffee for you. Well, you know what to do by now: get a Debug node off

the shelf and see what messages you are sending, read the Help notes, think, take a break, think some

more.

By now you are thinking: That is one hard to understand Change node. There has gotta be a better way”.

Yes, there are other better approaches, although some of them would require Java programming. Here

is one solution that does not require any programming it uses three nodes instead of one, but it is better

in the sense that it is easier to understand.

Suppose you took the messages from the pushbutton node and separated them using a Switch node.

The messages with the number 0 would go one way and the messages with number 1 would go the

other way. Now that the messages are traveling on separate wires you can change each one individually

and then merge the two results back into one message stream to send to the LED. Here is what this

would look like as a flow:

In the figure above each of the Change nodes (the yellow nodes on the right) have been given a name

that reflects what it does (e.g. one change a 0 to a 1 and the other changes 1 to a zero). At this point you

Figure 4-26: Button to LED with Switch Node

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 108 of 380

should know enough to put this flow together and configure the Switch and Change nodes. Only one

rule is needed in each Change node because the nodes only receive a specific payload value.

Here is another way to think about what is happening. Imagine once more that the messages are in little

freight trains carrying a payload. In this flow every time the pushbutton is pressed or released a train

leaves the pushbutton node with either a number 0 or a number 1 in the payload freight car. When it

reaches the Switch node those trains with a 0 (zero) are going to be switched to the upper track and

those with a 1 (one) are going to be switched to the lower track. Now the Change nodes only need to

deal with one value. The upper Change node, named “0 to 1” only has to change the payload value from

a 0 to a 1. Easy. The lower Change node just changes a 1 to a 0. Also, easy. Finally. the tracks (the wires)

join together, and all the trains proceed to the LED node.

You have the knowledge now to build the flow in Figure 4-26 and to configure the Switch and Change

nodes. Give it a try14. Once you get it working come back, celebrate briefly and continue reading.

If you are really confused and discombobulated with the flow above here is how the Switch and Changes

nodes are configured.

14 For the Change node you can use a “change” rule, but you know that each change node only receives one kind of
payload, so you can simply use a “set” rule to simple set the output payload to the opposite of the expected input
payload.

Figure 4-27: Button to LED - Switch Node Edit

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 109 of 380

Make sure that this flow is working properly because it is going to be used in the next example.

Subflows – making things simpler since 201615

Look at the flow in Figure 4-26. My Gosh, it is only a pushbutton and an LED but there are three more

nodes just to flip the value of the payload in the message. Messy, complicated, and confusing when all

you are trying to do is to make the LED light up when you push the button. Wouldn’t life be much easier

if a node to flip the value already existed, and maybe you can imagine a use for it somewhere in the

future. Even better, wouldn’t it be nice if you could build this node yourself. Well, you can by using

subflows.

15 2016 – when IBM donated their Node-RED development environment to the Open Source JS Foundation.

Figure 4-29: Button to LED - 0 to 1 Node Edit

Figure 4-28: Button to LED - 1 to 0 Node Edit

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 110 of 380

In Node-RED a subflow is a single node that represents a flow composed of several other nodes.

Subflows offer several advantages:

• They reduce the visual complexity of your flows.

• They make your flow easier to understand.

• They allow you to encapsulate a small flow so that you can reuse it in other flows.

• They allow you to build and test a flow and then reuse it, secure in the knowledge that nothing

has changed, which might not be the case if you were to recreate a simple flow from memory.

If you are familiar with conventional programming languages, you might think of subflows as something

similar to (but not exactly the same as) a subroutine or a macro.

Time to look at an example, which will make the concept much clearer. Let’s begin with the flow from

Figure 4-26 where the pushbutton controls LED 1. Here is the figure reproduced below. The Switch

node and the two Change nodes perform a simple but useful function, namely changing a 0 to a 1 or a 1

to a zero. Let’s make them into a single node that changes 1 to 0 and 0 to 1.

Follow the recipe, please:

• Select the three nodes outlined. You can do this by holding down the Shiift key and clicking on

each node in turn.

• Click on the main menu icon  (See figure below).

• Select “Subflows .

• Click “Create Subflow .

Figure 4-30: Original Button to LED Flow

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 111 of 380

Now you will have a new tab specifically for creating subflows like what is shown below.

Now use ctl-v to insert the three nodes you copied from Figure 4-30 into the workspace of this subflow

tab. Like this:

Figure 4-32: Creating a Subflow

Figure 4-31: New Subflow Tab

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 112 of 380

The only thing left to do is to add an input port and an output port. Remember, in Node-RED a node may

have zero or one input ports, but it may have as many output ports as you need, including no output

port. With this in mind…

• Click on the 1 next to “inputs” at the top of tab . This will add an input node to the tab

workspace, thusly:

• The subflow will have one output port. Click on the plus sign (+) by “outputs” to add one output

port . Now you will have the following workspace:

Figure 4-33: Subflow Tab with Copied nodes

Figure 4-34: Subflow with Added Input Port (Blue Arrow)

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 113 of 380

The input and output nodes are not connected, but you have probably figure out what to do. In case,

you are just getting back from the hamster farm, here are the steps:

• Connect the output port of the Input node to the input port of the switch node.

• Connect the output ports of the two change nodes (0 to 1 and 1 to 0) to the input port of the

output node (got it?).

• Move the input and output nodes to a nice sensible position (outputs on the right and inputs on

the left, right?)

Your subflow should look more or less like this:

The little blue dots resting so comfortably on top of the Switch and Change nodes mean you have not

yet deployed the flow. Now would be a good time to:

Are you done? Not quite. To make your shiny new subflow useful you should really do a few more

things: Give it a name, set up the Help tab and maybe perk up the appearance. Here’s how.

First, give it a name. If you don’t do anything then Node-RED will be happy to call it something very

descriptive, like “Subflow 8”. You and any future users might like something better, so…

Figure 4-35: Subflow with Added Output Node (Blue Arrow)

Figure 4-36: Completed Invert Subflow

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 114 of 380

• Double click on the tab . This will open the “Edit subflow template” as below:

• Click in the Name box and enter a name the makes sense, like “Invert” .

• The blue box in the figure above outlines the different tabs in the subflow edit dialog. Right now,

you are dealing with the “Properties” tab.

• Click on the little document icon  to select the “Description” to bring up the node description

for editing:

• Type in a description of the node as in the blue box above. Anytime someone uses your subflow

they will be able to see this description under the Help tab. Remember documentation is the

Golden Rule of engineering. Help other so that they will help you, maybe.16

If you would like your node to stand out from the crowd, try changing the appearance. Do this by:

16 Or as Yogi Berra allegedly said: “Always go to other people’s funerals, otherwise they won’t come to yours.”

Figure 4-37: Subflow Editing - Changing the Name

Figure 4-38: Subflow Editing - Adding a Description

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 115 of 380

• Clicking on the “Appearance” tab  to bring up the Appearance dialog in the subflow edit

window as shown below:

• Use the “Color” dropdown to select a pleasing color for your subflow . Lavender will do.

• Use the “Icon” dropdown to add a small icon to represent your flow .

• Click DONE!

Yes, DONE! Your subflow is ready to use.

Go back to your original Button to LED flow (Figure 4-30) replace the three nodes in the middle with the

Invert Node, like this:

• Delete the three node in the middle (Switch node and the “0 to 1” and “1 to 0” change nodes.

• Go to the top of the Palette menu and drag the Invert node between the Button and LED nodes.

• Wire up the nodes as in the figure below.

• DEPLOY IT!

• TEST IT!

Be sure to export and save your subflow for the Invert node you have just created. You will need it later.

Figure 4-39: Subflow Editing - Changing the Appearance

Figure 4-40: Button to LED Flow with Invert Node

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 116 of 380

Delays and Loops!
It’s time to revisit the Warning Lights puzzle from above and see if you can automate it. Below is one

possible solution using four LED nodes in single mode. There are no details here, but you have the

knowledge and the awesome power of the Invert node. See if you can recreate this flow. Remember the

point is that when you push the button one pair of LEDs (GP1 and GP3) is on and when you release the

button the other pair (GP2 and GP4) is on.

Deploy your flow (because there are little blue dots infesting the nodes) and push the button. Does it

work?

Great, except that it seems a bit less than useful that someone has keep pushing the button to make the

lights flash. Wouldn’t it be nice if this were automated? To automate this flow all you need to do is build

up a flow that generates messages with alternating 1 and 0 payload values spaced apart in time by, say,

two second. If you could do this, then you could replace the Button Node with your new flow.

The first step is to see if you can generate a sequence of messages with a payload containing a value of

numeric 1. A new message should occur every four seconds.

• Add a new blank tab to your workspace.

• Delete all the other tabs (of course, you will save the flows on any interesting tabs first).

• Pull in an Inject node and drop it in your workspace.

• Be brave! Open the Help file for the Inject node and see if you can understand the all the

functions this node might be able to perform.

Figure 4-41: Warning Light Example

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 117 of 380

• Now that you are thoroughly familiar with the Inject node capabilities open the Properties menu

(double click on the Inject node)

• First change the name to something descriptive, like “Generate 1s”  (yes, you do not need to

do this, but help out those who will come after you by making your flow a little less murky).

• Delete the “topic” rule  because it is not needed.

• Change the payload to be a numeric 1 .

Now your Inject node edit window should look like this:

Figure 4-42:Edit Inject Node Rules

Figure 4-43: Inject Node After Editing

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 118 of 380

Now scroll down and look at the bottom of the Properties Edit window.

• If you read the help menu for the Inject node you will know that the Inject node has several

functions. We are interested in the function that generates messages automatically.

• To use this feature, click the “Repeat” dropdown menu , and select “Interval” .

This will open a little selection block where you can select a time interval, either with the up/down

arrows or by directly typing a value into the box, as in the figure below:

• Set the interval to four seconds .

• Click DONE

What have you done? You have set out on the road to automation because now the Inject node will

generate a new timestamp message every four seconds (forever!). To see this in action add a Debug

node and connect it to the Inject node, like this:

Figure 4-44: Edit Inject Node Repeat Menu

Figure 4-45: Setting Inject Node Repeat

Figure 4-46: Generation of Repeated Messages

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 119 of 380

Get out a magnifying glass and look carefully at the Inject node. You should see a little circular arrow

(see blue arrow in figure above). This indicates that the node will repeatedly generating messages.

Deeeploy it!

If you did everything correctly then when you look in the debug window in the sidebar you should see a

new Debug message every four seconds. You will need the magnifying glass again to see the time (blue

box) but check what the time difference is between each message. It should be about four seconds as

below:

You now have in your hands a flow that will generate a sequence of messages four seconds apart. This

should feel very close to what you need to automate the Warning Light flow. By now you realize why

you cannot hook this up directly to your Warning Light flow. Because it is only generating the same

message over and over you do not have a way to change the pattern. Think about this. Suppose that

after a message in which a numeric 1 was generated you could wait for two seconds and generate a

message with a numeric zero in it. With a sequence of messages with 0s and 1s spaced two seconds

apart you could use the message with the one to turn on one set of lights and message with zero to turn

on the other set of lights. One way to do this is with a Delay node. Time to call up another node from the

reserve squad and see if it is up to the task.

The Delay Node
Start with an empty workspace by: Saving your flows, adding a new empty flow tab and deleting the

others. Ready to go!

• In your new workspace drag a Delay node from the palette and drop it in your flow.

Figure 4-47:A One Output Every Four Seconds

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 120 of 380

Note: When you first bring it into play Delay node is labeled with “Delay 5s” because the default delay is

5 seconds.

As many a hamster has said: “The best way to learn about the Delay node is to download a copy and

check out the help file.” (Select the node and click on the tab with the little book icon). Here are what

we are interested in: the simplest function of the delay node is to receive a message, delay it for a

specified amount of time and then release it to the output.

As always remember “SSS” – Start Simple Stupid17 and play with the node in a controlled environment

until you understand how it works. Let’s see if we can delay timestamp messages. Augment the four

second flow above (Figure 4-46) in your workspace by bringing in an Invert and Delay Node, as shown.

The Inject node (“Generate 1s”) and the Debug node are the same as in Figure 4-46. The two added

nodes (Invert and Delay) are going to produce the messages with a payload of 0 in between the

messages with a payload of 1.

Configure the delay node for a two second delay.

• Double click the delay node to open the properties menu

• Set the delay for 2 seconds.

• Click DONE

Your edit window for the delay node should look like this:

17 SSS – and her cousin KISS = “Keep It Simple Stupid”

Figure 4-48: Delay Node Fresh Off the Palette

Figure 4-49: Flow to Generate Alternating 0 and 1 Payloads

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 121 of 380

Look at the figure above and think about how it might behave. [time passes as the neurons in your brain

fire……] Did you figure it out? Compare your idea to this description:

“Once you deploy the node the Inject node (“Generate 1s) will generate a message with

a 1 in the payload every four seconds and send it to both the Debug node and the Invert

Node. The Debug node will print the message. The other copy of the Inject message goes

through the Invert node where the payload is changed to 0. This message is delayed for

two seconds and then sent to the Debug node where it is output in the debug window.

The cycle will repeat every four seconds.”

If you think the flow will do this, then DEPLOY IT!

In the debug window you should see a message every two seconds (check the time stamp) the payload

will alternate between 1 and 0 as in this figure:

Figure 4-50: Delay Node After Editing

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 122 of 380

Did the flow behave as described above? If not put on you’re thinking cap you ordered from

HamsterHats.com and using some extra debug nodes to trace the messages.

Once you have convinced yourself that your flow is working it is time to combine it with the Warning

Light Flow from Figure 4-41. The Alternating 1 and 0 flow is going to generate a stream of payloads with

alternating ones and zero. In the Warning Light flow the pushbutton did this, albeit manually. It sure

looks like it would be simple to combine the two flows. Start here

• Open a new tab and import your Warning Light flow (Figure 4-40)

• Copy all the nodes from your Warning Light Flow to The Alternating 1 and 0 flow from Figure

4-41.

• Drop them in the Warning Light flow at the bottom.

You should now have something like this figure:

Figure 4-51: Alternating Ones and Zeros in
Payload two seconds Apart

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 123 of 380

At this point you just want to take all the messages arriving at the Debug node  and send them to all

the places that want messages from the Button node to go . What a mess, because you are going to

have to rewire everything, which bring with it the possibility of mistakes. There are several ways to

accomplish what you want without making a tangle of your flow. Also, by keeping the Alternating 1 and

0 flow and the Warning Light flow separated graphically it is easier to understand what is happening.

Go back to the Node-RED palette and find the Link In and Link Out nodes (see figure below)

The Link Out node allows you to collect messages from multiple nodes in your flow and send them over

a “virtual” link18 to an identified Link In Node, where they can be distributed to multiple other nodes.

What we want to do here is to replace the Debug node in the upper flow with a Link Out node and

replace the Button node in the lower node with a Link In node. Then you will connect them together.

• Replace the Debug node with a Link Out node .

18 Think “imaginary” link although the results are real and concrete enough.

Figure 4-52:Combined Alternate and Warning Light Flows

Figure 4-53: Link In and Link Out Nodes in Palette

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 124 of 380

• Restore all the wires from the Generate 1s node and the Delay node to the Link Out node.

• Replace the Button node with a Link In node .

• Restore all the wires from the Link Out node to the Invert node and the LED 4 and LED 2.

Your flow should now look like this:

At this point you are probably thinking: “Great! But how do these links know to talk to each other?”

Answer: you must tell them how to connect. The easiest way is to give each link a name. Start by:

• Double clicking the Link Out node and giving it a descriptive name like “Off-On”  because the

messages it sends are going to determine when the warning LEDs change.

When you are done the Link Out Edit window will look like this:

Figure 4-54: Combined Flows with Link Nodes

Figure 4-55: Link Out Node Edit Window

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 125 of 380

When you finish editing look at the area below the name box . This is a list (in this case a very small

list with one item) of all the Link In nodes in the flow that you can connect to. The number is a bit cryptic

because it is the unique19 ID number for the Link In nodes in the flow. But ignore this for now. Instead:

• Click DONE

• Double click the Link In node and give it a descriptive name like “LED Control”  because the

messages it receives are going to determine which light are on or off.

You should have something like this:

Look down below the name at the list of nodes. This is the list of all the Link Out nodes that you can

connect to this Link In node. Better yet because you gave the Link Out node a name, “Off-On”, you do

not need to deal with cryptically unique numbers, you can just deal with the names of the nodes. You

want to connect the Link Out node named “Off-On”, so…

• Click the check box next to the name “Off-On” .

You should now see this in the edit window:

19 Not quite unique because the numbers are assigned at random when the node is created. But, close enough,
because there are 232 different number to represent nodes and 220 flows that further identify the node. Close
enough unique for use in this universe. However, things will become problematic if we living in a multi-verse.

Figure 4-56: Link In Node Edit Window

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 126 of 380

• Click DONE.

• Go back to the Link Out node and double click it to open the edit window.

• Check the box next to “LED Control” to indicate that you want the Link Out node to connect to

the Link In node named “LED Control”

• Click DONE

In your workspace click on either the Link Out or Link In node. This will bring up a dashed gray line

indicating that any message received by the Link Out node will travel over the wire represented by the

dashed line to the attached Link In node and thence to any nodes that output port of the Link In node is

connected to.

Figure 4-57: Link In Editing - Completed

Figure 4-58: Completed Warning Light Flow

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 127 of 380

Deploy It because the blue dots are annoying.

If you made no missteps, you will now see that the LEDs alternate between the two patterns every two

seconds. If you think that this is not going to get very much attention, go back and adjust the time

interval in the Generate 1s node to, say, one second. Then adjust the delay in the Delay node to be half

that value or 0.5 seconds20. Deploy and enjoy the micro-light show.

LED Puzzle # 3 - Links from Different Tabs – In the above example flow try moving the lower flow to a

different flow tab. How does that affect the link nodes? Are they still connected? Deploy the flow and

see if it still works. Click a link tab on one of the flows. Can you tell what node (or nodes) it is connected

to?

LED Puzzle # 4 - LED Control in Group Mode – Go back to the LED group mode flow shown in LED Puzzle

#1 (of course you saved it). Bring that flow in and substitute it for the lower flow. Make the necessary

modification to link this flow to the upper flow. Deploy it. Does it work the same way as the original

flow?

LED Puzzle # 5 - Null Nodes – rather than use link nodes to wire the two flows together you might use

some sort of “null” node which just takes messages in and passes them to the output. However, in Node-

RED there is no such thing as a “Null node”. With your now substantial (really!) knowledge of Node-RED

you should be able to think of at least six ways to make a “Null Node”. See if you can create three

examples. Make your examples into a subflow labeled “Null”

• Test each of your “Null” nodes.

• Substitute one of your Null node creations for each Link Out and Link In node in Figure 4-58.

• Deploy the flow

• Did it work?

Here is what a Null Node should look like:

Beware! Loops Ahead
It is now time to take up the subject of “Loops”. Node-RED is an event-based system, where an event,

usually in the external world, occurs and triggers a cascade of messages that result in actions. This is part

of the charm of Node-RED. In the some of the recent experiments you have done you have been able to

trigger repetitive actions using the Inject node, however, using delay elements and loops you can

arrange for messages to circulate on their own and trigger continuous actions. Before we proceed

however this station brings you the following public service announcement:

20 The delay value should always be less than the rate at which messages are generated. Otherwise, you will be
issuing the delayed messages after the next generated message. Experiment with the values and see what
happens.

Figure 4-59: Null Node

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 128 of 380

Engineering Tip # 9 - Beware of the Loop! Loops are the powerhouse of many programming languages.

The difference between a calculator and a computer is that while the calculator can plod through a

single calculation a computer can chain calculations together and repetitively perform them on different

data. This wonderful capability comes to you courtesy of loops, which are nothing more than sections of

code that run over and over again until they accomplish some purpose. Powerful, but remember the

Parker Principle from an earlier discussion or to paraphrase “Chainsaw are terrific tools but use with

care.” Probably more programs have foundered on simple mistakes in loop construction than any other

cause. Mistakes in controlling when loops stop, where they stop or that they even stop at all is the cause

of many problems. Work carefully and the loop will be your friend, one moment of inattention and your

loopy flows will crush your program.

Let the Light Shows Begin!
In the following examples and puzzles you will be working with simple loops to automate the display of

patterns on the LEDs. As is usual let’s start with something simple.

Specification for Set LED 1:

1. The flow has two Inject nodes: CLEAR and START.

2. Clicking on CLEAR turns all the LEDs off.

3. Clicking on START turns on only LED 1.

STOP! Think! Can you build the flow just from the specification above? Give it a try.

Does your flow look more or less like this?

Good – Deploy It!

Test it against the specification above. Can you clear all the LEDs? Does clicking START turn on only LED

1? Can you turn it off with the CLEAR node?

Figure 4-60: Flow to Turn on LED 1

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 129 of 380

If you had trouble here is how each node is configured.

Next step. Consider this extension to the specification:

4. After one second LED 1 turns off.

Give it some thought. This sure sounds like the kind of game the Delay node would like to play in. Where

would it go? How would you use the output from the Delay node? How would the output of the delay

node turn off LED 1?

Figure 4-63: Configuration of START Node Figure 4-61: Configuration of CLEAR Node

Figure 4-62: Configuration of All LEDs Node

Figure 4-64: Configuration of LED 1 Node

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 130 of 380

See if you can modify the flow to meet the new requirement. Deploy it! Test it! Success or dismal

failure?

Did you get something like this?

The purpose of the CLEAR subflow is simply to turn all the LEDs off so you can see what is happening.

When you do click the start node a message with a payload of numeric 1 goes to both the LED 1 and the

Delay nodes. In the first case it turns LED 1 on and in the second case the message sits in the delay node,

twiddling its thumbs for 1 second before moving on. So, LED 1 turns on and time passes. After one

second the message passes through the Invert node and the payload becomes a 0. When this message

hits the LED 1 node it’s lights out.

Well, not bad. At least you have a one second Flash, unfortunately, it is only one flash. Can you think of a

way to keep the LED flashing without click on the mouse all day?

How about this: suppose you took the message that comes out of the Invert node and sent it back

around to the input of the Delay node? Wouldn’t that be almost the same as clicking the Start node

again. Should you try it? Or, would all life in the known Universe end if you did such a crazy thing. Think

about it… no more rainbows, no more clouds, no more planets, no more galaxies and no more unicorns.

Should you take a chance? Yeah, what the heck, probably it will be OK and if it does destroy the

Universe who’s to know21.

21 During the testing of the first atomic bomb there were some scientists who thought that the test might set the
oxygen in the atmosphere on fire [Bethe, Teller, Trinity and the End of the Earth] Such an outcome would have
ended all life as we know it, but fear not, the anaerobic bacteria would probably have survived and after a few
billion years we’d be back.

Figure 4-65: Delayed Off Flow

https://blogs.scientificamerican.com/cross-check/bethe-teller-trinity-and-the-end-of-earth/

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 131 of 380

Make the change so the flow looks like this:

Deploy it if you dare!

Whew, close one, fortunately, the Universe did not end22 and LED 1 is happily flashing away… forever.

Yes, the message controlling the LED will happily circulate forever between the Delay and Invert nodes.

In the chapter on relays, you will learn how to terminate loops. Until then here is a hack, yes, a hack

right here in the middle of this very scientific and technical tutorial. Well, use what ya got! The simple

hack is this: move one of the nodes a tiny bit until the little blue dot showing it is undeployed appears.

Then if you deploy your flow again the current flow will be terminated. Weird and ugly, but it does the

job for now23.

LED Puzzle # 6 - Flash them all – Modify the flow above to flash all the lights on and off together.

Remember the Invert node you made earlier will only change a zero to a one and vice versa. You must

either replace this node or accommodate it in some way. Also, you will want to change the LED 1 node

to use the group mode so that you can control all the LEDs at once.

Shifty Lights
Let’s work on something more complicated. Here is the specification:

1. There is one Inject node labeled “START”

2. When you click start all the LEDs are cleared.

3. One second only LED 1 turns on.

4. The sequence proceeds as below every second, forever.

22 But if you are not careful you could blow up your Node-RED program. If you play around with loops, you will find
that you cannot connect the output of a node directly to its own input. This is a bit of a safety feature of Node-
RED. Imagine what you happen if you connected the output of a change node to its input. Messages would start
flying around between the input and the output about as fast as they could. After a few minutes the CPU in the
Raspberry Pi would start to glow red and then after an impressive flash and a small puff of smoke you would need
to buy a new card. Actually, not. The Raspberry Pi is smart enough to shut down before it melts.
23 The location of the node on the workspace is part of the node definition. Moving the node a little bit changes
the node definition and Node-RED takes this as a cue that the flow has changed, which it has, but not in any
significant way.

Figure 4-66: Simple Loop Flow

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 132 of 380

There are several ways to meet the specification. You could set up a huge loop to controls each LED

individually or you could use the LEDs in group mode as in the following.

Notice that here the delay is moved to a slightly different place. The overall function is the same, but it is

easier to build and understand if you wire the change nodes to one place, namely the delay node. See if

you can understand how this flow works and then…

Build up the flow. You have enough skill and knowledge now to build a flow just from the specification

and maybe a hint or two about how the flow should look. Note the loop from the output of the delay

node to the input of the switch node. It is a bit hard to see. In Node-RED you can connect a wire from

one node to another, but you can’t control how Node-RED routes the wires. This means that a loop is

not always obvious or is blocked by other nodes. Sometimes you can move the nodes around a bit to

emphasize the loop or the intended flow of information.

Figure 4-67: Shifting LEDs Flow

LOOP!

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 133 of 380

If you are having trouble understanding the flow here is the configuration of the Switch node.

Deploy your flow and see how it works.

Puzzle # 7 - Shift the other way – In the flow above the LEDs shift from left to right. If you were able to

get the flow working then see if you can modify the movement of the lights so that the flow in the

opposite direction, i.e., from right to left.

Puzzle # 8 - Ping-Pong Lights – Bounce a single lighted LED back and forth between LED 1 and LED 4.

Here’s the pattern.

Figure 4-68: Shifting Lights Flow Switch Node Edit

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 134 of 380

Puzzle # 9 - K.I.T.T. Lights – Back in the old days (1982) there was a TV series called Knight Rider

featuring a cyber-intelligent car called KITT (Knight Industries Two Thousand). As per the usual

Hollywood trope24, it was the product of some eccentric millionaire’s imagination and engaged in

bring the bad guys and gals to justice. The dashboard had all sorts of lights and TV screens

(imagine that). On the front of the car were 8 lights that moved from side to side to express

whatever emotions the cyber-car was currently experiencing. You only have four LEDs so here is

an approximation of the pattern.

Probably the lights should shift every half second. Can you build it?

Science Fiction Lights
Now for something interesting and a little strange. Suppose you were sitting at your desk and a famous

movie director knocked on the door. You open the door, and she rushes in with a request: “Look, we are

in big trouble. Tomorrow we are shooting a big Sci Fi spectacular, and our spaceship needs some

flashing lights in the command center. Just four little green LEDs will do25. Can you help us?” Cool, but

what are you going to do?

You’ve seen it every time you watch any Sci Fi movie, especially from the 1960s. In the background on

the panels are lots of randomly flashing lights. You can probably do the same thing. There are at least

two approaches. You could put a random four-bit pattern up on the four LEDs every second, however, it

would look a bit stiff because LEDs would turn on and off in groups every second (see the next section).

Another approach would be to turn each LED on and off for random lengths of time. But, my goodness,

how would you do such a thing? Turns out that you already have a node to do this, the trusty Delay

Node.

Open up a tab and drop a delay node on it. Double click the delay node to open the properties menu.

Notice that the default condition (the configuration when you first drop a node in your workspace) is a

fixed delay. But wait a minute, that box is a dropdown menu. Open it and you will see that you can

select a random delay. It does not get much better than this: you can delay messages for a random26

amount of time. If these messages control the LEDs, then you are all set.

24 Trope – this word will be on the SAT.
25 Apparently, it is not going to be a big budget block buster.
26 Technically there is a little elf inside the node that rolls some dice every time a message comes in and then, using
a tiny stopwatch, hangs on to the message for the length of time determined by the dice.

https://en.wikipedia.org/wiki/KITT

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 135 of 380

Select “Random Delay” from the dropdown menu and you will see this”

You can set a delay range and the message will be delayed by some random time selected from within

that range.

By now you know how to start: SIMPLE! Set up a flow like the one below:

Set the random delay to be between 0 and 2 seconds. Deploy it and see what happens. Notice that

whenever a message is delayed a little blue square appears below the node telling you what the delay

time is.

Now extend this simple flow to cover the other three LEDs. Something like this:

No assembly instructions included because if you are able to get the random flashing of a single LED to

work you will be able to put this flow together and Deeeeppppllllooooy it!

Figure 4-69: Delay Node Edit for Random Delay

Figure 4-70: Random On and Off for One LED

Figure 4-71: Random Flashing of Four LEDs

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 136 of 380

Puzzle # 10 - Radiation simulation – you did such a great job on the SciFi front panel that the director

asked you to create the sound effects for a Geiger counter. You know how to play a sound. Can you

build a flow so that each time a lamp turns on or off a click is played in your headphones or on your

speaker? You know how to make a message play a sound, so it should be straight forward. Try it out.

Does it sound like a Geiger counter?

Rolling the Die
If you are a Dungeons and Dragons player, you know that some games use a 16- sided die. On the

Learning Card you have four LEDs, just enough to display all the numbers between 0 and 15. Let’s build

and electronic version.

Specification:

• An inject node labeled ROLL

• When clicked the LEDs go blank for one second and then display a random number between 0

and 15 until the inject node is clicked again. Yes, it is a little hard to distinguish the blank period

from 0, but it’s the best we can do here.

Where are the random numbers going to come from? Well, of course, there’s a node for that: the

Random node.

Listen to the hamsters: read the Help file!

To make sure you understand how the Random node works follow the SSS principle. How about a flow

like this?

Figure 4-72: Random Node

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 137 of 380

Click the inject node labeled ROLL a few times and see what sort of numbers you get. Open the Random

node for editing by double clicking on it. You will see that the default setting for the node is to create a

random number between 1 and 10 every time it receives a message.

Now you know what to do. Fix up the random node so that it generates numbers between 0 and 15 and

send the result to the LEDs. This looks like a good time to use the LEDs in group mode. Now all you have

to do is figure out how to turn off the LEDs for one second before you present the answer.

Does your flow look like this?

Deploy your flow and see if it meets the specification. Be sure to check that there is a 1 second break

between the display of the results.

Puzzle # 11 - Pushbutton Die – modify the rolling die example so that pushing the button on the

learning card roles the die. Just remember that the Button Node generates two messages: one when the

button is pushed and one when it is released. You will need to get rid of the second message.

Figure 4-74: Random Flow Test Flow

Figure 4-73: Random Node Edit Dialogue

Figure 4-75: Random LED Flow

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 138 of 380

Puzzle # 12 - Sci Fi Lights – Take Two – Modify the Die flow above so that it once started it loops forever

it places a random number on the four LEDs once each second. How does the display compare to the

one for the Sci Fi Lights above? Which one looks more like a real science fiction console?

Crawling, Walking… enough! Now it is time to Run with the LEDs.

Running with LEDs

Email To LEDs
Let’s start with a relatively simple project in which you will control the LEDs from Email messages. Yes,

of course it is a little weird, and there are better ways to connecting to the outside world. However, you

should give it a try because it will be good practice.

You can control the Learning Card from Email messages. Right now, the main issue is to keep the Email

messages simple so that you can analyze them with simple nodes, like the Switch and Change nodes.

How about this for a specification:

(In the following the quotes around text identify the text and are not included in the text of the email).

• The subject line will contain “LED Control”. (Because later you might want to use different

subject lines to direct commands to other Learning Card output types, like relays).

• The email body will provide the particulars of LED control and may contain any of the following

command strings.

o “LED1:ON”, “LED1:OFF”, “LED2:ON”,… “LED4:OFF”

o “GRP:0”, “GRP:1”, “GRP:2”,… “GRP:15”

• Strings starting “LED” indicate control of a single LED identified by the number and set to either

on or off as indicated.

• Strings starting with “GRP” indicate control of the LEDs as a group where the number in the

string is sent to the LEDs as a group mode command.

• All command strings must be on a single line in the email body.

• All commands in a line will be executed, but the order of execution is arbitrary.

This is a bit tricky, but then you are running now so chase the solution down.

First things first. How does one even get an email message into Node-RED? By now you know the

answer: There’s a node for that! Check out the palette and locate the Email input node that looks like

this:

Note: the email node has either one or no input port depending on how it is configured. Here you will be

configuring the node to have an input port so that you can control testing. More later.

Read the Help File. Otherwise, you will be running in the dark and that’s a good way to trip.

From the Help file you should have the following ideas in mind.

Figure 4-76: Email Node

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 139 of 380

• The email node periodically (or on demand) checks an email server (like Gmail.com) and fetches

any messages there that have not been marked as read.

• The msg.topic property contains the subject line of the email.

• The msg.payload property contains the email text.

To work with the Email node, you will need to set up an email account. The example here is based on

Gmail because it is free and if anything goes wrong, like you start getting hundreds of emails for hamster

exercise wheels, you can toss the account into the waste bin.

The other issue is that you will need to lower the security setting for the account because you will be

accessing the account with an untrusted application. You are bypassing some of the security checks so

be sure that this email is not linked to any of your important accounts. Be safe.

Based on the specification above you want to set up a flow that periodically checks for new email

messages; if it finds one it must parse the subject line and the email body and act on any information it

finds there. “Parse” is just a fancy word for analyze, but in the world of computer science one meaning is

to locate and identify specific substrings in a larger string. For example, here you will want to find a

string like “LED:1” somewhere in the email body.

It certainly seems like this is going to be a complex flow, so listen the hamsters and start simple. You will

want to build of the pieces of the flow individually, test each piece, combine the pieces and then test the

overall flow. The first thing to do (after reading the Help file, of course) is just to see if you can fetch an

email message and show it in the debug sidebar window. How about a flow like this?

In the Email message you are going to need to see both the email text and the subject line, so that is

why there are two Debug nodes.

Now comes the tricky part: configuration. Check out the figure below.

Figure 4-77: Simple Email Flow for Testing

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 140 of 380

Look at each part of the configuration from top to bottom.

• “Get Mail” – here you are going to use “when triggered” – This mean that when the Email node

receives a message it will contact the server to get your mail.

• “Protocol” – “IMAP” is the default protocol and will work with Gmail.

• “Use SSL” – “never” is the default and will work with Gmail.

• “Server” – “imap.gmail.com” is the default because almost everybody is using Gmail. If you use a

different server, you will need to find out the address of your email server.

• “Port” – “993” for Gmail, your email server may be different.

• “Userid” – plug in your email address.

• “Password” – plug in your password. You will need to renew the userID and password in this

node if you stop Node-RED and restart later. This is so that your password is not just sitting in

the node description, which anybody with access to your computer can read.

• “Folder” – “INBOX” is the default and is the place where this node will look for emails.

• “Disposition” – “Mark Read” is the default. This tells the email server that once the email has

been downloaded to mark it as “Read”. This is important because if you do not mark the emails

you download as “Read” then you will end up reading the same email again and again.

Figure 4-78: Email Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 141 of 380

• “Criteria” – the default is “Unseen”. This indicates to the email server that you only want

messages that you have not yet seen, in other words all the messages that have not been read

yet.

If this does not make sense to you think about the email server as a post office, but one that stores all

your mail forever. In this post office you do not take your mail away, you only get to take away a copy.

This would not work in real life because post offices would need to have huge warehouses to store all

the mail and rows of copy machines to make the copies. In the digital world it is no problem because

storing bits is easy and making copies is even easier.

Keeping in mind this strange “store and copy” post office and think about the configuration this way.

You (thinking to yourself): “There’s the one o’clock whistle, I’d better go to the post office and check for

mail” (Get mail when triggered)

You (thinking some more): “At the post office they are very formal, I’s better say please and thank you.”

(Protocol)

You (thinking, thinking, thinking): “Normally, I’d use a translator because to keep things really secure the

clerks in this post office only speak Navaho27. But I’m going to take a chance today ask them to use

English.” (SSL and start TLS).

You (still thinking away): “Let’s see the post office is at Gmail Avenue” (Server)

You (more thinking): “I aways got to counter 993.” (Port)

You walk to the post office and step up to the counter…

Clerk: “May I have your name and see your driver’s license please”

You: “Certainly I’m Harold Amster and here’s my license.” (Userid and password)

Clerk: “Thank you sir, how may I help you

You: “I’d like to get a copy of some of the messages I’ve received that are stored in the INBOX folder.”

(Folder)

You: “After you make a copy of the messages for me could you stamp them all as “READ” in big red

letters?” (Disposition).

Clerk: “I can do that for you”

You: “Please only make copies of those messages that I have not seen yet, so don’t make copies of any

messages marked as READ.” (Criteria)

Clerk: “No problem Mr. Amster. Here are your copies. Have a nice day.”

You: “Thank you. It’s been my pleasure”

27 During the Second World War US Marines in the Pacific used Native American language speaker to keep
important radio and telephone messages secret. The code was never broken. See Code Talkers.

https://en.wikipedia.org/wiki/Code_talker

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 142 of 380

Important: Remember you must lower the security of your email account to allow for access by Node-

RED. Follow the directions from Chapter 3 for the Pushbutton to Email example.

Ready to go? Deploy your flow. If you have not configured the Email node properly you may get

messages in the Debug sidebar that will give you some idea of what went wrong.

• Now go to a different email account and send a message to your new account with the subject

line of “Test Email #1” and a text body of “Hello to the wonderful world of LEDs!”

• Go back to your Node-RED flow.

• Select and clear the Debug sidebar.

• Click the Inject node to trigger the Email node.

• After a short delay you should see your email in the Debug sidebar.

If things did not work out the way you expected check the tiny little messages that appear under the

Email node as the system cycles. These track the progress of your interaction with the email server. If

you see a message in red that will be a clue to where things got tangled up.

The figure above shows the received test message. Now…

• Clear the Debug messages

• Click on the Inject node to cycle the email access again.

Did anything happen? You should not have received any new messages because you told the email

server to mark your last message as “READ” and you are only requesting copies new, unread messages

to be sent to you.

Figure 4-79: Received Test Message

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 143 of 380

Try this: send a message in the format of the specification. Make the subject line “LED Control”, but

without the quotes and make the text “LED1:ON”, again without the quotes. It should look like this

when you fetch it using your Node-RED flow.

The next step is to put together a flow that will fetch the email and separate out those email messages

that relate to LED control. These are the messages you are going to process further. You can modify the

flow from Figure 4-77 into the flow shown below.

In this flow the Switch node labeled “Decode Topic” is going to check the subject line (i.e. the topic) of

every email received for the string “LED control” and if it finds such a string it will send the message to

the Debug node where the message text will be printed.

