
Learning
Liquid

Hints, Tips, and Tricks for Getting Started
with Shopify Theme Development

Introduction

Liquid — Shopify’s templating language — is the backbone of every
Shopify theme and is used to create a bridge between HTML files and
the data contained within a Shopify store. This ultimately allows you
to retrieve and display data (like the name of a product or a series of
product images) on your, or your client’s, online store. Needless to say,
learning Liquid is the cornerstone of every great Shopify developer’s
success!

Whether you’re just starting out with Shopify themes, or you’re a
seasoned Shopify Expert, there are always new and useful things to
learn that will help with your everyday theme development. We’ve
compiled a comprehensive list of hints, tips, and tricks for using
Liquid that will help take your Shopify theme development skills to the
next level.

In this guide, we’ll cover:

• An overview of the Liquid templating language.

• How to set up a “local” development environment.

• Techniques for getting the most out of your Shopify templates.

• How to use Liquid to improve your images.

• Plus, even more tips, tricks, and hacks for customizing Shopify
stores using Liquid!

Table of contents

1 / An Overviewof Liquid: What You Need to Know� 5

2 / How to Setup a “Local” Shopify Theme
 Development Environment� 21

3 / How URLs Map to Shopify Template� 28

4 / The product.liquid Template� 32

5 / How to Use Alternate Templates� 36

6 / The Power of Alternate Layout Files� 41

7 / Using Link Lists in Your Shopify Theme� 45

8 / Using Snippets in Your Shopify Theme� 53

9 / Using Sections and Blocks in Your Shopify Theme� 61

10 / How to Use all_products in a Shopify Theme� 69

11 / Manipulate Images with the img_url Filter� 74

12 / Ways to Customize the img Element� 81

13 / Creating Useful CSS Hooks in Liquid� 84

14 / Using Liquid’s case/when Control Tags� 87

The Shopify Partner Program� 90

Chapter 1 | An Overview of Liquid: What You Need to Know 4

CHAPTER 1

An Overview
of Liquid: What
You Need to Know

If you’re new to developing with the Shopify platform, you might
be wondering what all the talk about Liquid actually refers to.
In this chapter, we’ll explain all you need to know about Liquid,
how it fits into Shopify theme building, and the core concepts
that will enable you to start building powerful and immersive
ecommerce templates. Let’s begin with a little history.

Liquid was developed by Shopify co-founder and CEO Tobias Lütke
and is now available as an open source project on GitHub. Today, it’s
used in many different software projects, from content management
systems to flat file site generators — and of course, Shopify.

https://github.com/Shopify/liquid

Chapter 1 | An Overview of Liquid: What You Need to Know 5

Liquid: language or engine?
Some refer to Liquid as a template language, while others may call
it a template engine. It doesn’t really matter which label you apply — in
many ways both are right. Personally, we like to call it a template
language. It has a syntax (like traditional programming languages), has
concepts such as output, logic, and loops, and it interacts with
variables (data), just as you would with a web-centric language such
as PHP.

However, that’s really where the similarities end. There’s a lot you can’t
do with Liquid — by design. For example, it has no concept of “state,” it
doesn’t let you get deep under the covers of the platform, and can
occasionally seem counterintuitive for seasoned coders. However, it
has been very well thought out, and what might at first seem like
a limitation is usually intended and for good reason.

Liquid’s function
Liquid, like any template language, creates a bridge between an HTML
file and a data store — in our context, the data is of course a Shopify
store. It does this by allowing us to access variables from within
a template with a simple to use, and readable, syntax.

In Shopify, each template allows us to access certain variables without
having to do any heavy lifting. For example, the product.liquid
template allows us access to all the details relating to the currently
viewed product which, in turn, allows us to output this data without
having to know anything about the actual product itself. These
variables are known as Liquid variables. You can also use Liquid to
retrieve data that isn’t made available to us. For example, you can ask
Shopify to populate a variable you create with all the products in a
particular collection.

Once we know the names of the variables we have access to, or
created, we can use Liquid constructs such as “output” and “loops” to
display the data in our templates.

Chapter 1 | An Overview of Liquid: What You Need to Know 6

The Shopify platform understands what data to retrieve, and how
to display it depending on the Liquid code you have in your template. It
might be a simple case of displaying the name of a product,
or something slightly more complex such as showcasing a series
of product images.

The great benefit of a template language such as Liquid is that you, as
the designer, don’t need to know anything about the data itself.
As such, your templates are 100 percent agnostic and can be applied to
multiple stores without any knowledge of the stores’ content.

Liquid’s file extension and delimiters
Liquid files have the extension of .liquid . A .liquid file is a mix
of standard HTML code and Liquid constructs. It’s an easy to read
syntax, and is easy to distinguish from HTML when working with
a template file. This is made even easier thanks to the use of two sets
of delimiters.

The double curly brace delimiters {{ }} denote output, and the
curly brace percentage delimiters {% %} denote logic. You’ll
become very familiar with these as every Liquid construct begins with
one or the other.

Another way of thinking of delimiters is as “placeholders.” A placeholder
can be viewed as a piece of code that will ultimately be replaced by
data when the compiled template is sent to the browser. This data
is determined entirely by the theme designer as a result of the Liquid
code in the template. As such, Liquid templates, much like templates
that intersplice PHP and HTML, serve as representations of what will
be rendered.

Chapter 1 | An Overview of Liquid: What You Need to Know 7

Output
Let’s examine the syntax for “output.” As the name suggests, output in
Liquid will literally output a piece of data from a store into a template.

Here’s a quick example of an output placeholder that you’ll typically
find in the product.liquid template:
 <h2>{{ product.title }}</h2>

When rendered, this would output the name of the currently viewed
product in place of the {{ }} . For example:
 <h2>American Diner Mug</h2>

Output, unless manipulated with a filter (which we’ll look at shortly), is
simply a case of replacing the entire placeholder with a text string
from your store.

Objects and properties
This example also introduces us to the Liquid dot syntax. This is
common in many template and server side languages. Taking our
 shop.name example we can break it up into two parts.