Here is the configuration of the Decode Topic change node:

Figure 4-80: Example of Received LED Control Message

Figure 4-81: Topic Decode Flow

Figure 4-82: Decode Topic Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 144 of 380

Look carefully at this configuration because it is a bit different from other Switch node configurations

you may have used. The property that you want to examine is the msg.topic  rather than the

msg.payload because the msg.topic is the subject line of the email. The first rule uses the comparison

action “contains”  and the comparison string “LED Control” . This rule indicates that if the subject

line of the email (i.e. msg.topic) contains the string “LED Control” anywhere in the subject line string

then the messages should be sent to output 1. Note that the second rule “Otherwise”  indicates that

any messages that do not meet rule 1 should be sent to output 2 and good-bye. The overall effect of this

swich node is to isolate those emails with the subject line “LED Control” from all the other emails you

might receive for vitamin supplements, investment opportunities, pet food and from widows of Nigerian

military officers who have probles obtaining their inheritence and need your help.

Cook up a few email messages, some with “LED Control” in the subject line and some without. Send

them and then pick them up with the flow in Figure 4-81. Those messges with “LED Control” in the

subject line should pass the message to the Debug node connected to output 1 of the Decode Topic

node.

Next Step: Separate single mode control messages from group commands. The email text commands of

the form “LEDx:ON” and LEDx:OFF” (where x is the LED number) must be separated from those

commands of the form “GRP:y” where y is the group code. This is easy to do with another switch node

that determines whether a string contains one of the commands by looking for “LED” or “GRP”.

Extend the flow above with another Switch node (Separate messages by type) as in the figure below:

Here is the configuration of the Switch Node (Separate messages by type).

Figure 4-83: Separate Messages by Type Flow

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 145 of 380

The operation here is simple. The first rule checks the payload (email text) for any string containing

“LED” and sends the messge to output 1. Similarly, the second rule checks the payload for any string

containing “GRP” and sends it to output 2. There is something unusual here. The defualt configuration of

the Switch node is to apply all the rules. If more than one rule applies the same messge is sent to all the

outputs where the rules apply. Thus if a msg.payload contains both “LED” and “GRP” each output will

get a copy of the input message. This is a bit different from the train switch yard analog discussed in

Chapter 3. It is more like a magic train swich yard where you can duplicate trains and send them to

different tracks. Keep this in mind.

Once you get this flow set up, deploy it and try a few test Email messages. In some include an email text

with, say, “LED1:ON”. In others include “GRP:7”. In another messge include both “LED3:OFF” and

“GRP:10”. Finally try a message that contains no substring of “LED” or “GRP”. Check the results and see

what the Debug output shows. Pay special attention to the test case where the message contains both

“LED” and “GRP”. In this case you should see the message twice in the output sidebar.

If all this works it is time to build flows that will decode each message to find the commands and then

carry them out. The approach here is going to be very heavy handed. There are much better ways to do

this, but they require unstanding of advanced topics like “regular expressions” and Javascript. Because

this tutorial is trying to work with simple, introductory techniques you will be doing the command

decoding the hard way, with heavy stone axes.

Figure 4-84: Separate Messages by Type Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 146 of 380

As usual the best idea is to start off with a simple example and then build it out. To do this open a new

tab and build up a flow like this.

The purpose of this flow is to make sure your understanding of single mode decoding is correct. On the

left are Inject nodes (like LED1 ON) that inject a payload with text for single mode commands. The

switch node (Single LED Commands) selects out messages containing “LED1:ON” and LED1:OFF”

commands. The two change nodes (e.g. Turn on LED 1 and Turn off LED 1) simply generate a payload

with a one or a zero to send to the LED 1 node.

On the left side are two Inject nodes (LED2 ON and LED2 OFF) that inject messages that should have no

effect on LED 1 because the switch node will not recognize them. You can add other similar inject nodes

to test whether their messages will change LED 1.

Here is how the Switch node (Single LED commands) is configured.

Once you have this test flow working expand it to cover all eight of the single mode LED commands. You

should have something that looks like this:

Figure 4-85: Single Mode Decode Test

Figure 4-86: Single LED Command Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 147 of 380

This flow is just an expansion of the flow in Figure 4-85 above. On left side is a Link In node that you will

later use to connect to the email access flow.

Onward, now it is time to build something similar for the group mode LED commands. It will be very

similar to the flow above except it will be used to grab the group mode commands. Start simple and

build a small test flow.

There is also a small issue here. Commands line “GRP:14” and “GRP:1” are very similar. Even worse the

string “GRP:1” is contiained within “GRP:14” (and “GRP:13”, “GRP:12 …). This means that you will need

to do some fancy foot work to tell the commands apart.

As is traditional. start with a simple flow to see if it is possible to translate the commands to numbers.

How about this?

Here the Inject nodes on the left are test commands. The purpose of the change node in the center is to

convert commands to the corresponding numbers. Usually, using the change node to convert between

srings and numbers is straightforward but here there is a problem because “GRP:13”, for example,

contains the string “GRP:1”. If you look for “GRP:1” it will match “GRP:13” also. The solution is to make

sure you check for the longer string first. Once the longer string is converted the payload no longer

Figure 4-87: Single Mode LED Command Decode

Figure 4-88: Group Mode Test

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 148 of 380

contains a string but rather contains a number, so any other rules in the Change Node will not apply.

This is a bit like the scheme you used to construct the Invert node earlier in this chapter.

Here is what the Change node in the example above looks like:

In the Change node configuration each rule tests for one command and converts it to the corresponding

number. Notice that in the configuration the commands “GRP:13” and “GRP:10” come before the

command “GRP:1”. As long as all the longer strings of “GRP:15” to GRP:10” are at the top of the rule list

everything will be fine. If you don’t believe this try putting the rule for “GRP:1” at the top of the list,

deploy it, and see if the flow still works properly.

All that is needed now is to expand the Change node rules to cover all 16 group mode commands. This is

very tedious, but necessry. Also you will want to put a Link In node in place of the Inject nodes so that

you can connect all three flows together. Your final flow for decoding the group mode commands should

look like this.

Figure 4-89: Change Node Configuration for Group Test

Figure 4-90: Group Mode Decoding Flow

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 149 of 380

Time to go back and fix up the flow that does the topic detection and group decoding (Figure 4-83).

This is going to involve getting rid of the Inject and Debug nodes, adding in the Email Receive node and

adding links to connect to the two other flows. Get out your scissors and paste and build up the flow

below from nodes you already have.

The next step is to connect up flows. You can do this by putting all the flows on one page, or you can use

the links to connect the flows. If you use links then review what you did privously in Figure 4-58. When

you use the links here are a few things that can help out. First, if you hover over a link you can see the

name of the link, if you gave it one. Second, if you select a link, as in the figure above, gray lines and text

will appear showing you what flows that contain nodes it is connected to. Then you can go to that tab

and see which node is involved. Here is an example,

For completeness here are the flows for the single mode decode and the group mode decode showing

the links:

Figure 4-92: Link Node Name and Connection

Figure 4-91: Email Topic Decoding with Links

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 150 of 380

If you want to put your email flows to work you wll need to change the FETCH node in the so that it

injects a message periodically activating the Access Gmail and fetching any new messages. You probably

do not want to fetch email messages any more frequently than every two minutes (see Figure 4-45 and

Figure 4-46 to review how to inject messages periodically). You can also modify the Access Gmail node

so that it scans for emails periodically by selecting the “Get mail” configuration from “when triggered”

to “automatically”.

Puzzle # 13 - Different Commands – The commands used in the example above, such as LED1”ON are

just arbitrary. You could use commands like “GATE OPEN”, “GATE CLOSED” to turn an LED on or off.

Modify your flow so that it uses commands of your choice to control the LEDs in single mode.

Puzzle # 14 - You’ve Got Mail – Read the Help file carefully. See if you can work out a way to determine

when you have mail that has not been read yet. If you can figure this out build a flow that will check

your email file periodically and turn on an LED when you have mail. The LED should stay on until you

have read the email the way you usually do. Go for the Gold: work out a way to see if you have unread

messages from four of your friends. Turn on an different LED for each friend if you have unread emails

from them. Be careful, don’t mark the emails as “read” otherwise, you might not know which are the

new emails.

Puzzle # 15 - Phone a Friend – From Chapter 3 you know how to generate an email when the button is

pushed. That email could be an LED command like LED1:ON. Now work with a friend who has a

Rapsberry Pi and Learning Card to build a system where pushing a button on one system will light up an

LED on the other system. The LED should stay on for 10 seconds and then turn off. Not an easy project,

but you have all the knowledge you need to pull it off.

A Final Note: This use of email to control LEDs is a bit strange because of the time delays invovled. There

is also another problem: it is “brittle”, a word that is used to discuss applications that can fail easily.

Figure 4-94: Single Mode Decode with Link

Figure 4-93: Group Mode Decode with Link

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 151 of 380

Decoding is done here by requiring exact command matches. If you use a small letter in a command

instead of a capital letter it will not be detected. Similarly for the topic decoding. There are better ways

to do the decoding, but they depend upon advanced techniques, like regular expressions and JavaScript,

in a word “real” programming.

Weather to LEDs
Here is a project that will allow you to display the real time temperature for any place on the earth on

the four little LEDs of the Learning Card.

“How in the world (so to speak) is this going to be done”, you might ask. Easy… there’s a node for that,

no kidding there really is. This example will demonstrate one of the key features of Node-RED and its

associated libraries of nodes. Namely, how information from the internet may be captured and used to

control your environment. In this case, it is the lowly LED, but it could be any of the other ports on the

Learning card as you will find out in later chapters.

You will make use of two nodes that are designed to pick up information from OpenWeatherMap.com

and use that information to drive a display. OpenWeatherMap.com captures information from a range

of sources and integrates it into weather forecasts. In your case you will be using its ability to provide

current weather conditions for your location.

Cost: for any reasonable use that you might make of the service it will be free. With the free service you

will be limited to 1,000,000 accesses per month and no more than 60 accesses per minute. You should

be good unless you write some loop that gets out of control.

Later you will download the nodes specifically designed for accessing OpenWeatherMap.org. However,

to make use of the nodes you must have an account. Once you have an account you will be able to

create and download an “API28 key”. This is a type of password that controls net access to the service.

Without this key, which identifies you, the service might be overwhelmed with requests from bad

actors. Getting an API key from OpenWeatherMaps.org requires that you provide your email address.

Think carefully about this before you proceed, just as you should for any service you sign up for. Once

you give someone your email address you might be flooded with all sorts of emails for free hamster

giveaways and then bombarded with ads for required accessories, like tiny Santa hats. Consider yourself

warned.

As an extra precaution you might consider setting up a new and unique Gmail account just for

experimenting with the OpenWeatherMap node. The accounts are free and if you start to have trouble

with an email flood, for example, you can always pull the plug on the account.

28 API – Application Program Interface. Your Node-RED flow is an application program. The API is a mechanism to
access a remote resource over the internet and to control that resource. Specifically, you are going to access the
API for OpenWeatherMap.com and ask it to look out the window and tell you what the weather is. Fortunately, all
the hard work is hidden in the OpenWeatherMap nodes you will download.

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 152 of 380

Open your Web Browser and go to openweathermap.org. As usual the instructions here are brief (no

pictures) because if you cannot set up access to this service with only the instructions below, then you

probably should not be using it.

• Click on the API tab at the top of the home page.

• Click the Subscribe button under “Current Weather Data”.

• On the Pricing page you are going to use the Free option. Under “Free” click “Get API Key”

• You will be taken to the “Create Account” page. Fill it out as requested and prove that you are

not a robot.

• You will receive an email to verify that you really are not a robot.

• Once you have verified that you are flesh and blood rather than nuts and bolts you will be taken

to a general services page at OpenWeatherMap.org.

• Click on API Keys. This will take you to a page with your assigned API key. It is long and it is not

only unique in our galaxy and the known Universe, but also in all the parallel and multiverses

surrounding us. Copy it and save it for later in a file. If you lose the API key, you can always log

on and retrieve it.

Now let’s see if we can put this to good use. You will be downloading two nodes that allow your Node-

RED flow to find out the weather for any point on the earth. The nodes do this by accessing the

database at OpenWeatherMap.org. One node provides weather periodically (every 10 minutes) and the

other will provide weather when it is triggered by a message.

First, download the nodes. Do this by clicking on the main menu and selecting “Manage Palette.

• Select the “Install Tab” .

• In the search box type in “openweather” . This will display a selection of nodes downloads to

choose from. Select the one labeled “node-red-node-openweathermap”.

• Click “install” .

Figure 4-95: Downloading OpenWeatherMap Nodes

file:///C:/Users/CNeuh/Dropbox/Charlie%20(Private)/Sequent%20Microsystems/Experimental%20Master%20Document/openweathermap.org

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 153 of 380

The two new nodes will be added to your palette under the title “Weather” probably near the bottom of

the palette as below:

Following the KISS principle begin by building the simplest flow possible to see how the nodes work.

Start with the node that only has an output. This is the node that provides a weather report

automatically and periodically.

• Clear the workspace by saving any flows you care about, adding a new flow tab and then

deleting all the other tabs. Doing this prevents interference from other flows you might have

laying around because when you click Deploy all the flows in your workspace are activated.

• Drop in the Openweathermap In node (the one that only has an output) and connect it to a

Debug node as in the figure below.

As usual, listen to the wisdom of whispering hamsters and read the help file for the Openweathermap In

node. Or you can ignore the wisdom and jump right in, get your feet tangled up and fall flat on your

face. Your choice.

[Time passes while you heed the whispered wisdom and read the Help File]

Configure the node.

• Double click on the node to open the properties dialog.

• Enter your API key  from above.

• The dropdown box below the language box should say “Current weather for” .

Figure 4-96: Weather Nodes in the Palette

Figure 4-97: OpenWeatherMap Test Flow

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 154 of 380

• Enter the name of your city .29

• Enter your country .

• Give the node a name .

• Click DONE.

Deploy your flow and if you did everything correctly you will immediately get a weather report in the

debug side bar that looks like the figure. If you made a mistake, you will get an error message, especially

if the system is not able to identify the city.

29 Surprisingly, there does not appear to be a way to enter your state, province, shire, parish or whatever. If you
live in a fairly large city, like Cupertino, CA (World Headquarters of Sequent Microsystems) you will be okay. Once
you get your first weather report you can check the latitude and longitude and see if you have the right city. If not,
you will need to put in the coordinates of your location instead. You can just ask Google for the coordinates of
your city.

Figure 4-98: Configuring the OpenWeatherMap In Node

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 155 of 380

Figure 4-99: Initial Weather Report for Cupertino, California

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 156 of 380

Normally, debug window shows only a compressed view of the weather report. Click on the tiny arrow

 and you will see an expanded view of the report.

Each piece of information is neatly identified with a name followed by the data. In some cases, you can

click on the data and change the format to one that suits you, like local time rather than milliseconds

since the birth of Unix.

Internet Thermometer
Before you can connect to the Thermometer Display you will need to get the temperature data from the

OpenWeatherMap In node. The payload from this node contains an object. This object is just a

collection of information representing the current weather. Pretend for now that it is a paper form

where the names of fields in the form refer to weather parameters and the data next to the names is

the current data you want. Conveniently, the OpenWeatherMap In node does all the heavy lifting for

you. It calls up the OpenWeatherMap.org site and asks for the current weather. Then if fills out a form

with temperature, wind speed, wind direction, humidity and so forth. After that it stuffs the completed

Figure 4-100: Expanded Weather
Report

Temperature in Celsius

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 157 of 380

form into the payload and hands it to you. If you know the name of the box containing the information

you want, you can use a Change node to form a new message with that data in it.

• Grab a Change node and connect it to the output of the OpenWeatherMap In node.

• For good measure attach a Debug node to the output of the Change Node.

You want your flow to look like this.

• Double click on the Change Node to open its properties dialog.

• Cook up a rule that will set the output msg.payload to the value in msg.payload.tempc .

“msg.payload” has the weather “object”. By appending “tempc” to “msg.payload” you are

asking the Change node to open up the payload and find that part of the weather report named

“tempc” (the current temperature in Celsius). The Change node does this for you and puts the

result in the payload of the output message it sends onward.

• Change the name of the Change node to something intelligent .

Your Change node edit dialog should look like the figure below when you are done.

Figure 4-101: Weather Flow with Change Node

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 158 of 380

• Click Done.

DEPLOY AND ENJOY!

As soon as you deploy the flow it will retrieve a weather report and print it. It will also print the output

of the Change node (now called “Get Temperature”). If everything went according to plan at the top of

the debug output you should see this:

You might click on the little triangle next to “Object” to expand the view (blue circle). Check to see if the

value in “tempc” is the same as your output from the Change node (in the blue box).

Figure 4-102: Configured Change Node

Figure 4-103: Temperature in Degrees Celsius

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 159 of 380

Next consideration – connecting to the Thermometer Display flow.

Your Thermometer Display works in Fahrenheit but if you look at the debug output from the

OpenWeatherMap In node you will realize that the current local temperature “tempc” is in degrees

Celsius. This means you will need to do a little conversion. But fear not… as always: “There’s a node for

that!”

• Go to the main menu and click on the “Manage Palette” option.

• Find the Range node

• Read the Help file for goodness sakes!

Briefly, the range node maps numerical values from one range to another range using linear scaling. This

will work perfectly for converting from degrees Celsius to degrees Fahrenheit. You don’t even need to

know the conversion formula because the range node will figure all that out for you.

• Wire the input of the Range node to the output of the OpenWeatherMap node.

• For good measure attach a Debug node to the output of the range node so that you can check

its operation.

Did you notice the little red triangle above the Range node? This means that the node is useless until it is

configured. Unlike other nodes you have used, the Range node has no default setting. After all, what

Figure 4-104: Range Node

Figure 4-105: Weather Flow with Range Node

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 160 of 380

would be a reasonable setting? If you try to deploy before you configure the Range node you will get an

error message. Let’s fix it!

• Double click the range node to open the edit dialog

• Give the node a useful, descriptive name .

• Set the input temperature range as shown below . Here you want to pick range limits that

cover a reasonable temperature range in your location. Remember that this range is in Celsius.

• Set the output temperature range . The values you put in here must be the Fahrenheit values

corresponding to the Celsius values in the input temperature range. Check the conversion very

carefully because if you do not set these values correctly the conversion will be wrong.

• Click Done!

DEPLOY your newborn flow!

The output should look something like shown below. Check to be sure that the “tempc” value and the

output from the Range node in Fahrenheit agree mathematically (just ask Google to translate Celsius to

Fahrenheit).

Figure 4-106: Configuring Range Node

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 161 of 380

If everything looks good at this point it is time to bring in the temperature display flow and connect it

up.

In a previous discussion you built an LED display that would act like a thermometer (Figure 4-18). Now

you can get the data to display directly from the internet.

Proceed like this:

• Open a new flow Tab

• Import that Thermometer Display flow shown in Figure 4-18.

• Copy the temperature flow over to the Weather flow

• Delete anything connected to the input of the Switch node (like the Inject node you used for

testing).

• Connect the output of the “C to F” node to the input of the Switch node.

Does your flow look like the figure below?

Figure 4-107: Current Temperature Output

Degrees Celsius

Degrees Fahrenheit

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 162 of 380

DEPLOY!

If everything was done correctly the OpenWeatherMap node will read the current temperature, convert

it and pass the result to the Thermometer display. Check the temperature value in the Debug window

and make sure that the correct number of LEDs are lit. Leave your flow running and see if the number of

bars changes when the temperature passes from, say, two bars to three bars.

Note: depending on where you live and the time of year you might need to adjust the parameters in the

Switch node of the Thermometer Display so that the display changes once or twice a day. For example,

you could set up the Switch node so that the temperature values are spaced on 10 degrees apart. In a

later chapter you will learn to build better displays.

And now it’s Puzzle Time!

Puzzle # 16 - What Should I Wear? – Modify the Weather Flow so that a different LED light up to show

you what to wear outdoors. For example, you might divide the four lights so that they show: Shorts,

Long Pants, Coat, Overcoat. This should be simple because you only need to adjust the thresholds in the

Switch node.

Figure 4-108: Competed Weather Flow

Learning Kit Workbook (version 1.4)
Chapter 4 - LEDs

Page 163 of 380

Puzzle # 17 - Tell Me What To Wear – Pull together all your knowledge of the pushbutton, sound, LEDs

and the weather to build a bedside device that will tell you what to wear depending upon the weather.

It should work this way: when you push the pushbutton it will tell you out loud what to wear based on

the current temperature and weather. Something like: “Wear a raincoat Fool!”, “Wear your overcoat,

Frosty!”, and so forth. You might need to combine several parts of the OpenWeatherMap report to

determine which advice to speak out.

Puzzle # 18 - Wind Direction – The Openweathermap In node also provides wind direction. Modify the

Weather Thermometer above so that one of the four LEDs light to indicate the general direction of the

wind (North, South, East, West) or you might consider lighting two adjacent LEDs if the wind is from NE,

SE, SW, NW in addition to the single LED.

Puzzle # 19 - Wind Speed – Enhance the Wind Direction indicator to show both the direction and the

wind speed by flashing the LEDs at a rate that is proportional to the wind speed. If the wind speed is

below some threshold, then all the LEDs should be off.

Puzzle # 20 - General Weather – The Openweathermap In node provides a short summary of the

weather. Develop a way to show this summary on the LEDs. To do this you will need to research the

possible text strings provided by the service. Then you will need to develop logic that condenses the

weather into a code to display on the LEDs. You might consider using flashing the LEDs to provide some

additional information.

Puzzle # 21 - Porch Light – Pretend that the LEDs are your porch light (not a very helpful porch light, but

nonetheless it’s what you have to work with). Design a flow that will turn your porch light on at sunset

and off at sunrise. “What!?!”, you ask. “How is my flow going to know when it is nighttime?” Well, of

course, there’s a node for that. You are on your own here… look around and see if you can find a node

that signals sunrise and sunset. You might start by looking in the Manage Palette section as you did

above for the thermometer flow. Or look on the internet. Check out the OpenWeatherMap data, which

may include the sunrise and sunset times. There are several nodes that work like the OpenWeatherMap

nodes and tell you when the sun rises and sets in your city. Once you find one you know what to do:

read the help file, build a simple system to show that you know how to use the node, build the final

system, test everything out. Good Luck!

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 164 of 380

Chapter 5 – Opto-Isolated Inputs

What you will learn:

• OPTO Node

• Using switches as input

• Context Data Variables

• Stopping Loops

• Counting

• Simple JSONata Expressions

• User Interface Widgets – Coming Soon

Introduction
It’s time to jump off the Learning Card and start interacting directly with the world. In keeping with our

SSS policy let’s begin with the switch, the simplest of all electronic devices. Switches come in an amazing

array of sizes, shapes, functions and capabilities, but they all do the same things, which is to turn a

mechanical action into the opening and closing of a circuit.

If you are know a bit about electronics and circuits you should skip ahead or risk boredom.

Circuit, circus, circle, curriculum, circumnavigate all from or related to the Latin word “circum” which

means to go around30. In a circuit electrical current flows in a loop unless the loop is physically broken

someplace, in which case the current does not flow. The circuit shown below is just about a simple as a

circuit can be and if you look at it for a minute you will realize it is the circuit that could be a flashlight.

In order from left to right is the Battery, Switch and Lightbulb. In the figure the switch is “open’ meaning

that no current can flow in the loop. “Close” the switch and current can flow and the lamp will light up.

If you get the Phet Simulator from the University of Colorado (www.phet.colorado.edu) you can build

circuits like this and learn basic electricity. It’s free, and it’s fun to play with. Phet only supports basic

circuits (batteries, switches, lamps, resistors), but you can learn quite a bit if you are just getting started

in circuits.

30 Eytmologeek.com– an interesting (and apparently safe site) giving the etymology of many words in the form of
charts. This site integrates etymological data from other sites. Use with care. You get what you pay for and your
milage may vary.

Figure 5-1: Flashlight Circuit

http://www.phet.colorado.edu/
https://etymologeek.com/

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 165 of 380

Click on the switch in the simulator and you can turn on the lightbulb because now the switch is “closed”

and the circuit forms a complete loop from the tip of the battery to the back of the battery. The

electrons are happy that they can run around this loop (like the hamster on an exercise wheel) and as

they pass through the lightbulb, they are pleased to give up a little energy and heat up the filament to

produce a little light, and in the case of incandescent bulbs they produce a lot of heat too.

To make these concepts simpler engineers usually draw the circuits as “schematic” where a specific

physical component is replaced by a generic symbol. In the circuit below the switch, battery and bulb

from Figure 5-1 have been replaced by standardized symbols, which look almost like the physical

element they represent31.

Light switches in your house let you manually control the flow of current. Similarly in your car, flashlight,

doorbell, remote control and so forth. However, there are also all sorts of switches that can sense the

environment like a thermostat that are activated by temperature, humidistats that are activated by

humidity and float switches activated by water level. All use the same principle: one condition (e.g.,

temperature too low) closes the switch and another (temperature high enough) open the switch.

31 The simple symbols in the figures have been around since the dawn of the electrical age. The symbols for the
switch and light bulb are obvious because they look like very much like the physical item. But what of the battery?
That symbol derives from the very early form of batteries which were simply two different metal plates separated
by a chemical compound (salt water will do). The batteries of today are still formed from two plates separated by a
chemical compound, but they are much more sophisticated. A word of warning to the curious. Do not take
batteries apart unless you know what you are doing. The ordinary batteries from the grocery store have caustic
chemicals which are incompatible with your skin, eyes, nose, mouth etc. Lithium batteries are even worse. If you
pry one of these apart it will most likely burst into flame. Being doused in caustic chemicals is bad enough, but if
they are also on fire… well you get the idea. For this reason, you cannot check lithium batteries in your airline
luggage.

Figure 5-2: Flashlight Circuit with Switch Closed

Figure 5-3: Schematic Drawing of Flashlight

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 166 of 380

Switches and Where to Find Them – The Learning card has four optically isolated switch inputs. If you

want to build some of the flows in this chapter you might need as many as four switches or push

buttons. For switches you can go the local hardware store and buy ordinary wall switches for about a

dollar. If you want to have pushbuttons stay away from hardware store because doorbell buttons are

very expensive ($10 each!). You can go online and order pushbuttons for about a dollar each if you buy

10 of them and they might even come prewired. You know where to look.

Connecting Switches to the Learning Card
Your learning card has four optically isolated connections for switches referred to as IN1, IN2 IN3 and

IN4. You connect to the input using two three-pin connector plugs (see figure ____). The plugs attach to

the board through the connectors on the card edge as shown below (blue square).

A switch is wired between one of the inputs (e.g., IN1 and ground as shown schematically in this figure:

Here is a little detail you should know about the Learning card. Closing the circuit on OPTO inputs IN1

and IN3 will activate LEDs labeled IN1 and IN3, respectively (blue arrows). In the examples below you

will be using OPTO input IN2 so that you can avoid confusion when you use an OPTO input to turn on an

LED. Avoiding confusion always makes your day better.

Figure 5-4: Learning Card OPTO Input Connections

Figure 5-5: Wiring a Switch to OPTO Input IN1

3-pin plug

Wire Switch Here

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 167 of 380

Below is a simple schematic of the IN1 circuit, which is representative of the other three inputs. Each

input is connected to a separate opto-isolator chips which provides an electrical separation between the

switch and the microcontroller on the Learning Card. An opto-isolator is a simple device composed of an

LED and a photo transistor. When current flows through the LED it produces light which activates the

photo transistor. This in turn allows a current to flow through the phototransistor that activates an input

to the microcontroller.

When the switch is open no current flows in the LED side of the opto-isolator and therefore no light is

generated by the LED inside the chip. As a result, no current flows in the phototransistor and the input

to the micro controller is at a high voltage. If you close a switch connected to IN1 then current flows

through the LED, light is generated and consequently current flows in the phototransistor. When this

happens the input to the microcontroller goes to a low voltage level.

That’s all there is to it. The microcontroller on the Learning card simply senses whether an input is

connected to ground (switch closed) or not (switch open).

And now you have come to the point where you need to think about safety for the first time. This is not

just about keeping you safe, but about keeping the Learning card from turning into a brick. Read on!

Be Careful!
There are some rules you should follow to prevent harm to your system.

• DO NOT apply voltages to the opto-isolated inputs. – If you apply voltage to an input, you may

damage your Learning Card or your Raspberry Pi (or worse, both). The opto-isolated inputs are

only intended to detect switch closures.

• Connect the INx input and corresponding ground only to the switch. – The circuit to your switch

must be completely isolated from all other circuits. Do not connect the ground to any other

ground circuit. If you do this, you risk damage to your Learning Card.

• Keep connections to the switch as short as you can. – The opto-isolated inputs are not intended

for long runs of wire because they are susceptible to electrical interference from nearby

Figure 5-6: OPTO Input for IN 1

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 168 of 380

electrical devices, like motors, dimmer switches and so forth. A practical limit would be a

distance of tens of feet rather than hundreds of feet.

• Use twisted pair wire to connect your switch. – For simple test purposes where the switch is

only a few feet from the Learning card you can use ordinary wire to make the connections.

However, for longer runs (over say five feet) you should use two wires that are twisted together

(as you might expect this is called a ‘twisted pair”). You can buy the wire already twisted or

make your own by hand. A twisted pair of wires helps to prevent stray electrical signals from

being detected by your Learning Card.

Crawling with the Switches
By now you know the drill: read the documentation and start simple. Save all your flows (or at least the

ones you really care about), add a new flow tab, delete your old flows. Go to the Palette and under

Sequent Microsystems and grab an LKIT OPTO In Node.

Now is the perfect time to review the Help file by selecting the node and opening the Help tab (the little

book icon). Here is part of what you will see:

Figure 5-8: LKit OPTO Node (Input Mode)

Figure 5-7: Twisted Pair
Cable

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 169 of 380

The first thing to notice is that the node has two modes: input and read. When you load the node, it will

be in the input mode, but you can switch to the other mode in the Mode dropdown. Input mode means

that the node will generate a message whenever the selected input (e.g., IN1) changes. When you select

read mode the node will change visually to add an input port. When this port receives a message (any

type of message) the node will generate a message representing the current state of the selected input.

Input Mode Operation
When first loaded the default mode of the OPTO node is Input. This means that when selected input

changes the node will generate a message where the msg.payload value is either Boolean true or

Boolean false. That’s it, that’s all she wrote. The node generates a Boolean true whenever the selected

input changes from open to closed and conversely it generates a Boolean false whenever the input

transitions from closed to open.

Time to try it out.

Figure 5-9: OPTO Node Help File (Partial)

Figure 5-10: Two OPTO Nodes in Different
Modes

Input Mode

Read Mode

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 170 of 380

• Bring in a Debug node.

• Wire the output of the OPTO node to the input of the Debug Node.

• Open the OPTO node editor and make sure that input channel 2 is selected. This channel

corresponds to the IN2 input.

• Give your node a useful name, like “IN 2”

Your flow might look something like this:

Your node edit window should look like this:

• Click Done

Push the button or flip the switch depending on what you wired to IN2. When the switch closes the

circuit, you should see a debug message of true and when you open the circuit you should see a

message of false. Does your Debug window show this?

Figure 5-11: Simple Test Flow for OPTO Input 2

Figure 5-12: OPTO Node Edit Window for Input 2

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 171 of 380

Go back up to Figure 5-12 and look for “Debouncing” selection menu. Debouncing? What the heck is

that and what exactly is bouncing? Before you find out you must watch this short commercial brought to

you by Real World Engineering, Inc. – “Where perfection meets reality”

Engineering Tip # 10 - Nothing is Perfect! In school or even reading on your own you have probably

learned about all sorts of electrical devices: resistors, batteries, lightbulbs and maybe switches. Usually

when you study these devices and make calculations you are either explicitly or implicitly assuming that

they are perfect. Think about a battery. It has a voltage; you connect up to it and it does its job. Well,

from your own experience in the real world you know this is not strictly true.

That little AA battery sitting on the bench is not exactly 1.5 volts and the A battery next to it does not

have exactly the same voltage. The voltage may change with temperature. The voltage will change when

you attach a lightbulb to the battery. As the battery is used the voltage will drop. Etc. Etc. Etc. The

battery in the schematic drawing is assumed to be an ideal device, but the battery in the wild is less than

ideal.

One of the most important engineering ideas is this: that real world devices are not perfect, and you

must always be aware of their limitations.

This brings us to “debouncing”. The switch seems so simple: it is open or closed. End of story. But…

nothing is perfect, especially a mechanical device like a switch. When you close the switch, it does not

close immediately and perfectly. Worse yet it may close and then open for a short time and then close

and then open… until finally it settles into a closed state. In the world of perfection, the switch closes or

Figure 5-13: Debug Results for OPTO Node Operation

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 172 of 380

opens once each time you flip it, however, in the world that you live in the contacts actually bounce a

little before they settle into their final position.

If you were to measure the voltage your switch was controlling while it went from closed to open you

would very likely see something like this:

In this diagram it takes several milliseconds for the switch to open and stay opened. If you are

controlling a lightbulb in your house this shortcoming is not important. However, the Raspberry Pi is

thinking in terms of microseconds, so it can see every one of these bounces. This means if you do

nothing then you might get a several true and false messages every time you flip your switch. Not so

good.

This is where “debouncing” saves the day. The OPTO node is designed to ignore all those little bounces.

It does this in a very simple way. When the node detects the first change in state (say from closed to

open) it says “Hmmm. Looks like the switch is opening. But I’ve been fooled before by all these bounces.

I think it is better to wait and check the switch again in 25 milliseconds. By that time the switch will have

settled down and I can send that value in the output message”. The Debouncing parameter in the OPTO

node editor allows you to adjust the debounce time. The default value of 25 milliseconds is good for

most applications.

Always remember: ”No device is perfect”, and plan accordingly.

OPTO Puzzle # 1 – I don’t believe any of this! Well, you should be skeptical. Change the value of the

debounce to 0 msec in the OPTO node. Then open and close your switch a few times. Instead of a nice

transition from true to false you will likely see several even though you just opened or closed the switch

once. Or if you believe the Wikipedia is the fount of all knowledge then go here and read the section on

Contact Bounce.

Moving on -

The OPTO inputs are no different from the push button on the learning card in terms of what they can

do. Anyplace you were using a button in Chapter 3 or 4 you can use one or more of the inputs to control

Figure 5-14: Switch Bounce (from Wikipedia)

Open

Closed

Bouncing

https://en.wikipedia.org/wiki/Switch

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 173 of 380

the function if you set it up properly. Just remember that the LKit Button node puts out numeric 0 and 1

while the OPTO node puts out Boolean true and false. Also remember to make sure the polarity the

message is what you expect when you push a button or close a switch. For the Button node pushing the

button generates a 0, but for the OPTO inputs closing the circuit generates a true. If you want to directly

substitute one of the OPTO inputs for the push button you will need to make some adjustments in your

flow.

Time to experiment with the OPTO inputs. Set up a flow like this.

You should be able to set up this flow on your own. Note that the output of the OPTO node is Boolean

true and false, whereas the output of the button node is numeric 1 or 0. Fortunately, the LED node

understands both messages.

To take full advantage of the four OPTO inputs in the examples below you will need to connect a switch

or button to each of the four inputs. You might consider building a small box with four push buttons in it

to connect to IN1 through IN4.

Here is a flow to control all four LEDs from the OPTO inputs.

One little detail: the IN1 and IN3 inputs each activate an LED separate from the GP1 to GP4 LEDs. When

you close the circuit on IN1 or IN3 you will see two LEDs turn on: one from your Node-RED flow and

another that is hardwired to the input.

OPTO Puzzle #2 - Sound Effects Redux. Go back to Chapter 3 and look at Button Puzzle # 1 about sound

effects. Can you implement this so that each sound effect is played when a button is pushed and

continues to play until the button is released? Remember to make the necessary adjustments between

Figure 5-15: OPTO Input 2 to LED 2

Figure 5-16: Controlling Four LEDs from Four
Inputs

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 174 of 380

the LKit Button node and the OPTO In node. Substitute a single musical node for each button (try C E G

C, for example). Can you play a tune? Can you work out a way to play two notes at one time?

Read Mode Operation
Read mode provides an explicit means for you to read the state of an input. In this mode a message

giving the state of a particular input is only generated when the node receives a message. This provides

a way for you to read the state of a switch on demand. A simple (but somewhat weird) example would

be to read a switch in response to an email message and return the results in an email. As you will see

later, this mode is also useful for reading the initial state of an OPTO node when you deploy a flow.

Begin with the flow from Figure 5-15.

• Open the node editor for the IN 2 node and change the Mode dropdown to “Read” (blue

rectangle). Now the edit window should look like this:

• Click Done

After you click Done you might notice something interesting: the OPTO node changes to display an input

port (blue arrow), like this.

In read mode the reception of a message causes the node to read the current state of an input and

provide an output message where msg.payload reflects the current state of the input. In this example

flow the input is IN2. The msg.payload of the message you use to trigger the node is arbitrary, in fact

sending the node an empty string works just fine. Next up…

• Add an Inject node

o labeled “Read IN2” and

Figure 5-17: OPTO Node Read Mode Edit Window

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 175 of 380

o that sends an empty string as a payload

• Wire the Inject node to the input of the node IN 2. The result will be the flow shown below.

• Click Done.

Deploy!!

Pause and think for a moment about what this flow is going to do. First try pushing and releasing the

button (of flipping the switch) attached to IN2. Does LED 2 change? Should it, or shouldn’t it?

Now press and hold the button on IN2 and click the “Red IN 2” inject node. Did LED 2 change? Now

release the button. Did LED 2 change? Did you expect it to? Click the “READ” Inject node again. What

happened?

If everything worked as expected the LED should only change when you click the “Read IN 2” Inject

Node. This flow simply reads the state of the input whenever the Inject node is clicked.

Next up… modify the flow from Figure 5-18 so that when you click an Inject node the state of each

input is read and passed to the corresponding LED. Maybe your flow will look like this. No recipe here

for how to configure the nodes because you already know how.

Ready to walk with the OPTOs?

Walking with Switches – Initialization and Variables
Let’s think about the following specification, which you will see later involves some new ideas.

• This flow will be named “Toggle LED 2 with IN2”.

• When the flow is deployed it will turn off LED 2.

Figure 5-18: Simple Read Mode FLow

Figure 5-19: Copy All Inputs to LEDs

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 176 of 380

• When input channel 232 is closed LED 2 will change states. In other words, if LED 2 was off when

IN2 is closed it will turn on. If it was on when IN2 is closed it will run off.

• When input channel 2 is not open (no connection to ground) nothing happens.

So, the action here is simple: pressing a button connected to input channel 2 will toggle the “state” of

LED2. It is necessary start LED 2 in a known state, that is why it is turned off when the flow is deployed.

First, clear the deck: save all your old flow (or at least the ones you love and respect), add a brand new,

sparkling clean, flow and then delete all the old flows. This way your old flows will not interfere with the

operation of your new flow.

Initialization
Now, let’s break this down a bit. The first problem is how do you make sure that LED 2 is turned off

when you start the flow. Of course, you could do this manually with a simple flow, but the specification

is saying that it must happen when the flow is deployed. But, how? Well, as you might expect, there is a

node for that! In fact, it is one you know already, the Inject node. It’s just a matter of proper

configuration.

As you flows become more complicated you will find that you will need to set up some sort of initial

conditions so that your flow behaves the same way every time you deploy it. As you progress in your

engineering career you will find that improper initialization is a big source of program misbehavior (and

also of circuit misbehavior). Typically, if you do not initialize your flow properly it might work fine this

time but fail the next. And there is this consider.

Engineering Tip # 11 - Don’t Stake Your Life on Default Values! When you create a variable (as you will

do shortly) it is very tempting to just depend on their “default” values. Many programming languages

will try to be helpful and set up some “nice” and logical default values for data types that you declare.

Usually, something like zero or null. In some languages the default value will be “not defined” which will

cause trouble down the line, but at least you know why the problem arose. Save yourself heartache,

headache and stomachache by always establishing the initial value of data that you create.

From our specification about we know that when the flow is deployed it must clear LED 2. You can do

this using the Inject node, but before working directly with the LEDs start by setting up a little test tube

flow and experiment with just an Inject and Debug node. Your object is to get the Debug node to print

the message “Let’s go” whenever the flow is deployed.

32 We will use LED 2 and input channel 2 because input channel 1 also turns on an LED and this would be a bit
confusing.

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 177 of 380

Your undeployed test tube flow should look like this:

Open up the Inject node and set it up as below (see blue arrows):

Deploy your flow. If everything is correct the Debug window will show “Let’s Go!” every time you click

the Inject node. You are now ready to do something different.

Open the Inject node again and look carefully at the bottom of the edit dialog. You should see this:

• Put a check mark in the box labeled “Inject once after 0.1 seconds” .

• Leave the Repeat dropdown as “none” (because you don’t what this action to keep repeating).

Figure 5-20: Initialization Test Tube Flow

Figure 5-21: Initial Inject Node Edit

Figure 5-22: Setting Up Inject node for Initialization

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 178 of 380

By doing this you are telling the Inject node to generate a payload with the message “Let’s Go!” one

tenth of a second after deployment and then do nothing else. This is very powerful because with this set

up you can generate a message shortly after your flow is deployed and that message can trigger other

actions.

• Open the Debug Tab in the sidebar and clear it.

Deploy Your Flow!

You should see “Let’s Go!” in the debug sidebar as soon as you deployed your flow.

Next, let’s see if you can clear all the LEDs on deployment. Change the message to clear all the LEDs (i.e.

send a numeric zero in the payload) and replace the Debug node with an LKIT LED node. Configure your

LKit LED node to group mode. Your flow should look like this now:

Look very closely at the Inject node. The little number 1 (blue arrow) means that the inject node will be

activated once when you deploy your flow.

Think for a minute… “How am I going to test this flow?”. Probably you should add an Inject node that

will set all the LEDs so you can then test your initialization. Edit your flow so that it looks like this:

You know how to do this without a recipe: open up the Inject node, name it “Set All On”, and set the

payload to numeric 15.

Deploy it Now!

Figure 5-23: Clear All LED on Deploy

Figure 5-24: Initialization Flow Ready for Testing

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 179 of 380

You can test the basic operation by clicking on each inject node33, and if you have everything configured

properly all the LEDs will turn on or off.

Time to test initialization. Click the “Set All On” Inject node, which should turn all LEDs on. When all the

LEDs are on move one of the nodes a bit until the blue “Deploy Me” dot appears. Deploy the flow anew.

If everything is working correctly the LEDs should go out proving that the Initialization is working

properly.

Good work… you have shown that you can generate a message when a flow is deployed and use that

message to set the initial state of the LEDs. Time to move on to…

Context Data Variables
Now that you can handle the first part of the Toggle LED specification it is time to think about the

second part, namely, how to toggle LED 2 from on to off and off to on when the IN2 input closes. There

are several things to consider.

First, let us assume here that you are going to connect a pushbutton switch to input channel 2 and that

pressing the button will close the circuit34. Remember that the OPTO node is going to generate a

message when the switch is pressed (true) and when it is released (false). That means that you will need

to work out a flow that will isolate the “button pressed” messages and ignore the “button released”

messages by sending them off to the data trashcan. Easily done like below:

When the button is pressed the message will appear on the top output port (blue arrow) using the

Switch node configuration below.

33 Setting the Inject node to send a message at deployment does not prevent you from clicking on it also.
34 You can use a switch if you wish to, but you will have to turn it on and off to simulate the push button.

Figure 5-26: Switch Node Configuration

Figure 5-25: Select Button Pressed

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 180 of 380

Second, how are you going to toggle the LED? Give this some thought. Remember, at this point you have

amassed very considerable knowledge of Node-RED, how many of its common nodes work and how to

construct flows. Really, take a break, get some coffee, take out a sheet of paper and see if you can think

of a solution. Sleep on it, but not for too long.

Is your brain tired? It should be. If you thought about how to toggle the LED, you might have come to

the conclusion that it is impossible because you don’t know what state the LED is currently in. Of course,

the LED knows because it is either on or off, but you have no way of saying: “Please, oh please LED 2, tell

me whether you are on or off.” What you need is a way to remember what you told the LED node to do

last time you sent it a message. The problem is there is no obvious way to save a message so you can

use it later35. This is where the concept of a context data variable comes into play.

“Variables” are staple of nearly every programming language, so if later you are going to plunge into a

language like C, Python or Java then knowing about variables and how to apply them will be very useful.

In Node-RED you can store information outside of messages in what is referred to as “context data”. For

the problem you are working on now you could use context data to store the current state of LED 2 (on

or off) when you set it. Then when the next button press comes you could use this stored data to decide

what to do next. If the context data says the LED is currently on you can turn it off and vice-versa.

Node-RED stores context data independently of messages. Messages move from one node to the next,

but context data is always held in a fixed place and is available for use by the nodes you specify.

If you already have experience with storing data in variables for other languages than you will probably

want to hit fast forward now because the following discussion will seem very elementary. If not, then

here are the basics.

In Node-RED context data is used to give “context” to the operation of a node, which is certainly one of

the more circular definitions you have encountered lately. Imagine that context data is stored as a pile

of envelopes each with a slip of paper inside. Now imagine that each envelope has a label on it, like

“sum”, “date-today” or, more to the point, “LED2State”. The slip of paper inside each envelope is going

to hold the current value of some data that you are interested in keeping track of. More specifically,

imagine that the slip of paper inside the envelope with the label “LED2State” has “LED 2 is on” written

on it to indicate the current state of LED 2.

Daydream some more: you are inside a node and a message arrives saying “button pressed on Input

channel 2”. If you could ask for the contents of the envelope labeled “LED2State” then you could decide

what to do next. In this example, you ask for the slip of paper in the envelope labeled “LED2State” and it

says: “LED 2 is on”. With this information in hand, you know what to do next (1) erase the message on

the slip of paper and (2) write “LED 2 is off”, (3) put the slip of paper back in the envelope and (4) send a

message to turn LED 2 off. Similarly, if the slip of paper said, “LED 2 is off” you would (1) erase the

35 Full Disclosure – there is a way to keep a message around for later use, but it is very non-intuitive. Later you will
learn about the Join node, which is a node that lets you compose new messages from several other messages. The
Join node could be used to accomplish the toggle function but doing so is more complicated and not as easy to
understand as using a variable. Besides in your engineering future you will be earning more $$$ from knowing
about variables than you will from knowing how the Join node works.

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 181 of 380

message on the slip of paper and (2) write “LED 2 is on”, (3) put the slip paper back in the envelope and

(4) send a message to turn LED 2 on. The key is that being able to store and access information about

whether the LED is on or off gives “context” to how your node is going to operate.

Messages come and messages go, but context data is always there for you!

Time to see if the scheme above can be cast into a usable flow. Here is what the final flow is going to

look like before deployment:

The top three nodes handle the initialization, setting the LED state variable and setting the LED on or off.

The middle three nodes toggle of the LED state, and the bottom two nodes deal with detecting the input

and selecting out only the button press action.

Let’s look at the configuration of the top three nodes first. Here is the configuration of the Initialize

node, which is very similar to what you saw above in Figure 5-21 and Figure 5-22

Figure 5-27: Toggle LED Flow

Figure 5-28: Initialize Flow Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 182 of 380

• Set the name of the node to “Initialize”  because that is what the node does, and you want

others to know what you have in mind!

• Set the payload to the string “off”  because this is the command to turn an LED off36.

• Check the box next to “Inject once….”  because you want to inject this message when the

flow is deployed in order to initialize the LED and the LED state variable (see below).

Here is the configuration for the Set LedState node.

This node is a Change node, and the configuration steps are:

• Set the name of the node to “Set LedState”  because the purpose of this node is to handle the

setting of the variable called LedState.

• Using the dropdown menu select “flow.”  . This is the place where the context data for this

flow is stored.

• Give the context data the name “LedState”  so that you can refer to it from other nodes in

this flow.

Now for some details that you must keep in mind:

Names – In the homey example above about envelopes with names on them you probably thought that

you could refer to an envelope named “LedState” by any of the names that have similar spelling, like

“LEDState”, “ledstate”, “LEDstate” or even “LeDsTaTe”. After all its the same letters and all the names

sound the same. BEWARE! The rules for names in Node-RED area very strict:

• Names can only contain letters, digits, underscores and dollar signs.

• Names must begin with a letter (so, “1stStreet” is not a good name)

36 Remember – there are several different payload commands that can turn an LED off including the number 0 and
the strings “0” and “off”.

Figure 5-29: Set LedState Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 183 of 380

• Names are case sensitive. This is very important because it means that “LEDState” and

“LedState” are two different names and refer to different context data variables. A very

common programming error (and one that has been made a shameful number of times in

constructing this Tutorial) is to get the capitalization of a variable name wrong. One slip of the

shift key and you will have two different variables with names that look almost the same. In

some type fonts it is also very easy to confuse 0 (zero) with O (oh) and I (capital i) with 1 (one)

and even G with 6. Be careful.

Scope – This is an advanced programming concept that fortunately you will only need to deal with in a

limited way in Node-RED. “Scope” refers to which nodes in your Node-RED workspace may interact with

a particular context variable. There are three ways that a variable can be made “visible” to nodes.

• “node” – only one node can work with the variable. Usually this is restricted to a Function node,

so you will not be concerned with this now.

• “flow” – only nodes on the same flow tab can work with the variable. This is what you will be

using the most frequently.

• “global” – any node on any flow in your workspace can work with the variable. Very useful for

larger projects where you have several flow tabs, but like chainsaws, global variables have

seductive power that obscures how dangerous they are.

In the node configuration for the “Set LedState” shown above in Figure 5-29 the context variable

“LedState” is given the scope “flow” this means that every node in the flow shown in Figure 5-27 can

look at and a possibly change its value. In particular, the node “Set LedState” sets the value of the

variable and the Switch node “LedState?” can look at the value to make a decision about where to send

the message it receives.

Take a look dropdown menu ( in Figure 5-29). If you open the dropdown menu you will see this:

Figure 5-30: Defining the Scope of LedState

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 184 of 380

Normally you would select “msg.” because you want to set the value of the payload or some other

aspect of the message. However, if you want to set up a context variable, like “LedState”, then you

would select either “flow.” or “global.”. Because we have only one flow in our workspace we will use

“flow.”.

Return your attention to the “Set LedState” Change node for a moment. The Change node configuration

(Figure 5-29 above) sets the context data for LedState to the value of msg.payload, but it does not

change the value of the msg.payload. The message came into the node with msg.payload set to “off”

and left the same way. That is what turns off LED 2 when you deploy your flow. If you are not sure about

this then pull up a Debug node and look at the message going to the LED node.

And for completeness here is the configuration of the “LED 2” node:

• Set the mode to “single”  because you only want to control LED 2.

• Select Led Number 2  because that’s what the specification says to control.

• Give the node a useful name , like “LED 2” because you should always be polite to your

compatriots in the engineering profession.

Now turn your attention to the middle three nodes in the flow of Figure 5-27 reproduced below for

your edification and convenience.

Figure 5-31: LED Node Configuration

Figure 5-32: Middle Nodes of Toggle Flow

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 185 of 380

Let’s first look at the Switch node labeled “LedState?”. The purpose of this node is to check the current

value of the context data for “LedState” and based on its value (“on” or “off”) to send the message to

one of the two output ports. Here is the configuration:

Look at each part of this configuration37.

• Set the name of the node to “LedState? . The use of the question mark indicates that the

node is asking the question “what is the current value of LedState?”

• Set the property to be tested to flow.LedState , which is the context data that indicates the

current state (off or on) of the LED.

• The first rule  will check whether flow.LedState is equal to the string “off”. If it is then the

msg.payload will be sent to output port 1.

• The second rule check whether flow.LedState is equal to the string “on”, in which case the

msg.payload from the input port will be sent to output port 2.

When you look at the Switch node (“LedState?”) in Figure 5-27 it can be a bit difficult to determine

what rule is associated with each port, without opening up the node. Here’s a Node-RED trick: simply

hover the cursor over the output port and Node-RED will show you the rule, like this:

37 If you are familiar with digital logic design, you might recognize that the Switch node (“LedState?”) arrangement
used in the Toggle flow resembles a multiplexer, a common digital design element that sends an input signal to
different outputs depending upon another signal.

Figure 5-33: Hovering Over and Output Shows the Rule

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 186 of 380

In this example when you hover over the top node (orange dot) a little window appears telling you that

that output corresponds to the first rule where the flow.LedState is compared to “off” (black box). Very

handy!

The configuration for the “Set On” and “Set Off” nodes are Change nodes programmed as you would

expect: to simply set the msg.payload to the strings “on” or “off” as determined by the output of the

“LedState?” node.

Set up the flow as shown in Figure 5-27 above, DEPLOY IT and see if it behaves according to the

specification. When you press the button connected to IN2 the state of LED 2 should alternate between

off and on.

Study this flow carefully because it is about as simple a flow as you will find that uses context data and

this is an important and powerful Node-RED concept. If you are confused about how the flow works pull

in a few Debug nodes and look at the messages flowing between nodes.

To make the idea of context data more concrete look at this annotated diagram of the Toggle flow. On it

you will find a little block labeled flow.LedState, which is the context data. This is shown outside of the

nodes because it is not stored in any particular node. Rather nodes, like the “LedState?” may reference

Figure 5-34: Set On Node Configuration

Figure 5-35: Set Off Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 187 of 380

the flow.LedState. It like a little public library in your flow where nodes can check out a copy of the data

and, if necessary, modify the data and send it back to the library38.

In the figure above the context data “LedState” is accessed by two nodes, although any other node in

this flow could make use of the data if necessary. The Change node, “Set LedState”, writes the value of

the context data (in this example the string “off”) while the Switch node, “LedState?”, reads the context

data. Later you will learn about situations where a node can read the context data, modify it and write it

back.

Working with Context Data
Node-RED provides you with the ability to examine the current state of context data. This is a powerful

debugging tool you should know. You can do this by opening the context-data tab in the sidebar. At the

38 Please, please, please do not modify books you check out from a real library!!

flow.LedState “off”

Write Read

Figure 5-36: Context Data for Toggle Flow

Figure 5-37: Sidebar Tabs for Narrow Window

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 188 of 380

top of the sidebar there are four or five tabs that you can use to open different sidebar views. However,

if your sidebar area is narrow only two or three of these tabs will show up. This means that the tab for

the context-data might be covered up. Here is a typical view of the side bar area when the width is

small.

As you can see only three tabs are visible (Information, Help and Debug) in this view. However, if you

click the dropdown  a menu will open showing you the other sidebar tabs, including the context data

as shown below.

Click on the “Context Data” entry (blue arrow) and the context data window will open. If by fortunate

chance your sidebar window is wide you will see all the context data tab which has an icon that looks

like a disk drive sized for use by hamsters:

No matter how you get to it, once you open the context data tab you will see something like this:

Figure 5-38: Sidebar Dropdown Menu

Figure 5-39: Wide Sidebar with All Tabs

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 189 of 380

This window is showing your dropdowns for Node, Flow and Global context data. Click on the arrow next

to “Flow” (blue arrow) and you will be able to look at all the context variables on the current flow. In the

case of the Toggle flow, you have been working with there is only one context variable, namely,

LedState:

Next to the name of the context data variable  you will find the value . Pay close attention… the

value you see next to the name of the context data variable may NOT be the current value of that

variable. Rather it more like a snapshot, showing the value of the variable at the last point in time that

you refreshed the context data, not the last time that Node-RED changed the value. Look above the

variable and you will see a time stamp (blue rectangle). This is the last time you updated the variable. If

you want to take a snapshot of the current value of the context data for your flow you must click the

update button . When you do the value will be updated along with the timestamp. Keep this in mind

otherwise you will be very confused when you debug the context variables in your flow.

Controlling Loops – Starting and Stopping
Previously you learned about setting up loops (See Chapter 4), however, all these loops ran forever once

you started them. Now is the time to tame them. The situation is going to be simple. You will use a

Figure 5-41: Context Data Sidebar Window

Figure 5-40: Context Data for Toggle Flow

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 190 of 380

switch connected to input IN 2 to control a loop that flashes LED 2. You already know how to set up a

simple flashing light loop, and you can see the results easily.

 Start with a specification:

• When IN 2 is closed LED 2 flashes.

• When IN 2 is open LED 2 stops flashing.

• When the flow is deployed LED 2 will behave according to the current state of IN 2.

• When flashing the LED is on for one half second and off for one half second.

As you start to think about the specification above you might notice aspects that are not mentioned

explicitly. For example, if IN 2 is closed and the light is flashing, and you open IN 2 the flashing will stop,

but is LED 2 left on or off when the flashing stops? This is not necessarily an oversight in the

specification, but rather is something that is left open for you to decide. Sometimes these “loose ends”

on a specification are referred to as “degrees of freedom”. A really well written specification will call out

the degrees of freedom so that you may take advantage of them to simplify your design.

Another unmentioned aspect of the specification is what will be connected to IN 2. Since it is not

specified you may connect any sort of switch or contact closure you desire as long as it can open and

close IN 2. In particular, you may use a button, or a switch. Since the specification says nothing about IN

1 you can even use an SPDT switch connected between IN 2, IN 1 and the central ground pin.

Per the usual, you should begin by breaking the problem down into smaller pieces so that you can build

and test the pieces and then integrate them a bit at a time into the final solution. Engineering is about

imagining solutions, planning and careful execution. There are usually many different answers to a

particular problem. Your task is to find one of them and, if possible, identify one that is the best (or at

least good) by some measure, like cost, weight, speed, flexibility, fuel economy, beauty etc. etc. etc.

Here is one suggestion on how to proceed, but you might have other ideas that are as good or, hopefully

better.

• Build up a flow that will flash LED 2 (you have done this before, so part of the solution is already

at hand (see Chapter 4).

• Work out a way to start and stop the flashing (a good idea might be to start by using Inject

nodes in place of switches because they are easier to deal with and control).

• Extend your solution to work with the IN 2 switch (or pushbutton)

• Finally, work out a way to detect the IN 2 switch position when the flow is initialized.

You have already built up a flashing LED loop. Use that as a basis for your design. Here is one possibility:

This should look very similar to the flow in Chapter 4. However, there are a few differences. The flashing

time is one half second on (500 msec) and one half second off. Also, each time around the loop you

must change the command you send to LED 2. In the previous example you were sending LED 2 a

Figure 5-42: Flashing LED Loop

https://en.wikipedia.org/wiki/Millisecond

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 191 of 380

numeric 1 or a numeric 0. However, for this flow we will use Boolean true and false to control LED 2

because that is what the IN 2 input channel provides, and it will simplify things. So instead of using the

Invert Node you built up before you will need to develop a new node, the “Logical Not39” node that will

convert true to false and false to true. You can use a change node to do this, and you can use a similar

technique to perform the exchange of true and false.

Now it is time for a coffee break40. Come back in 15 minutes think about the flow and how you might

configure the nodes. Give it a try and see if the LED flashes as you expect. Once you hit the Inject node

the LED is going to flash forever, which is OK because the next step in the plan is break the loop.

If your flashing light flow works then terrific and move on. If not, you can start by debugging it with

judicious placement of Debug nodes. If that doesn’t work, try taking the “Logical Not” node out by itself

and hook up an Inject node and a Debug node and see if it is playing nicely and doing what you want.

This is the most complicated node and the most likely node to have a configuration mistake. If all else

fails, look at these configuration windows further down for each node.

Speaking of Debug nodes, here is another subtle feature of Node-RED: you can disable/enable Debug

nodes on an individual basis. If you have done some simple programming in, say, Python you will know

that one quite powerful technique is to put print statements in your code to track what is happening.

Then when you verify some part of the code is working you “comment out” that print statement. You

can do the same thing in Node-RED with Debug nodes.

In the figure above are two Debug nodes. When you drop a debug node into your flow it is Enabled and

will send messages it receives to the Debug sidebar window. However, if you click the little green tab on

the right side (blue arrow) it will change to the form shown below where the tab is grayed out and

tucked under the node. In this mode the Debug node is deactivated and will not pass messages to the

Debug sidebar window. Click the tab on the disabled Debug node and it will be enabled again. This

means you can scatter as many Debug nodes as you want in your flow and enable or disable them as

required to focus in on a problem. When you are satisfied that your flow is working you can delete them

all.

39 Logical Not – in Boolean logic (or Boolean Algebra) a function that converts true to false and false to true is
called a “Not” or ‘complement” function. Brush up on Boolean Logic here.
40 The mind is a strange thing. You can think and think and think about a problem. Then you take a break and
BOOM the solution appears in a flash. There even seems to be some science behind this phenomenon: active
thinking blocks subconscious thought. It really is true that many good ideas come to folks in the shower, because
they are completely distracted from the problem. Ah… coffee breaks.

Figure 5-43: Debug Nodes (Enabled and Disabled)

Enabled

Disabled

https://en.wikipedia.org/wiki/Boolean_algebra

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 192 of 380

Onward…

Here are the configurations of the nodes in Figure 5-42. The first, is an Inject node that will push a

message with the msg.payload of boolean true into the flow to kick things off when you click it.

Next is the Delay Node, which delays the message for 500 milliseconds.

Now for the difficult node, the “Logical Not” node, which is a Change node with three rules:

Figure 5-44: Inject Node Configuration

Figure 5-45: Delay Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 193 of 380

Even though all you want to do is to change Boolean true to false and false to true you cannot do this

with two simple rules for the reason discussed in Chapter 4. Importantly, every rule specified in the

Change node is applied to the payload starting with Rule 1 and ending with Rule 3. If you simply

changed Boolean true to false in Rule 1 then Rule 2 would convert it back to Boolean true. To avoid this

problem Rule 1 converts Boolean true to a different, temporary value, namely, numeric 141. Next is Rule

2, which converts a Boolean false in the payload to Boolean true. Finally, if the input payload had been

Boolean true Rule 3 will convert the temporary value of numeric 1 to Boolean false. If you are still

confused about how this Change node works pull the node out by itself, connect an Inject node to the

input and a Debug node to the output and try different payload values, like true, false, numeric 1,

numeric 15, and maybe a string or two. Admittedly this three-rule approach is murky, but just

remember every rule is applied to the msg.payload value in sequence and if rule changes the

msg.payload to a value that will trigger a following rule then that following rule will apply also.

41 It is not important what temporary value you choose as long as it is different from boolean true so that Rule 2
does not apply to the new msg.payload value.

Rule 1

Rule 2

Rule 3

Figure 5-46: Logical Not Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 194 of 380

The LED node configuration for LED 2 is simple:

The mode is “single” because you want to control only LED 2.

DEPLOY YOUR FLOW!

When you click the Inject node you are injecting a single message with the payload Boolean true. After a

delay of a half second (500 milliseconds) the payload value is changed from Boolean true to false. This

goes to the LED 2 node and turns the LED off (Remember: payload values of false, 0, “0” and “off” will all

turn the LED off). The new payload value of false loops back to the Delay node where it passes a

pleasant half second resting up before moving on to the Logical Not node. Here is converted from its

current value of false to true and passed to the LED which then turns on. The message also loops back to

the Delay node for another snooze and so on forever.

Now for the big question: how do you break the loop to stop the LED from flashing? Think about this for

a few moments… what sort of node might be used to shunt the message out of the loop so that it does

not circulate any longer. Thinking… thinking… thinking… Ah Ha! How about the Switch node? A message

goes in and depending on the conditions you have defined the message can go out one of two different

output ports. How about an arrangement like this?

The “Run?” node is a Switch node with two outputs. Assume someplace there is a context data variable

named “Run” which can take on a value of true or false. If the Switch node can consult this context data

variable, then it would be able to decide whether the input message should go to the upper output port

and continue circulating or go to the lower output port and be lost forever in the great bit bucket in the

Figure 5-47: LED Node Configuration

Figure 5-48: Take 1 - Flow with Addition of Switch Node

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 195 of 380

sky. Under one condition the message circulates and the LED flashes and under the other circumstance

the message stops circulating, and the LED will stop flashing. With all of this in mind your “Run?” Switch

node configuration should look like this:

Simply put, when an input message arrives the “Run?” node checks the value of the context data

variable Run and directs the input message to output 1 if the value of Run is Boolean true and to output

2 if it is Boolean false.

If you deploy the flow as it stands now you will find that it does not work because the context data

variable, Run, does not yet exist. So, your next step is to set up some way to define and control the

context data variable. You can see if the Run context data has been defined by opening the context data

tab and then opening the “Flow” dropdown. Don’t forget to refresh the “Flow” dropdown

Above is an example of context data for Flow related variables. It is empty (blue box) indicating that

there is currently no defined context data for your flow. Remember, it is important to refresh the

Figure 5-49: Run Node Configuration

Figure 5-50: Context Data Example

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 196 of 380

context data window  before you rely on it. In the Flow dropdown there is a timestamp  that tells

you the last time your context data was updated.

Next step – enhance your flow to control the context data variable Run as in the figure below, which you

will want to include in your flow from Figure 5-42. This is important because the context data for Run is

only available within the flow where it is “defined”. Add the nodes below to your flow.

• Configure one Inject node to generate a msg.payload with a value of Boolean true.

• Give that node the name “Set true” so you will know what does.

• Configure the other Inject to generate a msg.payload with a value of Boolean false.

• Give that node the name “Set false”.

The Change node is going to set the Context Data variable “Run” to whatever the msg.payload value is.

Here is what the configuration should look like:

Deeeeeploy IT!

Now open the Context Data tab in the side bar and open the Flow dropdown (see Figure 5-50). Click the

refresh icon  in that figure. Notice that the Flow dropdown is still empty even though you have

mentioned the variable “Run” in your “set Flow.Run” node (Figure 5-52, above). You might be asking

yourself, “What’s going on here?” The answer is that in Node-RED a context data variable does not

spring into existence merely because you mention it in some node or other in your flow. Rather it will

only become real the first time you assign a value to it.

To test out this little flow do this:

Figure 5-51: Defining and Controlling Context Data

Figure 5-52: Configuration of Change Node to Set Run Variable

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 197 of 380

• Click the “Set true” Inject node in Figure 5-51.

• Now go back to the Context Data Tab, open the Flow dropdown (if it is not already open) and

click the refresh icon. Presto! The Run context data is there, and it is set to true.

• Click the “Set false” Inject node. The value in the Context Data window will not change, until

you:

• Click the refresh icon again.

Try this a few times and make sure you understand what is going on.

Ready for the big test?

• Click the “Set true” Inject node, refresh the Context Data window and make sure that the value

in the Run context data variable is true.

• Click the “true” Inject node on your previous flow.

Does LED 2 flash per the specification? If so great. If not, then time to debug. You know the drill already:

wire up some Debug nodes and make sure that the messages are what you think they should be.

• Click the “Set False” Inject node, refresh the Context Data window and make sure that the value

in the Run context data variable is true.

Did LED 2 stop flashing? If so: perfect, if not: debug time.

What do you suppose is the message that appears at the output port of “set flow.Run” node in Figure

5-51? Connect a debug node to the output port and find out. Like this:

Deploy this test flow!

• Click the “Set true” Inject node. What is the message that appears in the Debug sidebar?

• Click the “Set false” Inject node. What message is output?

Interesting isn’t? The “set flow.Run” uses the payload to set the Context Data variable Run and simply

passes the payload to the output. It’s almost as if the node is not there? Maybe you can use this to your

advantage.

How about this:

• Delete the Debug node.

• Delete the “true” Inject node in your flashing LED flow.

• Connect the output of the ”set flow.Run” node to the input of the “Run?” Switch node.

Figure 5-53: Message Output Test Flow

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 198 of 380

Your new flow should look like this:

DEPLOY THE FLOW!

Now try clicking on the “Set true” and “Set false” Inject nodes. How does the flow behave? Is it close to

the specification above? What part of the specification does the flow meet? Where is the flow deficient?

One aspect that is missing is using a switch connected to IN 2 to control the flow. Look back at the help

file for the opto-isolated inputs. Closing the switch produces a message with a payload of true and

opening the switch produces a payload of false. Fabulous! You can just replace the two inject nodes with

the OPTO node like this:

• Configure the OTPT node with name “IN 2” because that is the input you are using.

• Select “input” mode because you want a message each time the switch changes position.

• Select “input channel” 2.

When you are done the OPTO node configuration should look like this:

DEPLOY, for goodness sakes!

Figure 5-54: Take 2 - Flashing LED Flow with Start and Stop

Figure 5-55: Take 3 - Flashing LED Flow with Switch Control

Figure 5-56: OPTO Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 199 of 380

To test this flow, you must have a switch (or a pushbutton) connected to IN 2. If you did everything

correctly when the switch is in one position LED 2 should flash and in the other position LED should stop

flashing42.

• Everything works: take a walk, enjoy the sunshine.

• Flow does not works: time to put your debugging skills to the test. Carefully check the

configuration of each node. Try using Debug nodes to see where the messages are going astray.

You can even try injecting a message like Boolean true or false into the flow to see what

happens. Just remember to Deploy the flow every time you make a change. Otherwise, you will

never walk in the sunshine again.

Go back and check the specification. Test each aspect of the specification. Is anything missing?

Ah, yes! When the flow is deployed LED should flash or not flash depending upon the position of the

switch. You may have noticed this deficiency because when you deployed the flow of Figure 5-55 the

flow did not start flashing even though the switch was in the “flashing” position.

Think for a moment, appeal to the wisdom of the hamsters. How are you going to get the flow to start

properly upon deployment? Look back at how you did initialization in previous flows (e.g., Figure 5-27).

All you need to do is read the state of the switch on IN 2 when the flow is deployed and use that to start

the flow. Would a flow like this work?

See if you can set up the “Initial Read” node (an Inject node) and the top “IN 2” node (an OPTO node)

yourself. The “Initial Read” node generates a message when the flow is deployed. This message triggers

the read of the IN 2 input, which in turn provides a message with the current switch state. If after

thinking about how to configure the nodes your brain overheats and your thought processes grind to a

halt look at the node configurations below.

42 Whether LED 2 is on or off when you flip the switch to the non-flashing position will depend upon exactly when
you flip the switch. Fortunately, the specification does not require that the LED be on or off when it stops flashing.

Figure 5-57: Take 4 - Flashing Light Flow with Initialization

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 200 of 380

For the Inject node you must set the payload and name as in Figure 5-59, but you must also check the

box (blue arrow) so that the node will inject the message once just after deployment as in Figure 5-58,

directly above.

Here is the configuration of the OPTO node at the top of the flow:

Controlling Loops – Counting
Now you know how to start and stop the operation of a loop with a pushbutton or switch. Think for a

moment about this very general, and somewhat incomplete, specification:

• When IN 2 is pushed LED 2 flashes 10 times and stops.

• Each flash is one half second on and one half second off.

Figure 5-59: Inject Node (Top)

Figure 5-58: Inject Node (Bottom)

Figure 5-60: OPTO Node Configuration for Read

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 201 of 380

Can you think of a way to do this, that does not involve a huge chain for delays (well, after all a chain of

20 delays is very messy)? Can you think of a way to increment a number in msg.payload in a loop until it

reaches some number, like 10 and then terminates43 the loop?

Or how about this, make the problem much simpler and see if it is possible to do something small:

• Output the numeric values from 1 to 5 once each second in order in the debug window, and

• Stop

Well, there are only five things to ourpu, so you could just use a big stack of Debug and Delay nodes.

However, what if your specification included this additional limitation:

• You can use only a single Delay node of one second.

This means you will need to use a loop. Suppose the number that you want to print out is in the

msg.payload. How are you going to add one to the number44 each time through the loop?

Give this some thought. Sleep on it. Mull it over. Phone a friend. Ask the audience.

One possibility that might occur to you is to set up a huge Switch node with 6 output outputs combined

with a Change node on each output. If a message came in with a value numeric 0 you could send the

message to one of the outputs and then the Change node on that output would change the value from 0

to 1, 1 to 2, and so on.

Here is what that kind of flow might look like:

Check out the Switch Node labeled “Check Number” (blue arrow). The purpose of this node is to

separate messages with different numbers. Then the attached change nodes increment the number by

one using a simple set option. Notice the empty output port on the “Check Number” node. This is where

the message goes when it contains numeric 5. It’s the end of the line because the message just vanishes

into the ether, gone, never more to be seen and the output messages stop.

Here is what the configuration looks like.

43 Terminate – computer programming speak for stopping a loop.
44 “add one to a number” – programmers say “increment the number” or if you subtract one each time they say
“decrement the number”.

Figure 5-61: Counting Flow Based on a Switch Node

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 202 of 380

Also check out the node labeled “Null” (red arrow). This node does nothing but pass the incoming

message to the output. In its nothingness it serves two purposes here: (1) to allow each change node to

connect to the Delay node without having a big tangle of lines and, (2) it makes the loop clearer because

it positions the loop below the Delay node. The “Null” node is a Switch node with only one rule as

shown below. Sometimes judicious use of an artifact like the Null node can make your flow easier to

understand. Editorial Rant: wouldn’t it be nice if Node-RED included a Null node? In any case, you can

always roll your own.

You should be able to build this flow up on your own. Try it. Deploy it, Run it. Does it output the

numbers one through five and stop?

Figure 5-63: Configuration of Null Node.

Figure 5-62: Configuration of Switch Node

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 203 of 380

If you were very clever you could set up a single Change Node to do the same things as the Switch and

Change nodes in Figure 5-61, but you would need to carefully arrange the order of the change rules so

that a following rule does not modify he results of a previous rule45. Here is the equivalent flow using a

single Change Node.

One thing you might say about this flow is that it is certainly a lot simpler looking than the flow in Figure

5-61. No big switch node followed by a stack of change nodes. This is because the complexity is in the

“Add 1 to Payload” Change node (blue arrow). However, if you crack open the node you will see this:

The configuration in the figure above is only part of the story. There are a total of five rules, one to

increment each payload value, and remember, the rules have to be arranged so that the largest value is

modified first. Otherwise, the Change node wil mangle your data beyond recognition.

The little Switch node with two outputs detects the end of the loop and if the incoming message

contains numeric 5 it shunts the message to the unconnected output an “Adios Message”. Below is the

configuration.

45 For example, the first rule might change 4 to 5, the second rule would change 3 to 4 and so on so that only one
of the rules applies each time a message is received.

Figure 5-64: Counting Loop with a Change Node

Figure 5-65: Configuration of Change Node (Partial)

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 204 of 380

Not to bad, if you have had the patience to work out some of these flow you will have learned

something about building looping flows tht will run for a certain number of times and then stop.

However, both of the techniques above are very clunky, which is a precise engineering term for,

impractical. Suppose you wanted the loop to run for 20 times, or even 10 times. Building such a flow as

above would be really tedious and quite prone to errors. After all every one of the 10 or 20 rules in the

Switch or Change nodes must be exactly right or disaster will ensue.

There must be a better way. In fact, there is and it does not require learning about a new node, just how

to use the nodes you alredy have in a different way.

Simple Expressions – Something You Can Count On.
Typically programming languages allow you to write algebraic like “equations”46 to process data. Node-

RED is no different. The Inject, Switch and Change nodes (among others) allow you to perform simple

arithmetic, logical and string manipulations on context data and data in messages. This is very handy

and allows you to greatly extend what you can do in Node-RED without having to master Java Script.

The mechanism that supports this is called “JSONata”47, which is a simple language that allows you to

write “expressions” to transform and combine data. Here you will be using some basic, nay trivial,

JSONata expressions, but once you get a handle on the basics you will probably want to look here and

learn more.

You are already familiar with expressions, unless you are a child prodigy in third grade and just

happened to develop and unquenchable interest in Node-RED thereby skipping algebra. From algebra48

you are familiar with statements like:

• x + 1

• 3x + 5

• 2y +5x +7

46 They look like equations but be warned they are not equations in the algebraic senses. Rather they are just
directions on how to process data.
47 JSONata – JSON refers to the underlying data structure of Node-RED nodes and messages. JSONata is an
expression language that allows you to manipulate a JSON “object”.
48 Take home assignment: research the origin of this word. You might be surprised.

Figure 5-66: Configuration of Switch Node

https://jsonata.org/

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 205 of 380

And so on and so on. These are expressions, which are simply written statements that tell you how to

combine the value of variables (x, y) with the value of constants (2, 3, 5, 7) to get a value. Trivially, if

someone told you that the current value of x is 37 and asked you what the value of the expression x + 1

was you would instantly say 38. Similarly for the other expressions shown above. Someone gives you the

current values of the variables and, presto, you can evaluate the expression and give them the value of

said expression. This is something you did all the time when you started taking algebra. Probably you

have fond memories of quiz after test after exam where you were asked to evaluate an expression given

some values. It’s the same here, except that you friend JSONata is going to do all the heavy lifting for

you.

Expressions in JSONata look and feel just like algebraic expressions, so if you know how to express

something algebraically you are ready to use JSONata. However, you must keep a few things in mind:

• Variables in an expression are not limited to x, y, z and all those bland letters you remember

from algebra. Instead, a variable may have any of valid data context variable name (see Context

Data Variables). So, “LedNumber” is just as good as “x” and much clearer.

• In place of traditional algebraic symbols +, −, , and  for add, subtract, multiply and divide, you

will use +, -, * and /49.

• Use parenthesis as you would in algebra. The usual algebraic rules apply to evaluation, so in

something like “5 * x +3 the multiplication is performed first and then the addition.

Question: What do you do next?

Answer: Start simple!

Open a new flow, save any flows you love and cherish, delete the old flows and build a flow like this:

Don’t bother to deploy this flow because it is not going to do anything useful (or if you are the curious

type, think about what it might do, deploy it and see if it worked the way you thought it would.)

Next, configure the Inject node and the Change node as follows.

• Name the Inject node “Inject 1” because that is what it is going to do.

• Get rid of the topic rule because it is not needed.

• Change the payload to be numeric 1

49 The use of * for multiply and / for divide harkens back to prehistoric times in computer science (the 1950s) when
the only display available was a teletype and the only symbols available were those on a standard typewriter

keyboard. Can’t use “x” for multiply because that might be the name of a variable. No, “” on the standard
keyboard, so “/” is the next best thing.

Figure 5-67: Do Nothing Flow – Take 1

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 206 of 380

Your edit window should look like this.

• Click Done.

Open the Change node and…

• Name this node “Do Nothing” because that is what it is going to do.