The first element preceding the . is the object. In this case, it’s the
shop object. This is a variable that represents all the data relating to
the shop that we have defined in the Shopify Admin. These data items
include:

• shop.address

• shop.collections_count

• shop.currency

• shop.description

• shop.domain

• shop.email

https://shopify.dev/docs/themes/liquid/reference/objects/shop

Chapter 1 | An Overview of Liquid: What You Need to Know 8

• shop.enabled_payment_types

• shop.metafields

• shop.money_format

• shop.money_with_currency_format

• shop.name

• shop.password_message

• shop.permanent_domain

• shop.policies

• shop.products_count

• shop.secure_url

• shop.types

• shop.url

• shop.vendors

The items following the . represent properties of the shop object.
A property could be as simple as the name of the store (as per our
example above) or it could be a list of items, such as the kinds of
payment types enabled in the store.

Collection properties
You’ll notice from the list above that a number of the properties are
plural, such as:

• shop.enabled_payment_types

• shop.metafields

• shop.types

Chapter 1 | An Overview of Liquid: What You Need to Know 9

These properties represent Liquid collections. Instead of returning
a string of data such as the name of the shop, they’ll return an
array of data — in other words, it’s a list of items we can access via
a Liquid loop.

When first using Shopify and Liquid, it’s easy to get confused
by collections. We’ll therefore refer to “product collections” and
“Liquid collections,” the former being a logical grouping of products
defined in the Shopify Admin, and the latter being a list
of items we can access in Liquid code.

Finally, it’s worth saying that each one of the list items in our Liquid
collection can also have properties. A good example of this is
 product.images . This represents a list of all the images that have
been added to a particular product.

Each of the images in the list has multiple properties associated with it:

• image.alt

• image.attached_to_variant?

• image.id

• image.product_id

• image.position

• image.src

• image.variants

• image.height

• image.width

• image.aspect_ratio

In order to access these properties, we have to use a Liquid loop.

Chapter 1 | An Overview of Liquid: What You Need to Know 10

Liquid loops
Loops are used extensively in Shopify themes, and are thankfully very
easy to understand. If you have done any form of basic programming,
the concept of loops will likely be very familiar to you.

Using a loop, often known as a for loop, allows us to output
the same piece of code a known number of times in our template.
As mentioned above, a typical example would be to output all the
images associated with a product.

Let’s have a look at an example using the product.images Liquid
collection we discussed earlier.

Our aim with this loop is to output all of the images for a particular
product. Here’s a very simplistic loop that will output each image inline:

Let’s break it down into steps to fully understand it.

Step 1

 {% for image in product.images %}

The first line introduces us to the second style of delimiter, the curly
brace percentage syntax {% %} . Here, we’re using a Liquid for
loop. Loops work with Liquid collections, and allow us to iterate over
each item in our list in turn. If the product we’re currently viewing had
six images associated with it, our for loop would loop six times, if
it had 10 then it would loop 10 times, and so on. Only once every list
item has been looked at (or unless we instruct it otherwise) will the
next part of the template be considered.

{% for image in product.images %}

{% endfor %}

Chapter 1 | An Overview of Liquid: What You Need to Know 11

It’s worth noting that unless we specifically ask how big our loop will
be, we don’t know how many loops will occur — only that Liquid will
go over each item in our list, in turn. The loop will finish after the last
iteration, and it’s at this point that the template will carry on with its
processing.

In order to access the properties of each list item, we designate
a variable to represent the current item in the loop. In our example
above, it’s image . While this is an obvious choice, and will help
other designers understand your logic in the future, it can literally be
anything. For example, we could use alltheimagesintheworld, in
which case it would look as follows:
 {% for alltheimagesintheworld in product.images %}

This is, of course, a silly example to make a point — image makes
much more sense, but we just want to emphasize the fact that this
variable has no relation to the Liquid collection.

Step 2

The second line of our code example consists of part HTML and part
Liquid. You’ll also notice that the src attribute is populated with
a Liquid output tag.

This introduces us to the concept of filters, which are denoted by the
| (pipe) character — we’ll look at these in more detail shortly. In our
example, the filter is taking the image variable (the current item in our
loop) and is creating a fully qualified URL to the 100px size version of
the image, which was created when the product image was added in
the Shopify Admin.

We’ll look at filters, denoted by the | character, next but suffice
to say that this short construct will populate the src attribute with
the fully qualified URL to the 100px version of the current image in our
list. The filter does all the work of creating the src attribute for us.

Chapter 1 | An Overview of Liquid: What You Need to Know 12

Step 3

 {% endfor %}

The final line of our example is our closing endfor statement. This tells
the template to carry on after all the loops have been executed.

If we had three images in our product.images object, the final
output would look something like this:

Loops are really useful and something you’ll encounter daily in your
theme development. Outputting images and product variants are two
commonly found examples.

Liquid filters
Another very powerful feature of Liquid is output filters, which we
used in the code example above. Filters serve three main purposes:

• They manipulate output data in some way.

• They allow our themes to be agnostic.

• They save theme designers time by reducing the amount
of code we need to write.

Filters are always used in conjunction with a Liquid output.
Let’s have a look at some filters, starting with the date filter.

<img src=“//cdn.shopify.com/s/files/1/2509/4288/products/
13038FAW_PRO_EarringsD_352_100x100.jpg?v=1509545613”>

<img src=“//cdn.shopify.com/s/files/1/2509/4288/products/
13039FAW_PRO_SQ_Jewellery4F_022_100x100.jpg?v=1509545613”>

<img src=“//cdn.shopify.com/s/files/1/2509/4288/products/
13039FAW_PRO_SQ_Jewellery4S_023_100x100.jpg?v=1509545613”>

Chapter 1 | An Overview of Liquid: What You Need to Know 13

When outputting a blog post, you’ll likely want to let the reader know
when it was published:
 <p class=”date-time”>{{ article.published_at | date:

“%a, %b %d, %y” }}</p>

You’ll notice the | character in the middle of the output tag. On the
left side of the pipe, we have the article object with its associated
 published_at property, and on the right we have the date filter
with an argument to denote the date format — in this case %a, %b %d,
%y .