• Add one rule that sets the msg.payload to the msg.payload. In other words, the payload is going

to past straight through the Change Node.

Your Change edit window should now look like this:

• Click Done.

Does your flow look like this now?

Figure 5-70: Do Nothing Flow – Take 2

Figure 5-68: Inject Node Configuration

Figure 5-69: "Do Nothing" Change Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 207 of 380

Wonderful. Enjoyment comes from Deployment, so DEPLOY NOW!

What do you expect to see in the Debug sidebar window each time you click on the “Inject 1” node. Try

it. Were you right? If you saw a numeric 1 every time, then you did everything correctly. Otherwise, visit

Debug Town for a few minutes and get it right.

Okay, time to modify this flow so that when you click the inject node the numeric 1 in the msg.payload

is updated to numeric 2. You will do this by modifying the Change Node to add one to the msg.payload

using a JSONata expression.

• Open the Change node.

• Change the name to “Add One” because that is its new goal in life.

• Click on the “To” Dropdown and look at the selections (below)

• Click on the JSONata icon50 (blue arrow). Important don’t be led astray by the JSON icon just

because it has the word JSON in it. You really want the icon by the blue arrow.

Next:

50 Very cleverly the Icon for JSONata looks bit like a bass clef sign on a musical staff, making the connection
between JSON and Sonata.

Figure 5-71: To Dropdown Showing JSONata Selection

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 208 of 380

• Go to the box to the right of the “To” drop down and enter “payload + 1” (without the quotes,

of course). Your final configuration for the change node should look like the figure below.

Before you click Done take a look at the configuration, especially the rule in the blue box. Here is what

the rule is saying that the Change node is going to do when it receives a message.

• Get the incoming message.

• Take the value of the message payload.

• Add one to the value of the payload.

• Put the new value into the message payload.

• Send it to the output.

In other words, the Change node is like a little factory that can modify the incoming payload and send it

onward. In this case the modification is to add one to the payload. In computer programming terms here

is what the rule says:

“SET msg.payload TO msg.payload plus 1”

Or in more colloquial terms:

“Add one to the value of msg.payload”

Perfect! Now for the big test:

• Click Done

Deploy or never see the sun again!

Clear the Debug sidebar window. Click the inject node. What do you see? If everything went properly

you should see the number 2 in the Debut sidebar window. Change the value in the Inject node to some

other number, like 5, 37, -19, 14.2. Deploy and try your flow again. It should always add 1 to whatever

numeric value is in the payload of the message it receives.

Figure 5-72: Change Node to Add One to the Payload

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 209 of 380

If you are really curious you might try changing the Inject payload to the string “5”, or Boolean true.

Deploy and test your flow. You should get a big red warning message in the Debug sidebar window

because the JSONata expression is expecting the payload value to be numeric. This is because the little

sprite inside Node-RED that evaluates JSONata expressions expects to see a numeric value on both sides

of the plus sign. Nothing else will do. Plug in a string, a Boolean or something else and you will get the

equivalent of ticket for being a public nuisance and not following the rules. For shame!

Now that your “Add One” node seems to work take it and substitute it for the “Add One to Payload”

node in Figure 5-64 and you will have the flowing flow.

Time to DEPLOY!

Click the Inject node and you should see the numbers one through five printed out in the Debug sidebar

window.

Now that you have seen how to write a simple expression you can probably imagine how to write more

complex expressions. Not only can you modify the msg.payload value, but you can also modify other

message values (e.g., msg.led) and you can perform arithmetic operations on context data variables. You

just have to identify them in the expression.

OPTO Puzzle # 3 - Going Down. Modify the flow in Figure 5-73, above, to print out numbers in the

debug window starting at 5, counting down to 1 and then stopping.

OPTO Puzzle # 4 - Temperature Change – Construct a node to convert a number representing degrees

Fahrenheit to degrees Celsius. Test it out. If you built the Local Temperature flow from Chapter 3 see if

you can substitute it for the Range node.

Let’s wrap this up. Using the flow from Figure 5-73 try to extend it to meet the specification at the

beginning of this sections. Remember when you push the button on IN2 LED 2 should flash 10 times and

stop. Here is what you must do:

• Modify the flow to count from 1 to 10

• Substitute a pushbutton on input 2 for the Inject node

• Substitute a flow for the Debug node that flashes LED

Modify the flow count to 10 – Easy to do. Open the Switch node and change the termination condition

to 10 as below.

Figure 5-73: Updated Counting Flow

Updated Node

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 210 of 380

Deploy and check to make sure the flow counts from 1 to 10.

Substitute IN2 for the Inject node – replace the Inject node with an OPTO node configured as below. You

will also need to include a switch node to make sure you only capture the button press and finally you

will need to have a Change node to generate the value of numeric 0 to kick the loop off. Below is what

the sub-flow will look like. The output (a numeric 0) will go to the input of the “Add One” node.

Try setting the three nodes at the top of the flow on your own. If you run aground, then look at the

configurations below.

Figure 5-74: Switch Node Configuration

Figure 5-75: Flashing LED with Added Input Flow (Top)

Figure 5-76: OPTO Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 211 of 380

 your flow and check to see that pushing the button on IN2 outputs the numbers from 1 to 10.

Add a sub-flow to flash the LED – All that remains is to replace the Debug node with a sub-flow that will

flash LED 2 each time a new number is generated. You will first need to change the number in the

payload to a numeric 1 to turn the LED on and then one half second later change the message to

numeric 0 to turn the LED off. Here is what the final flow should look like.

Figure 5-78: Switch Node Configuration (Button Pressed?)

Figure 5-79: Completed Flashing LED Flow

Figure 5-77: Send 0 Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 212 of 380

Again – you can set this up on your own, but if you begin to despair here are the configurations for each

added node.

Figure 5-80: On Node Configuration

Figure 5-81:Delay 500 msec Configuration

Figure 5-82: Off Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 213 of 380

When testing your flow remember that the LED might be on initially, in which case you will only see nine

flashes instead of 10. If this offends your sensibilities (and maybe it should because it is a bit of a hole in

the specification) then you might consider these extensions to the flow of Figure 5-79.

• Add a sub-flow that turns off LED 2 when you push the IN2 button and delays a half second

before sending the message on. Or,

• Add a node to clear LED 2 upon deployment.

You should also consider that if you push the button connected to LED 2 before the flashing sequence

terminates you will have two messages circulating, which will cause all sorts of confusion in the flow.

Therefore:

OPTO Puzzle # 5 - Only One at a Time Please! – Devise a flow to go between the IN2 button and the

remainder of the flow in Figure 5-79 that prevents additional button pushes from initiating the flow

until the flow competes flashing LED 2. You will probably need to use a context data variable to block

any button push messages that occur before the flow ends. You can set the variable when the button is

pressed and reset it with a message from the Switch node output that is not connected.

Running with the Switches

Simple Kitchen Timer
Time to pull all of your knowledge of OPTO nodes, expressions and context data variables together and

demonstrate your supreme mastery of Node-RED. Here you will build a simple kitchen timer. In fact, it is

so simple that it will only allow you to time your hardboiled eggs for between 0 and 15 seconds! Here is

the specification complete with handy number so that you can refer back to them later.

1) LEDs GP! To GP4 will display the time remaining in binary.

2) All four pushbuttons will be used as follows:

o IN1 – Stop Timer.

o IN2 – Start Timer.

o IN3 – Subtract one second from time remaining.

o IN4 – Add one second to time remaining.

o Action occurs when button is pushed.

3) IN4 will not add time beyond 15 seconds

4) IN3 will not subtract time below zero

Figure 5-83: LED 2 Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 214 of 380

5) When the timer is running it will count down the time once each second

6) When timer reaches zero all LEDs will flash five times

7) The flash rate will be half second on and half second off.

8) Time may only be changed (add or subtract) when timer is stopped. If the time is changed while

the timer is running the results are indeterminate.

9) When deployed the timer will be stopped and show zero time.

Here is an Illustration of the timer.

To build and test this flow you will need four pushbuttons, although you could use a single pole double

throw (SPDT) switch for the RUN/STOP function because only one input can be used at a time.

This is a the most complex project you have encountered so far, so you will need to apply all your

knowledge and good engineering habits to it. You will need to think first and program later. To increase

your likelihood of success you will need to work incrementally.

Engineering Tip # 12 - Test As You Build – The great temptation in programming is to get a flash of

inspiration and then jump in and start laying down code (or in the case of Node-RED, nodes and wires).

Resist. Start with a good plan. More importantly work in a methodical manner.

Most projects are built up from small pieces and even these pieces might be composed of yet tinier

parts. Do not rush to construct your whole design all at once. You will end up with a tangle of nodes and

wires that you will take an infinite amount of time to debug. Also resist the temptation to build up a

bunch of small functional units and then just stitch them together. Building smaller functional units first

is a good idea, but you must test each such functional unit first begore you go on to bigger things.

It is good practice to break your overall design into smaller sub-designs. It is also important to build tests

for each sub-design so that you verify that the sub-design works before you incorporate it into the final

design. Once you plug your sub-design into the larger system it will be much more difficult to locate any

bugs because there many more moving parts, so to speak. Good engineers break the development

process into pieces, and they test each piece before the begin using with other pieces. Sometimes

testing at the lower level is referred to as “unit testing” and testing at of the completed system is

Figure 5-84: Timer User Interface

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 215 of 380

obviously called “system testing”. Just because a “unit” of code passes a “unit test” does not necessarily

mean that it is bug free and will play nicely with others, but at least you will not be trying to locate a

simple bug in a much more complex environment.

Step 1 – Initial Design
On any complicated design the first thing to do is to think about how to break your problem down. Here

we have a specification, so that is very helpful. Sometimes you need to mull the problem over for

several days to get the creative engine inside to rev up and start generating possible solutions. It is

usually helpful to sketch out a block diagram or chart that shows the basic components of your design.

After several cups of coffee and a lot of cogitation you might conclude that this project should be broken

into smaller, more manageable flows each with its own tab:

• Initialization of the system upon deployment.

• Sensing the buttons.

• Keeping track of time.

• Flashing the lights when timing is complete.

Keeping Track of Time
You could start into this problem any place, but maybe keeping track of time would be a good place to

begin. You might imagine that inside your flow there would be a place that keeps track of how much

time is remaining on the timer. You are going to increase and decrease this value with two of the

buttons (Add One Second, Subtract One Second) and you are going start and stop the count down with

the other two buttons (Start and Stop). This certainly sounds like a loop of some sort. Further, there are

two modes of operation the timer is either running (that is, it is counting down) or it is stopped. When

the time is stopped you can add or subtract one second from the time remaining. Also, when the timer

gets to zero it is going to stop (you can worry about the flashing later).

After you write enough flows (or programs) you will begin to get a feel for what sort of information you

need to store. Here, it is more or less clear that you will need some sort of context data variable to keep

track of the time remaining. While the timer is running you could certainly keep track of time in the

payload, but what would you do when the timer is stopped? You still have to remember the time. The

problem is that it would be hard to do this in the payload of a message because you would need to keep

the message circulating to retain the value of the current time. Using a context variable means you

could hold on to the value even when the flow has not active messages zipping around inside.

Here is another decision: what type of context data variable to use, node, flow or global? Here you must

make a big design decision: “Do I use one giant flow, or do I break the problem down into several flows

and link them together?” You already have a rough breakdown of your problems, so maybe there should

be a flow for each part of the problem. In this tutorial there is a very practical reason to use multiple

flows: the flows must be readable when they are turned in to figures! Here the big design decision is to

go with multiple flows stitched together with Link In and Link Out nodes. Once you decide to do this you

will probably be using global context data variables because the value of the variables will likely need to

be accessed from several flows.

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 216 of 380

Now that you have thought the approach over you might try to clarify your ideas by making a quick

sketch on the back of an envelope.

Step 2 – Start Small
Clear the decks: add a new flow, save any old flows you have laying around and delete everything so

that nothing in your workspace interferes with your new design.

Where to start? Where to start? Where to start? This is always an important decision51.

Start with the context data variables. From the sketch above you are going to need one called “Time” to

hold the current time left, and you will need another called “State52” to tell whether the timer is running

or stopped. For the “State” variable you could use the strings “RUN” and “STOP” to indicate the current

state. Now some folks might suggest the Boolean true and false to represent running and stopped. Or

you could use 0 and 1 the same way. However, if you use strings then it will make a lot more sense when

you go to debug you flow.

The place to start with context data is in the deployment because you will surely want to set the initial

value of these as soon as you deploy your flow. Create the flow below in a tab labeled “Deployment”.

51 “Begin at the beginning," the King said, very gravely, "and go on till you come to the end: then stop.”
(Lewis Carroll – Alice in Wonderland)
52 “State” – a common noun in Programmer-Speak. It just means the current condition of some aspect of the
design, e.g., the state of the light is “on” or “off”, the state of valve is “open” or “closed”.

Figure 5-85: Sketch of Possible Approach

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 217 of 380

This is the initial shot at deployment, but you may need to revisit it. Remember: engineering is usually

an iterative process. You can plan and plan and plan, but even after you build your flows you will still

need to make adjustments for things you have overlooked.

The RESET node simply generates a message to trigger the initialization of the State and Time context

variables. You should be able to set this up on your own, but if you have trouble here are the

configurations.

Step 3 – Test As You Build
Testing – now is the time to test this small flow and make sure it does what you think it will do. Testing

this flow is easy: Deploy it! Once you do this you can check in the Context Data tab under the Global

dropdown. Remember that you must refresh the view to see the current value of the Time and State

context data variables. If you see the State variable set to the string “STOP” and the Time variable set to

numeric 0 then your flow works.

Figure 5-86: Deployment (Take 1)

Figure 5-87: Reset Node Configuration

Figure 5-88: Set Time Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 218 of 380

Step 4 – Build and Test More Flows

Look at the sketch on the back of the envelope (Figure 5-85). Maybe the next flow to develop is the one

related to the buttons (but, you might have a better idea). Open up a new flow tab and name it:

“Buttons”. Your initial flow is just going to update the State and Time context variables according to the

specification. You will find out later that you will need to do more than this, but this is a good place to

start with the buttons. Here is initial Button flow for the Start and Stop buttons.

This flow should look somewhat familiar because it is the standard way to handle a pushbutton. The

START and STOP inputs (IN 2 and IN 1) pick up the button events (pressed and released). The “Pressed?”

nodes as Switch nodes that keep the button presses but throw away the releases. Then the “Set Run”

and “Set STOP” nodes update the State context data variable. If you get stuck look back at the discussion

related Figure 5-75. Below is the configuration of the “Set STOP” and “Set RUN” nodes.

Figure 5-89: Set State Node Configuration

Figure 5-90: Button Flow (Take 1)

Figure 5-91: Set Run Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 219 of 380

DEPLOY IT!!!

Testing – All you need to do to verify this flow is to deploy it and then try the IN1 and IN2 buttons. Press

one of the buttons and then check the context data sidebar. Don’t forget to refresh the context data or

you will not see any changes. Try each button several times.

Next up: augment the Button flow with the Add One Second and Subtract One Second flows. These are

more complex than the START/STOP button flows because you need to perform minor arithmetic with

JSONata. Look back at Figure 5-85. It looks like all you need to do is add or subtract one second from

the State variable. However, you must also keep the time from going above 15 or below 0 because that

is part of the specification (items 3 and 4) and the limit of the four LED display. Do you think the flow

below will do the trick (“Take 1” because you are going to need to enhance it later, but good enough for

now.)

Figure 5-92: Set Stop Node Configuration

Figure 5-93: Add and Subtract Time Buttons (Take 1)

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 220 of 380

You have already used the first two nodes in each flow (LKit OPTO and “Pressed?”) before. The other

two nodes are new configurations and a bit tricky. Here are the configurations for the “At Max Time?”

and “At Min Time?” nodes.

The purpose of the “At Max Time” node is to check the current value of the context data variable Time

(global.Time) an if it is less than 15 seconds then the messages exits at output port 1 and the Time value

gets incremented in the next node. However, if the value of Time is already 15 the messages exit output

port 2 and vanish into the abyss. This prevents global.Time from becoming greater than 15. In a similar

manner the “At Min Time” node prevents the global.Time value from ever going below zero. Remember:

to reference a global context data variable you must specify “global” as the prefix .

Here are the configurations for the Add One Second and Subtract One Second nodes.

Figure 5-95: At Min Time Node Configuration

Figure 5-94: At Max Time Node Configuration

Figure 5-97: Add One Second Node Configuration

Figure 5-96: Subtract One Second Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 221 of 380

Look carefully at the JSONata expressions in the blue boxes because they are different in form from

what you worked with previously. The objective is to update the global.Time variable by plus or minus

one second. However, to access a context data variable, global.Time, you must use a function rather

than just mentioning its name as you can do when the data is contained in a message.

A function in JSONata is a name that starts with a dollar sign ($) and then has an “argument” in

parenthesis. This is just like the functions you learned about in algebra and trig, like sine (30), cos (90)

etc. The name, (sine, cos) tells you what the function is going to do and the value in the parenthesis is

the argument, which is what the function is going to use to compute your answer. It’s the same in

JSONata except you must start the function name with the dollar sign53.

Important: there is one more thing you must do to access the global.Time variable… you must enclose

the name of the variable in quotes. This is an artifact of JSONata because you are really accessing data in

a JSON data structure, and when you so this you must use a string, like ‘Time’. Working with JSON data

structures is an advanced topic, so for the moment just plug in the functions as shown.

Deploy NOW!

Time for, you guessed it, TESTING. All you need to do is press the IN4 and IN3 buttons and check that

the value of Time changes properly. Don’t forget you must update the Global dropdown in the Context

Data sidebar to see the changes. If the value is incrementing and decrementing properly then check that

it never increments above 15 or decrements below 0.

Step 5 – The Main Timer Flow
Time for the central flow: the main timer loop. According to the specification when the timer is in the

RUN mode the time must count down once each second to zero (items 5 and 6). If the state changes to

STOP the timer must stop counting but hold the current time value (Item 2). Once the timer reaches

zero it must flash the LEDs (item 6)). Assume here that the flashing of the LEDs will be done in a separate

flow and all you need to do now is to generate a message when the timer reaches zero.

Here is one possible flow with Inject nodes and Debug nodes added for testing purposes.

53 Sorry, it does not look like JSONata incudes trig functions.

Figure 5-98: Timer Main Loop with Inject and Debug Nodes for Testing

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 222 of 380

This looks more complicated than it is because there are an Inject Node and three Debug nodes

attached so that you can test the flow. Note that the Inject and Debug nodes have been given names to

make the testing process easier.

See if you can construct this flow based on Figure 5-85. When you click the Inject node labeled

“START”, it is going to inject a message to kick off the loop. What should that message be? It might be a

payload with global.Time in it, or it could be an arbitrary message just to activate the loop. You may

have other ideas. In this example it is the latter, simply a Boolean true, whose only purpose is to activate

each node.

Cogitate for a moment on the overall flow. When the State of the timer is “RUN” each time the message

makes a pass around the loop one second is subtracted from Time (“Subtract One Second” node) and

this time is sent to the LEDs (“Send Time to LEDs” node). Then the “State?” node checks to see if the

State is still “RUN”. Next, the “Time?” node checks to see if the timer has expired. Below are the

configurations for the loop nodes, but before you jump ahead see if you can build this flow on your own.

Time passes… See if your node configurations are like those below, or perhaps you have a much better

approach that is equivalent.

Figure 5-99: "State?" Node Configuration

Figure 5-100: "Time?" Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 223 of 380

The “Subtract One Second” Node is just like the node in Figure 5-96 use to set up the Time variable.

In this implementation of the timer loop the circulating message is simply Boolean true. Therefore, when

global.Time is updated it is necessary to place the new Time value in the payload of a message and send

it off to the LEDs for display because you want to see the time counting down second by second (item 1

of the specification).

Deploy your flow and hope for the best!

Time for Testing – This is a complicated flow to test. It might even be necessary to write down a small

test plan. Here are some of the things you probably want to check.

• Test 1 - When the timer is running is the context data variable Time being decremented once

each second.

• Test 2 - Does the loop stop when Time reaches zero

• Test 3 - Does the loop stop if the State is changed to “STOP”

• Test 4 - Does the loop resume counting if the State changes to “RUN”

You might be able to think of other things to test to make sure the loop meets the specification. If you

have built this flow in the sequence of the Tutorial, then you can use your other tested flows to help you

Figure 5-102: "Subtract One Second" Node Configuration

Figure 5-101: "Send Time to LEDs” Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 224 of 380

validate this flow. Also remember to check the data context variable values for Time and State during

your testing.

Test 1 – How about this approach?

• Step 1 – Press IN 2 to change the State to “RUN”

• Step 2 – Check context data variable to make sure State is “RUN”. (However, the counter will

not count down because it is not yet connected to the updating of the State. Instead you will

use the “START” Inject Node as below in step 4)

• Step 3 – Open and Clear the debug sidebar window.

• Step 4 – Click the “START” Inject node on the Timer Flow.

• Step 5 – Verify in the debug sidebar that the output of the “TIME” Debug node counts down to

zero.

If your flow passes this first test that is a very good sign because that the main aspect of the loop works.

However, you must always test for the unusual, e.g., does the loop stop at zero (Test 2), which would be

a good thing. You can figure out the other tests. Be thorough because finding and squashing bugs in a

single flow is much easier than trying to find a bug when all your flows are connected up. Careful

debugging is a key to successful engineering and programming. If you become skilled at testing and

debugging, you will never have to stand in the unemployment line.

Test 2, Test 3 and Test 4 – You can do it! Write out a step-by-step plan for each test. Carry out the plan

and find out if your timer flow is working properly.

Step 6 – Completion Flasher Flow
Final Flow – when the timer runs down all the LEDs must flash on and off five times. Will this flow work?

This flow is almost the same as that shown in Figure 5-79 with the only difference being that the count

is five flashes and this flow flashes all the LEDs. No hints here, you can build it! If you get into trouble, go

back and look at the discussion above around Figure 5-79.

Deploy to employ!

Figure 5-103: Flasher Flow

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 225 of 380

Test it! This flow is simple. When you inject any message into the “Send 0” node the payload is set to 0

and circulates around the loop five times. Each time around the LEDs flash. Click the “ALL DONE” node

to check it out.

Step 7 – Connecting the Flows
You have four flows and you have tested each one. Now is the time to connect the flows using Link In

and Link out nodes and perhaps add a dash of Change nodes here and there to get the messages

between flows to work properly. Let’s Go!

You have four flows:

• Deployment

• Buttons

• Timer

• Flasher

Deployment Flow – When you deploy your kitchen timer flows the State is set to “STOP” and the Time is

set to 0. What about the LED? Opps, better set those to zero to match the state, just in case they are set

to some other value from some previous work you did (item 9 of specification). Easy to do… just add a

Link Out node to the “Set Time to 0” node of Figure 5-86 and send it to a Link IN wired to the “All OFF”

node of the Flasher flow in Figure 5-103. Make life easier and name the Link Out and Link In nodes the

same name, like “Clear LEDs”. Don’t forget to open each Link node and connect them to each other.

Now your Deployment flow should look like this (if you click the Link Out node to see its connection to

Flasher flow.)

And on the receiving end, the Flasher flow, you should now have this.

Figure 5-104: Deployment Flow (Take 2)

Figure 5-105: Part of Flasher Flow (Take 2)

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 226 of 380

Deploy and Test it!

Testing – To test this addition to your timer you will need to set up another flow with an Inject node and

an LKit LED node set to group mode. The Inject node should set two or three of the LEDs. Deploy this

flow and click the Inject node to turn on the LEDs. Then shift one of the nodes a bit and deploy again. On

the second deployment the LEDs should be extinguished. Sometimes testing gets to be tricky.

Button Flow - Now let’s look at the Button flow, which includes both the START/STOP buttons from

Figure 5-90 and the ADD/SUBTRACT from Figure 5-93 as below.

When you deploy your flow, the Timer is stopped. Pushing the Start button should start the flow, but is

changing the State to “RUN” enough? What is going to kick off the Timer flow? Nothing if you don’t do

something. How about taking the output of the “Set RUN” node and connecting it to where the START

node enters the timer loop on Figure 5-98? That way when you push the START button it will start the

timer countdown.

Here is the modification to the START Button sub-flow.

The message from the “Set RUN” node connects to the Timer Flow (partially shown below)

.

Figure 5-106: Button Flow (Take 1)

Figure 5-107: START Button Sub-flow (Take 2)

Figure 5-108: Part of Timer Flow (Take 2)

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 227 of 380

Testing – after you deploy your flow push the ADD button a few times and then check that the Time

variable has the correct non-zero number in it (5 or 6 will do). Switch to the Debug sidebar, clear it and

push the RUN button. You should see the output of the “TIME” Debug node count down to 0.

ADD/SUBTRACT Button – Each time you push one of the ADD or SUBTRACT the LEDs should show the

new number. This is going to require modification of the Button Flow and a connection to the LEDs in

the Flasher flow. Below is the Button flow with modifications to send the value of the context data

variable TIME to the LEDs.

Time is held in a context variable and the “Add One Second” node, for example, updates this variable,

but does not send the current value in the message that it outputs. Therefore, you will need to add a

Change node to copy the value of global.Time to the payload before you send it off to the LEDs. Then

add a Link Out node and name it “Display Time”. Check out the configuration of the “Get Time” node

below.

Go to your Flasher Flow and add a Link In node named “Display Time” and wire it to the “All LEDs” node.

Open the Link In node and connect it to the “Display Time” node in the Button flow. Now your Flasher

flow will look like the figure below.

Figure 5-109: Button Flow (Take 3)

Figure 5-110: Get Time Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 228 of 380

Time to Deploy and Test – This is easy. Press the ADD button a few times. Each time you press the

button the LEDs should increment by one. When you press the SUBTRACT button the LEDs should

decrement by one. Make sure that the LED display stops at either 0 or 15 when you press SUBTRACT and

ADD too many times. Does it work? Wonderful! Next up…

Timer Flow – Right now your Timer flow only sends the value of Time to the “TIME” Debug node so that

you can test your flow as you did just above. It’s time to connect the output of the Timer flow to the

LEDs. Do this by replacing the “TIME” Debug node in the Timer flow with a Link Out node. You might call

this “Display Time”. Go to the Flasher flow and add a Link In node with the same name to the “All LED”

node. Open each Display Time Link node and connect them together.

A partial view of your new Timer flow should look like the figure below.

Your updated Flasher flow (partial) should look like this.

Figure 5-111: Flasher Flow (Take 3)

Figure 5-112: Timer Flow (Take 3)

Figure 5-113: Flasher Flow (Take 4)

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 229 of 380

Ready, Set, Deploy!

Testing – Using the ADD button add a few seconds to the timer. Push the RUN button. Your system

should count down to zero and then flash the LEDs.

Flasher - Your Timer is almost complete. Now it is time to connect the output of the “DONE” node in the

Timer flow to the Flasher to indicate when the timer reaches zero. When you were testing your

individual flows, you had a Debug node named “DONE” in the Timer flow. Replace that with a Link Out

node named “DONE”. On the Flasher flow replace the Inject node named “ALL DONE” with a Link In

node named “DONE”. Open each Link node named “DONE” and connect them together.

Does your Timer flow look like the figure below that only shows the addition of the Link Out node?

Here is the updated Flasher flow.

Deploy for Testing.

Testing – Your flow is almost complete. Add some time to the timer with the ADD button. Press the

START button. The LEDs should count down to zero and then all the LEDs will flash five times. If it works,

there is only one more detail to attend to.

Timer Flow – When the timer counts down to zero it would be a good idea to put the timer back into the

“STOP” state. Otherwise, next time you go to use the timer you will be trying to add time while the timer

is trying to count down. Worse, you will have multiple messages circulating in your timer loop. Ouch!

Go back to your Timer flow and replace the Debug node named “STOP” with a copy of the “Set STOP”

node from the button flow. Presto, here is the completed Timer flow.

Figure 5-114: Timer Flow (Take 4)

Figure 5-115: Flasher Flow (Take 4)

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 230 of 380

Deploy your beautiful flows!

Step 8 – Final Testing
Testing – At this point your Kitchen Timer flow should meet all aspects of the specification. Test each

requirement.

Discussion – This is not a simple project. If you get it to work even if you needed help you should feel

that you have really accomplished something. You needed to draw on all your knowledge of Node-RED.

Once you have your project working properly study it carefully because it illustrates many aspects of

Node-RED that you will find useful as you go on to bigger projects.

OPTO Puzzle # 6 - Is it Complete? Go over your Timer project carefully with a giant magnifying glass. Are

there any holes in the way it operates? Was the specification you started with really complete? Did it

cover all the crazy things someone might do with your timer (aside from dropping it into a pot of hot oil

they are frying chicken in)? If you find a shortcoming, see if you can fix it. Here’s a hint: what happens if

someone presses the RUN button while the timer is operating54? Can you think of a way to block the

RUN button until the timer runs down, or the stop button is pressed?

IF you go on to a stellar career designing products you will spend a great deal of time trying to

determine all the strange and wonderful things your customers will try to do when given a button to

push. When engineers design a new product testing to the specification is very important. Even if your

product passes all these tests most companies will initially send their product out to a select group of

tolerant and friendly customers so that these folks can drop it, kick it, punch buttons randomly and

generally abuse the product. This will almost certainly reveal more errors. You may have heard this

process referred to as “Beta Testing55”. Which brings up the usual question of whether or not you would

like to be a Beta Tester for a new type of parachute!

OPTO Puzzle # 7 - Egg Timer – Recipe for cooking eggs:

1) Place large egg in a small pan, cover with an inch of water and turn heat to high.

54 Remember: every time a button is pressed a message is generated. If you get more than one message passing
through your flows you might have problems.
55 Yes, there is an “Alpha Testing” phase that is usually done by poor users inside the company. Back in the dark
ages of the 1960 there was a company called HealthKit that had all sorts of complicated electronics kits that you
could buy and build on your own, like radios and television. Some kits had hundreds of parts and hundreds of
pages of step-by-step instructions. Once a kit was almost ready for release to the public HealthKit would give
secretaries, janitors and mail room employees a kit to take home and build. That’s Alpha testing

Figure 5-116: Timer Flow (Final!)

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 231 of 380

2) When the water boils put the egg in the pan

3) Reduce heat slightly

4) Cook according to this chart:

Soft Boiled 4 minutes

Medium 5 minutes

Hard Boiled 6 minutes

Really Hard Boiled 8 minutes

Modify the Simple Kitchen Timer so that it can be an egg timer. Use what ever LED display pattern

makes good sense to you to represent the cooking time. Do you need a STOP button? Be the Beta tester

by cooking an egg with your timer.

OPTO Puzzle # 8 = Ding! Modify the egg timer or the kitchen timer so that it rings a bell when the time

reaches zero.

Flying with the OPTO Inputs
LEDs the size of sesame seeds on the Learning card are suitable for very limited displays, but wouldn’t it

be nice to step up to something more modern, like being able to display messages on a screen when

your pet hamster pops open the cage door? Well, of course, there is a node for that, or more accurately,

there is a pile of nodes for that. Rather than just running with the OPTO inputs now it is time to fly and

build a system.

Background
While Node-RED and the Learning card allow you to connect to the real world through various

interfaces, you can also step beyond Inject and Debug nodes for your input and output. You do this by

calling up a squad of “dashboard” nodes that will allow you to use your keyboard and monitor as input

and output devices.

In node-RED a “dashboard” is a tab on your screen that you can use to interact with a flow. You do this

including dashboard nodes that communicate with “widgets56” on your screen. A widget can be a gauge,

a button, a slider, a chart and many other types of input and output elements. With widget nodes you

can create a user interface directly from your flow.

When you create a user interface (UI) you will be defining several objects. At the top of the hierarchy are

UI “tabs” that are exactly like the tab that your flow appears in. You may have as many UI tabs as you

like, so if you have a small menagerie of pets whose cages you want to monitor you can have one tab for

the lizards, one for the hamsters and another for the parakeets. Each UI tab may display several

“groups”. A group is a container that may hold widgets. Groups help you organize data so that if you

change the size of your tab or display (for example, you want to look at your UI on a smartphone) the UI

56 Widget – Actually an old word of unknown origin, but thought to have originated around 1930, possibly as a
corruption of the word gadget. Usually “widget” is used to refer to a small device of unknown purpose. In the
arena of computer science, it refers to a small displayable information that you can interact with, like a clock,
button, dial etc.

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 232 of 380

uses groups to resize and reorganize your display. At the bottom of the display hierarchy are the

widgets. Typically, you will put widgets related to the same control and display function in a group. This

way when you change the size of a screen related widgets stay together. This idea will become clear

once you have built a user interface.

Look at the figure above. It shows an example of a dashboard structure. There is a tab called “Tab 1”.

Within that tab are three groups: Group A, Group B and Group C. Each group has one or more widgets

as shown. Keep this structure in mind as you implement a dashboard. You can also have multiple tabs

that you access by clicking on the menu icon to the left of Tab 1 above.

Installing the Dashboard Nodes
Node-RED usually refers to the UI as the “dashboard” and to make use of the UI you will need to install

the Node-RED dashboard nodes. Be careful here, there are a range of dashboard nodes from several

sources; follow the instructions below to make sure you have the right nodes. Here is the recipe.

• Open the main menu

• Click “Manage Palette”

• Click “Install”

• Enter dashboard in the “search modules” box (red rectangle below). No need to hit enter.

Figure 5-117: Dashboard Structure

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 233 of 380

• You should see a list of available downloads as shown below.

• Find the entry labeled node-red-dashboard (blue box). Be careful here because there are other

entries that include the word “dashboard”.

• Click “Install” .

A window will open like the one below with some information about the install.

• Click “Install” .

Figure 5-118: Manage Palette Install Window

Figure 5-119: Install Dialog Window

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 234 of 380

Time will pass () and finally your nodes will appear. Look for them in the Palette under

“Dashboard” and you should see about a dozen or more new nodes like what is shown below.

First: Build Something Simple – “Hello World” (of course)
You know what to do now: As always you should sooth the forces of the programming

sub-space by issuing a Hello World message after which you are free to do what you want, but don’t put

humanity at risk by skipping this step.

Clear the decks, save your old work, open a new tab in your workspace and expunge all your old flows.

Your first dashboard flow will use a dashboard Button node and a Text node. Once your dashboard is

established you will be able to click the button and print “Hello World!” on the screen. Simple and it is

an adequate sacrifice to the gods of computation.

• Find the dashboard Button and Text nodes and drag them into your tab.

• Wire them up in the obvious way as shown below.

You are familiar with the blue dots that signify that a node has not yet been deployed. Search your

memory… “What are those red triangles for?” Ah, yes! They indicate that the node must be configured

before it can be deployed. In this case you cannot deploy your nodes until you define a dashboard tab

Figure 5-120: Dashboard Nodes in Palette

Figure 5-121: Simple Dashboard Flow for Hello
World!

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 235 of 380

and a group to hold the widgets associated with each node. In other words the widgets are all dressed

up but they don’t know were to go.

Each of the dashboard nodes in Figure 5-121 must be assigned to a group and the group must be

assigned to a dashboard tab. To do this proceed as follows:

• Open the Edit window for the Button node (double click on it).

The options for the dashboard Button node are quite extensive, but for now only concern yourself with

the Group option.

• Click on the little pencil icon beside the Group dropdown .

Figure 5-122: Dashboard Button Edit Window

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 236 of 380

This will open a dialog to create a dashboard group node as below. This “node” will not be visible in your

flow tab, but it is part of the configuration data associated with the flow, more on this in a moment.

You are not done yet because the group shown above needs to be assigned to a ui_tab, in other words

the dashboard tab at the top level that is going to contain the group which contains the button57.

• Click the tiny pen next to the Tab dropdown . Note; once you define a tab and a group it will

appear in the dropdown in the future, making the task of placing widgets easier. In fact, Node-

RED try to reduce the work you must do by making a good choice for you.

Now you will see the dialog to create a new dashboard tab.

57 “As I was going to Saint Ives, I met a man with seven wives…” or “As I was configuring Node-RED, I made a tab
with seven groups and each group had seven widgets.”

Figure 5-123: Add New Dashboard Group Window

Figure 5-124: Add New Dashboard Tab Window

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 237 of 380

• Click in the Name box and give your dashboard tab a name, like “Simple Test” .

Your completed dashboard tab window will look like this:

• Click Add  and you will be returned to the new dashboard group dialog of Figure 5-123.

Notice that now the Tab box (blue square) has the name of the dashboard tab where the group holding

the button node will be displayed, namely, the tab labeled “Simple Test”.

• Fill in the group Name box with the name of the group, as shown.

Figure 5-125: Completed Dashboard Window

Figure 5-126: Completed Add New Dashboard Group Window

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 238 of 380

• Click Add .

You will now see your dashboard Button Edit Window as below.

Look in the Group box (blue rectangle) and you will see that the Button is located in the tab labeled

“Simple Test” inside the group named “Test Number 1”. Now your Button widget knows where it will be

displayed on the screen. Give your button a label to be displayed (like Show It!) on the screen by filling

in the Label box.

• Fill in the Label box to your dashboard button a sensible label .

• Fill in the Payload box with the string Hello World! .

Now your configuration looks like the figure below (see blue rectangles showing the updates).

Figure 5-128: Configured Button Node

Figure 5-127: Dashboard Button Configuration Second Step

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 239 of 380

Click Done!

Now your flow will look like the figure below.

Much better! The red triangle over the Button node (“Show It!”) is gone indicating that it is now

configured for deployment. There are other aspects of the button you may configure, such as the color,

the font, and a tool tip to show the function when you hover over the button.

Figure 5-130: Flow After Configuration of Dashboard Button

Figure 5-129: Completed Button Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 240 of 380

The remaining task is to configure the Text node, which is done in the same way as you did for the

Button node. Open the Text node as in the figure below.

Look at the box next to “Group” (blue rectangle). Node-RED has very helpfully placed your Text node in

the same group (“Text Number 1”) and put that group on the same dashboard tab (“Simple Text”) as

you specified for the dashboard Button node. That’s okay for now, but if you have other ideas, you can

open the dropdown and specify a new group and/or tab just like you did for the Button node.

There are many options for the Text node. For now, just fix up the simple things as below.

Figure 5-131: Text Node Before Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 241 of 380

• Change the Label to “Message” . The Label is what will appear on your dashboard to identify

the value you are going to display.

• Give your Button node a name, like “Greetings” , which will appear on the node in your flow.

• The Layout options gives you several ways to show the label and value in the text widget. The

selected Layout is the one with the little circled dot in the upper right corner (check out the blue

rectangle) in the figure above. This option places the label at the far left of the widget and the

value (e.g., Hello World!) on the far right.

• Click Done!

When you look at your flow you should see this:

The annoying red triangles from Figure 5-121 are gone and your flow is ready for deployment. Before

the big reveal take a moment to explore and see what has changed in your Node-RED environment.

Dashboard.

First,

Figure 5-132: Text Node After Configuration

Figure 5-133: Test Flow Before Deployment

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 242 of 380

• Click on the dropdown arrow  to open the sidebar menu as in the figure below.