Without the filter, Shopify would simply output the date the blog
article was published in the format in which it’s stored in the database,
which may not be humanly readable. However, by adding in the |
and including the date filter, we can manipulate the format so it
outputs in a format we want. In this case the date would output in this
format:

Tue, Apr 22, 14

Adding a stylesheet
Put simply, filters allow us to take a piece of data from our store and
change it. What we start with on the left-hand side gets piped through
our filter and emerges on the right-hand side changed. It’s this final
manipulated data that is then output in the template.

Here’s an example of how to add a stylesheet in Liquid:
 {{ ‘style.css’ | asset_url | stylesheet_tag }}

Here, we’re using two filters with the ultimate aim of creating a fully
formed style element in a layout file.

We start on the left with the name of our CSS file, which resides in the
theme’s assets folder. Next we apply our first filter — in this case the
 asset_url filter. This is an incredibly useful filter and one you’ll
use a lot. We’ve mentioned before how Shopify themes, thanks to

Chapter 1 | An Overview of Liquid: What You Need to Know 14

Liquid, are agnostic. They don’t need to have any knowledge of the
store they are installed on, and the same theme can be applied to
multiple stores. However, this can cause issues when trying to
reference assets as we need a way of knowing where a certain asset
(image, JS file, CSS file) is on the network.

Thankfully the asset_url comes to our rescue. By using this filter,
Shopify will return the fully qualified path to the assets folder for
the theme and append the name of our asset at the end. Just remember it
won’t actually check that the file exists — it’s up to us to ensure that the
first part of the tag, in our case style.css , is in the assets folder.

Here’s how that might look when output:
 //cdn.shopify.com/s/files/1/0087/0462/t/394/assets/

shop.css?28178

The final filter in the chain, stylesheet_tag , takes the URL and
wraps it in a style element which is then output in our layout file.
Here’s the final result:

Each filter takes the output from its preceding filter and in turn
modifies it. When there are no further filters to pass data into,
the result is output as HTML into the template.

There are many really useful filters. Here are just a few you’ll find
yourself using:

• asset_url

• stylesheet_tag

<link href=“//cdn.shopify.com/s/files/1/0087/0462/t/394/
assets/shop.css?28178” rel=“stylesheet” type=“text/css”
media=“all”>

http:////cdn.shopify.com/s/files/1/0087/0462/t/394/assets/shop.css?28178

Chapter 1 | An Overview of Liquid: What You Need to Know 15

• script_tag

• date

• pluralize

• replace

• handle

• money

• money_with_currency

• img_url

• link_to

Liquid logic
The final aspect of Liquid we need to look at is logic.

Here’s an example:

In this case, we’re controlling the output to our template using
a simple if, else, endif statement. In many ways, if statements are like
questions. Depending on the answer to the question, a different piece
of markup will be output — or in some cases no markup at all.

In the above example, if the answer to our if statement question
is true (product.available returns true or false), we

{% if product.available %}
 <h2>Price: £99.99</h2>
{% else %}
 <h2 class=“sold-out”>Sorry - sold out</h2>
{% endif %}

Chapter 1 | An Overview of Liquid: What You Need to Know 16

render the words “This product is available”. If it’s false, our template
carries on and outputs the text following our {% else %} clause
— in this case “Sorry, this product is sold out”.

Another way of looking at logic is that it allows us to control the flow of
a template and ultimately make decisions on which data is displayed. This
is why these Liquid tags are commonly referred to as “control flow”
tags.

It’s worth noting that unlike output tags, the inclusion of logic tags in
your templates does not result in anything being directly rendered —
rather, they allow us to control exactly what is rendered.

You’ll find yourself using if statements a lot in Shopify theme
development. Here’s another example:

This example demonstrates how you can either display the number of
items in a visitor’s cart or output a link to your products.

The full list of control flow tags that you can use to create conditions
are:

• if

• unless

• else

• elseif

{% if cart.item_count > 0 %}
 <p>You have {{ cart.item_count }} item(s) in your cart
 </p>
{% else %}
 <p>There’s nothing in your cart :(Why not have a
 look at our product range</p>
{% endif %}

Chapter 1 | An Overview of Liquid: What You Need to Know 17

• case

• when

Operators
You’ll notice in this example we’re using the greater than > operator.
As the cart.item_count variable returns the number of items in
the current user’s cart, we can check to see if it’s greater than zero, i.e.
it has items in it.

If this returns true we can output the message with the current item
count; if not we can output <p>There’s nothing in your cart :(
Why not have a look at our product

range</p> instead.

We could actually refactor our example with a filter. By using the
pluralize filter, we can output item or items depending on the
number of items in the cart. The bonus here is that we don’t have to
know the count in order for Shopify to output the right designation:

You’ll notice that the refactored example now includes the pluralize
filter which takes two parameters. The first is the singular word and
the second the plural.

{% if cart.item_count > 0 %}
 <p>You have {{ cart.item_count }} {{ cart.item_count |
 pluralize: ‘item’, ‘items’ }} in your cart</p>
{% else %}
 <p>There’s nothing in your cart :(Why not have a
 look at our product range</p>
{% endif %}

Chapter 1 | An Overview of Liquid: What You Need to Know 18

While we’ve used the > operator in the above example, there are
a wide range of comparison operators in Liquid, including:

Operator Function

== equals

!= does not equal

< greater than

> less than

>= greater than or equal to

<= less than or equal to

or condition A or condition B

and condition A and condition B

contains includes the substring if used on a string,
or element if used on an array

Whitespace control
Whitespace control in Liquid enables you to remove whitespace
rendered by Liquid output. In Liquid, you can use a hyphen in your tag
syntax, {{- , -}} , {%- , and -%} to strip whitespace from
the left or right side of a rendered tag.

By default, even if your Liquid code doesn’t have output, Liquid in
a template will still render an empty line in the final HTML.

For example:
 {% assign my_variable = “coffee” %}

 {{ my_variable }}

outputs to:

 coffee

Chapter 1 | An Overview of Liquid: What You Need to Know 19

However, when you include hyphens in your tag syntax, this
whitespace gets stripped out from the rendered HTML.

For example:
 {%- assign my_variable = “coffee” -%}

 {{ my_variable }}

outputs to:
 coffee

If you’re someone who likes their HTML to render without whitespace,
as a rule you can choose to add hyphens to all your Liquid tag syntax.

Liquid cheat sheet
If you’re anything like us, you’ll have a hard time committing all these
Liquid filters, operators, and structures to memory. Thankfully, we
released a Shopify Liquid Cheat Sheet for you, which is a searchable
database of all the Liquid objects, filters, and tags, that links out to the
developer documentation. It’s an indispensable resource, which we
strongly encourage you to bookmark and become familiar with.

Summary
We’ve covered a lot of ground in this chapter, but hopefully it‘s given
you a solid introduction to Liquid. Here’s a reminder of what we covered:

• Liquid is a template language that allows us to display
data in a template.

• Liquid has constructs such as output, logic, and loops, and
deals with variables.

• Liquid files are a mixture of HTML and Liquid code,
and have the .liquid file extension.

• Liquid files used in a Shopify theme are agnostic and have no
concept of the store they are currently being used in.

https://www.shopify.ca/partners/shopify-cheat-sheet

Chapter 1 | An Overview of Liquid: What You Need to Know 20

• The two types of delimiters used in Liquid.

• How to output data from a store in a template.

• How to manipulate data with filters, and how to link
a stylesheet in Shopify.

• How to loop over a Liquid collection to output
multiple items.

• The use of logic and Liquid’s control flow tags.

• The different types of operators used for comparison.

Chapter 1 | An Overview of Liquid: What You Need to Know 21

Chapter 2 | How to Setup a “Local” Shopify Theme Development Environment 21

CHAPTER 2

How to Setup
a “Local”
Shopify Theme
Development
Environment
Many developers and designers use and love the online Shopify
Theme Editor — it’s easy to work with and is conveniently located
within the Shopify Admin itself. But if you’re looking to develop
Shopify themes locally, you should know that you’re not limited
to the online theme editor.

To set up a “local” Shopify theme development environment you’ll
need to use Theme Kit — a cross platform tool that allows you to
interact easily with the Shopify platform, while using all of your own
development tools.

Once Theme Kit is set up, you can more easily integrate workflow tools
like Git into your theme development — giving you the confidence to
work on a Shopify Theme with a team of developers, work within your
favorite text editor, and have a more localized experience when editing
themes. Theme Kit isn’t a truly local development environment, in that
it still requires a connection to Shopify servers. If you’re looking for a
local offline development tool, checkout Motifmate, which supports an
offline option.

Chapter 2 | How to Setup a “Local” Shopify Theme Development Environment 22

Install Theme Kit
Theme Kit is a cross-platform tool for building Shopify Themes,
created by Shopify employees. Theme Kit is a single binary that has no
dependencies. Once you download Theme Kit, and with a tiny bit of
setup, you’re off to the theme-creation races.

Some of Theme Kit’s notable features include:

• Uploading themes to multiple environments.

• Fast uploads and downloads.

• The ability to watch for local changes and upload
automatically to Shopify.

• Works on Windows, Linux, and macOS.

If you’re working on Mac, you can use homebrew to install Theme Kit
by running the following commands:
 brew tap shopify/shopify

 brew install themekit

If you’re working on Windows, you will need to have the Chocolatey
Package Manager installed before running the following command:
 choco install themekit

If you are on a Linux based system, you can use the following
installation script to automatically download and install the latest
Theme Kit for you:
 curl -s https://shopify.github.io/themekit/scripts/

install.py | sudo python

Troubleshooting older versions and testing

https://shopify.github.io/themekit/

Chapter 2 | How to Setup a “Local” Shopify Theme Development Environment 23

Theme Kit installation
Before you run any Theme Kit commands, make sure you’re using the
most up-to-date version of Theme Kit. If it’s your first time installing
Theme Kit, you can ignore the following instructions.

Make sure you’re using the most up-to-date version of Theme Kit (you
can find versions here). To update Theme Kit, run:
 theme update

To test that Theme Kit is installed and working, and to see available
commands, type:
 theme --help

Running theme --help should show you all available commands

and definitions for Theme Kit.

https://github.com/Shopify/themekit/releases
https://github.com/Shopify/themekit/releases

Chapter 2 | How to Setup a “Local” Shopify Theme Development Environment 24

Setting up API credentials

Once Theme Kit is installed, we’ll need a few things to connect our
local theme to your existing Shopify store. We’ll need an API key,
password, and theme ID.

API key and password
We’ll need to set up an API key to add to our configuration, and create
a connection between our store and Theme Kit. The API key allows
Theme Kit to talk to and access your store, as well as its theme files.

To do so, we need to log into the Shopify store, and create a private
app. In the Shopify Admin, go to Apps and click on the Manage private
apps link at the bottom of the page. From there, click Generate API
credentials to create your private app. You’ll need to provide a title
— we usually provide the name of the client and environment for
clarity. Make sure to set the permissions of Theme templates and
theme assets to have Read and write access in order to generate the
appropriate API credentials, then click Save.

Shopify will load a new page, which will provide you with a unique API
key and password.

Theme ID
To connect an existing theme, we need the theme’s ID number. There
are a few ways to get your theme’s ID number. The quickest way is to
go to the Theme Editor, by clicking on Actions > Edit Code, and copy
the theme ID number from the URL — it will be the last several digits
after mystore.myshopify.com/admin/themes/

If you want to build a theme from scratch, you can do that by running
the following in your command line, which creates a new, basic theme
in the directory you run it in:
 theme new --password=[your-password] --store=

 [your-store.myshopify.com]

Chapter 2 | How to Setup a “Local” Shopify Theme Development Environment 25

Hooking it all up with config.yml
Now we can use all the previous information to create a config.yml
file in our theme, and then download the whole theme locally.
The config.yml is vital because it’s the file that creates a local
connection to your Shopify store’s theme.