Notice there is something new here: a selection for the Dashboard (blue rectangle). We will return to

this in a moment. Next…

• Click on “Configuration nodes” in the sidebar menu , which will open a sidebar window

showing the defined configuration nodes as in the figure below.

Voila! You now see three nodes that were not there before. These nodes relate to the dashboard, the

Simple Test dashboard tab and the Test Number 1 group within that tab that is going to contain your

Figure 5-134: Sidebar Dropdown

Figure 5-135: Configuration Nodes for Simple Test

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 243 of 380

Button and Text widgets. Double Click on the ui_group or ui_tab and Node-RED will open a configuration

window to show you how the group and tab are configured as in the two figures below.

In the group configuration window (Figure 5-137 above) there is an option to adjust the width of the

group (blue rectangle). This gives you some control over how your dashboard group is shown.

The big moment is at hand. It is time to Deploy your test flow!

Figure 5-136: Dashboard Tab Edit WIndow (ui_tab)

Figure 5-137: Dashboard Group Edit Window (ui_group)

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 244 of 380

Wait a minute. Where’s my dashboard??? I was promised a dashboard and I want to see it now! Relax.

Open the side bar menu and click on the “Dashboard” option (see Figure 5-134). When you do this, you

will see a sidebar window showing various dashboard options as in the figure below.

In the upper right corner is a small icon indicating that will put your dashboard on the screen . Note:

You may need to make your sidebar window wider to see the icon because in some versions of Node-

RED the icon may overlap with the tabs in the sidebar. Also notice that you can adjust the color of

various dashboard characteristics.

• Click the expand icon  in above figure.

Your dashboard will appear as another tab in the Node-RED window as shown below.

Figure 5-138: Dashboard Sidebar
Window

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 245 of 380

Within the dashboard tab is the “Simple Test” tab you created above (Figure 5-126) which in turn

contains the group labeled “Test Number 1”. Inside that group is the button, “SHOW IT!” and the text

output area, “Message’.

• Click the “SHOW IT!” button.

And if you have covered all the bases the message text box will show Hello World! as below.

If you see the message, then you have begun your conquest of the Node-RED Dashboard. If not, then

the first step is to check the configuration step by step. Then pull out the Inject and Debug nodes and

see if you can locate the problem.

Figure 5-139: Node-RED Dashboard Tab

Figure 5-140: Dashboard Test Flow with Hello World!

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 246 of 380

Second: Build Something More Complicated
If you look at your Hello World flow it will look very much like other flows you have built with Inject and

Debug nodes, and with OPTO and LED nodes. Time to enhance the Hello World a bit at a time.

Start by adding another dashboard button to hide the Hello World message as shown below.

• Copy the “SHOW IT!” Button and paste a copy of it into the flow.

• Wire the copied button to the Text node.

• Open the copy and change the Label box to “HIDE IT!” .

• Change the Payload to be a string with a single space . The single space is important because

if the string has no characters the button node will send the node ID rather than the empty

string58. When the string with a single space is sent it will erase the current message.

• The completed configuration of the “HIDE IT!” Node will look like the figure below.

Deploy and go to the dashboard. Now your dashboard will have two buttons as shown below.

58 This is probably an bug in Node-RED.

Figure 5-141: Enhanced Dashboard Flow

Figure 5-142: HIDE IT! Button Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 247 of 380

Click each button and see how your dashboard behaves. When you click “SHOW IT!” the Hello World

message should appear and when you click “HIDE IT! The message should vanish.

OPTO Puzzle # 9 - Explore it! The dashboard has several options you can use to change the appearance

of the button. Read the help file for the dashboard button node and see if you can make changes to the

appearance of the buttons.

• Color – Go back to Figure 5-128 and Figure 5-142. You can specify the color of your button text

using the color box. Type in a common color name59 and see what the button looks like.

Remember: you must DEPLOY before the change will take effect.

• Background – Try different colors and see what your button looks like.

• Size – The box normally says “Auto”, which means that the button will be one unit high and as

long as the width of the group it is within. Change the size, DEPLOY and see what the effect is.

• Icon – You may use icons from the MaterialDesignIcons.com by simply typing the name of the

icon.

Third: Showing OPTO Status
How about showing the status of an OPTO input on the dashboard? Suppose you wanted to monitor the

status of the cage door on your pet’s cage? How about this simple specification?

• Group Name: “Cage Status”.

• Label: “Cage Door”.

• When OPTO IN 1 is open show the text “OPEN”60.

• When OPTO IN 1 is closed show the text “CLOSED”.

• On deployment set text depending upon the status of OPTO IN 1.

59 Color Names – There are standardized color names for about 140 colors. See HTML Color Names
60 This way if your pet is exceptionally smart and gets his paws on a pair of wire cutters, cutting the wire will open
the circuit and set off the alarm.

Figure 5-143: Enhanced Dashboard

MaterialDesignIcons.com
https://en.wikipedia.org/wiki/Web_colors

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 248 of 380

Here is one possible flow:

The top two nodes read the status of IN 1 upon deployment. The “Set Text” Change node converts the

Boolean true and false values from IN 1 into the text message “CLOSED” and “OPEN”, respectively. Here

is the configuration of the “Set Text” Change Node.

To make the display a little easier to read you might want to make the width of the Text widget smaller,

say 1x4, using the configuration below.

Figure 5-145: Cage Door Status Flow

Figure 5-144: "Set Text" Change Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 249 of 380

By clicking on “Size” box (blue rectangle) in the text node configuration widow you can adjust the size of

your text display widget.

Deploy and Test!!

Fourth: Check Four Cages
Extend the flow above to show the status of the cage door for Alfalfa, Bobo, Chewy and Drowsy. This is

easy and your flow will look more or less like the figure below.

Figure 5-146: Text Widget Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 250 of 380

Deploy this flow and look at the arrangement of the Text node widgets in the group. You should see

something like this.

Node-RED always tries to do right by you. In this case the widgets area arranged from top to bottom

based on how they are arranged in the flow. Suppose you want a different arrangement. Easy. Open the

Dashboard sidebar, select the Layout tab and then click on the Cage Status group. This will open a

dropdown showing the arrangement of the widgets within the Cage Status group as shown below.

Figure 5-147: Flow for Four Cages

Figure 5-148: Status Display for Four Cages

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 251 of 380

If you don’t like the ordering you can click on a widget, hold down the mouse key and move the widget

to another position on the list. Try rearranging your list. Deploy! and check your dashboard. You should

now have a new ordering.

OPTO Puzzle # 10 - Color Coding. Look around on the Internet and see if you can change the color, font

or size of the text in the cage door OPEN/CLOSED text. Hint: you can include HTML in your payload text

and this will be passed through to the dashboard for display. So, you might adjust the text you are

generating in the Set Text Change node to a form like this:

 CLOSED for the CLOSED text and

 OPEN for the OPEN text.

OPTO Puzzle # 11 - Warning!! Review the code for flashing the LEDs from Chapter 4. Using this and can

you build up a flow that cause the dashboard text to flash (half second on half second off) when a cage

door is open?

OPTO Puzzle # 12 - Two Hamster Monitoring. Assume that you have only two hamsters named Scylla

and Charybdis61. Each in a separate cage. On each cage there are two switches: one to monitor whether

the cage door is open or closed, and the other to tell you whether the level in the water bottle is okay or

low. Build a dashboard with two groups, one for each cage. Each group will have two widgets, one to

show the cage door status and another to show the water level status.

Next Up – Relays: controlling real voltage and current.

61 Look it up! That’s why we have an Internet.

Figure 5-149: Ordering of Text Widgets in Group

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 252 of 380

Chapter 6 – Relays
What you will learn:

• Relay interface and node

• Simple User Interface Widgets

Introduction
Your Learning Card contains two SPDT62 relays. Using a relay, you may control external devices requiring

higher voltages and currents than you can control directly from the Raspberry Pi. For example, you can

control the power to a small motor, a modest sized light or a buzzer.

But first a word about .

• Take Responsibility – You are the Range Safety Officer for your project. Our recommendation is

that you do not use the relay outputs to control more than 24 Volts AC/DC. In general, but not

always, voltage up to this level are safe to work with. Do not use these relays to control devices

that plug into wall voltages. Electricity from wall sockets can easily be lethal.

• Know What You are Controlling – If you are going to use the relays to control motors, heaters

or other similar equipment be sure you work in a safe manner. Make sure no one is going to get

hurt when you energize some piece of equipment, especially if it is where you can see it.

• Relays Have Limits – Do not operate relays beyond their rated limits. If you, do you risk damage

to the relay. Alternatively, an overstressed relay may stick in the on or off position meaning that

you will no longer be able to control it.

• Protect Your Relay – If you connect a DC voltage controlled by your relay to an inductive load

(like a motor, a buzzer or an electric bell you should add a protective device, like a diode across

the contacts. This will prevent high voltage spikes generated when the contacts open from

causing arcs across the relay contacts that will significantly shorten the life of the relay.

Relays – What Are They?
A relay is simple a switch that may be operated by current flowing through a coil. In school you may

have experimented with making an electromagnetic

by wrapping a few dozen turns of wire around a nail

as in the figure below from Great Basin Observatory.

With such a contraption you can pick up a few paper

clips. If you put hundreds of turns on the nail you

would be able to pick up more than a paper clip, you

might pick up big nails, screws, or small iron bars.

Now if you were an inventive sort, you might think

62 SPDT – Single Pole Double Throw – There is a very old taxonomy of switches which is usually applied to relays
because they are basically mechanically controlled switches. The form of the designation is “<number> Pole
<number. Throw”. The term “pole” refers to the number of independent circuits the relay supports. “Throw” refers
to the number of ways the pole can be switched to contact. A simple relay is SPST or Single Pole Single Throw. In
other words, it is just a simple off-on switch. The Learning card relays are SPST or Single Pole Double Throw
meaning that a single circuit may be connected in two ways.

Figure 6-1: Simple Electromagnet

https://greatbasinobservatory.org/lesson-plans/build-electromagnet

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 253 of 380

that you could connect this to a switch so that you could turn the switch on and off. Congratulations,

you have invented the relay.

If you have some exposure to electronics, the schematic symbol for the relay should look obvious.

Here you have a coil (i.e., the nail with some turns of wire) and a SPDT switch (i.e., the paper clip). The

dashed line indicates that when current flows through the coil the switch will change position. Engineers

refer to the switch part of the relay as “contacts” because when parts are in contact current flows.

Unless otherwise stated a schematic shows the contact position of a relay in its “deenergized” position,

that is the contact position when no current is flowing in the coil.

A set of contacts on a relay is usually labeled with the codes COM, NC and NO, which stand for

“Common”, “Normally Closed” and “Normally Open”, respectively. Look carefully at the diagram and

you will see that the contacts are electrically separated from the coil. This is important because it means

that a small current in the coil can control the switching of much larger currents and voltages.

The contacts of the relay in Error! Reference source not found. are a bit like the railroad switch yard

from Chapter ____. In a circuit the contacts are going to control the flow of current. When the relay is

deenergized current will flow from the COM (common) terminal to the NC (normally closed) terminal.

This gives rise to the terminology, when the relay is deenergized it “normal” state63, then the NC or

“normally closed” contact forms the conductive path from the COM or common terminal. When the

relay is “energized” the contact switches to the NO or “normally open” position.

On your Learning card each of the two relays is connected to a three-pin connector. The figure below is

a simplified version of the relay circuity on the Learning card. If you want to know the exact circuitry you

can refer to the card schematic.

63 When it is sitting on the shelf!

Figure 6-2 Schematic for SPDT Relay

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 254 of 380

In the figure above the relay coil is coupled by a

transistor to ground. When the CPU sets the

base of the transistor to a high voltage the

transistor conducts, current flows through the

relay coil and the common contact is switched

to the NO position. When the voltage at the

base of the transistor is low the transistor does

not conduct, and the relay is in the NC position

as shown. The LED in parallel with the relay

shows you when the relay is energized. The

diode across the relay coil is there to protect the

circuitry of the Raspberry Pi64.

Connecting to the Relays
Each of the two relays on the Learning card is

connected to a three-pin female plug. Below is a top view of the learning card.

The highlighted plugs are where you connect your circuit to the relay contacts. Look at the bottom edge

of the Learning Cards and you will see two LEDs labeled RL1 and RL2 (blue rectangle). These indicate the

state of each relay. When the LED is lit it indicates that the relay is energized, and that the COM contact

is connected to the NO contact. If the LED is dark, then the relay is deenergized and the COM contact is

connected to the NC contact65. These LEDs are handy for debugging your program because they show

you directly the state of a relay.

64 The relay coil is an inductor. Whenever current is interrupted suddenly in an inductor a high voltage spike is
generated. The diode across the relay coil prevents the high voltage from propagating to the rest of the circuitry
and protects the Learning card and Raspberry Pi from damage.
65 Relays are switches. If you are going to drive a logic circuit (like an OPTO input) with one of the relays you must
“debounce” the input just as you would for a switch. See Chapter 5 for details.

Figure 6-3: Learning Card Schematic for Relay

Figure 6-4: Top View of Learning Card

NC
COM
NO
NC
COM
NO

Relay 1

Relay 2

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 255 of 380

Crawling with Relays
When it comes to controlling relays, the techniques are very similar to what you used to control LEDs in

Chapter 4.

By now you know what is coming next: START SIMPLE! Save your old work, open a new flow tab in the

workspace and delete all the other open flows. Bring in a relay node and drop it in your workspace.

The first thing to notice is that the LKit Relay node is an output node, it has an input port, but no output

port. The msg.payload received indicates the state of the relay, e.g., ACTIVATED or DEACTIVATED.

Double click on the node and you will open the configuration window as shown below.

The relay node has two ways to specify the relay to be controlled: explicitly using the Relay Number

dropdown menu, or by the msg.relay property value, which you will learn about shortly. Figure 6-6,

above, shows the default configuration where Relay 1 is selected.

The msg.payload value controls the state of the selected relay as follows

ACTIVATED (COM connects to NO):

• Numeric: 1

• String: “on”, “1”

• Boolean: true

DEACTIVATED (COM connects to NC):

• Numeric: 0

• String: “off”, “0”

• Boolean: false

Once the LKit Relay node receives a msg.payload it sets the relay according to the value and the relay

remains in that state as long as the Raspberry Pi system is powered. Values other than those shown

above will results in an error message and no change to the state of the relay.

Figure 6-5: LKit Relay Node

Figure 6-6: Relay Node Edit Window

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 256 of 380

Explicit Selection of Relay
Let’s try out Relay 1! Below is a simple test set up because you always want to make your life simple by

starting simple.

In this case the msg.payload will be either Boolean true or false, however, you could just as easily have

used one of the other values from above. You know how to program the “True” and “False” Inject nodes

and if you are unsure about how to program the Relay node look at the figure below.

Deploy this lovely flow! Click on the two inject nodes and see if the relay turns on and off, which you can

tell by looking at the RL1 LED on the edge of the Learning card. Try changing the Inject nodes to use

other values, like numeric 1 and 0, string “on” and “off”. Try some values that should not work.

It is easy to control the relay from either the pushbutton or the OPTO inputs. Just remember that when

you push the button you get a message with a numeric 0, but when you close an OPTO input you get a

Boolean true or false. Both messages work fine with the Relay node, but you may wish to invert the

message from the button node because you probably want to energize your relay when you push the

button.

Here is an example flow for the pushbutton with nodes to invert the payload value.

If you are confused about how this flow works, go back to _____ and review the pushbutton to LED flow.

Figure 6-7: Basic Relay Control Test

Figure 6-8: Relay Node Configuration for Simple Test

Figure 6-9: Button to Relay Flow

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 257 of 380

Here is a flow where Relay 1 is controlled by OPTO input 1 and is about as simple as a flow can be.

Selection of Relay by msg.relay
You can select a relay by specifying the relay number in the msg.relay property. To do this you must go

to the Relay node edit window and delete the number in the “Relay Number” dropdown menu. When

you do this “msg.relay” will appear next to “Relay Number” in place of the number as shown below.

Here is a simple example of how programmed relay selection might be used. The figure below shows a

binary encoder that converts a decimal number (a very small decimal number!) to a binary selection of

the two relays according to the following table.

Number Relay 2 Relay 1

0 OFF OFF

1 OFF ON

2 ON OFF

3 ON ON

Here is the flow.

Figure 6-11: Programmed Relay Selection

Figure 6-12: Simple Binary Decoder

Figure 6-10: OPTO Input to Relay

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 258 of 380

The idea is simple. On the left side are four Inject nodes, each of which set the msg.payload to a Boolean

true when triggered. Each of the Change nodes in the middle sets a given relay to a particular state (OFF

or ON) according to the name of the node. By sending the output of a given Inject node to the proper

subset of change nodes the relay states will be set correctly. Here is an example of the configuration of

one of the Change nodes, namely, the “Relay 1 OFF” node.

From this node you should be able to determine how to configure the other Change nodes. There is

something interesting about this flow. Consider the “0” inject node. When clicked it sends a message to

two nodes, one to control Relay 1 and one to control Relay 2. There is no predetermined order to when

the two selected nodes send their commands to the LKit Relay Node. This means that the order in which

the LKit Relay node receives the commands is not fixed nor is it necessarily the same each time an Inject

node is triggered.

Delayed OFF – In some apartment buildings, especially where electricity is expensive, the light switches

in stairwells are pushbuttons. When you push the button the stairway lights turn on and stay on for a

period of time and then turn off. Assume that Relay 1 is controlling the lights in a stairwell. Design a

circuit so that pushing a button (LKit OPTO or Button) turns the light on and after 30 seconds (or five

seconds if you are impatient) the light turns off.

Give it some thought and try things out. Do you think a circuit like this will work?

Go further: Go back and look at some of the projects that used the LEDs. Any flow you created for LED

you can probably modify to work with the relays. The only limitation is that you have only two relays.

Boot camp is over. You are now a Second Lieutenant of The Relays. Time to begin…

Figure 6-13: Relay 1 OFF Node Edit Window

Figure 6-14: Delayed Turn Off

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 259 of 380

Walking with the Relays
Here is a simple motor control project… Turn a motor on and off with Relay 1. You will need a small DC

motor and a battery pack (or lab power supply) that is sufficient to power the motor. In this example,

assume that a three-volt battery pack composed of 2 AA cells will run the motor. The figure below

shows how to wire up your motor and battery to the male plug.

Now it is time to build a flow. Assume that a button connected to OPTO input 1 will control the motor so

that when the button is pushed the motor runs. It could not be simpler as the figure below shows.

This flow is so simple you will not need any help to implement it!

Deploy and Test!

Does it work? You have now extended your powers of control from the Learning Card to the outside

world of circuitry. When you push the button connected to OPTO Input 1 you will hear the relay click

and you will see the RL1 LED light up. If this is not happening, then the problem is in your flow or in the

button connected to IN 1. You know how to debug this with Inject and Debug nodes.

If the relay is not activating, then look at your circuity:

• Are the batteries fresh and new or are they old and tired? Try replacing them with batteries that

you know work.

• Is your connection complete at the plug? You can try things out by taking a short piece of wire

and touching it to the two screws on the plug (COM and CO). If the motor starts, then there is a

problem and you should start by rewiring the plug.

• Take everything apart and see if you can connect the motor directly to the battery pack. If the

motor runs, then the problem is in your connections.

• Debugging a circuit is very similar to debugging a flow or a program. Work to isolate the

problem by testing smaller and smaller parts of the circuit until you find the problem.

Figure 6-16: Wiring for Simple Motor Circuit

Figure 6-15: Motor Control Flow

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 260 of 380

Reversing Motor Controller - In the flow above the motor only runs in one direction. Wouldn’t it be

useful if you could control the direction of the motor? Well, you can because you have two relays. Your

system is going to look like the figure below.

This project will require three pushbuttons connected to the OPTO inputs, a motor and a battery pack.

Here is the specification.

• When the system is deployed the motor will be stopped

• Pressing the FWD button will start the motor in the forward direction

• Pressing the REV button will start the motor in the reverse direction

• Pressing the STOP button will stop the motor.

There is at least one problem with this specification: suppose the motor is running in the forward

direction and you press the REV button. Should the motor immediately go into reverse? Probably not,

because this is a bit like slamming your car into reverse while you are driving down the road at 60 MPH.

However, start by building the simple controller and then once this is working enhance it to put a pause

in between switching directions.

The next question is how to use the two relays to both start and stop the motor and reverse the

direction. Here is a circuit that should do the trick. Look at it and see if you understand what is

happening.

Figure 6-17: System Diagram of Reversing Motor Controller

Figure 6-18: Motor Reversing Circuit Schematic

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 261 of 380

Figure 6-18 shows the contacts in the initial deployment position where both relays are deactivated.

Now suppose that Relay 1 is activated. The situation will be as shown in the figure below.

For convenience let’s call the situation where Relay 1 is activated the “forward” direction. The red

arrows in the diagram show the flow of current66 from the battery through the NC contact on Relay 2

(because it is deactivated), through the motor, through the NO contact on Relay 1 and back to the

battery.

Now consider the situation where Relay 1 is deactivated and Relay 2 is activated, as shown below.

66 Here we are taking about “conventional” current flow where current flows from the positive terminal of the
battery to the negative terminal. The actual physical flow of electrons is from the negative to the positive terminal.
Most electrical engineers talk in terms of “conventional” current flow.

Figure 6-19: Reversing Circuit - Forward

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 262 of 380

Compare the current flow in this figure with that in Figure 6-19. You will notice that the current flow

through the motor is in the opposite direction. Finally, suppose both relays are energized as in the figure

below.

In the case where both relays are activated there is no closed loop that includes the battery and so no

current flows. One fortunate aspect of this circuit is that no matter how the relays are activated there is

never a case where the battery is short circuited. However, this is only the case if you wire the circuit

properly. Be careful because if you create a short circuit path you will cook the battery, the wires and

the relay contacts, but at least there will be a brief moment of smoke to enjoy before the insulation on

the wires melt into a small puddle on the table.

Here is how to wire up your motor controller.

Figure 6-21: Reversing Circuit - Reverse

Figure 6-20: Reversing Circuit Both Relays Energized

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 263 of 380

Here is a chart showing how the two relays control the motor.

Relay 1 Relay 2 Motor

OFF OFF STOP

OFF ON FWD

ON OFF REV

ON ON STOP

You have everything you need to build the flow. Give it a try! You might start by using a simple flow, like

Figure 6-7, to control each relay separately to make sure your circuit is working properly. Then move on

to your final flow. Assume that the FWD button is IN3, the REV button is IN2, and the STOP button is

IN1.

Here is one possible flow, but there are others that may be simpler or better.

Figure 6-7: Basic Relay Control Test

Figure 6-22: Wiring for Reversing Motor Controller

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 264 of 380

OPTO Puzzle # 1 - Run while pressed – modify the flow above so that the motor only runs while a

button is pressed. If you do this you will only need two buttons, one Forward and one Reverse.

Traffic Light Controller – Aquaville is a small place, but where Hamster Avenue crosses Water Street

there is always a traffic jam. The solution of course in a traffic light. Each side of the traffic light will have

a red, green and yellow lamp, in this case 12-volt LEDs. Your task is to control the LEDs with the Learning

card relays and to develop a flow that will keep everybody happy. Below is a figure showing how the

lights are to be sequenced.

Each column shows what the traffic signal looks like from one of the crossing streets. The rows are the

“phases” of the traffic light sequence. “Phase” is traffic engineer talk for one unique configuration of the

traffic lights. In a simple traffic control situation, like the one in Aquaville, there are only four phases, A,

B, C and D, that repeat in sequence forever.

The first step is to figure out how you are going to control the traffic lights. If your learning card had a

dozen relays it would be easy because you could assign one relay to each lamp. However, in Aquaville

the town mothers and fathers only have enough money to buy a single Learning card, so you must get

by with just two relays. The first thing to notice is that even though you have 12 LEDs to control you can

cut the situation in half because the pattern for Hamster Avenue is going to be the same on both sides

of the traffic light. The same applies to the light for Water Street.

Figure 6-23: Motor Reversing Flow

Figure 6-24: Traffic Light Phases

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 265 of 380

Now is the time to stop and think a bit. Your relays can be in one of four states as shown in the table

below Figure 6-11. Fortunately, the traffic controller only has four phases. Put on your thinking cap, or

some music, or some coffee and see if you can come up with a schematic so that the two relays on the

Learning Card can control the traffic lights.

Below is one possibility. If you use LEDs make sure you include a series current limiting resistor (not

shown in the figure. Better yet, you can purchase LEDs with bases to fit E1067 sockets in multiple colors

that have a built-in resistor and are much cheaper than buying incandescent lamps.

Look this schematic over carefully and see if you can understand how the four phases are generated. It

might help to make a chart that shows the four possible positions of the relays and from that you should

be able to deduce the phases. Note: in the figure above a black dot indicates that two wires are

connected. If two wires cross, but there is no dot at the intersection then there is no connection.

Relay 1 Relay 2 Phase Water Street Hamster Avenue Time

OFF OFF A RED GREEN 12 sec

OFF ON B RED YELLOW 3 sec

ON OFF C GREEN RED 9 sec

ON ON D YELLOW RED 3 sec

Be sure to check the table above against the schematic.

Now for the flow. In normal traffic control the light would be on in each direction for say one minute,

the yellow would be 5-7 seconds. However, that is too boring for this project, so the times shown in the

67 Many lamps have standardized bases. E10 is a common base for older incandescent flashlight bulbs.

Figure 6-25; Traffic Controller Schematic

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 266 of 380

table above have been shortened. Given your vast experience in designing flows you will have no

trouble building this flow and configuring the nodes. Use an Inject node to start the flow.

Here is one possible approach.

The injected message can have any sort of payload because it is only used to trigger other actions. Each

delay node is associated with a different phase. Just remember that when the message leaves a node it

should set the relays to the configuration for the following node. For example, when the message leaves

the “Phase A – 12 sec” Delay node it must set relay 1 off and relay 2 on to indicate the start of Phase B.

Every node in this flow is a node you have configured before. For example, Figure 6-12 shows how to

decode a phase into the relay controls.

OPTO Puzzle # 2 - I Don’t Wanna Wait! After the new traffic light was installed the citizens of Aquaville

complained to the village council that Hamster Avenue was a very busy street, but Water Street had

very little traffic. Cars on Hamster Avenue just hated to wait while the light cycled through phases C and

D when there was no traffic. The council told Ma Water (Chapter 1) to fix it up. Her solution was to

install a switch on Water Street at the intersection on each side of Hamster Avenue that is triggered by

the weight of a car68. Your task is to modify the flow so that normally it cycles only through phase A and

phase B. If a car stops on the switch, then at the end of the next Phase B the controller should cycle

through Phase C and D. If you do this everybody in Aquaville will think you are a hero.

OPTO Puzzle # 3 - I Don’t Wanna Wait Either! Well, the folks in Aquaville are never happy. Now they are

complaining the during the rush hour the people getting out of the Purrfect Pet Pellet Plant on Water

68 Using switches activated by the weight of a car is old technology. Rain, snow and the constant pounding of cars
would make the switches unreliable. Modern systems use loops in the pavement to detect the cars by the change
in loop inductance. Some other modern systems use cameras to detect the presence of cars.

Figure 6-26: Traffic Light Controller Flow

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 267 of 380

Street do not get enough time to go through the light went the day shift ends. You task is to design a

flow that changes the Phase C delay so that it is 15 seconds only between 4:45 PM and 5:15 PM. Hint: a

few Inject nodes can do this if you configure them properly

Puzzle # 4 - Gray Codes – There is a small engineering shortcoming in the design shown in Figure 6-25.

Look at the table below the figure and you will see that when the relays transition from phase B to

phase C (and from phase D to phase A) that both relay contact change simultaneously. Think back to the

discussion about how electrical components live in your world, the real world. The contacts do not

switch instantly, and one relay may be faster than another relay. This means that when the contacts

change from say phase D to phase A they might hit phases B or C before they finally settle down. You

might even see this as a small flicker between phases.

Engineers have a solution for this called “Gray Codes”. In a Gray coded sequence only one relay contact

changes each time the phase changes. This keeps false contact configurations from occurring. One Gray

code that would work is this:

Relay 1 Relay 2 Phase

OFF OFF A

OFF ON B

ON ON C

ON OFF D

Look carefully and you will see that between each phase transition only one relay contact changes.

Perfect, now you will need to fix the schematic in Figure 6-25 and make a few small changes to the flow

in Figure 6-26. Are you up to the challenge?

Combination Lock
Combination Lock – Assume for a moment that you need to protect your precious supply of Healthy

Hamster Treats™ from predation by your other pets. You decide to build a combination lock for your

fireproof (and rodent proof) pet food safe. Here are the specifications:

• This project will use four pushbuttons on the OPTO inputs, two relays to control a motor69, one

on-board pushbutton and four LEDs! In other words everything you have learned about.

• The safe will have four pushbuttons numbered 1 through 4 corresponding to OPTO inputs IN1 to

IN4, respectively.

• The combination will be 2-1-1-4.

• If a wrong number is entered at any point in the sequence the sequence must be entered again

from the beginning.

• The on-board pushbutton (LKit Button node) will clear any entry sequence in progress so that

the sequence must be entered from the beginning.

• When the correct sequence is entered the motor will run in the unlock direction for 3 seconds.

• While the safe is unlocked all the LEDs will be lit.

69 A typical small electronic safe, like a hotel room safe, has a small motor inside that unlocks the safe by pulling in
a small peg that holds the door shut.

https://en.wikipedia.org/wiki/Gray_code

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 268 of 380

• When the safe is open operating the on-board pushbutton (PB) will extinguish the LEDs and run

the motor in the lock direction for 3 seconds.

• Upon Deployment the safe will be locked

The combination problem is a good example of a finite state machine implementation. A finite state

machine is an important logic and programming abstraction used to implement certain types of action

sequences. The notion behind a finite state machine (FSM) is that it has a “state” that remembers what

actions have taken place up to the present point in time. Think about a mechanical combination lock,

like the one on a typical school locker. It has a mechanical memory inside, because if you enter the first

two numbers and set the lock aside, you can come back any time later and enter the last number to

open the lock70. This is because the lock was in a “state” that represented the fact that the first two

numbers had been entered correctly. Who knew? The combination lock is a mechanical finite state

machine! Computer science abstraction in the palm of your hand.

Warm Up with Something Simple – Bottle Production Line
Before plunging into the combination lock problem let’s start with something simpler. Yes, the problem

is a bit contrived, but at least it is easy to understand and illustrates how to build a Finite State Machine.

Here is the situation. On the production line red and blue bottles move along a conveyor belt. There is a

sensor at the end of the conveyor belt that closes OPTO input IN 1 if the bottle is red and IN 2 if the

bottle is blue. For whatever crazy reason your boss wants you to build a flow that will use LED 1 and LED

2 to show whether the count of red bottles that has passed the sensor is even or odd. If the current

count is even, then turn on LED 1 if it is odd turn on LED 2. However, you should not count the blue

bottles. Here’s what the physical situation looks like.

Many times, problems like the bottle counter are represented as finite state machines using diagrams

like the one below.

70 That’s why the kid in the locker next to yours in high school could get into their locker so quickly and was first in
the lunch line. When they closed it in the morning, they entered the first two numbers of the combination before
they left for class.

Figure 6-27: Bottle Production Line

https://en.wikipedia.org/wiki/Finite-state_machine

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 269 of 380

In this diagram bubbles represent the “states”, in this case whether the current count of red bottle is

even our odd. So, only one thing to remember, which is perfect use of a context variable. When the

production line starts up the count is ever, because zero is an even number. When a bottle passes the

sensor in Figure 6-27 either OPTO input IN 1 or IN 2 will be closed depending upon the color of the

bottle.

If you were to draw Figure 6-28 out in chalk on the sidewalk you could be the key element in the finite

state machine, namely the keeper of the state. Start out by jumping on to the block labeled EVEN

because when the production line starts moving no bottles have been detected and zero is, after all, an

even number. Suppose someone standing by the production line yells “Red” or “Blue” each time a bottle

goes by? If you hear “Red” you look down at your feet and jump to where the red arrow points. If they

yell blue, you just jump up in the air because the arrow points to the same state bubble you are standing

on. When someone asks you whether the current count is even or odd all you need to do is look down at

your feet and report the name of the state you are standing in. Simple enough?

To make things easy start by thinking about the parts of your flow:

• A flow to detect the state of the OPTO inputs IN 1 and IN 2.

• A finite state machine flow to implement Figure 6-28.

• A flow to take the proper action, such as turning on LED 1 when the count is even.

Here is the flow to detect and encode the events. To make things easy events are encoded as strings

(i.e., “BLUE” and “RED”).

Figure 6-28: Finite State Machine Diagram for Bottle Counter

Figure 6-29: Bottle Counter - Encode Events

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 270 of 380

The messages with events “RED” and “BLUE” are passed to the Finite State Machine flow below.

Event messages from the output of the event encoding flow (Figure 6-29) are passed to the Link In

node on the left side of the diagram above. The first Switch block (“Current State”) determines if the

current state is “EVEN” or “ODD” as designated by the State context data variable. Here is the

configuration of the “Current State?” node.

The “Initialize” node makes sure that the initial state of “EVEN” is set when the flow is deployed.

The purpose of the “Current State?” block is to send messages that occur when the current state is EVEN

(Port 1 on the top of the node) one way and messages that occur when the current state is ODD the

other way (i.e., to port 2).

Figure 6-31: Finite State Machine - Current State Evaluation

Figure 6-30: Bottle Counter - Finite State Machine

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 271 of 380

Next, the “Event?” Switch node determines whether the message payload is “RED” or “BLUE”. The

configuration is below.

Once the message has been routed through the “Current State?” and”” Event?” nodes it activates one of

the Set Next State nodes at the righthand side. In this flow even if the state is unchanged (e.g., the

current state is odd and a blue bottle is detected) the next state is still set, it is just set to the same

value. This arrangement is for completeness. Later you will see how to simplify the slow by deleting

these unneeded state setting nodes. Here is an example of setting the next state to EVEN.

Here is the configuration for setting the next state to ODD.

The final flow is to take the message that set the next state and use it to generate an output action to

set the LEDs

This flow uses the “group” mode for the LKit LED node because it allows on LED to be turned off and the

other to be turned on with just one node.

Look back at Figure 6-28. Notice that whenever a blue bottle goes by the state of does not change. And

in Figure 6-30 two of the nodes that set up the next state based on the event being “BLUE” are

redundant because they simply set the new state to the save value as the old state. Therefore, these

nodes can be removed from the finite state machine flow as shown below. Note: it is necessary to move

Figure 6-32: Finite State Machine - Event Evaluation

Figure 6-33: Finite State Machine - Setting Next State to Even

Figure 6-34: Finite State Machine - Setting Next State to ODD Figure 6-35: Bottle Counter - Output Action

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 272 of 380

the initialization to set the EVEN state because the node that it was originally connected to has been

eliminated.

In the flow above the deleted nodes are shown in faded colors. These are not needed because they do

not change the current state, so in that sense they are redundant.

See if you can build and test this flow. Once you get it working study it carefully because the general

approach can be used in other designs.

OPTO Puzzle # 5 - Divisible by Three. Modify the bottle counting above to turn on LED 1 if the number

of red bottles that have gone past the counter is exactly divisible by three.

OPTO Puzzle # 6 - Count Red and Blue. Modify the bottle counting flow above so that it keeps track of

the even and odd counts for both red and blue bottles. Let LED 1 turn on when the red count is even and

let LED 2 turn on when the blue count is even. The LEDs will each be off when the associated count is

odd.

Combination Lock Implementation
Now you are ready to build the full combination lock flow according to the specification given earlier.

Figure 6-36: Bottle Counter - Simplified Finite State Machine

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 273 of 380

For the electronic combination lock of the specification the figure below shows the function as a finite

state machine.

Figure 6-37 shows a finite state machine for the combination lock puzzle. Each of the rectangles

represents a state and the arrows represent transitions between states. Associated with each arrow are

the conditions for transitioning to the next state. Black arrows are the normal path to open the safe with

the combination, 2-1-1-4, and to relock the safe. Red arrows show situations where the wrong number

was entered. PB is the on-board pushbutton used to reset the entry sequence.

The “state” of a finite state machine is a value that must be remembered over the time. This certainly

sounds like a job for a context data variable, so keep in the back of your mind that you will need such a

variable. A good name for this variable would be “State” because it is clear, concise and to the point.

This variable must store a value that indicates the current state of the combination lock flow. You might

Figure 6-37: Finite State Machine for Combination Lock

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 274 of 380

as well store strings, like “LOCKED”, “One Number Correct” and so forth. This will be a little bit clumsy71,

but it will make debugging easier.

Next step: sketch out your flow on the back of an envelope, napkin or whatever scrap of paper is handy.

Below is one possible organization of flows. As always, you may have a much better idea!

As you think about your overall structure also think about how you are going to test each part. It’s much

better to exterminate bugs one room at a time rather than having to tent your whole house later.

First up… create a flow that will convert the four OPTO inputs and the pushbutton input into events, like

1, 2, 3, 4 and “PB”, respectively as in Error! Reference source not found.. This is easy, the only thing you

need to keep in mind is that you only want events to be generated when a button is pressed. Also, you

will need to set up initialization to be done when you deploy the system. You have done this before

(______) and your flow might look like the figure below.

71 In other programming languages you might assign an enumerated constant to each state, but there is no feature
like this in Node-RED.

Figure 6-38: Combination Lock Flow

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 275 of 380

When this flow is deployed it will set the state of the safe to LOCKED and also reset the LEDs. The rest of

the flow just encodes the push buttons and the four OPTO inputs into events that are sent out on the

Link Out node at the righthand side.

If the flow above looks complicated that is because it is. A finite state machine receives events and

based on the current state evaluates the events it has received in order to select a new state. In some

case the new state may perform an action, like running the lock/unlock motor or setting the LEDs.

Sometimes these actions may generate new events (see next flow below).

The Link In node at the lefthand side brings events into this flow. Based on the Switch node, “Current

State?”, the event is sent to the event evaluation nodes in the middle column. Here the event message

Figure 6-40: Deployment and Button Encoding

Figure 6-39: Finite State Machine for Combination Lock

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 276 of 380

is sent to one of the next state nodes in the rightmost column where the new state is set and if

necessary, the message is passed on to perform an action.

Let’s look at one simple example. Suppose the current state is “Three Numbers Correct” meaning that

the first three numbers have been received with the correct value and order. There are two possibilities

for what happens next (1) the number 4 is received correctly completing the sequence or (2) the

numbers 1, 2, 3, or the pushbutton (PB) is received canceling the sequence. In the first case, where the

number 4 is received, the “4th Number” Switch node will send the message to the “Unlock Safe” node

where the state “Unlock Safe” is set and a message is sent to the unlock motor flow. In the other case,

where the wrong number is received, the message is sent to the “LOCKED” Change node to return the

system to the LOCKED state.

Check the rest of Figure 6-39 against the finite state machine in Figure 6-37 and make sure you

understand how this flow works. Try building the Flow on your own. If you get stuck, follow this link to

see the configuration of key nodes

In Figure 6-39 if a set next state node on the righthand side has an attached Link Out Node it means

that that entry into that state is going to trigger an action. Trace the four Link Out nodes shown and see

if you can understand what the action is.