Create a directory for your theme to live in by running:
 mkdir [your-theme-name]

Then, step into that directory using the following command:
 cd [your-theme-name]

To create the config.yml file, run the following command from
inside your theme directory, replacing the [square bracket
placeholders] with your theme’s information:
 theme configure --password=[your-password] --store=

 [your-store.myshopify.com] --themeid=[your-theme-id]

For example:
 theme configure

--password=01464d4e02a45f60a23193ffc3a8c1b3

 --store=the-soap-store.myshopify.com

--themeid=170199178

This will automatically create a config.yml file for you. You can also
manually create a config.yml file in the directory with a text editor,
which would look something like this:

Chapter 2 | How to Setup a “Local” Shopify Theme Development Environment 26

It’s also helpful to add ignore_files to the config.yml file, to
avoid overwriting an existing theme’s theme settings as well as other
files you don’t want to overwrite on your store with your local settings.

For example, adding the following nested under the environment
in config.yml will ignore settings_data.json :
 ignore_files:

 - config/settings_data.json

Then, you can run the following command to download and setup your
existing theme in the current directory:
 theme download

Push updates to your theme
Now that the connection has been established to the Shopify Theme,
you can run the following command in your theme directory:
 theme watch

Theme Kit will now watch for any changes made to your local files,
and automatically push them to your theme. To close the watch
connection, simply type ctrl + c .

If you’re looking for more reading on using Theme Kit, check out
the documentation and other amazing features.

https://shopify.github.io/themekit/

Chapter 2 | How to Setup a “Local” Shopify Theme Development Environment 27

Summary

We went through several steps to set up Theme Kit to develop locally.
Here’s a reminder of what we covered:

• Shopify is a hosted platform, so Theme Kit allows you
to sync local theme files with your Shopify store.

• How to install Theme Kit on OSX, Linux, and Windows.

• How to troubleshoot older versions of Theme Kit and confirm
Theme Kit is installed.

• How to generate API credentials required to sync your theme
with Theme Kit.

• How to generate a config.yml file using the password for
your API key, Theme ID, and Shop URL.

Chapter 3 | How URLs Map to Shopify Templates 28

CHAPTER 3

How URLs Map to
Shopify Template

One of the (many) features we love about working with Shopify
themes is the simple folder structure. Each store can be powered
by a single layout file and a handful of templates, meaning you can
achieve a lot with a little — power in simplicity.

However, if you are new to Shopify themes, you may not know exactly
when each template gets rendered, or be aware that the same
template gets used in various places around the store.

This chapter will focus on building an understanding of what
conditions each template is rendered under in a store.

Chapter 3 | How URLs Map to Shopify Templates 29

URL template mapping
Internally, Shopify has its own routing table which determines what
template is displayed based on the URL requested by the user. If you
have ever used one of the popular development frameworks, you
might be familiar with the concept of URL routing. Put simply: it’s a
way of determining which template to send to the browser based on
the requested URL.

We mentioned earlier that there are only a handful of templates
required to power a store. Each of these templates serves one or more
URL — in other words, we’re able to utilize the same templates for
multiple URLs. From a design perspective, this enables us to reduce
our overhead when building a new store.

URLs to templates
Here’s an overview of which template is rendered as determined
by the URL:

/thisisntarealurl → 404.liquid
/blogs/{blog-name}/{article-id-handle} → article.liquid
/blogs/{blog-name} → blog.liquid
/cart → cart.liquid
/collections → list-collections.liquid
/collections/{collection-handle} → collection.liquid
/collections/{collection-handle}/{tag} → collection.liquid
/ → index.liquid
/pages/{page-handle} → page.liquid
/products → list-collections.liquid
/products/{product-handle} → product.liquid
/search?q={search-term} → search.liquid

Chapter 3 | How URLs Map to Shopify Templates 30

Password protected
You might have noticed that the password.liquid template
isn’t included in the list. This template is only seen if you choose
to password protect your storefront, and as such will override all other
URLs.

If your store is password protected and you don’t have a
 password.liquid template in your theme, Shopify will render
its default password login page instead.

Alternate templates
It’s also worth remembering that the above routing table can
be affected by alternate templates — something we’ll cover in a
later chapter.

URL parameters
As you’ll see above, a number of the routes have elements of the URL
path wrapped in { } . We have included this to denote a variable
that will have an impact on the data loaded into a template.

For example, if we take the /collections/{collection-
handle} URL pattern, a different set of data will be loaded into the
template and sent to the browser if we requested /collections/
bikescompared instead of /collections/cars .

You’ll also notice that a number of different URL patterns share the
same template file. For example, /products and
 /collections will both render the list-collections.
liquid template. Likewise, /collections/ , /collections/
{collection-handle}/ , and /collections/{collection-
handle}/{tag} all make use of collection.liquid .

Chapter 3 | How URLs Map to Shopify Templates 31

Final note
If you’re ever unsure which template is being rendered, there’s a really
simple way to check.

All you need to do is add {{ template }} to your
 theme.liquid file and start browsing your store. This global
Shopify variable will output the currently rendered template minus the
.liquid extension. It’s a neat way to be doubly sure your templates
are working as expected.

Here’s a handy example that you can use in your own theme
development with the output shown in the screenshot below:

<p style=“background: #f1c40f; padding: 1em; font-weight:
bold;”>Current template: {{ template }}.liquid</p>

Chapter 4 | The ‘product.liquid’ Template 32

CHAPTER 4

The
 product.liquid
Template

So far in our book we’ve looked at how URLs are mapped in our
Shopify templates. In this chapter, we’d like to take a more in-depth
look at one particular template — product.liquid .

If you are new to Shopify themes, product.liquid is the template
that is rendered by default whenever a customer views a product
detail page. In the next chapter, we’ll look at how to create
alternate product templates, however in this chapter we’ll stick to
the basic template, which resides in the templates folder within a
Shopify theme.

Chapter 4 | The ‘product.liquid’ Template 33

By way of an example, we’re going to use the product.liquid
template from our own starter theme “Birthday Suit.”

Here it is in its entirety:

As you’ll see, there’s very little HTML in this template. This is on
purpose, as it’s intended to be a starting block for your own theme.
If you download a theme from the Shopify Theme Store, you’ll notice
that the product.liquid template will be more involved.

Let’s examine what’s happening in detail. We begin by using Liquid
output to display the product’s title and description:
 <h2>{{ product.title }}</h2>

 {{ product.description }}

As the description is entered via the Shopify Admin, we don’t need to
wrap this output with further HTML. Of course, if you need to add in a
wrapper element of some sort, you can.