The last flow is the one that controls the lock/unlock motor and the LEDs as below.

Note the relay control for the lock/unlock motor is similar to that shown in Figure 6-23, but slightly

simplified. When this flow receives a message to lock or unlock the safe it runs the motor for three

seconds forward or backwards and when it is done generates a “Motor Done” event that advances the

finite state machine. You should be able to construct this flow on your own, as you are now a Master

Wrangler of nodes! Remember, test each section before you put everything together.

Frustrated? Look here for the configuration details link.

Figure 6-41: Motor and LED Controls for Combination Lock

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 277 of 380

Be sure to test you design against the specification.

OPTO Puzzle # 7 - Timeout. In the combination safe example above if you enter the first three number

and then get distracted by a commercial hamster grooming products on TV the safe sits there only one

number away for opening. This does not seem very secure. After all, if one of your hamsters accidently

steps on the number 4 button the safe will give up its treats to the poacher. Can you modify the flow so

that if no button is pressed for five seconds the safe automatically relocks? Of course, if the safe is

unlocked normally you do not want to relock it until the PC button is pushed. Hint: you might be able to

use a Trigger node to accomplish this task.

Flying with Relays: User Interface
The time is now… the time to put the Node-RED dashboard User Interface (UI) to work with the relays. If

you have completed the User Interface section in Chapter 5 you will be ready to fly with the relays. The

Node-RED dashboard contains several nodes that you can use to control output devices, like on-board

LEDs and the relays. What you already know about using real buttons and switches will serve you well

here.

Dashboard Switch Widget
As per the usual, start with something simple. How about this? Set up a single switch on your dashboard

to control one relay, which is about as simple as it gets.

• Go to the Dashboard section of the Palette and drag a dashboard Button node to the

workspace.

• Pull in a Learning card Relay node.

• Wire them up as shown below

The little red triangle perched on the Switch node tells you that this node needs to be configured before

you can deploy it.

Figure 6-42: Simple Dashboard Switch to Relay Flow

Figure 6-43: Dashboard Switch Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 278 of 380

• Open the Switch node and configure it as shown below.

• Look at the blue rectangle above. Here Node-RED is trying to help you out by configuring your

Switch node for you.

On the dashboard the switch will change from on to off or off to on whenever you click on it. When you

do the node will send a message with a payload that depends upon whether you turned the switch on or

off. Because the Learning card Relay node understands Boolean true and false, you can wire the switch

directly to the Relay node.

• Set up the Relay node to control Relay 1. You know how to do this already because you are now

a Captain of Relays.

Deploy it!

Go to your dashboard and you should see this.

Figure 6-44: Dashboard for Switch to Relay Flow

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 279 of 380

The area within the blue rectangle is the Switch widget. If you click anyplace in that area Relay 1 will turn

on (or turn off). Take note: the dashboard Switch widget has a toggle action. When you click in the

active area the switch changes state as shown by the little icon on the right side. Furthermore, the state

only changes when you release the mouse key.

Why is the dashboard display black and dark teal in this example? The answer: you can change and even

customize your dashboard in the dashboard sidebar. The theme above is the so called “dark” theme.

Some folks think it looks better than the bland “light” theme that is the default.

Go to your sidebar open the dashboard tab and select the theme tab as below.

The Style dropdown will let you select a theme. If you select “Custom” you will be able to adjust many

color aspects of your dashboard.

Try your Switch to Relay flow. Remember the relay has a light to indicate whether it is on or off, so you

can easily check the function of your flow. Connect something to the relay, like a motor or a light and

control it from the dashboard.

Figure 6-45: Dashboard Sidebar Theme Tab

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 280 of 380

Initializing Your Relay Flow

There is one small problem with the Switch to Relay flow in Figure 6-42. When you deploy your flow

what state will the relay and switch be in? If you are unlucky the relay and the widget will be out of sync

and your dashboard will show the relay in the wrong state. The way to fix this is to make sure the relay is

set to a known state when you deploy your flow. The dashboard Switch node supports this by letting

you send a message to the node to set it to a known state. The only provision is that the message you

send must be one of the valid payloads specified by the “On Payload” or “Off Payload” dropdowns.

Below is a flow that will do the trick.

The “Initialize” node is an Inject node configured to fire a message once upon deployment. You have

done this before in _____, but if you have forgotten the secret formula, here is the configuration.

• Set the paload to Boolean false because you want to initialize the relay to OFF .

• Check the box to “Inject one after….” This will send one message with the payload false upon

deployment .

Deploy this flow and then cook up a way to test it. You might add an normal inject node to set Relay 1 to

on within your flow and then redeploy the flow to see if the relay and the switch widget are in

agreement.

Figure 6-46: Flow to Initialize Switch and Relay Nodes

Figure 6-47: Inject Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 281 of 380

Dashboard Button Widget
Among the dashboard control widgets is the Button node. Although this is called a “button” it behaves a

bit differently from the pushbutton on the Learning Card and the OPTO inputs. When you click on a

dashboard button it only sends a payload when you release the mouse key. In this sense it works like the

Inject nodes shown in Figure 6-7, which you should compare to the figure below.

Go to your workspace and build the flow shown above.

Time to get fancy. Look at the button configuration below. Notice that you can set the color of the

button body, the color of the text and the label for the button. Let’s assume that turning the relay on is

going to start a conveyor belt moving boxes of live hamsters for shipping to anxious pet owners. A green

Figure 6-48: Button to Relay Initial Flow

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 282 of 380

button to start the conveyor is good and better is a red button to stop the conveyor belt. Check out the

configuration of the “Conveyor Run” node shown below.

• Set the Label field to “Conveyor RUN” .

• Set the Color box to the color you would like for the text that will appear on the button . Valid

colors come from the standard HTML color names.

• Set the Background box to the color you would like for the background .

• Click Done.

Do something similar for the STOP button. You already know how to set up the Learning Kit relay node.

Below is what your control panel should look like.

Figure 6-49: ON Button Configuration

https://en.wikipedia.org/wiki/Web_colors

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 283 of 380

Give it a try and see if the state of Relay 1 changes when you click the different buttons.

User Interface Icons
The Node-RED dashboard widgets can also display icons along side of or in place of the text. Using Icons,

you can design nice looking control panels. Where are you going to find your icons? They are already

part of Node-RED. Font Awesome is a group that supports a massive collection of icons. No need to visit

their website or take any special action because you can reference many of the icons directly in Node-

RED. Let’s enhance the flow of Figure 6-48 by adding an icon to the buttons

• Open the edit window on the “Relay OFF” node

• Then fill in the Icon box as shown in the figure below .

The name of the icon is “fa-pause” meaning that it is the “pause” icon from the Font Awesome library,

hence the “fa-“ preceding the name. You can find the name of the icon at Font Awesome’s website. If it

is available within Node-RED appending the name to “fa-“ will load your icon. Not all Font Awesome

icons are available for free.

Figure 6-50: Dashboard for Conveyor Control

Figure 6-51: Adding an Icon to the Relay OFF Node

https://fontawesome.com/

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 284 of 380

• Configure the “Relay ON” node the same way as shown below but using the fa-arrow-right

icon.

• Click Done.

Ready, Set, DEPLOY!

You should see a dashboard that is very much like the one shown below.

Looking more professional by the second. You can also increase the size of the icon, eliminate the label

and resize the button so that it looks more like a front panel button as in the figure below.

Figure 6-52: Adding an Icon to the Relay ON Node

Figure 6-53: Dashboard with Icons

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 285 of 380

If you use Font Awesome icons, it is easy to control the size as shown in the configuration of the “Relay

OFF” node below.

• Reduce the size of the button widget to 1x1 .

• Then at the string “fa-2x” to the Icon box . This is an indication, unique to Font Awesome, that

displays the selected icon twice as large.

• Finally, delete the name of the label, so that only the icon is visible on the button widget .

• Click Done!

• Rinse and repeat for the “Relay ON” node as shown below.

Figure 6-55: Relay Control with Large Icons

Figure 6-54: Relay OFF Node Configuration for Large Icons

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 286 of 380

Deploy and Test!

If your new control panel looks like Figure 6-55 good work. You are now a Commander of the Relays

With this knowledge it is now PUZZLE TIME!

OPTO Puzzle # 8 - Buttons for the Motor Controller. Go back to the motor controller of Figure 6-17.

Instead of using OPTO buttons revise your flow to control the motor using dashboard Button widgets.

Because Button widgets only send a message when the mouse key is released you will not be able to

control the motor in the same way. Instead, when you click the “Forward” button the motor will run

until you click either “Reverse” or “Stop”.

OPTO Puzzle # 9 - Buttons for the Combination Lock – Go back to the combination lock example and set

up four icon buttons for the numbers and a CLEAR button in place of the on-board pushbutton. Set up a

dashboard Text widget to show the state of the safe, “LOCKED” or “UNLOCKED”.

• Make your safe more secure by adding buttons for 1 to 9 and extend the combination to 6

digits.

• Do some Internet research and see if you can figure out how to change a button icon

dynamically. Add a button that has no function except to show the locked or unlock status of

the safe using lock and unlock icons. Change the button color when the safe is unlocked.

• See if you can arrange the icons in a nice pattern. You might need to use one ui_group for the

number buttons and another for the control and status buttons (i.e., Clear, status).

OPTO Puzzle # 10 Water the Lawn. The relays on the Learning Card can control a valve to lawn

sprinklers. The valves cost about $10 and the 24VAC transformer about $15. An inject node can be

programmed to send a message at a specific time (in the Repeat dropdown select “at a specific time”).

See if you can set up a flow to water your lawn or garden at 10:00 AM for 10 minutes on Tuesday,

Thursday and Saturday.

OPTO Puzzle # 11 But Not When It Rains! Modify your sprinkler controller so that it does not water the

lawn when it has rained within the last two days. Look at the flow from Chapter 4 related to determining

the temperature at your location for some ideas about how to figure out when it rained last.

Figure 6-56: Relay ON Node Configuration for Large Icons

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 287 of 380

Go Forward Commander of the Relays!
Time to run out of the digital world and crawl into the analog world where you will learn about sensing

and controlling voltage levels.

Hints – If You Need Them

Combination Lock Configurations – Finite State Machine Flow

Below are some node configurations related to the flow shown in Figure 6-39, the Finite State Machine

for the combination lock.

In the flow above the current state held in global.State is used to select an output port for the message.

There is one output port for each of the possible states. States are encoded as strings because this

makes debugging easier. For example, if you look at the state variable you will see immediately what it is

and what it means. Also if you put the mouse cursor on the output port of this node you can see which

state the port is associated with.

Figure 6-57: Current State Evaluation Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 288 of 380

The switch node above evaluates the current event, which is in the payload, and determines how to

advance the finite state machine. The other nodes are similar.

The Switch node named “PB?” looks for the event caused by pushing the on-board pushbutton, which is

encoded as the string “PB”.

When the motor completes its three second cycle it sets the event “Motor Done” in the payload and

sends it to the input of the “Current State?” node (see below). In the node above this event is

recognized to advance the finite state machine to the next state.

Figure 6-59: “1st Number?” Node Configuration

Figure 6-58: “PB?” Node Configuration

Figure 6-60: "Motor Done?" Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 289 of 380

All of the node used to set the next state in Figure 6-39 are similar to the node shown above. This node

simply sets global.State to the string representing the next state. In this case once the first number

entered correctly the state is set to “One Number Correct”.

Combination Lock Configurations – Action Nodes
Action nodes perform actions based on the transition to a new state. Most of the action nodes in the

combination flow should be self-evident. The node configuration shown below may not be.

In the combination lock flow most of the state transitions take place based on external events, such as

pushing the OPTO inputs. However, the operation of the motor is an example of a type of an internally

generated event. When the motor starts it runs for three seconds. Once the time expires the node

above generates a new event to advance the finite state machine from either “Unlock Safe” to

“UNLOCKED” or from “Lock Safe” to “LOCKED”.

Figure 6-61: "One Num Correct" Node Configuration

Figure 6-62: "Set Motor Done" Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 290 of 380

Chapter 7 – Voltage In – It’s an Analog World
What you will learn

• Voltage In Node

• Smooth Node

• Join Node

• File Node

• More Interesting Widgets (Numeric, Gauge, Chart)

• Accuracy and Precision

• Piece-wise approximation

• Potentiometer

• Sensing Light Level

• Sensing Temperature

• Logging Data

Introduction
It’s time… time to leave the digital world behind and take on the analog world. So far you have dealt

with the decisive: the relay is on or off, the LED is lit or not, the switch is closed or open. Now it is time

to start measuring the real world, the analog world where signals are continuous in value and

uncertainty abounds.

Your Learning Card includes a Voltage In port (and a corresponding Voltage Out port, which is the

subject of Chapter 8). With the Voltage In port, you can measure voltages between 0 and 10 volts,

which is a very common measurement range for home and industrial automation. Better yet, you can

connect sensors to your Voltage In port and measure environmental variables, like control position,

temperature, light level, pressure and so forth. Once you learn how to do this you can start interacting

with the environment. For example, later in this chapter you will build a system to keep a small oven at

a constant temperature.

Node-RED also supports many of the widgets that you might expect to use with an analog input that

varies, like gauges and graphs. This means more interesting dashboard displays!

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 291 of 380

The Voltage In Port

Locating the Voltage In Port on Your Learning Card
Your learning card has one three-pin voltage input port as shown in the figure below.

The figure above shows a top-down view of the Learning Card. The Voltage In port is on the left side

highlighted in green. There are three pins: (1) +10 Volt DC Out, (2) Voltage In, (3) Ground. To measure a

voltage, you apply it between pins 2 and 3. Pin 1 provides a regulated voltage of approximately 10 volts

that you may use as a reference for certain types of sensors, as you will find out shortly.

Here are a few things to keep in mind:

• The voltage to be measured must be within the range of 0 to 10 volts. Voltages significantly

higher than this may damage the Learning Card.

• The ground connection on pin 3 is common to the Learning card and to your Raspberry Pi. Make

sure that your use of ground within your system is consistent and is at a common potential.

• The 10 Volt DC provided on pin 1 is for use as a reference voltage and may not be used to

provide power to external devices.

The figure below shows the pin numbering for the small plug that connects to the board.

Figure 7-1: Voltage In Port

(3) Ground
(2) Voltage In
(1) +10 VDC

Pin 3

Pin 2

Pin 1

Figure 7-2: Connector Pin Numbering

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 292 of 380

Learning Card Voltage In Circuitry

The figure above illustrates the Voltage In port circuitry of the Learning Card. The voltage you want to

measure is applied between pins 2 and 3. The applied voltage must be positive with respect to ground.

On the Learning Card there is a small microcontroller that contains an Analog to Digital converter (ADC),

which converts an analog voltage to a digital value. This microcontroller runs from the 3.3 volt supply

on the Learning Card, and therefore, can only measure voltages between 0 and about 3.3. volts. In

order to measure voltage in the range of 0 to 10 volts, which is a common industrial measurement

range, it is necessary to reduce the voltage range before it is applied to the ADC. This is done using a

voltage divider consisting of resistors R36 and R37 that reduces the voltage to the range of

approximately 0 to 3.1 volts putting it with in the range of the ADC. The OP Amp is a unity gain amplifier

that isolates the voltage to be measured from the microcontroller.

Note: the Voltage In port on the Learning Card appears as the equivalent of 35.3 K Ohms. This may

influence your measurement. To learn more about this look at the section in this chapter related to

measurements with the thermistor.

The Voltage In Node
Shown below is the Node-RED Voltage In node for the Learning Kit.

This node is very simple. When it receives a message (any sort of message72) it reads the voltage on the

Voltage In port and produces an output message where msg.payload contains the numeric value of the

voltage. That’s all there is to it!

72 The message you send the node is ignored. Its only purpose is to trigger the reading of he voltage.

Figure 7-3: Voltage In Circuitry on Learning Card

Figure 7-4: Voltage In Node

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 293 of 380

If you open up the Voltage In node to see how it configures you will see what is shown in the figure

below:

There is only one thing you can configure, the Name. Simple.

Crawling with Voltages

A Simple Voltage Measurement
Listen for it! Yes, there it is: the tiny voice in the back of your head that is saying, “start simple”.

Take a 3-volt battery pack and wire it up to a male card edge plug as shown in the figure below.

Be sure to check your wiring. Nothing should be connected to pin 1 (with the big “X” next to it). Check

the polarity of your battery: Negative should go to ground (pin 3) and positive should go to Vin (pin 2).

When you are sure that everything is correct plug it into your Learning Card at the Vin Input. Check your

results:

• Flash of Light and Puff of Smoke: too bad, buy a new Raspberry Pi

• No Smoke, No Flash: Terrific, Kudos, Congratulations, Good Work, don’t let it go to your head.

Now you will need a flow to read the input voltage and display it. Clear out all your other flows (or

disable them). Open a new flow and set it up as shown below.

Figure 7-5: Voltage In Node Configuration Window

Figure 7-6: Hookup for Simple Voltage Measurement

Figure 7-7: Simple Flow to Read Voltage Input

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 294 of 380

This flow is so simple that you could just plug everything together as is but be nice and set up the

“READ” Inject node as below.

The msg.payload can be any message, but if you make it a Boolean true then it makes a little more sense

to someone looking at your flow later.

Deploy this very simple flow.

Now, go to the Debug sidebar and clear it (trash can Icon). Click on the Inject node tab once or twice

and you should see a read out of the battery pack voltage as shown below.

If you have used two nice, fresh alkaline AA cells you should see about 3.2 volts. A single AA cell that is

not under load, fresh out of the package and at room temperature will show 1.6 volts (more or less).

Thus, two AA batteries in series should read about 3.2 volts. The Voltage Input to the learning card

draws very little current (less than 300 microamps at 3.2 volts) and is essentially a no-load condition as

far as the battery is concerned. Remember… your milage may vary so you might see higher or lower

voltages. If the voltage you see is wildly off, then review the Appendix on Calibration.

Figure 7-9: Inject Node Configuration Figure 7-8: Inject Node Configuration

Figure 7-10: Debug Window Showing Voltage Reading

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 295 of 380

Continuous Voltage Measurement

That was easy. Using the same flow as shown in Figure 7-7, modify the READ node to read the input

voltage every 5 seconds as shown in the configuration below.

You have done this before. The configuration shown above tells the Inject node to send the

msg.payload to the output port when deployed and every five seconds thereafter. Your new flow will

look like the figure below. The only difference is that the READ node shows a little arrow chasing its tail

indicating that a message is being generated repetitively.

Deploy it!

Look at the Debug sidebar window. Now you will see a new voltage every five seconds.

If you have a voltmeter, connect it across the 3-volt battery pack and see how the voltages you are

reading with Node-RED compares to the readings from the voltmeter. Depending upon the accuracy of

your voltmeter you will likely notice that the voltmeter reading is very steady, but that the Learning Card

voltages vary a little bit with every read. Your voltmeter is more or less a precision instrument and even

a cheap voltmeter is designed to be reasonably accurate and precise. The voltage input of the Learning

Card is not designed to be as accurate at reading voltages as a good quality voltmeter because to do so

would make the card much more expensive. Therefore, you will see some variation in the readings as

conditions on the Learning Card, temperature, supply voltage, operation of the microcontroller and

operation of high current devices, like the relays, take place. In general, your voltage readings should be

accurate to at least 1%, especially if you calibrate your Voltage Input as in the appendix. This will be

more than adequate for home and light industrial usage.

Here is an example Debug output for the flow of Figure 7-12 above for two AA alkaline batteries in

series.

Figure 7-11: Continuous Read of Voltage Input

Figure 7-12: Continuous Reading of Voltage In

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 296 of 380

Engineering Tip # 13 - Accuracy and Precision (Discussion # 1). Two new Alkaline AA batteries in series

will produce just about 3.2 volts. When you looked at the Debug output (Figure 7-12 above) you

probably noticed that the voltage jumped around a bit and that it only occasionally showed 3.2 volts (or

maybe it showed some lower or higher voltage. Your measurements are subject to errors in “accuracy”

and in “precision”. These are two different concepts although when engineers talk about

measurements, they frequently use the terms interchangeably and in error (they are not speaking

accurately about precision and with precision about accuracy!!!).

In the experiment above you made many measurements of a voltage source whose value is

approximately 3.2 volts. If you have a good voltmeter, use it to measure the voltage directly and see

what the voltage actually is. A good voltmeter will show a steady voltage measurement.

Now suppose you record 10 or 100 or 1000 measurements of the system above with the Learning Card.

If you were to average them together you would have a single number that is representative of all the

measurements you have made. The difference between this number and the actual voltage (say the

voltage you measured with your high-priced voltmeter) is an indication of the accuracy of your Learning

Card voltage measurements. For example, if your voltmeter says 3.2 volts and your average of your

Learning Card measurements is 3.1 volts. You might say that your Learning Card is “accurate” to within

1/10 th of a volt. Alternatively, you might say it is accurate to within about 3% (i.e. 1/10 of a volt out of

3.2 volts. Accuracy is the difference between the average of your measurements and the true voltage.

The difference between this average of measurements and the “true” voltage is an indication of a

systematic error in your system. A systematic error is one that you might be able to compensate for by

calibrating your system.

What about all that jumping around in your measurements? Here the issue is how different an

individual measurement is from the average value. If the individual measurements vary in a big way

from the average measurement, you might say your system is not very “precise” and you would be right.

Figure 7-13: Debug Output for Three Volt Battery

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 297 of 380

Precision tells you how much you can rely individual measurements. These errors where the voltage

jumps around represent the effect for random events in your measurement. You cannot calibrate away

this type of error, but you might be able to redesign your system to reduce the effect.

Suppose you are running a Wild West Show. Wouldn’t it be nice to have some real fancy target

shooting? You put an ad in the Hamster Gazette and the next day the four cowpokes show up to

impress you with their skills. Let’s call them Alice, Bob, Carol and Dave73.The figure below shows how

they did on their job interviews>

Obviously, you are going to hire Cowgirl Carol. Why? Because she is both accurate and precise.

Accurate because her shots are all near the bull’s eye and precise because the shots are all close

together. Hired!

What about Cowgirl Alice? Her shooting is not accurate because all her shots are far from the bull’s eye,

but she is precise because all the shots are close together. Maybe her six-gun is in need of calibration.

You send here off to the Armorer to have the sight adjusted.

Dave – Not very precise because his shots are all over the place. However, you must say he is accurate

because on average his shots are centered on the bull’s eye. He is just not precise because the shots are

not close together. Tell him, “Get some more practice Dave and stop by again.”

73 Alice, Bob, Carol and Dave – fictional characters from the world of cryptography (see Alice and Bob).

Figure 7-14: Pre-Employment Test for Wild West Show

https://en.wikipedia.org/wiki/Alice_and_Bob

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 298 of 380

And Bob – what a disaster! His shots are everywhere, so he is not precise and they are not even around

the bull’s eye, so he is not very accurate. “Thank you for coming by today, but maybe you are more

suited for another line of work”.

More on this topic later!

Walking with Voltages

Potentiometer
Let’s warm up to more complex voltage measurements by first measuring a voltage that is changeable.

In Figure 7-3 resistors R36 and R37 form a voltage divider. In that figure the purpose is to divide the

input voltage so that the resulting voltage at the point between the two resistors is a fixed fraction of

the voltage input at pin 2. In the example the fixed fraction is about 0.31.

A “potentiometer” is an electrical device that functions as an adjustable voltage divider. Here is a

picture of a typical potentiometer.

And here is the equivalent schematic symbol.

The schematic symbol is almost self-evident because it shows a voltage divider where the resistance

between the top and bottom terminals (the total resistance) is constant. However, the resistance

between the top terminal and the center terminal and the center terminal and the bottom terminal is

each a fraction of the total resistance. If you were to apply 10 volts between the top and bottom

terminal the voltage at the center terminal with respect to the bottom terminal would be a fraction of

Figure 7-15: Example of a Potentiometer

Figure 7-16: Schematic Symbol for a potentiometer

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 299 of 380

10 volts depending upon the position of the center tap (the arrow)74. Thus, the voltage at the center

terminal would be between 0 and 10 volts depending upon the position of the potentiometer shaft.

Time to connect the potentiometer to the Voltage In connection on the Learning Card. Here is how you

are going to connect the potentiometer. The value of your potentiometer should be 10K ohms and the

“taper” should be linear75.

If you purchased the I/O accessory kit for the Learning Card, then you already have a potentiometer

connected as above. Below is the schematic arrangement.

Check your wiring over carefully76 and then plug your potentiometer into the Voltage In plug on the

Learning Card (see Figure 7-1),

74 For potentiometers the voltage at the center tap is a fraction of the total applied voltage (say 10 volts) as long as
the electrical “load” on the center terminal draws no current. On the Learning Card the current draw at the
Voltage In connection is about 35K Ohm. If your potentiometer is approximately this value then you will need to
make some adjustments if you want to determine the position of the potentiometer accurately.
75 Taper – the relationship between the position of the shaft and the value of the voltage at the center terminal of
a potentiometer depends upon how the device is manufactured. One type of taper is “linear”. This means that
the voltage at the center terminal has a linear relationship to the shaft position. An alternative taper is
“logarithmic” or “log”. In this case the voltage at the shaft position has a logarithmic relationship to the shaft
position. Log taper potentiometers are used in audio applications, like the volume control on a radio, because the
human ear interprets the loudness of sounds in a logarithmic fashion. See
https://en.wikipedia.org/wiki/Potentiometer
76 This set up is simple, but if you make a mistake you can short out the 10 volt supply voltage, which might
damage your card. As long as the center pin on the potentiometer connects to pin 2 you should be okay. Check it!

Figure 7-17: Physical Connection for Potentiometer

Figure 7-18: Schematic of Potentiometer Connections

https://en.wikipedia.org/wiki/Potentiometer

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 300 of 380

Simple Potentiometer Flow

Go to the flow you built in Figure 7-7. Make sure to Deploy it if it is not already deployed. Then, go to

the Debug sidebar window and clear it.

Once your flow has been deployed it will read and output the voltage from the center of the

potentiometer every five seconds. Turn the knob (or shaft) of the potentiometer and see if the voltage

is changing. If it does then take a coffee break, otherwise check the flow, check the wiring and if you

have a multimeter check the operation of the potentiometer. Because it is an electromechanical device

the potentiometer is more susceptible to failure than other purely electrical devices. Dirt, wear, age and

spilled coffee can cause your potentiometer to malfunction.

As you turn the potentiometer check the voltage. Which direction (clockwise or counterclockwise) gives

you the highest voltage reading? Which direction gives the lowest reading? In this setup the voltage

should increase as you turn the knob counterclockwise. If you do not like this, can you think of a way to

rewire the circuit so that the voltage increases as you turn the shaft in the clockwise direction?

Voltage Puzzle # 1 - What is my Potentiometer’s Taper? You were in a hurry to get this project going so

you just grabbed an old potentiometer from you junk bin. Maybe the taper is linear, maybe it’s

logarithmic, or maybe it’s something else.

On most potentiometers, or “pots” in the lingo of engineers, the shaft will rotate over a range of about

300 degrees, although there are some pots that can rotate continuously over the 360-degree range. In

your set up the voltage you measure will be close to zero at one end of the range and close to 10 volts at

the other end of the range.

Precede as follows. Cut out the protractor77 below along the blue outline.

• To make things easy mount the protractor on an index card with glue or tape.

77 See https://commons.wikimedia.org/wiki/File:Protractor1.svg#file

Figure 7-19: Protractor Template

https://commons.wikimedia.org/wiki/File:Protractor1.svg%23file

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 301 of 380

• Cut a hole in the center of the protractor about the size of the threaded part of your

potentiometer.

• Take the knob, nut and washers off of your potentiometer and place protractor template of the

shaft against the body of the potentiometer.

• Remount the washer and nut and gently tighten. Some potentiometers have a small locating

tab on the body. In such a case, you may need to cut a small slit in the template so that the

template will snug up against the body of the pot.

• Turn the shaft of the pot fully counterclockwise until it hits the stop.

• Remount the knob. Make things easier by aligning the pointer on the knob with one of the

major lines in the chart, so that it points to say zero or 90 degrees. You may need to move the

template a little bit to get things lined up.

• Make a mark on the scale where the knob is currently pointing.

• Turn the knob clockwise until you reach the limit.

• Mark the position of the knob on the outer edge of the protractor circle.

Below is an example for the potentiometer that comes with the I/O Accessory Kit.

• [Using the scale on the protractor determine the number of degrees between the

counterclockwise limit and the clockwise limit. In one example pot this was 310 degrees, but

your pot may be different.

• Divide the total angular extent of the pot rotation by 10. For one example this was 31 degrees

(i.e., 310 divided by 10).

Figure 7-20: Protractor with Potentiometer Extents Marked

90°

310°

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 302 of 380

• Beginning at the counterclockwise position make a mark on the outer edge of the protractor

every number of degrees clockwise around the dial. Thus, you have divided the dial into 10,

more or less, equal parts.

• Number the lines from 0 to 10 beginning at the far counterclockwise position.

• Remove the knob, unscrew the nut and remove the template.

• To make your life easier, using a straight edge draw a line from each mark on the outer edge to

the center of the template.

• Reassemble the pot and template.

• Turn the knob to the fully counterclockwise position and adjust the template so that the knob

is aligned with the reference line numbered “0”.

When you are done your template should look like the example below.

Now you are ready to determine your potentiometer’s taper. Plug your pot and template arrangement

into the Voltage In port (see Figure 7-1) and deploy the flow from Figure 7-12 Once you do this, go to

the debug side bar and look at the voltages that are read every five seconds.

0

1

2

3

4

5

6

7

8

10

9

Figure 7-21: Potentiometer Template with Markings

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 303 of 380

Time to take some data.

• Make a chart like the one below in your notebook, or in Excel (or whatever spreadsheet is your

favorite).

Position Voltage

0

1

2

3

4

5

6

7

8

9

10

Table 1: Potentiometer Taper Measurement Table

• Start with the knob in the zero position. Observe the voltage in the Debug sidebar window for

a few five second cycles. After you have seen about three or four voltages for given position

pick a value that seems representative and write it in the chart. Don’t be too concerned about

setting the pointer right on a line because positioning the knob to a mark is not that easy.

• Move the knob to the next mark and record the approximate, eyeball average of the voltages

displayed. Remember when you move the knob you should discard the first voltage reading

because it might have been taken while the knob was being moved.

• Rinse and repeat.

• Using Excel78, your favorite spreadsheet, or graph paper plot the voltage against the position.

The positions should be equally spaced in the graph because they are equally spaced around

the edge of the pot.

Look at the graph, does it appear to be linear with respect to the knob position? Can you draw a line

straight line the best fits the data? Why or why not? What deviations are there from the line? Can you

explain them? Could you use a potentiometer to measure the position of something attached to its

shaft, like the angle a door is open, the angle of your chair is tipped back or how far a valve is open?

Compare your data with that of the example below. Remember: your milage may vary.

Position Voltage

0 10.05

1 9.58

2 8.28

3 7.10

4 5.99

78 Mini Engineering Tip: Learn how to use Excel or your favorite spreadsheet (“YFS”) to plot data. Excel or YFS will
do all the heavy lifting of fitting curves to the data. Know how to use Excel or YFS and will save you hours of work
later if you take any sort of technical classes. Learn it now!

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 304 of 380

5 4.95

6 3.80

7 2.56

8 1.57

9 0.53

10 0.04

Table 2: Data from Potentiometer Taper Experiment

Below is a plot of the data in Excel.

Comment: the taper of this potentiometer used in the above experiment appears to be linear (except at

the ends of the range.

User Interfaces: Show the Voltage!
Using the Debug side bar window to read voltage is not all that much fun, but if you could put them on a

dashboard that would start to look professional. Start Simple: put the voltage in a display window.

• Copy the flow from Figure 7-12 to a new flow in your workspace.

• Clean up your workspace, save your work and delete or disable unneeded flow.

• Replace the Debug node with a Dashboard Text node so that your flow looks like the Figure 7-23

below.

Figure 7-23: Voltage In to Dashboard Text Node

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 2 4 6 8 10 12

V
o

lt
ag

e

Position

Taper for I/O Accessory Potentiometer

Figure 7-22: Plot of Potentiometer Taper Data

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 305 of 380

The dashboard Text node is configured as you have done in Chapter 5. Remember you will need to

assign the Text node widget to a group and make sure the group is assigned to a tab on the dashboard.

Below is the configuration of the dashboard Text node.

Deploy now or forever hold your peace.

Go to the dashboard and you should see a display as in the figure below.

Turn the knob on your potentiometer and see if the voltage changes. Remember, the voltage is being

updated once every five seconds, so you may have to wait a bit to see the change.

The display above is fine, but suppose you do not want to show three digits to the right of the decimal

point? Maybe only one digit is sufficient. Here is a quick trick to adjust a numeric display. Look back at

the Text node configuration as shown in Figure 7-24 and look at the “Value format” box. This box

shows how the voltage is to be displayed. The default is to show numbers with 3 decimal places to the

right of the decimal, however, you can change this. The figure below shows the modification needed to

display only one number to the right of the decimal place (blue box).

Figure 7-24: Text Node Configuration

Figure 7-25: Voltage Readout on Dashboard Tab

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 306 of 380

In Figure 7-24 the value format is simply {{payload.msg}} which means use the default formatting.

However, in Figure 7-26 the value format is {{payload.msg | number : 1}}. The extra characters tell the

Text node to modify displayed numbers to show only one digit to the right of the decimal79.

Make the change above and DEPLOY IT.

Here is what the dashboard output of the Text node should look like now.

79 Technically what is happening here is that you are using the “number pipeline” of the underlying Angular
Material suite that supports the dashboard in Node-RED. The vertical bar, ”|”, indicates a pipeline and the word
“number” indicates that this is a number pipeline. The colon, “:”, indicates the start of an option string, which in
this case is the “1”. The idea is that number in payload.msg is passed through the decimal pipeline where it is
modified by rounding to show the requested number of digits. The use of Angular Material in the Node-RED
dashboard is a complex topic and beyond the scope of this tutorial. A description of the decimal pipeline can be
found here.

Figure 7-26: Text Node Configuration with Value Formatting

Figure 7-27: Dashboard Text Node with Value Formatting

https://angular.io/api/common/DecimalPipe

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 307 of 380

Voltage Puzzle # 2 - Output the Angle. If your potentiometer has a linear taper devise a flow that will

show the angle of the knob in degrees in the Debug output. Hint: use a range node to convert from

voltage to degrees.

User Interface: Gauges
The Text node is nice, but perhaps you would like gauge to show the voltage level. After all the bridge

on Star Trek does not use text node to display the warp speed. No problem: as usual there is a node for

that. You will no doubt be shocked to learn that the dashboard node for an analog display is called

“Gauge”.

Once again copy the flow from Figure 7-12 (or Figure 7-23) and change the righthand node to a

dashboard Gauge node as below.

Here is the hard part: you must configure the Gauge widget as in the figure below:

Figure 7-28: Dashboard Gauge Node

Figure 7-29: Voltage to Gauge Flow

Figure 7-30: Gauge Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 308 of 380

There is a lot to take in here because the gauge node has many different options.

• Group – you must assign your widget to a group and tab. Here the assignment is similar to what

you have done previously .

• Size – use Auto

• Type – This defines how your gauge will be displayed. You can choose “Gauge”, “Donut”,

“Compass” or “Level”. Initially, for now select “Gauge” .

• Label – a name for your gauge.

• Units – a unit name that goes with your gauge.

• Range – the upper and lower limits of the data to be displayed. The default value is perfect for

the voltage range from 0 to 10 volts, but later you may wish to adjust this .

• Color gradient – don’t worry about this now, but later you can use this to give different areas of

your gauge a different colored background. For your Reactor Criticality gauge, you might want

something like, green: everything is fine, yellow: uh-oh, red: run for your life.

• Name – a nice name for the node in your flow.

Once you have completed the configuration Deploy it.

Go to the Dashboard tab and you should have a voltage display you can be proud of, as in the figure

below.

Figure 7-31: Dashboard Display of Voltage

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 309 of 380

Turn the potentiometer and the needle will change on the display. Remember the update rate is once

every five seconds so the gauge will lag a bit. Notice that when the needle position changes the color of

the background changes. If you want a solid color in the background, go back to the Gauge node

configuration (Figure 7-30) and change the “Colour80 gradient” option so that each color bar is the

same. You do this by clicking on the color bar and picking a color you like. Then copy the RGB values

over to the other color bars.

Unfortunately, the gauge units and limit text are a bit small. This can be adjusted but is beyond what we

will do here.

80 “Colour” – British English spelling probably because Node-RED was developed in England.

Figure 7-32: Adjusting the Gauge Colour Gradient

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 310 of 380

You can adjust many parameters on the Gauge widget. Take a few minutes and play with the options.

Here is an example of four gauges monitoring Bobo’s cage.

You only have one Voltage In port on your Learning Card, but the figure above gives you an idea about

how you could handle multiple types of analog data channels with different gauge types.

Voltage Puzzle # 3 - Point the Way – Control the Voltage In with a potentiometer as in Figure 7-29.

Convert the voltage to an angle and display the angle on a compass display.

Voltage Puzzle # 4 – Worldwide Temperature – Go back and review the flow related to Figure 4-108

that displays the temperature on the four on-board LEDs. Modify this flow so that it shows the

temperature of you location on a gauge. Extend your design present a dashboard display with four

gauges showing the temperature at four different cities around the world.

User Interface Charts
Gauges, no matter how charming, are ephemeral81 creatures and their values vanish with each update.

If you want to know the trend of a value or to know if Bobo is drinking water at 2:37 AM then you are

81 Always on the SAT exam.

Figure 7-33: Dashboard Gauge Examples

Figure 7-34: Dashboard Chart Node

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 311 of 380

going to need a way to record values. Well, wait for it…, there is a node for that, the dashboard Chart

node.

• Clean up everything:

o Save your important flows for posterity.

o Add a new flow called something like “Voltage to Chart”.

o Delete or disable your other flows so they won’t try to tussle with your new flow.

• Build a flow like the one in the figure below, which is the same as Figure 7-29 above, except

you will replace the Gauge Node with a Chart node labeled “Voltage Chart”. Your flow should

look like this:

Figure 7-35: Voltage to Chart Flow

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 312 of 380

• Open the “Voltage Chart” Chart node and configure it as shown below

Although there are few things to fix up the default configuration is almost what you need.

• Group – Assign the Chart node to a group. Here the group is called “Chart Example”, which you

might need to create .

• Label – give your chart a Label that will show up on the Chart heading .

• Chart Type – Use the default, which is “Line Chart” .

• Enlarge Points – Turn this option on so that the data points will be easy to see .

• X-Axis – Use the default to plot time values, but you could also plot a fixed number of points.

• Y-Axis – Set the limits on the Y-axis to be between 0 and 10 , which happily is the default

value. In fact, you do not need to set Y-axis limits unless you want to fix them because the chart

will dynamically adjust the Y-axis limits as the data arrives at the input port.