<h2>{{ product.title }}</h2>
<p>{{ product.description }}</p>
{% form ‘product’, product %}
<select name=“id”>
{% for variant in product.variants %}
<option value=“{{ variant.id }}”> {{ variant.title }}-
{{ variant.price | money }}</option>
{% endfor %}
</select>

<button type=“submit” {% unless product.available %} dis-
abled=“disabled” {% endunless %}>
{% if product.available %}
 <p>Add to Cart</p>
{% else %}
 <p>Sold Out</p>
{% endif %}
</button>
{% endform %}

https://github.com/shopifypartners/shopify-birthday-suit

Chapter 4 | The ‘product.liquid’ Template 34

Moving down the template, we come to the Liquid form tag, which
creates an HTML <form> element along with the required
 <input> elements to submit the form to a particular endpoint — in
this case to add a product to the cart. There are a range of different
parameters which can be added to the form tag, depending on the
type of form you are using. You can learn more about the form tag
in our developer docs.

Next we add a select element that will output a drop down option to
pick a product variant. Within this element we create a for loop to
iterate over all the current product’s variants and display the variant’s
price, with currency formatting — thanks to the money filter.

Lastly, to allow buyers to submit this form, we’ll create a button
input with the attribute type=”submit” inside the form tags. We
use the unless control flow tag to set up a condition disables
the add to cart button if the product is unavailable. If the product
has inventory, and so is available, the button will read “Add to cart,”
otherwise it will read “Sold out.”

We complete the template by closing out the form with the
 {% endform %} Liquid tag.

This template makes use of both the product and variant objects. They
have a large range of properties that you can display in this template,
and are worth investigating as you develop your Shopify theme skills.

{% for variant in product.variants %}
{% if variant.available == true %}
<option value=“{{variant.id}}”> {{ variant.title }} for
{{ variant.price | money_with_currency }}</option>
{% else %}
<option disabled=“disabled”> {{ variant.title }} -
sold out!</option>
{% endif %}
{% endfor %}

https://shopify.dev/docs/themes/liquid/reference/tags/theme-tags#form
https://help.shopify.com/themes/liquid/objects/product
https://help.shopify.com/themes/liquid/objects/variant

Chapter 4 | The ‘product.liquid’ Template 35

Extending the template
Of course this example is relatively simplistic and is intended as a
starting point for your own development. There’s a lot more you could
include in this template:

• Adding in Liquid code to display product and variant images.

• Using the Shopify JavaScript snippet option_selection.js
to allow better display of variant options.

• Using the | t filter for retrieving translated strings from
your theme’s locale file.

• Including sections or snippets to pull in code from other files.

https://help.shopify.com/themes/customization/products/variants/update-theme-to-use-variant-images
https://help.shopify.com/themes/customization/products/variants/use-products-with-multiple-options
https://help.shopify.com/themes/development/internationalizing/locale-files
https://help.shopify.com/themes/development/internationalizing/locale-files

Chapter 5 | How to Use Alternate Templates 36

CHAPTER 5

How to Use
Alternate
Templates

If you’re new to Shopify theme building, your first impression might
be that every collection, page, and product page is controlled by
a single template. Luckily, this isn’t the case and there are, in fact,
a number of ways you can apply different, or alternate, templates to
these various page types.

This chapter will run you through the basics of creating your first
alternate template so that you can start customizing your Shopify
themes even further.

Chapter 5 | How to Use Alternate Templates 37

Creating an alternate template
Creating an alternate template is straightforward. There are
two approaches.

If you’re using Theme Kit, or are uploading your theme using a ZIP file,
you can simply add a file to your theme’s templates folder using the
following filename syntax:
 default_template_name.*.liquid

For example, an alternate page template could be called:
 page.about.liquid

Or, for an alternate product template, you could use:
 product.shoes.liquid

The name itself is irrelevant — the more obvious the better so your
clients can recognize its purpose easily.

The second approach is to create an alternate template within
the Shopify Admin itself. Here’s how:

1.	 From your Shopify admin, click Online Store,
then click Themes.

2.	 Find the theme you want to edit, click Actions,
then click Edit Code.

3.	 Under the templates folder, click the
Add a new template link.

4.	 Choose the appropriate option for your new template
and give it a meaningful name.

5.	 Edit and save your new template as you normally would.

A full description and run through is available in the
Shopify Documentation.

http://shopify.github.io/themekit/
https://help.shopify.com/themes/customization/store/create-alternate-templates

Chapter 5 | How to Use Alternate Templates 38

Selecting an alternate template

Once an alternate template exists, a new drop-down menu will appear
in the relevant edit page in the Shopify Admin. This will allow you to
select which template you would like applied to the collection, page,
or product. Shopify will use the base template by default so you won’t
need to change every existing item — just the ones you wish to be
rendered with the new alternate template.

Switch templates via the URL
Finally, there’s one other option for template selection that you have at
your disposal. That is being able to select a particular template using
the view querystring.

Here’s an example for you to review (these links are for demo purposes
only):
 http://store.myshopify.com/products/blue-t-

shirt?view=special

In this instance, Shopify will load a product template called:
 product.special.liquid

http://store.myshopify.com/products/blue-t-shirt?view=special
http://store.myshopify.com/products/blue-t-shirt?view=special

Chapter 5 | How to Use Alternate Templates 39

This technique works for all templates. Here’s a collection
page example:
http://store.myshopify.com/collections/

computers?view=list

In this case, Shopify will load a collection template called:
 collection.list.liquid

If the template requested does not exist, Shopify will fail gracefully and
use the default template, or the template specified in the admin.

A really common use case for this technique is for switching between
a list and grid view within a product collection.

Alternate templates with sections
Depending on your theme and the type of template that you’ve
created, you might need to create a new section file. If your new
template contains the code that you want to edit, creating a section
won’t be necessary. In this case, you can simply edit your new
template as needed.

However, if your new template includes a Liquid tag for a section that
contains the code you want to edit, you will need to create a new
section for that alternative code.

For example, if you’re creating an alternate product template, you’ll
need to create a new section, since most of the code that makes up the
product page is stored in a section file, rather than the template file.

In your template file, you might find: {% section ‘product-
template’ %}

Replace product-template with the name of the new section
that you will create next. For example, if you call your new section
 product-alternative , your code should look like this: {%
section ‘product-alternative’ %}

http://store.myshopify.com/collections/computers?view=list
http://store.myshopify.com/collections/computers?view=list

Chapter 5 | How to Use Alternate Templates 40

Start implementing alternate templates today
Alternate templates are a great example of the power of Shopify
themes. By taking a few minutes to understand how to create them,
apply them, and even switch them via a querystring, you start to
expose the power of the platform and offer your clients, and their
customers, even richer ecommerce experiences.

Chapter 6 | The Power of Alternate Layout Files 41

CHAPTER 6

The Power
of Alternate
Layout Files

Our previous chapter focused on how to create and use alternate
templates when creating Shopify themes. Let’s now turn our
attention to Liquid layout files.

If you aren’t familiar with layouts you’ll find the default file, theme.
liquid , in the layouts folder within your theme directory. If you’ve
never seen one before you might be wondering what’s going on!

The theme.liquid file can be thought of as the master template for
your store. Effectively it’s a wrapper for all our other templates found
in the templates folder. As a general rule, elements that are repeated
in a theme (ex: site navigations, header, footer, etc.) will often be
placed inside theme.liquid .

It’s entirely up to the theme designer to decide how much, or little,
code is included in a layout file. For example, some developers often
prefer to have certain elements of a layout file included as a snippet,
or section, as this allows them to be re-used in alternate layout files
— a topic we’ll cover shortly. Just remember that all rendered pages
in a Shopify theme, unless stated, will be based on the default
 theme.liquid layout file.

Chapter 6 | The Power of Alternate Layout Files 42

The benefits of layout files
One of the main benefits of layout files is that they enable us to follow
the DRY (Don’t Repeat Yourself) principle. By having all our common
elements in a single file, it allows us to make global changes very
easily. Another benefit is that our templates (product.liquid ,
 collection.liquid , etc.) aren’t cluttered with markup that is
repeated across the store.

Creating a layout file
Regardless of how much HTML you include in a layout file, there
are two important Liquid tags that you must include in a Shopify
layout file:

1.	 {{ content_for_header }} must be placed between
the opening and closing <head> tag. This inserts the
necessary Shopify scripts into the <head> which includes
scripts for Google Analytics, Shopify analytics, for Shopify
Apps, and more.

2.	 {{ content_for_layout }} must be placed between
the opening and closing <body> tag. This outputs
dynamic content generated by all of the other templates
(index.liquid , product.liquid , etc.).

 theme.liquid , along with its two required placeholders tags,
are required in order for Shopify to validate a theme.

Alternate layouts
One layout file isn’t going to cover every eventuality, and there
will be situations where you’ll require a completely different layout.
You could start hiding elements with CSS, but that feels a little wrong
— the far better approach is to create an alternate layout complete
with different HTML markup.

Chapter 6 | The Power of Alternate Layout Files 43

A good example of this is a specific landing page for a product or a
newsletter signup page that doesn’t require the same “site furniture”
as the rest of the site. In these situations, it’s possible to designate that
the landing page renders with an “alternative” layout file.

Creating an alternative layout is very straightforward. The first thing to
do is create a new file and give it a relevant name and the .liquid
extension. Next, save it in the layouts folder in your theme directory.
In this file, place any HTML you need (e.g. HTML declarations, CSS, JS
links, etc.) along with the two placeholders discussed above.

In order to use this layout file, and effectively override the default
 theme.liquid layout file, we use the following Liquid syntax as the
first line in any template file (index.liquid , product.liquid ,
etc.):
 {% layout ‘alternative’ %}

In this instance, the default theme.liquid will not be applied,
but rather the layout called alternative.liquid .

It’s also possible to request that the layout file isn’t applied.
The syntax to request that a layout file isn’t applied is:
 {% layout none %}

This needs to be the first line at the top of the relevant template
(index.liquid , product.liquid , etc.). A use case for this
might be when rendering output from your store in an alternative
syntax such as JSON.

Using snippets to be even more DRY
If we know that a theme will be using multiple layouts, we often
remove code out of the layout file and into a snippet. This means that
we can reuse code across multiple layouts. For example,
we often have the following structure:

Chapter 6 | The Power of Alternate Layout Files 44

snippets/html-header.liquid Contains all the essential head
items right up to the opening body
tag.

snippets/html-footer.liquid Contains any relevant script tags
and the closing body tag.

snippets/header.liquid The main header that is used across
the majority of the site.

snippets/footer.liquid The main footer that is used across
the majority of the site.

In order to use these, our base layout file would look as follows:

The benefit of this approach is that when you come to create an
alternate layout file, you don’t need to recreate all your HTML header
and footer content — meaning you can update it all from two files.
If you’re only using one or two layouts, it’s perhaps overkill. We’ll be
looking closer at how snippets work with Shopify themes in chapter 8.

Start using alternate layouts in your Shopify
theme development workflow
Alternate layout files can be extremely handy when you require
radically different markup for a particular page or set of pages.
Coupled together with the use of alternate templates, it’s a powerful
tool in your theme building toolbox and literally gives you endless
possibilities to customize the look and feel of a store.

{% render html-header %}
{% render header %}
{% render footer %}
{% render html-footer %}

Chapter 7 | Using Link Lists in Your Shopify Theme 45

CHAPTER 7

Using Link Lists
in Your Shopify
Theme

One of the most underused features in Shopify are link lists. As its
name suggests, a link list is a simple collection of links. The link
items can be created to point to a page, collection, or product within
Shopify, or to a URL outside of the store’s domain.

It’s possible to use a link list for a variety of reasons. In this chapter,
we’ll examine a common theme use case: nested navigation using
an unordered list. By using link lists and Liquid, we’ll have full
control over the menu from within the admin, giving flexibility to the
merchant running the store.