Figure 7-36: Chart Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 313 of 380

It’s the big moment… DEPLOY!

Open the dashboard and you will see that a new data point is arriving every five seconds and being

plotted. Turn the pot up and down. The line on the chart should be similar to what is below.

Perhaps you are curious about a particular data value on the chart. All you need to do is put your mouse

cursor on a point on the chart (or directly below the point or on an X-axis value). When you do this, a

little data window will open in the chart and give you the X-axis and Y-axis values (see below).

Figure 7-37: Example Line Chart Output

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 314 of 380

In the figure above the value of the highlighted datapoint (solid blue dot shown by yellow arrow) is

shown (see white box).

User Interface – Clearing the Chart
From time to time you might want to reset the chart on your dashboard. This is easy to do, you simply

send the chart a msg.payload with an empty array in it. An array is a type of data organization in

JavaScript that stores multiple pieces of data. You don’t need to know about arrays in this tutorial, just

follow the recipe below.

Go back to the flow in Figure 7-35. Add an inject node as shown below.

The Inject node named “CLEAR CHART” simply sends an msg.payload with an empty array to the input

port of the Chart node (“Voltage Chart”). To do this configure the “CLEAR CHART” Inject node as shown

below.

Figure 7-38: Chart Showing Value at a Point

Figure 7-39: Clear Chart Example Flow

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 315 of 380

In the msg.payload box select the type to be Jsonata from the dropdown. In the value box enter a left

bracket ([) followed by a right bracket (]) so that the value looks like this: [].

Deploy!

Move the dashboard tab to a part of the screen away from the Node-RED tab so that you can see your

flow and the chart at the same time. When you click on the CLEAR CHART node your chart should reset.

Voltage Puzzle # 5 - Pushbutton Clear – Modify the flow in Figure 7-39 so that you can use the push

button on the Learning Card (or one of the OPTO inputs) to clear the chart.

Puzzle Time! – Voltage Control
Here are a few quick puzzles that involve controlling the LEDs and Relays on the Learning Card in

response to a voltage read at the Voltage In port. For these you will use the potentiometer to select a

voltage.

Voltage Puzzle # 6 - LED on, LED off - Design a flow such that when the input voltage is higher than five

volts all the LEDs on the Learning Card turn on and when the voltage is less than or equal to five volts

the LEDs all turn off.

Voltage Puzzle # 7 - Level Meter – Turn the four LEDs on the Learning Card into a simple voltage level

indicator. The LEDs will display the voltage as follows:

Voltage GP1 GP2 GP3 GP4

Below 2.0 OFF OFF OFF OFF

Above 2.0 but Below 4.0 ON OFF OFF OFF

Above 4.0 but Below 6.0 ON ON OFF OFF

Above 6.0 but Below 8.0 ON ON ON OFF

Above 8.0 ON ON ON ON

Use a potentiometer to test your flow.

Figure 7-40:Clear Chart Inject Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 316 of 380

Hint: Look at the temperature display example in Chapter 4.

Voltage Puzzle # 8 - Relay Control – This puzzle is like the one above, but with the relays. Here is the

table.

Voltage Relay 1 Relay 2

Below 3.0 ON OFF

Above 3.0 but below 5.0 OFF OFF

Above 5.0 OFF ON

Voltage Puzzle # 9 - Motor Control – Extend the example above so that the position of the pot will run

the motor either forward, backwards or stopped. In a later chapter you will learn how to control the

motor speed with the pot.

Voltage Puzzle # 10 - Battery Internal Resistance. By now you know that electronic components are not

perfect. Batteries are not perfect voltage sources because they have a certain amount of internal

resistance (usually just a few ohms). This internal resistance increases as batteries are used and is one

indication of the state of the battery. Your task is to measure the internal resistance of a battery, like an

AA alkaline battery. Start by reviewing this article: Measuring Internal Resistance of Batteries.

In the article all the measurements are done by hand. However, you could use one of the Learning Card

relays to control whether the Voltage In port is measuring the open circuit voltage of a battery or the

voltage when the battery is under load. Set up a system that will measure these parameters and then

calculate and display battery internal resistance.

Get fancy. Build a system using the two relays that loads a battery with a small lamp or resistor. Run

the system with the lamp on, but periodically (once every 10 minutes) disconnect the lamp and measure

the internal resistance of the battery using a resistor of known value. Plot internal resistance on a

graph. Describe what you see. You can perform all sorts of experiments to determine battery internal

resistance. For example, you could try different loads (i.e., different size of lamps) and see how the load

affects the internal resistance. Or determine how the internal resistance changes as a battery rests after

being used.

Can you build a battery tester that will check the internal resistance and give you a GOOD-WEAK-BAD

indication on a dashboard?

Voltage Puzzle # 10A – Weather Station. Review Figure 4-108 and the discussion associated with it.

Build an Internet connected weather station to show your local weather. Use gauges to show the

temperature, humidity, wind speed and wind direction. Use a chart to keep track of the barometric

pressure.

Gauges and Charts – Smoothing the Rough Edges
Your Learning Card can measure voltages to one part in 4000. However, the overall system does not

really support this precision because it is not designed for such exacting use. Rather, when you measure

voltages, you should expect to measure to, say, one part in 100 or 200. If you set up a gauge or chart

the value presented on your dashboard may cause the needle on your gauge or the line on your chart to

hop around quite a bit. In this section you will learn how to smooth out your voltage readings so that

https://learn.sparkfun.com/tutorials/measuring-internal-resistance-of-batteries/internal-resistance

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 317 of 380

the display is pleasant to look at (no needles with the coffee jitters or snake-like chart lines) and that do

not give reading that imply greater precision than you are actually supporting.

First start by setting up a very simple flow that will take the voltage from a 3-volt battery pack and

display it. A pair of AA alkaline batteries in series will produce about 3.2 volts and if the batteries are

not under load (that is you are drawing very little current) the voltage is remarkably stable.

Start by building up this voltage source that you will then connect to the Voltage In port of your Learning

Card.

Open a new flow, clear away unused flows and then construct the flow below.

This is very much like the flow you developed in Figure 7-29, but you are going to make a few changes.

• Open the Inject node and set it up as shown below

Figure 7-41: Measuring Battery Voltage

Figure 7-42: Voltage to Gauge Flow

Figure 7-43: Inject node Configuration Part 1

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 318 of 380

• In configuring the Inject node you will inject a msg.payload with a simple Boolean true value,

just to trigger the read of the voltage .

• Once the flow is deployed the message will be injected every half second .

Now for the Gauge node configuration. Set it up as below.

• The expected battery voltage is about 3.2 volts for two AA cells in series. Set the limits on your

gauge to be between 2.5 and 3.5 units .

Deploy it!

Bring up your dashboard a take a look at the gauge, which should look like the figure below.

Figure 7-44: Inject Node Configuration Part 2

Figure 7-45: Configuration of Gauge Node

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 319 of 380

If you have a good voltmeter hook it up to the battery pack and check the voltage. How does it compare

to what is on your dashboard gauge? Do you notice anything about your display? For example, does

the digital display jump around from value to value? Do you think your Learning Card can really

measure four decimal places of accuracy82?

All of these artifacts arise because your flow is trying to display more information than the Learning Card

is capable of measuring. This is not a defect in your Learning Card because all voltage measurement

cards that cost about the same as the Learning Card will have approximately the same capability. If you

really must have four-digit precision, then you will probably need to spend $500 for an instrumentation

card with an internally calibrated voltage source. However, home automation measurements accurate

to one or two percent should be just fine for any reasonable application. After all, you are really not

going to measure the water level in Suzie’s cage in microliters.

Still, it is annoying to see the needle bounce around. Maybe there is a simple fix or two that will make

the display more representative of the true measurement situation.

To make your display more closely represent the actual measurement situation, you need to smooth out

the data and possibly control the number of digits displayed. Ask yourself, “How in the world am I going

to smooth the data?” Maybe yourself has been paying attention and a little inner voice will say “There

is a node for that!”. Listen to the voice. Check out the node list and there it is: the Smooth Node.

82 Well, actually the Learning Card really tries to measure to one part in 4096, which is almost one part in 10,000.
However, there are many internal factors that prevent the measurement from being that precise. Later, if you
have the stamina, you can measure the actual precision of the Learning Card.

Figure 7-46: Dashboard Gauge Display for Voltage Measurement

Figure 7-47: Smooth Node

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 320 of 380

Time for a little experiment. Set up the flow below (which is based on Figure 7-42) with two gauges

displaying the current voltage. For one gauge you are going to display the voltages directly and for the

other you are going to smooth the voltage before displaying it.

In this flow you are going to read the voltage once every half second as before. Your display will have

two gauges one showing the voltage directly and the other showing the voltage after smoothing by the

Smooth node.

Start off by using the default Smooth node configuration, which is shown below for reference.

Figure 7-48: Comparison Flow

Figure 7-49: Initial Configuration of Smooth Node

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 321 of 380

Every time the Smooth node receives a message it produces an output message. In this initial

configuration the output message is the mean value  of the ten most recently received messages .

There is also an option to determine how the output number is rounded . The default is to do no

rounding of the output value. At the very bottom of the configuration window is a little note to

consider, namely that the Smooth node can only work with numeric values. It should be fairly obvious

that it is meaningless to round a string or a Boolean value but remember this point.

Time for the big reveal: Deploy your flow!

Go to the dashboard and you will see something similar to the figure below.

Was this what you expected??? Probably not. Watch the display for a bit. The upper gauge is acting

like it did before, hopping up and down but what in the world is going on with the bottom gauge. Note

that while the needle upper gauge is bobbing around the needle on the bottom gauge (the one where

the readings are smoothed) is reasonably steady. That part is good, and it is what you want because the

needle is tracking the average.

What about the huge, long number showing the current value? In Node-RED numeric values are

rounded to 17 (!) digits. So here, Node-RED is computing the average over 10 numbers and hanging on

to almost every digit of the calculation and then displaying it in all its glory and false precision. This is

not very useful nor is it very sensible because it is making it difficult to understand your data.

Fortunately, you can tell the Smooth node to round the result to fewer digits in the configuration

window.

Figure 7-50: Comparison Unsmoothed with Smoothed Voltage Readings

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 322 of 380

• Go back to your flow and open the configuration window for the Smooth node.

• Set the rounding factor to 2 decimal places .

And… !

Now your dashboard should look like the figure below.

The upper gauge (without smoothing) will jump around, and the value shown will change frequently. In

contrast, the lower gauge where you are smoothing the measured voltage will be steady. In this case

the voltage is both smoothed by averaging and rounded to two decimal digits to the right of the decimal

Figure 7-51: Configuration Window for Rounding

Figure 7-52: Comparison of Unsmoothed and Smoothed Voltage Measurements

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 323 of 380

point. The result is a gauge that is easier to read, pleasant to look at and more or less representative of

the actual measurement situation.

Voltage Puzzle # 11 - Charting – You can use the Smooth node for charting. Try it! Modify the flow of

Figure 7-48 to include a chart. Try different values of smoothing and rounding.

Voltage Puzzle # 12 - Pot Smoothing – Modify the flow of Figure 7-39 for charting the voltage of the

potentiometer to include smoothing. Try different smoothing and rounding options. Describe what you

have discovered.

Voltage Puzzle # 13 Min and Max. The Smooth node can also compute other values aside from the

average. It can also remember the maximum or minimum value of the numbers it has seen. Set u a

flow to show the maximum or minimum voltage seen when turning the pot. Figure out how to reset the

minimum or maximum value seen in some number of previous samples. Reset it with a pushbutton.

Running with Voltages

An Introduction to Resistive Sensors
The Voltage In port on the Learning Card is set up to make it easy to attach certain types of sensors. You

can easily make use of a sensor whose resistance changes in response to an environmental factor such

as light level, temperature, humidity and pressure. In the previous section you set up several flows that

used the potentiometer to provide a voltage. Here you will extend this concept to using resistive

sensors.

To understand how use a resistive sensor you must first understand a little bit more about voltage

dividers. Below is an example of a voltage divider. If you are headed for a career in electronics pay

attention here. Voltage dividers show up all the time in electronic circuits.

In the voltage divider above the resistors R1 and R2 are “fixed” resistors meaning that the value of each

resistor cannot be varied. Assume for a moment that resistors R1 and R2 are fixed and have a value of

R1 ohms and R2 ohms, respectively. Also assume that the voltage at the top of resistor R1 is 10 Volts, as

shown. In this case the voltage at the point between the two resistors (VOUT) is given by this equation:

Figure 7-53: Voltage Divider with Fixed Resistors

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 324 of 380

𝑉𝑜𝑢𝑡 = 10 𝑉𝑜𝑙𝑡𝑠 ×
𝑅2

𝑅1 + 𝑅2

Equation 1: Voltage Divider Equation

In other words, the voltage at Vout is a fraction of 10 volts determined by the ratio of R2 to the total

resistance (R1 + R2) of the voltage divider. For example, If R1 = R2 = 10K ohms, then Vout will be 5.0

Volts. All of this assumes that there is no current being drawn from the point labeled Vout which is

almost true in the Learning Card. If you want to know how the equation above is derived check out the

Wikipedia article on the Voltage Divider.

Suppose that R2 is fixed at some value, say 10K ohms and that R1 is replaced with a variable resistor

Rvariable as in the picture below

A variable resistor is exactly what it sounds like: the resistance varies based on some external factor.

The potentiometer discussed earlier can be made into a variable resistor that depends upon the position

of the shaft.

Remember the Engineering Tip #10 about how any real-world device is imperfect? Sometimes you can

make resistors that are imperfect on purpose. Normally you would not want a resistor to change value

just because it is exposed to light, heat, humidity or pressure. However, imagine what you might be

able to do if you could build an “imperfect” resistor that changed value when exposed to light. You

could use such a resistor to determine when the sun comes up and goes down, or when some thief

breaks the laser beam guarding your supply of hamster treats.

If you put a variable resistor in the voltage divider circuit of Error! Reference source not found. then the

voltage Vout will vary with the change in resistance. At the Voltage In port, you can measure Vout and

from this you can infer how bright a light is, or how hot a room is it is or how humid the greenhouse is

depending on what sort of variable resistor you use in the circuit.

Figure 7-54:Voltage Divider with Variable Resistance

https://en.wikipedia.org/wiki/Voltage_divider

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 325 of 380

Sensors: The Photoresistor -A Light Dependent Resistor
 If you purchased the IO Accessory Kit for the Learning Card it contains a sensor (a photoresistor or Light

Dependent Resistor i.e., LDR) where the resistance changes with light, specifically the resistance

decreases when brighter light falls on the sensor83.

This light sensor assembly is set up as a voltage divider as shown below and plug directly into the

Voltage In port on the Learning Card.

In this arrangement pin1 of the Learning Card Voltage In port provides a reference voltage of +10 volts.

Pin 1 provides a ground reference. Pin 2 is the Voltage In port to the Learning card. As more light falls

on the photoresistor its resistance decreases and this in turn causes the voltage at the pin 1 to rise

towards the +10 volt reference. Conversely, as less light falls on the photoresistor its resistance rises

and the voltage at pin 2 drops. For the photoresistor in the I/O Accessory Kit the resistance is about

200K ohms when there is no light falling on the sensor and about 100 ohms under very bright light. As a

result, the voltage read by the Learning Card varies from almost 10 volts to almost 0 volts.

Voltage Puzzle # 14 - What’s the Voltage, Kenneth? – Assuming the resistance of the photoresistor is

200K ohms when the cell is in the dark and 100 ohms in bright light, what is the voltage range on Pin 2?

Use the voltage divider equation.

Time to try out the light sensor.

83 You can make your own plug-in light sensor using a 10K resistor and a 5516 photoresistor.

Figure 7-55: Light Sensor Assembly

Figure 7-56: Schematic of Light Sensor Assembly

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 326 of 380

Unfortunately, there is no easy way to express the relationship between the brightness of the light

falling on the photoresistor and the voltage that is input to the card. To make matters worse

photoresistors also have different sensitivities depending on the color of the light falling on them.

Therefore, you will need to be content to just read the voltage and call that a representation of

brightness.

• Plug the photoresistor assembly from Figure 7-55 into the Voltage In port of your Learning Card

• Set up the flow below, which is the same flow as Figure 7-29.

• You might want to make some changes so that the group has a useful name

Deploy for goodness sakes.

With any luck you will see a display like the one below.

Experiment with the photoresistor. Move it around and see how the gauge responds. Use a flashlight

and see if that changes the gauge. If you have a laser pointer, try that! Depending upon the conditions

where your light sensor is located you might notice that the gauge will change when you wave you hand

over it. Just walking by can change the reading.

You can easily add charting to your light sensor as in the example flow below.

Figure 7-57: Voltage to Gauge Flow

Figure 7-58: Gauge Reading for Light Sensor

Figure 7-59: Light Sensor with Gauge and Charting

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 327 of 380

Here is what the combined display looks like.

Notice that the scale on the chart has been adjusted to show values between 8 and 10 volts. This

magnifies the data as long as it remains within the range you specify. You specify the range in the

configuration of the Chart widget as shown below (blue box).

You can adjust the limits of the Y-axis display to suit your needs.

Light Controlled Relay – Burglar Alarm
Controlling a relay when an object breaks a beam of light is one very common application of

photoresistors. Before artificial intelligence, high resolution cameras and infra-red motion sensors many

security applications used a beam of light to protect valuable objects. This is, of course, a staple of spy

movies where the hero (or villain) must dodge dozens of laser beams to get to the state secrets or the

crown jewels. Using the light sensor of Figure 7-55 together with a flashlight or laser pointer you can

Figure 7-60: Light Sensor Gauge and Chart Display

Figure 7-61: Adjusting Y-axis Range on a Chart

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 328 of 380

build a little security system of your own. The idea is simple: A light shines continuously on the

photosensor. While the light shines the relay is “off”, but if the beam is broken then the relay turns “on”

and with a few extra components you can ring a bell to indicate that a wily hamster has tried to break

into the food bucket again.

Here is the set up:

The Flashlight on the left shines on the photoresistor connected to your Voltage In port. When the light

is on the photosensor the resistance will be low and, consequently, the voltage you read will be high.

However, if Dillie crosses the light beam the light will be blocked and the voltage you read will drop

setting off the alarm. How much the voltage changes between hamster and no hamster breaking the

beam will depend upon several factors.

• Ambient Light – If the room is dark your system will be more sensitive and, conversely, if the

room is brightly lit, it will be harder to detect changes. You can improve matters substantially by

putting the photoresistor in a straw. This will block some of the ambient light. If you are using a

straw, try to find one that black inside and out or wrap it in black tape. Know anything about

optics? If you do, then try setting up lens and tubes to increase the capabilities of your alarm.

• Distance between flashlight and photoresistor – the greater the distance the weaker your

flashlight beam will be when it reaches the photoresistor.

• Brightness – A nice bright flashlight will work fine, but if you really want to work over a long

distance try a small laser pointer. The downside is that it will be more difficult to align.

And now for the flow. You have done everything in this flow before. All you are doing is reading the

light level, checking it against a threshold and then controlling the relay. Here is an example flow, but

maybe you have a better idea!

Figure 7-62: Hamster Snack Protection System

Figure 7-63: Burglar Alarm Flow

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 329 of 380

The Read node is just an inject node configured to inject a Boolean true value every 0.1 seconds. There

is nothing special about the Read Voltage node, which is an LKit Voltage In node (see Figure 7-4).

The Check Threshold node is a Switch node that compares the voltage read to a threshold value you

select. Here is an example configuration:

The threshold here is 8.5 volts, but you will need to adjust this for your situation. If the voltage is

greater than (e.g., “>”) 8.5 volts the input message goes to the output port 1, otherwise it goes to

output port 2.

Set it up. Deploy it now. Try it out.

If everything went according to plan, then when you break the light beam the relay will turn on.

Voltage Puzzle # 15 - Beat the Beam! You are reading the voltage in 10 times per second. Do you think

that is fast enough? What if Dillie is very fast? Do you think he can beat the beam? Try it yourself. Can

you fix this problem by reading the voltage more frequently? Are there any downsides to doing this?

Can you determine limits on the speed and size of the object so that the beam is always broken for a

given reading rate? Maybe you could set up some mirrors to bounce a laser beam back and forth along

a chute to the treats.

Voltage Puzzle # 16 - Count’em. – Build a dashboard display to show how many times a light beam is

broken. Include a button to reset the counter.

Dusk to Dawn Porch Light
Your burglar alarm can double as a dusk to dawn porch light. When the sun is goes down the porch light

turns on and when the sun comes up it turns off. All you need to do is make a few changes.

First, you will need to adjust the threshold. For the burglar alarm the threshold is high because you are

interested in detecting the full brightness of the flashlight. However, for your porch light you want a low

threshold. To determine a good threshold, hook up a gauge to the output of the “Read Voltage” node in

Figure 7-63. Point your photoresistor out the window and come back when the sky is dark enough that

Figure 7-64: Check Threshold Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 330 of 380

you would like the porch light on. Check your gauge and then put that value into your “Check

Threshold” node.

Second, change the frequency of your reads by adjusting the Inject node. For an application like the

porch light, you will want to read the light level about once a minute or even once every five minutes.

There are at least two reasons for this. If you read too quickly small variations in the light level might

cause the porch light to flicker, which would be very annoying to the mosquitos that are going to gather

there to party at dusk. Also, if you read more quickly than necessary you are just wasting CPU time that

might be better used playing games like “Wack-a-Hamster”.

Voltage Puzzle # 17 - Save Power. Maybe you want to save a few kilowatt hours. Does the porch light

need to stay on all night entertaining the mosquitos and moths? Work out a system so that the porch

light turns off four hours after dusk.

Voltage Puzzle # 18 - Fool the Burglar. Maybe you want your porch light to give your home a lived-in

look so that Mr. Ladron, the burglar, thinks you’re at home and won’t break in to steal your 100 inch

OLED flat screen. If Mr. Ladron sees your porch light go on and off about the same time every night, he

might get the idea that you are really not home84. Fool him! Add a random time delay so that your

porch light turns on and off with a random delay of between 0 and 20 minutes. Add a debug node to

your design that records when the light goes on and off to check your approach. Test your design for a

week, or if you are the impatient type, just block and unblock the sensor to see if you flow works.

Measuring Light Intensity
The resistance of your photoresistor changes with the brightness of the light that falls on it. This change

in resistance is translated into a change in voltage by the voltage divider arrangement of Figure 7-56.

Quantitively, the relationship between the “brightness” of light falling on the photoresistor and the

voltage you measure is complicated by several factors:

• The color of the light (or more precisely the spectrum of the light)

• The voltage divider network on the Learning Card

• The characteristics of the photoresistor

Your mission, should you choose to accept it, is to translate light level into an indication on the Learning

Card LEDs. Go back to Chapter 4 and review Figure 4-108. In this project the temperature read from the

internet is sent to a simple bar graph display using the Learning Card LEDs. Combine the voltage read

84 Even if you do nothing the porch light will go on and off at different times each day because the day is always
getting longer and short as the earth moves around the Sun.

Figure 7-65: Light Meter Flow

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 331 of 380

from the light sensor and the LED bar graph to build a system that will display the current light level on

the bar graph.

One measure of light intensity or light level is the lux. It is beyond the scope of this tutorial to build a

system to convert light intensity to lux, but you can calibrate your bar code display in a very rough

fashion by using this table from Wikipedia.

Lux Situation

1 A dark room

50 A typical household room at night with normal lighting

500 Sunrise or sunset on a clear day

1000 An overcast day

10,000 – 25,000 Full sunlight

• Build a flow that combines the LED bar graph with your light to voltage flow from Figure 7-57.

• Place a white sheet of paper on a flat surface and aim your photoresistor at the paper. You

might want to use a small length of black straw to limit the “field of view” of the photoresistor.

• Set up each of the situation in the table above. For each situation record the voltage.

You have now calibrated your photoresistor system in a very rough way. Using your voltage readings

adjust the Switch node (“Level Detector”) in Figure 7-65 so that no LED lit corresponds to a dark room

and 1 LED lit corresponds to the 50 lux and so forth.

Try your system out by shining a flashlight on the photo sensor and placing sheets of paper between the

flashlight and the photo sensor one at a time and verify that your bar code “lux” meter is working.

Mix and Match
Here are some puzzles that you can work on that combine flows that you have already developed with

the photoresistor of this chapter.

Voltage Puzzle # 19 - Light Meets Motor. Combine the burglar alarm flow of Figure 7-63 with a relay

flow to control the operation of a motor in three different situations.

• When light falls on the photoresistor the motor runs, when the beam is broken the motor stops.

• When no light falls on the photoresistor the motor runs in one direction. When a bright light

falls on the photoresistor the motor runs in the other direction. And when the light level is at a

medium level the motor stops.

Voltage Puzzle # 20 - Light and Sound. Design a flow so that when light falls on the photoresistor a tone

is played. Extend your flow so that the pitch of the tone (or the loudness of the tone) changes with the

light level.

Voltage Puzzle # 21 - You’re in the Army Now! If you were an army bugler you would play certain bugle

calls during the day. If you were either lazy or clever you might design a flow that will play the “Reveille”

bugle call when the sun rises and play “Retreat/To the Colors” when the sun sets.

Voltage Puzzle # 22 - Light to Email – Send yourself an email (or a text message) when a beam of light is

broken.

https://en.wikipedia.org/wiki/Lux
https://en.wikipedia.org/wiki/Bugle_call
https://en.wikipedia.org/wiki/Bugle_call

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 332 of 380

Voltage Puzzle # 23 - Let there be Sunlight. Connect a solar cell (or several solar cells in series) between

the Voltage In port and ground. Put the solar cell near a window and chart the voltage over a 24 hour

period. What did you find out? Face the cell more or less to the south (technically you want to face

towards “true” south rather than “magnetic” south. Chart the resulting voltage over a 24 hour period.

Can you determine when the sun was at it peak in the sky? If it the clouds are broken in your area when

you make the measurements can you observe when the clouds block the sun?

Sensors: Temperature Sensitive Resistor
A “thermistor” is a resistor that is sensitive to temperature. In this device a change in temperature

produces a change in resistance. If you purchased the Learning Card Accessory Kit you will have a ready

to use thermistor as shown in the figure below85.

Note: your thermistor may look different from the one in the figure. The function of the 10K resistor is

to form a voltage divider between the 10-volt reference and the thermistor. This will become clear in a

moment.

Background on Thermistors
Thermistors are specifically designed so that as the temperature changes the resistance of the

thermistor changes. The word “thermistor” is a portmanteau86 of “thermal” and “resistor”. There are

many different types of thermistors in terms of resistance, temperature range, shape and other factors.

However, they generally fall into two group those with a Negative Temperature Coefficient (NTC) and

those with a Positive Temperature Coefficient (PTC). This difference is simply this: in a thermistor with a

negative temperature coefficient the resistance increases and the temperature decreases. Conversely,

the resistance of a positive temperature coefficient the resistance increase as the voltage increases.

The thermistor in the Learning Card Accessory Kit is a negative temperature coefficient, NTC, thermistor.

Thermistors are carefully manufactured to have a specific resistance at a given temperature. However,

this resistance is specific to the particular thermistor you are using. In the Learning Card Accessory Kit

the thermistor is an MF52AT and has a resistance of 10K ohms at 25 degrees Celsius. To use a

thermistor effectively you will need to obtain a “datasheet” from the vendor. This is technical

information that tells you how the device behaves and how to use it properly. One item in the data

sheet is a table that shows the resistance of the thermistor at different temperatures. Here is the table

for the MF52AT-10K.

85 Otherwise make your own with an MF52AT Thermistor and a 10K resistor wired to a connector as shown in the
figure.
86 Portmanteau – probably not on the SAT but look it up anyway.

Figure 7-66: Thermistor from Learning Card Accessory Kit

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 333 of 380

Temperature
(Degrees C)

Resistance
(K Ohms)

-30 181.700

-25 133.300

-20 98.880

-15 74.100

-10 56.060

-5 42.800

0 33.960

5 25.580

10 20.000

15 15.760

20 12.510

25 10.000

30 8.048

35 6.518

40 5.312

45 4.354

50 3.588

55 2.974

60 2.476

65 2.072

70 1.743

75 1.473

80 1.250

85 1.065

90 0.911

95 0.782

100 0.674

105 0.584

110 0.507

Table 3:Temperature Resistance Table for MF52 AT Thermistor

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 334 of 380

Notice that in the table above the resistance value at 25 degrees C is 10K ohms, which is the

characteristic resistance of this device. If you were to plot the temperature against resistance you would

have a graph like the one below.

In this chart you can see that the MF25AT thermistor is a negative temperature coefficient device

because the resistance goes down as the temperature goes up.

Your next mission is to connect the thermistor to the Voltage In port and then develop a flow that will

present the temperature on a gauge in degrees Celsius (or if you prefer Fahrenheit). This is a big project

but once you have the flow built you can use your thermistor to control a fan, a temperature display, or

to keep a cup of water at a specific temperature. Here are the steps you need to carry out.

• Read the voltage

• Convert the Voltage to a Resistance Value

• Convert the Resistance value to a Temperature

Starting Simple – Read the Voltage
As always it is a good idea to start simple and work carefully toward your objective. A simple step would

be to connect the thermistor to the Voltage In port, read the voltage and print it out using a Debug

node.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

-40 -20 0 20 40 60 80 100 120

R
es

is
ta

n
ce

 (
K

 O
h

m
s)

Temperature (Degrees C)

MF25AT 10K Thermistor Characteristic

Figure 7-67: Resistance v. Temperature Curve for MF25AT-10K

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 335 of 380

Here is a schematic for the Thermistor accessory of Figure 7-66.

This is voltage divider similar that shown for the photoresistor in Figure 7-55 except that the thermistor

is in the lower leg of the voltage divider between the Voltage In pin and ground. This means that as the

resistance rises the voltage will rise also. (See Equation 1). Time to see if this is true.

Plug the thermistor arrangement above into the Voltage In port. Now set up the flow from Figure 7-12

and, as always… DEPLOY IT!

Every five seconds you will get a voltage reading in the Debug window.

Is it sensing temperature? Pinch the thermistor between your thumb and forefinger. The temperature

should go up, which means the resistance will go down (negative temperature coefficient) and thus the

voltage will go down. Now put the thermistor and an inch or two of the leads into a small plastic bag

and dip it into ice water87. The voltage should go up.

Thermistor Application One - Let’s Build a Thermometer

Thermometer - Converting Voltage to Resistance
Measuring the voltage is fine for testing, but in order to work out the actual temperature you must

convert the voltage reading into the current resistance value of the thermistor. This is tricky, so pay

attention.

87 The data sheet for the MF25AT thermistor says that it should not be immersed in water for long periods of time.
Probably because the outer coating is not watertight and prolonged exposure to water would cause corrosion. So,
play it safe and measure the temperature indirectly.

Figure 7-68: Schematic of Thermistor Arrangement

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 336 of 380

The thermistor accessory of Figure 7-68 forms a voltage divider as shown below.

The voltage divider equation (Equation 1 from page 324) can be rewritten to match the thermistor

voltage divider thusly:

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝐼𝑛 = 10 𝑉𝑜𝑙𝑡𝑠 ×
𝑅𝑇

𝑅1 + 𝑅𝑇

Equation 2: Thermistor Voltage Divider

Where R1 is 10 K Ohms (10,000 Ohms) and RT is the resistance of the thermistor at whatever

temperature it is measuring.

A little bit of algebraic manipulation and you can solve Equation 1 for the thermistor resistance, RT, in

terms of the measured voltage (Voltage In). Here is the equation:

𝑅𝑇 =
𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝐼𝑛

1 −
𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝐼𝑛

10𝐾

Equation 3: RT in Terms of Measured Voltage

Where: RT is the thermistor resistance in K Ohms and Voltage In is the voltage you measure at the

Voltage in port.

Figure 7-69: Thermistor Voltage
Divider

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 337 of 380

In the case of the Learning Card there is another consideration: compensating for the internal resistance

of the learning card. Go back and look at Figure 7-3. You will notice that there are two resistors, R36

and R37, on the learning card that form a second voltage divider on the card to scale the input voltage

from a 0 to 10 volt range to a 0 to 3.3 volt range. Although the two resistors are relatively large (24.3 K

Ohms and 11 K Ohms, respectively) they are about the same value as the 10K resistor and the nominal

resistance of the thermistor. As a result, your calculation of the thermistor resistance from the

measured voltage (Voltage In) must compensate for their effect. Here is the complete circuit that

combines Figure 7-3 with Figure 7-69. The blue dotted line separates the thermistor voltage divider

(left) from the Learning Card Voltage In circuit (right)

When you use the Voltage In node it is reading the voltage at the junction with the red dot in the figure

above. When you use the voltage divider equation above (Equation 3) to computer the resistance

between the red dot and ground you must take into consideration the effect of R36 and R37.

You can do this by relying on a basic principle of circuit design that says any network of resistors

between two points in a circuit can be reduced to a single equivalent resistance value. That is what you

need to do here: develop an equation for the resistance between the red dot and ground that is a

function of R36, R37 and RT.

Figure 7-70: Thermistor and Learning Card Combined Circuit

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 338 of 380

In the circuit of Figure 7-70 you can ignore the OP AMP because it has no effect on the resistance

between the red dot and ground. Remove the OP AMP and now the circuit looks like this:

Resistors R36 and R37 are in “series”. If two resistors are in series, they can be replaced by a single

resistor, RS (R-Series), whose value is the sum of two resistance values. In other words.

𝑅𝑆 = 𝑅36 + 𝑅37

Equation 4: Combined Resistance of R36 and R37

Here is the new equivalent circuit where resistor RS is 35.3 K Ohms

Figure 7-71: First Simplification to Thermistor Circuit

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 339 of 380

The two remaining resistances, RT and RS are in “parallel”. The equivalent resistance for the two

parallel resistors, call it RE (R Equivalent), is given by:

𝑅𝐸 =
𝑅𝑇 × 𝑅𝑆

𝑅𝑇 + 𝑅𝑆

Equation 5: Resistance of Two Resistors in Parallel

Substituting the known value of 35.3K for RS the formula for the value of RE is:

𝑅𝐸 =
𝑅𝑇 × 35.3𝐾

𝑅𝑇 + 35.3𝐾

Equation 6: Final Thermistor Circuit Simplification

Here is the final circuit simplification, which is simply a voltage divider between a 10K resistor and RE.

Figure 7-72: Second Thermistor Circuit Simplification

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 340 of 380

With a bit of algebraic manipulation, you can convert Equation 6 so that you have an equation for RT in

terms of RE, like so:

𝑅𝑇 =
35.3𝐾 × 𝑅𝐸

35.3𝐾 − 𝑅𝐸

Equation 7: RT in Terms of RE

Now what? Well… Using Equation 3 you can determine RE from the Voltage In as:

𝑅𝐸 =
𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝐼𝑛

1 −
𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝐼𝑛

10𝐾

Equation 8: Value of RE in Terms of Voltage In

Once you have a value for RE you can go back to Equation 7, substitute RE and find RT. Ocne you have

RT in hand you can convert it into a temperature value using the curve in Figure 7-67. Messy, but it will

give you the correct answer.

Thermometer - Voltage to Thermistor Resistance
Time to build the flow. You could combine Equation 7 and Equation 8 into one gigantic equation, but

there are too many chances for errors. An alternative approach is to let Node-RED do the heavy lifting.

Here is the first flow, which will read the voltage and translate it into the current thermistor resistance.

Figure 7-73: Third Thermistor Circuit Simplification

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 341 of 380

The Read node and the LKit 0-10V In nodes are the same as you built for the flow in Figure 7-12. The

nodes Voltage to RE and RE to RT are Change nodes that implement Equation 8 and Equation 7,

respectively.

Here is the configuration for the “Voltage to RE” node.

Compare the Jsonata expression (blue box) with Equation 8 and you will see that they are the same. The

only difference is that the resistor value is given as 10 rather than 10,000 (i.e., 10K) because you will

want the output resistance to be in K Ohms in order to convert it to temperature.

And, here is the configuration of the ”RE to RT” node.

Figure 7-74: Voltage In to Thermistor Resistance Flow

Figure 7-75: Voltage to RE Node Configuration

Figure 7-76: RE to RT Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 342 of 380

Take a moment to compare the Jsonata expression in Figure 7-76 with Equation 7. It is the same

expression except that the resistance value is 35.3 rather than 35.3 K so that the final result is resistance

in K Ohms.

Add a Debug node to print out the value of RT, the resistance of the thermistor and you are ready to…

DEPLOY IT!

You should see a resistance reading in K Ohms printed in the Debug window once every five seconds as

in the following figure:

In this example print out the resistance was about 9.1 K Ohms. Refer to Figure 7-67 and you will find

that this corresponds to about 27.5 degrees C88.

Thermometer - Converting Resistance to Temperature
Look back at the resistance to temperature chart (Figure 7-67) and the table directly above it. You have

discrete points for resistance and temperature for every five degrees Celsius. What are you going to do

if your resistance reading falls in between two of the data values, as it does in the example output of

Figure 7-77? Well, you will need to interpolate and there are several ways to do this.

• Fit an algebraic curve to the data and then use the formula to provide the interpolation

• Fit a logarithmic curve to the data using a so-called “beta” factor from the thermistor data sheet

• Do a piecewise approximation of the curve.

One of the best approaches is to fit a logarithmic curve to the data because this can give very accurate

results. In a carefully designed system this approach will give you an accuracy of better than 0.1%. This

is a good approach because the physics of thermistors naturally has a logarithmic characteristic. The

polynomial fitting approach is also very effective provided you include higher order terms. A general

problem with these approaches is that they require significant computational work by the processor. A

particular problem in Node-RED is that they require mathematical functions, like exponentiation and

logarithms, which are not available in Jsonata, so you would need to write a Java based function node,

which is beyond the scope of this tutorial.

88 Or 81 degrees F, which was the room temperature where this tutorial was developed.

Figure 7-77: Thermistor Resistance (K Ohms)

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 343 of 380

Piecewise approximation – this is the poor man’s approach to curve fitting: no higher math needed, no

special functions needed and reasonable accuracy. For home use and simple industrial use, you will

probably not need to know the temperature to more than one degree anyway.

The first step is to decide what range of temperatures are important to your application. Measuring the

temperature of a room in your house a range from -20 to +40 Celsius (i.e. -4 to +104 Fahrenheit) is more

than enough. The second step is to decide how many intervals you will need in your approximation.

This example uses six intervals (-20 to -10, -10 to 0 etc.). Use more smaller intervals if you feel that you

need more accuracy. Below is a table that represents the six intervals you will be using which is just a

sub-set of the table from the thermistor manufacturer.

Resistance (K Ohms) Temperature (°C)

From To From To

Greater than 98.880 Show as -20°C

98.880 56.060 -20 -10

56.060 33.960 -10 0

33.960 20.000 0 10

20.000 12.510 10 20

12.510 8.048 20 30

8.048 5.312 30 40

Less than 5.312 Show as 40°C

Table 4: Temperature Ranges for Piecewise Interpolation

Plot this data and you will have temperature v. resistance curve like what is shown below.

-30

-20

-10

0

10

20

30

40

50

0.0 20.0 40.0 60.0 80.0 100.0 120.0

Te
m

p
er

at
u

re
 D

eg
re

es
 C

Resistance K Ohms

Temperature v. Resistance for MF52 10K Thermistor

Figure 7-78: Piecewise Approximation to Thermistor Curve

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 344 of 380

In the figure above each of the seven data points are connected by a straight line to the data points on

each side. This straight line represents intermediate values that you can approximate using straight line

interpolation. You could do this by using a little geometry to develop a formula for an intermediate

temperature given the data for to end points on each side of the measured resistance value. However,

you can use Node-RED to do most of the work for you by using the Range node. Here’s how.

The basic idea is to take a resistance reading and decide which intervals it is between. For example, if

you read a resistance of 31K Ohms it will lie between 20K Ohms corresponding to 10 degrees C and

33.960K Ohms corresponding to 0 degrees. So, the temperature is some place between 0 and 10

degrees C. This sounds like a job for the Switch Node. Once you have located the two data points it

your reading is between you can then interpolate. You have done this before using the Range Node.

Here is one possible Flow for converting resistance to temperature, but as usual, maybe you have a

better idea.

The Select Range node takes the msg.payload with a numeric resistance reading and sends it to one of

six temperature ranges. Here is the configuration of the Select Range node, which is a Switch node.

Figure 7-80: Resistance to Temperature Flow

Figure 7-79:Resistance to Temperature Flow

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 345 of 380

Note that each comparison is a “greater than” comparison (e.g., ) and that “stopping after first match

is selected . This means that when a message arrives at the Select Range node the msg.payload value

will be checked against each rule starting at the top of the list (port 1). The first comparison that

evaluates to true will cause the message to be sent to the corresponding output port and the remaining

checks will be ignored.

There are eight switch statements in the Select Range node. For a particular resistance reading

statements two through seven determine which of the six segments from Figure 7-78 the resistance

belongs to. Compare Figure 7-78 with Table 4 and you will see the correspondence. Statements one

and eight serve a different purpose, which is to determine if the resistance is outside the range that can

be converted. For example, statement 1 determines if the resistance is greater than 98.880 K Ohms

indicating that the temperature is less than -20 degrees C. Similarly, the “otherwise” statement

(number eight) handles the case where the resistance is less than or equal to 5.312 K Ohms due to a

temperature greater than 40 degrees C.

Figure 7-81: Select Range Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 346 of 380

Now take a look at the Change node that is attached to each output of the Select Range node. Each of

these nodes converts a selected part of the overall resistance range to a temperature. The interpolation

method is a linear (or straight line) interpolation from the exact values of the resistance. The resistance

and corresponding temperature value pairs are taken directly from the Table 4. Here is an example of

the configuration for one Range node.

The configuration above relates to the 10 to 20 degree part of the thermistor resistance curve, which

corresponds to the resistance values for 20 to 12.51 degrees C. In the configuration the Input range is

the resistance value for 10 and 20 degrees, respectively (see blue box). Values in this range are mapped

to the target range (red box), namely, 10 to 20 Degrees.

The change nodes connected to ports one and eight of the Select Range node are different. Because

they are selected when the temperature is out of range, they only need to set the default value of either

-20 or +40 degrees C. Below is the configuration of the Limit to -20 Change node.

Figure 7-82: Change Node Configuration

Figure 7-83: Limit to -20 Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 347 of 380

Set everything up and !

The Inject nodes on the left side of the flow in Figure 7-79 are a selection of resistance values from

Table 3 for the MF52AT 10L Thermistor. Try of these values and some of your own.

The temperature values above are for thermistor resistance values of 42.800 K, 33.960 K and

15.760 K Ohms, which correspond to -5, 0 and 15 degrees Celsius. The piece-wise

approximation is based on temperature values for multiples of 10 degrees. The maximum error

occurs about halfway in between. For example, the resistance to temperature conversion will

be exact for resistances corresponding to 10 and 20 degrees, but for 15 degrees the conversion

is off by about 0.7 degrees.

Thermometer – Putting It All Together
Time to combine Figure 7-74 and Figure 7-79 into the complete thermometer. But first it might be useful

to build a subflow that takes a voltage and turns it into a temperature. This will be useful anytime you

want to use the thermistor and is easy to do by taking the Voltage to RE node and RE to RT nodes from

Figure 7-74 and combining them with the Select Range and Change nodes of Figure 7-79. Here is the

resulting subflow.

Figure 7-84: Debug Output for Resistance to Temperature Flow

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 348 of 380

Time to put everything together: Reading the voltage, converting it to a temperature and displaying the

result. Here is the flow, which makes use of the subflow “Volt to Temp” shown in Figure 7-85, above.

That’s all there is to it thanks to the Volts to Temp subflow that does almost all the work. All you need

to do is read the Voltage In periodically (maybe once every five seconds) and then display the results on

a gauge. It is a good idea to include a Smooth node (named “Average”) here to average together a few

readings and to set the number of decimal points displayed. Here is the configuration of the Average

node in the above flow.

Figure 7-85: Thermistor Subflow

Figure 7-86: Thermometer Flow

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 349 of 380

The Average node is a Smooth node that computes the mean value over the 3 previous samples .

This keeps the needle on the gauge from jumping around like a frog in a pan of hot watter. Also, this

configuration rounds the result to one place to the right of the decimal . The thermistor in the

Accessor Kit is accurate to about 1% without calibration, so show the decimal place to the right of the

whole number value is a little cheeky. If you really want to measure temperatures to one part in a

thousand (0.1%) then you will need to calibrate your thermometer, which is beyond the scope of this

tutorial.

And… here is the configuration of the Gauge node.

Nothing special to see here folks. Just be sure to set the range to correspond to the range you want to

display, which in this case is -20 to 40 degrees Celsius (blue box)

Figure 7-88: Gauge Node Configuration

Figure 7-87: Thermometer Average Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 350 of 380

If you have made it this far you can sit back and enjoy your new thermometer

Voltage Puzzle # 24 - But I Live in Palau – If you live in the Bahamas, the Cayman Islands, Liberia, Palau,

the Federated States of Micronesia, the Marshall Islands or the United States of America89 you will want

your output to be in degrees Fahrenheit. Yes, really, everybody else in the world uses the Celsius scale.

Add a range node to convert the temperature from degrees C to degrees F.

Voltage Puzzle # 25 - Max/Min – Extend your thermometer flow and display to show the maximum and

minimum temperatures measured over some period of time. Hint: check the Smooth node options.

Add a button to the display that will reset the maximum and minimum display.

Voltage Puzzle # 26 - Graph It – Add a graph display and record the temperature for a full day. You

might want to change the update from five seconds to perhaps five minutes.

Voltage Puzzle # 27 - Accuracy – Check the accuracy of your thermometer against another

thermometer, like a cooking thermometer, or better yet, against a lab grade thermometer. Remember,

don’t submerge the thermistor in water put it together with your reference thermometer in a small

plastic bag or wrap it in a small piece of plastic wrap and seal it with tape. Then use a large, insulated

cup or thermos to measure the temperature of water at various temperatures. Start with cold water

and gradually add hot water. Stir the water with a chop stick while you measure the temperature so

that the water is well mixed. Make sure the tip of the reference thermometer and the thermistor are

very close together. Compare your results.

Voltage Puzzle # 28 - Better Accuracy – you can improve the accuracy of your thermometer in several

ways.

• Change the flow so that the Select Range node uses all the data points from the temperature v.

resistance range.

• Fit a forth-order polynomial curve to the data points for the thermistor temperature v.

resistance curve. You can compute this in Jsonata, but it is tedious to set up. You can compute

89 Yes, these are the only countries that still use the Fahrenheit temperature scale.

Figure 7-89: Thermometer Flow Display

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 351 of 380

the polynomial by putting the thermistor data into Excel (or Your Favorite Spreadsheet) and

letting Excel fit the curve and give you the coefficients. There are web sites that will fit the data

for you and give a curve. Once you have the coefficients use a Jsonata equation to computer

the temperature from the resistance.

• Research the Steinhart - Hart Equation – If you want to implement this equation you will need to

learn a bit of Java because you cannot compute the interpolation with the functions available in

Jsonata.

Thermistor Application Two – Let’s Build a Freeze Alarm
If the basement freezes, then your pipes freeze. Fortunately for life on earth water expands when it

turns to ice and as a result it floats90. Unfortunately for your pipes expanding water means the pipes will

burst. Even very strong pipe can be shattered by freezing. Of course, when the temperature rises the

ice melts and your basement fills with water. Not good.

The task here is to build a temperature-based alarm that will close a relay when the temperature is

below 3 degrees C. The alarm should stop when the temperature is above 5 degrees C. The reason for

the gap is to prevent the alarm from turning the alarm on and off very rapidly as the temperature

approaches 3 degrees C. Due to small variations in the environment and the system the temperature

might read the following values over a 30 second period: 3.1, 2.9, 3.0, 2.8, 3.1, 3.0, 2.9. If you turn the

alarm on and off by just seeing if the temperature is below 3.0 degrees, then your alarm will turn on and

off several times in the period and it will drive you nuts. Better to have the alarm turn on the first time

the temperature is below 3.0 degrees but not turn off until the temperature rises above 5 degrees

making your system more stable91.

The Alarm Level node (a Switch node) determines whether the temperature is below 3° or above 5° as in

the configuration below.

90 Suppose water contracted when it froze. Then ice would be denser than water and would sink to the bottom of
streams and lakes. If this were true even deep lakes would freeze during the winter. No more fish. The
consequences would probably not be all that good.
91 Here you are employing “hysteresis” which derives from the Greek for “delay”. Sometimes waiting to make a
decision is the best policy. Engineers employ hysteresis frequently to stabilize systems. In this case, once the alarm
is turned on you delay turning it off until the temperature rises above 5 degrees and your system will be much
more stable.

Figure 7-90: Freeze Alarm Flow

https://en.wikipedia.org/wiki/Steinhart%E2%80%93Hart_equation

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 352 of 380

In the flow of Figure 7-90 the reading rate set by the Inject node is once per second. This facilitates

testing, but in a real-world application you could read the volage once every minute and everything

would work just fine.

Time to test your freeze alarm. Wrap the thermistor in a small piece of plastic wrap and wrap some

tape around the wire so that water cannot get in. Fill a small cup with crushed ice and enough water to

barely cover the ice. Now put two or three tablespoons of water in the ice. Why? Because salt added

to the ice will depress the freeing point and the water will be a bit colder than 0° C. Plunge the

thermistor in the water and stir the water with a spoon or chopstick. The temperature shown on the

gauge should drop quickly. Below 3°C the relay should turn on. Now take the thermistor out of the

water and let the temperature rise. The relay should stay on until the temperature rises above 5° C.

Voltage Puzzle # 29 - Show Your Work – Add two chart recorders to your freeze alarm. One should

show the temperature and the other should show if the relay is on or off (i.e., plot a 1 when the relay is

on and plot a 0 when the relay is off. Test your system as above. Now you have a record of how it

performed, and you should be able to see when the relay turns on and off with respect to temperature.

Voltage Puzzle # 30 - Extra Satisfaction92 - Study the operation of the Chart node and see if you can plot

both the temperature and the relay action on the same chart.

Voltage Puzzle # 31 - Freeze Warning. – Instead of using the relay set up your freeze alarm to flash all

the on-board LEDs when it looks like things might freeze up.

Voltage Puzzle # 32 - Cold Mail. – Send yourself an email (or text message when the temperature gets

close to freezing. Send the same message every 10 minutes until the temperature rises above 5 degrees

C.

92 There is no such thing as extra credit here. If you solve more puzzles you will learn more and feel the good vibes
of extra satisfaction.

Figure 7-91: Alarm Level Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 353 of 380

Thermistor Application Three:Thermostat – Let’s Build One

A thermostat is nothing more than the Freeze Alarm flow of Figure 7-90 but with some means of

adjusting the level dynamically. Some place there must be a node for that. How about the Numeric

node?

The purpose of the Numeric node is to allow you to enter numeric information using your mouse. Start

Simple (!) by hooking a Numeric node to a Debug node as in the flow below.

Set up the configuration of your Numeric node as shown below.

Figure 7-92: Numeric Node

Figure 7-93: Numeric Node Test Flow

Figure 7-94: Numeric Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 354 of 380

• Make sure you have assigned your Numeric Node to a dashboard group and tab .

• Set up the label field to show the user what the widget is going to do .

• Optionally, you can provide a tooltip to help the user understand what the numeric node does

.

• The range settings (blue box) establish the range of acceptable inputs and the granularity (step

size) of the inputs that are allowed. The values shown are the default values so leave them as

they are for now.

Ready, Set, DEPLOY!

Open up your dashboard and you should see something like the following.

Open up a Debug window alongside the dashboard display and try out the numeric widget. Clicking on

the up and down “arrows” (˄ and ˅) will change the number. Check the Debug window and you will

find that each click sends a new message. Hold one of the arrows down. What happens? When does

the message get sent?

With this background you are ready to build a thermostat. Assume that your thermostat is going to

control a furnace. Here is sketch of a specification:

• A numeric widget will be used to set the desired temperature.

• The range of selected temperatures will be 10 to 35 degrees C in steps of one degree C.

• The furnace will turn on when the temperature is one degree below the desired temperature.

• The furnace will turn off when the temperature is one degree above the desired temperature.

• The current temperature should be displayed on a gauge with limits of 10 to 35 degrees C.

• Relay 1 will control the furnace. Turning the relay on will turn the furnace.

• When the application is deployed the desired temperature will be set to 20 degrees C.

Here is the plan: augment the Freeze Alarm flow to use the numeric input to set two context data

variables. One of the variables will be “OnTemperature”, which will be one degree below the set

temperature and the other will be the “OffTemperature” which will be one degree above the desired

Figure 7-95: Dashboard Display of Numeric Widget

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 355 of 380

temperature. Then modify the Freeze Alarm flow to use the two configuration variables to control the

relay. Finally, you will need to work out some way to initialize the system so that when you deploy your

thermostat flow the furnace turns on or off as appropriate.

Thermostat – Setting Context Data Variables
Start by setting up and testing a mini flow to set the context data variables from the numeric widget.

Here is one approach.

 “Set Temperature” is numeric node configured as below.

The “Set Temperature” node is configured to allow the numeric entry of temperatures from 10 to 35

degrees C (blue box).

Here is the configuration of the “Add One Degree” node where a Change node is used to increment the

msg.payload value by 1 using a Jsonata expression. The “Subtract One Degree” node is similar.

Figure 7-96: Set Temperature Flow

Figure 7-98: Add One Degree Node Configuration

Figure 7-97: Set Temperature Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 356 of 380

And here is the configuration of the “Set OffTemperature” node. The “Set OnTemperature” node is

similar.

Deploy and Test or you will Regret!

To test go to the dashboard and click on the Set Temperature widget. Now go to the Context Data

Window and look at the context variables for your flow. Be sure to refresh the context data values

because this does not happen automatically . If you set the desired temperature to 20 degrees C

then you should see this in the context data window.

Figure 7-99: Set Off Temperature Node Configuration

Figure 7-100: Data Context Variables for Thermostat

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 357 of 380

Thermostat – Add in Furnace Controls
Now that you can set the OnTemperature and OffTemperture context variables the next step is to add in

the flow to control the relay. Start with the Freeze Alarm flow from Figure 7-90 with some minor

modifications.

Here is the configuration of the “Check Temperature” node that decides whether the furnace should be

turned on or off by comparing the current temperature in msg.payload to the context variables

OnTemperature and OffTemperature.

This node receives the temperature in the msg.payload and checks it against the OnTemperature and

OffTemperature context data variables. Depending on the results the message is sent to one of the two

output ports. Just to be on the safe side the “stopping after first match” mode of checking is selected

.

The “Alarm On” and “Alarm Off” nodes from Figure 7-90 are simply renamed as “Furnace On” and

“Furnace Off” in the figure above.

Figure 7-101: Control Flow for Thermostat

Figure 7-102: Check Temperature Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 358 of 380

Finally, a small adjustment needs to be made to the Temperature Gauge, namely, to change the range of

the display as shown below (blue box)

Deploy Your Flow!

Check the dashboard and you should see a gauge and numeric input similar to this.

Figure 7-103: Temperature Gauge Node Configuration

Figure 7-104: Thermostat Dashboard

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 359 of 380

Try out your new thermostat. Crank the desired temperature up and down through its entire rage (15

to 35°C). A you do this notice where the relay turns on and off. For the situation above the relay should

turn on when you raise the desired temperature above 32 degrees, and it should turn off when you

lower the desired temperature below 30 degrees. Try heating and cooling the thermistor and see if your

thermostat functions properly.

Thermostat – Initialization
Remember, it is important to affirmatively initialize the desired temperature and display the current

temperature. This is easily done by adding an Inject node to the flow that a message containing 20 to

the “Set Temperature” node in Figure 7-96. The final flow will look like this.

The configuration of the Initialization node is shown below.

Figure 7-105: Thermostat Final Flow

Figure 7-106: Initialization Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 360 of 380

What is shown above is a standard initialization which sets the msg.payload to numeric 20. As shown at

the bottom of the configuration the node is activated only once upon initialization.

Deploy the Thermostat Flow and test it out. Make sure that upon deployment that the initial

temperature is set to 20°

Thermostat – Putting it to Use
Will your flow actually control the temperature of something? Time to find out. Set up a simple test

system as shown below.

Your objective will be to keep the temperature constant inside a small Styrofoam cup. The general idea

here is to use the thermistor to sense the temperature inside the cup. Using the thermostat flow from

Figure 7-105 you will control a small incandescent light bulb. When the temperature in the cup is below

the desired temperature the thermostat flow will run on the relay, which in turn will light the lightbulb.

Incandescent bulbs (like contentious arguments) give off more heat than light so when the bulb is on the

air in the Styrofoam cup will heat up. Once the temperature is above the desired temperature the light

will turn off. With any luck the air in the cup will stay within one degree C of the desired temperature.

Here is the plan:

• Punch a small hole in the top of the cup and thread the thermistor through the hole.

• Connect the thermistor and a 10K resistor to a plug as shown. This is exactly the same

arrangement as in the thermistor accessory in the I/O Accessory kit.

• Plug the thermistor arrangement into the Voltage In port on the Learning Card

• Wire up a 12-volt power supply and a small automotive bulb (like type 1157) to a plug as

shown93.

• Plug the lamp arrangement into the Relay 1 port on the Learning Card.

• Put the cup upside down on a table.

• Start up your thermostat flow.

93 You can use any sort of small incandescent bulb that you might have around. For example, you could use a 3-
volt flashlight bulb and a 3-volt power supply. Automotive bulbs and fixture are inexpensive as are the sockets to
hold them. A #1157 brake light bulb will work very well. You can use 9 1.5 volt batteries in series to power the
lamp if you do not have a lab power supply.

Figure 7-107: Setup for Thermostat Test

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 361 of 380

• Set the thermostat to be a few degrees above room temperature.

After a few moments you should see the lamp in the cup turn on. After a few more moments the lamp

will turn off. You can track the operation by looking at the temperature gauge. You will see the

temperature rises and fall as the lamp turns on and off. Note: the gauge on the thermostat will not

necessarily show the temperature as one degree over or under the desired temperature because the

reading is the average of the current read and the previous reading.

If you want to see what is going on you can poke the tip of a cooking thermometer through the side of

the Styrofoam cup and track the temperature.

Next: add a gauge to your flow in parallel with the temperature gauge. Set the gauge limits to be two

degrees C above and below the desired temperature. Deploy the flow and you will now get a graph that

shows how the temperature varies over time. It might look something like the chart below. In this case

the temperature was set to 32 degrees C and the ambient air temperature (i.e., the room temperature)

was 25 degrees C.

Does your graph show the temperature staying within a degree of the set temperature? What can you

say about form of the graph? What is the period of the temperature regulation graph? Try the

experiment at different desired temperatures. How does the difference between ambient room

temperature and the selected temperature affect the graph and the period of the graphed

temperature? Why is the rising edge of the temperature graph have a different slope than the falling

edge? What would happen if you changed the Inject node to scan the temperature every second94?

Sometimes the temperature goes above 32 degrees. Why do you think this is?

Voltage Puzzle # 33 - Furnace Status - Add a small text widget to show when the lamp is lit. Maybe you

can find a nice icon to show when the lamp is on and when it is off.

Voltage Puzzle # 34 - Lower at Night. Augment your thermostat flow so that the temperature is either

the temperature set by the numeric widget or is a fixed lower nighttime temperature. Work out a way

94 Don’t make the scan period too small (like 0.1 sec). The graph widget uses quite a bit of computer capacity and
you may overload your Raspberry Pi and then the flow will become unstable.

Figure 7-108: Example of Thermostat Operation
 (Set point is 31 degrees C, Ambient is 25 degrees C)

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 362 of 380

to set the desired temperature to the nighttime temperature after 11:00 PM and then revert to the set

temperature at 7:00 AM. Or use a text widget to set the thermostat to night mode.

Voltage Puzzle # 35 - Button up, Button down. Use buttons connected to two OPTO Inputs to control

the desired temperature. One button will raise the temperature, and another will lower it. Use a text

widget to display the temperature set point.

Voltage Puzzle # 36 - Opps. Did you notice anything unusual or unexpected when you first deployed

your thermostat flow? Did the lamp turn on for a few seconds when you deployed your flow even

though the temperature was below room temperature? Why did this happen? Can you fix it?

Flying with Voltages

Data Logging – Writing to a File
Time to fly! With your now vast knowledge of the Voltage In node you will be able to collect all sorts of

interesting information. Suppose you want to collect data about the current light level all day long by

taking a reading every minute. Then your plan is to put the data in a spreadsheet and do some

calculations. Easy to do: get a pot of coffee, put on some cool music and sit in front of your computer all

day copying the readings one at a time. This sounds like a pleasant way to pass a day.

Of course, come about 8:00 in the evening you will start thinking that there must be a better way.

Wouldn’t it be nice if your flow could just write that precious data to a file? If only there were a node

for that, if only there were a node for that, if only there were a node for that. How about this:

This node will write data to a file you specify. Remember, take a look at the help file for more

information about how this node works. Then set up this simple flow.

All that is going to happen here is that when you click on the Inject Node you are going to write the

current time to a file. Here is how to configure the File node (“Write To File”).

Figure 7-109: File Node

Figure 7-110: Simple File Write Flow

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 363 of 380

• Define then name of the file where you will write your data . Look at the Tip at the bottom of

the configuration window that tells you that your filename should be an absolute address .

• Give your File node a sensible name .

• You can leave all the other options in their default configuration. This message will be sent to

the File node (“Write to File’) where it will be appended to the current file. When this happen a

“newline” will be added at the end of the message to separate the messages.

Time to DEPLOY and give it a try.

Click on the Inject node (“timestamp”) four or five times. Now find the file and open it with your

favorite text editor. If you set everything correctly you should see something like this figure.

Figure 7-111: File Node Configuration

Figure 7-112: Test File Output

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 364 of 380

In the figure above a raw timestamp value is written to the file each time the Inject node is clicked. The

only problem here is that the time stamp is almost unusable because it is in milliseconds since the birth

of UNIX. With a small addition using a Change node you can send the file a time stamp in a more

reasonable form. Here is the flow.

The node labeled “Get Timestamp” is a Change node with the following configuration.

• Be nice, give you node a sensible name .

• You are going to set the msg.payload to a Jsonata expression that will get the timestamp in a

reasonably nice format. To do this use the Jsonata function “$now()”, which picks up the

current time .

Deploy Now!

Test you flow by clicking the Inject node several times. Then open up the test file and you should see

this.

Figure 7-113: Flow to Generate a Nice Timestamp

Figure 7-114: Change Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 365 of 380

The last four lines in Figure 7-115 are the timestamp in a somewhat more reasonable, i.e., human

understandable, form. What you have here is the date and time at the Prime Meridian95. This is

probably not what you want for data logging in your time zone, but at least you can work with it.

Data Logging – Forming a Message
Your next step in data logging is to create time stamped data to write to the file. A good format would

be to create a simple string that consists of the time stamp followed by data value for the voltage. You

know how to create a message where the payload is a time stamp, and you know how to create a

message where the payload is a voltage data value. Now the task is to combine them. Might there be a

node for that? Most assuredly there is: the Join node pictured below.

You know what to do: Read the help file for the node, build a simple flow to test your knowledge,

extend your simple flow to accomplish your object. Here the objective is going to be to combine two

strings, “Hello” and “World!” into a single payload where the strings are separated by a comma.

Below is a simple flow to do this.

95 Sailors, Aviators and other use time at the Prime Meridian as a common time so that their boats and planes
won’t bump into each other due to some misunderstanding about what time it is. Time at the Prime Meridian is
referred to as Greenwich Mean Time or GMT. The 24 time zones around the world are given alphabetic letter
designations. GMT has alphabetic designation Z, which is given as “Zulu” over the radio to avoid mistaking it for
other letters with a similar sound, like C, D, E etc. The Z at the end of the time stamp means Zulu or GMT time.

Figure 7-115: Test File Output

Figure 7-116: Join Node

Figure 7-117: Simple Join Node Flow

https://en.wikipedia.org/wiki/Prime_meridian

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 366 of 380

The two upper Inject nodes, “Hello” and “World” simply generate a text message with either the string

“Hello” or “World”. The Inject node named “COMPLETE” generates the completion message. Here is

how the flow operates. Clicking on Hello or World will send a message to the Join node where they will

be stored (or “queued up” in programmer-speak). The messages simply wait there until a message

arrives containing a msg.complete part. Once this happens the queued up messages are sent to the

output of the Join node as a single message in msg.payload strung together from the individual

messages in the order the were received.

The COMPLETE node is configured as below.

• Define a message part to msg.complete .

• Set msg.complete to Boolean true .

Figure 7-118: COMPLETE Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 367 of 380

That’s simple enough. Now take a look at the configuration of the Join node.

The Join node has a boatload of options. You are interested in the manual option, and you will want to

join each payload with a comma because later you will be sending the payload to a Comma Separated

Value (CSV) tile.

• Select “manual” from the Mode dropdown .

• In the “joined using” replace the default “/n” with a comma (,) .

That’s all there is to it.

Here is a simple way to think about this flow. Imagine that the Join node is a little freight yard with a

locomotive waiting for some freight cars. Each time you click the Hello or World node you are sending a

microscopic freight car down the tracks to join the train. When you click COMPLETE, you are sending a

message that is the caboose and completes the train. One toot on the whistle and your train pulls out

dragging all the previous messages with it.

Time to DEPLOY and TEST!

Figure 7-119: Configuration of Join Node

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 368 of 380

Click the Hello node, click the World Node and then click the COMPLETE node. Check the debug output.

Try some other combinations of Hello and World before clicking COMPLETE. You can build up any

sequence of the strings “Hello” and “World” connected by commas until you click COMPLETE. Here is an

example of the output.

From this simple flow you can build up a flow that can form any sequence of strings into a single

message string. Time to log some voltages.

Data Logging – Voltage Logging

Start simple! Set up the 3-volt input as shown in Figure 7-41. This is not a very interesting voltage

source, but it is easy to work with.

Now you need to combine flows from Figure 7-57 (reading a voltage), Figure 7-113 (generating a time

stamp) and Figure 7-117 (joining messages). The one thing to keep in mind is that when you join

messages together the order of these messages in the output depends on the order of their arrival, so

there are some timing issues to consider. Follow this approach:

• Build a simple flow, where clicking an Inject node writes the timestamp and voltage to the

debug output.

• Modify this flow to write to a file

• Change the inject node to read the voltage at some periodic rate.

Figure 7-120: Simple Join Flow Output Example

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 369 of 380

First Step: build the flow shown below from your previous flows.

When clicked, the LOG node is an Inject node the simply sends a msg.payload with Boolean true. The

Change node (“Completed”) is configured as below.

The property msg.complete is sent with the value of Boolean true .

Note that even though you have defined the message property msg.complete the payload received by

the Change node is still passed to the output. In the case of the flow in Figure 7-121 this message is the

voltage read from the voltage in port.

Deploy!

Click the LOG Inject node a few times and check Debug sidebar window. You should see something

similar to this:

Figure 7-121: Voltage Logging First Flow

Figure 7-122: Completed Node Configuration

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 370 of 380

Each Debug output contains a time stamp and the voltage read separated by a time stamp.

Second Step: write the output to a file. Modify the flow in Figure 7-121 to replace the Debug Node with

the Write to File Node from Figure 7-110 as shown below.

Here is the configuration for the Write to File node.

Figure 7-123: Debug Output for Voltage Logging

Figure 7-125: Data Logging with Write to File Figure 7-124: Data Logging with Write to File

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 371 of 380

The configuration shown above is the same as discussed in Figure 7-111 except the name is different

and the file type is .csv indicating that the file has a comma separated value (CSV) format, which is

important because you will most likely be reading it into a spreadsheet . Remember, the path name

must be absolute as in the figure.

Deploy It!

• Click on the LOG Inject node about a dozen times.

Figure 7-126: Configuration of Write to File Node

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 372 of 380

• Open up the Test1.csv with your favorite spreadsheet (YFS), which might LibreOffice as in the

example below.

Once you have your data in a spreadsheet, as above, you will be able to do all manner of data

manipulation, like graphing, calculations, finding the maximum value and so forth. In the example

above the first row is blank due to the way the data was imported into LibreOffice. It is there for you to

put titles on your columns. Remember, your mileage may vary depending upon which type of

spreadsheet you use. For example, Excel may have a slightly different format.

Final Step: Automate the data logging. In the flow of Figure 7-124 reconfigure the Log Inject node to

send a message with a payload of Boolean true once every five seconds as shown below .

Figure 7-127: Data Logging Spreadsheet Results

Figure 7-128: Final Configuration of LOG Node

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 373 of 380

Your final flow will now look like this.

• Delete your old Test1.csv file. Don’t worry when this flow is deployed it will create the file

anew.

Deploy or you will not enjoy it!

Let your flow collect data for a few minutes, or a few hours if you like. Then disable your flow

(remember to redeploy!) to stop the current data logging. Open your file and see if you have the data

that you were expecting. It should look something like what is shown below.

Note how the time stamps in column 1 are evenly space five seconds apart.

And now it is puzzle time once again.

Voltage Puzzle # 37 - Night and Day. Using the light sensor flow from Figure 7-59 record the light

reading for several days and save the readings in a file along with the time. Plot your results. From the

chart can you determine approximately when sunrise and sunset occurred? Look for the time when the

Figure 7-129: Final Flow for Voltage Logging

Figure 7-130: Spreadsheet from Voltage Data Logging

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 374 of 380

sunshine was brightest. How does that time compare with when the sun was directly overhead where

you live?

Voltage Puzzle # 38 - Hot and Cold. – Record the temperature of your location (either inside or outside)

for several days and store the results in a file. Use Excel or Your Favorite Spreadsheet to graph the

results. If you record the indoor temperature during the summer or winter are you able to see when the

air conditioner or the furnace turns on and off? How does this compare the thermostat chart in Figure

7-111

Voltage Puzzle # 39 - Recording Burglar Alarm. Pretend that each of the four OPTO inputs is a button

connected to one of your pets’ cages. Develop a flow that records the time, the status (open/closed)

and the switch number in a file every time a switch changes state.

Accuracy and Precision – Redux (Discussion #2)
This is an advanced topic, so skip it if you get bogged down. Earlier there was a discussion of accuracy

and precision. Time to bring some accuracy and precision to the topic. Here is a quick outline of a

project to characterize the accuracy and precision of your Learning Card Voltage In port. The basic idea

is this:

• Connect the Voltage In port to a 3-volt battery pack. Based on your previous work you know

that the resulting voltage for a fresh AA alkaline batter is about 1.6 volts and so, you expect the

measured voltage to be about 3.2 volts.

• Using the Voltage Logging flow from Figure 7-129 take several thousand measurements of the

voltage and record them in a file.

• Using Excel or YFS96 build a histogram (details below)

• Determine the mean of your measurements.

• Determine the standard deviation of your measurements.

• Overlay a normal distribution with the mean and standard deviation on the histogram data.

• Compare the results to a voltmeter measurement.

Step 1: Plug a 3-volt power pack as shown in Figure 7-41 into the Voltage In port of your Learning Card.

96 YSF – Your Favorite Spreadsheet

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 375 of 380

Step 2: Run the flow from Figure 7-129 and collect about a ten thousand samples of the voltage. At one

sample every five seconds this might take 15 hours. Here is a small sample of the collected data in a

spreadsheet.

Step 3: Build a histogram of the values in column B of the spreadsheet. How you do this will depend

upon the spreadsheet program you are using. As always you can find useful instructions on the internet.

With a little work you should get a chart that looks like the one below. It is a plot of about 10,000

voltage samples.

One approach to building a spreadsheet allocate a column on the spreadsheet with your collected data

to be bins for counting the number of measurements within a specific voltage range. Your measured

Figure 7-131: Example Spreadsheet of Voltage Samples

Figure 7-132: Histogram of Voltage Samples

0

500

1000

1500

2000

2500

3000

3
.1

3
.1

0
5

3
.1

1

3
.1

1
5

3
.1

2

3
.1

2
5

3
.1

3

3
.1

3
5

3
.1

4

3
.1

4
5

3
.1

5

3
.1

5
5

3
.1

6

3
.1

6
5

3
.1

7

3
.1

7
5

3
.1

8

3
.1

8
5

3
.1

9

3
.1

9
5

3
.2

3
.2

0
5

3
.2

1

3
.2

1
5

3
.2

2

B
in

 C
o

u
n

t

Voltage Bin

Histogram of Voltage In Samples

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 376 of 380

voltages will be between 3.1 and 3.22 volts. So build a column with entries from the X-axis in Figure

7-132. These values define “count bins” for the histogram. Then in the adjacent column to the right use

the FREQUENCY() function to fill each bin from your collected data. Once you have done this you can

plot the voltage counts against the voltage bin values and you will have a figure like that above.

Th chart above is a histogram of the sampled voltages from the 3-volt battery. An independent

measurement of the voltage with a Tektronix DMM916 multimeter gave a voltage of 3.1625.

Step 4: You can ask your spreadsheet to calculate the “mean” and standard deviation of the data. This is

easily done using built-in functions, such as AVERAGE() and STDEV() in Excel. For the data shown above

the calculated average was 3.158 volts. The standard deviation was 0.0095. This means that about 68%

of the voltage samples taken in this experiment are within 0.0095 volts of the calculated average. Not

too shabby!

How does this relate to Accuracy and Precision? Many times, in engineering and science experiments

we assume that repeated measurements have a “normal” distribution due to measurement errors. This

is the famous bell-shaped curve, like the one shown below.

One of the magical properties of the normal distribution is that frequently it is a very good

approximation to the way that measurements deviate from the actual value being measured. In the

case of the voltage measurements in Figure 7-132 this seems to be true because the histogram has a

bell-shaped form.

Accuracy is the difference between the actual measurement and the average of a number of

measurements. In this example, the average of the measurements is 3.158 volts and the measurement

with the voltmeter showed a voltage of 3.1625. The difference is -0.0045 volts, indicating that the

average voltage measured by the Learning Card is very close to the actual voltage. The standard

deviation tells us that 68 percent of the measurements will be within 0.009 volts of the average. This is

a representation of the precision of the system.

Here is what the situation looks like mathematically.

Figure 7-133: Normal Distribution

(https://commons.wikimedia.org/wiki/File:Standard_deviation_diagram.svg)

https://commons.wikimedia.org/wiki/File:Standard_deviation_diagram.svg

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 377 of 380

In the figure above the reference value is the value measured with the voltmeter, namely, 3.1625 volts.

The center point of the bell curve is the average of the measurements, which in the example is 3.158.

The “width of the histogram is a measure of the precision. Below, a calculated normal distribution

(orange) based on an average of 3.158 and standard deviation of 0.009 is overlayed on the histogram of

Figure 7-132. This was done using the STD.DIST() function.

In the figure above the voltage range shown is between 3.1 volts and 3.22 volts, which is a tiny fraction

of the 10 volt measurement range of the Learning Card. The red arrow in the figure is the value

Figure 7-135: Representation of Accuracy and Precision
(https://en.wikipedia.org/wiki/Accuracy_and_precision)

0.00E+00

5.00E+00

1.00E+01

1.50E+01

2.00E+01

2.50E+01

3.00E+01

3.50E+01

4.00E+01

4.50E+01

0

500

1000

1500

2000

2500

3000

3
.1

3
.1

0
5

3
.1

1

3
.1

1
5

3
.1

2

3
.1

2
5

3
.1

3

3
.1

3
5

3
.1

4

3
.1

4
5

3
.1

5

3
.1

5
5

3
.1

6

3
.1

6
5

3
.1

7

3
.1

7
5

3
.1

8

3
.1

8
5

3
.1

9

3
.1

9
5

3
.2

3
.2

0
5

3
.2

1

3
.2

1
5

3
.2

2

P
ro

b
ab

ily
 D

en
si

ty

B
in

 C
o

u
n

t

Voltage Bin

Accuracy

Precision

Figure 7-134: Profile of Learning Card Voltage Measurements

https://en.wikipedia.org/wiki/Accuracy_and_precision

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 378 of 380

measured by the lab voltmeter (3.1625 volts) and represents the reference value of Figure 7-135 . The

distance between the red arrow and the peak of the orange bell curve in a measure of the accuracy of

the system.

May Accuracy and Precision be with you in all your measurements.

Next Up – Chapter 8 - Voltage Out
Use your learning card to generate a voltage which you can use to control lighting among other uses.

COMING SOON

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 379 of 380

Chapter 8 - Controlling the Analog World – Voltage Out

• Controlling Analog Outputs from a User Interface

• New Dashboard Widgets

Chapter 9 Chapter 9 – Distant Learning - Current Sensors

Chapter 10 Chapter 10 – Spooky Action at Distance - Controlling Current

Actuators

Chapter 11 Chapter 11 - Talking to Others – RS-485 Interfaces

Chapter 12 Chapter 12 – Proportional Control – Motors

Chapter 13 Chapter 13 – Servo Motor Control

• Stock Market Display

Learning Kit Workbook (version 1.4)
Chapter 7 – Voltage In

Page 380 of 380

Appendices

Appendix 1 – Interface Electronics – TBD

Appendix 2 – I/O Learning Card Python and Command Line Interfaces - TBD

Appendix 3 – Testing the I/O Learning Card – TBD

Appendix 4 – Node-RED Messages - TBD

Appendix 5 – Simple Node-RED Types – TBD

Appendix 6 – Calibration of Voltage In Port

Updates History

Version Date Reason

Preliminary 0.0 26 Oct 2021 Original

Preliminary 1.0 05 Nov 2021 Add LKit Key node access, correct typos

Preliminary 1.1 09 Feb 2022 Add Chapter 4 - LEDs

Preliminary 1.2 22 Feb 2022 Add Chapter 5 – Opto-Isolated Inputs

Preliminary 1.3 20 March 2022 Update Chapter 5 with User Interface
Add Chapter 6 including User Interface

Preliminary 1.4 03 July 2022 Add Chapter 7 – Voltage In