Chapter 7 | Using Link Lists in Your Shopify Theme 46

Creating a nested navigation
Shopify added the ability to create a nested navigation menu, up to
three levels deep from a single page, by using a new menu editing
interface. Previously, menus were created using multiple menus and
the handle for each menu to tie it to its parent menu link. At the time
of writing, all newly created stores have the new nested menus user
interface, where you can easily drag, drop, and nest menu items.

While it’s common to include the navigation in a layout file, the default
one being theme.liquid , you can test out the nested navigation
concept in any template.

Creating menus
We’ll begin by creating a new menu, our parent menu, by heading to
the Navigation tab in the Shopify Admin, which resides under
the Online Store link in the sidebar.

All new stores have a predefined default menu called “Main Menu.”
To add items to the list, simply click the add another link button,
and give your new item a “link name” and a destination. The select
drop down will allow you to easily link to internal sections, such as a
particular product or collection. Alternatively, you can enter your own
URL (either internal or external) by choosing “web address” from the
options.

Once we have this in place, we can start to consider the Liquid code
we’ll need to output this in our theme.

You can drag and drop nested menu items to create a multi-level
navigation, and with some JavaScript and CSS easily style it into
a “super-menu” or “drop-down menu.”

https://www.shopify.ca/partners/blog/95363846-the-power-of-link-lists
https://www.shopify.ca/partners/blog/95363846-the-power-of-link-lists

Chapter 7 | Using Link Lists in Your Shopify Theme 47

Outputting the menu
In order to output the menu in a theme file, we’ll need to know the
handle of the menu. As discussed in other chapters, handles are
unique identifiers within Shopify for products, collections, link lists,
and pages.

Let’s begin by outputting all the items from the Main Menu link list. We
can use a simple for loop we’ve used many times before to output
the link list items in turn:

This Liquid syntax isn’t new to us, however it’s worth examining the
opening Liquid section:
 {% for link in linklists.main-menu.links %}

Once again, we’re using the variable link to hold the data relating
to each item in the link list, as we loop over all the items. In order to
access the data, we need to access all the links in the link list with a
handle of main-menu .

Remember, the default Main Menu that exists in a Shopify store has
the handle of main-menu , which is why it’s being used above. If our
menu had a handle of uk-brands , the syntax would be refactored as:
{% for link in linklists.uk-brands.links %}

Each link item has properties including:

• url

• title

{% for link in linklists.main-menu.links %}
 {{ link.title }}
{% endfor %}

Chapter 7 | Using Link Lists in Your Shopify Theme 48

In our example above, {{ link.url }} will output the url we
entered or generated in the admin, and {{ link.title }} will
output the text we attributed to the link.

Multi-level navigation
Now that we have the basic Liquid structure in place for a single level
menu, we need to consider how to create a sub-menu for our top level
items. Firstly, we need to head back to the Shopify Admin and create
our first sub-menu.

It might not be 100 percent clear initially, but every link in a link list, in
addition to the menu itself, has a unique handle that we have access
to in Liquid.

Let’s have a look at an example. If our main-menu has three levels
of links, it could look as follows:

• Home

• About Us

• Women

 w Accessories

 § Earrings

 § Scarves

What’s great about using nested menus in Shopify is that nested menu
items can be obtained directly from their parent link using Liquid.
This greatly simplifies the markup required to render a nested menu —
meaning you don’t need to know the handle of the parent to render its
children.

Chapter 7 | Using Link Lists in Your Shopify Theme 49

Here’s an example of how we can use these related handles to output a
three-level deep nested menu:

You’ll notice that we’re now introducing an if statement in our
refactored example, directly after we output the first level of our main
menu:
 {% if link.links != blank %}

This if statement checks to see if a child-link for the current link
item in our loop exists. If it does exist, the template moves forward
and loops over all the items in the sub menu.

Additionally, in this example we handle child_link sub-menu
and a grandchild_link sub-menu the same way, by checking
with an if statement to see if there’s a child-link for the current link

<ul class=“parent”>
{% for link in linklists.main-menu.links %}
{{ link.title }}
{% if link.links != blank %}
 <ul class=“child”>
 {% for child_link in link.links %}
 {{ child_link.
 title }}
 {% if child_link.links != blank %}
 <ul class=“grandchild”>
 {% for grandchild_link in child_link.links %}
 {{ grand
 child_link.title }}
 {% endfor %}

 {% endif %}

 {% endfor %}

{% endif %}

{% endfor %}

Chapter 7 | Using Link Lists in Your Shopify Theme 50

item, and if it does exist, the template loops through and outputs the
sub-menu.

In the example above, child_link is just a for loop variable
we use to represent the current item in the loop; it could easily be
replaced with sub_link , and grandchild_link with sub_
sub_link . We’ve used child and grandchild in this case to
illustrate the hierarchy of the nested navigation a bit more clearly.

Final touches
We’d like to quickly mention one extra link property that will be very
useful when creating menus — link.active and link.child_
active . These are both boolean properties (true/false) that
allow you to easily tell if the current page is active, as well as if it’s
nested items are active. Here’s the syntax:
{% if link.active %} class=”active {% if link.child_

active %}child- active{% endif %}”{% endif %}

In this example, we’ll add a CSS class of active if the current page
URL is the same as the list item, and a class of active-child if

Chapter 7 | Using Link Lists in Your Shopify Theme 51

the current page is also part of the active nested item. Here’s the full
code example for completeness:

<ul class=“parent”>
{% for link in linklists.main-menu.links %}
<li {% if link.active %}class=“active {% if link.child_ac-
tive %}child-active{% endif %}”{% endif %}><a href=“{{
link.url }}”>{{ link.title }}
{% if link.links != blank %}
 <ul class=“child”>
 {% for child_link in link.links %}
 <li {% if child_link.active %}class=“active {% if
 child_link.child_active %}child-active{% endif %}”
 {% endif %}>
 {{ child_link.title }}
 {% if child_link.links != blank %}
 <ul class=“grandchild”>
 {% for grandchild_link in child_link.links %}
 <li {% if grandchild_link.active %} class=“active
 {% if grandchild_link.child_active %}child-
 active{% endif %}”{% endif %}><a href= “{{ grand
 child_link.url }}”>{{ grandchild_link.title }}

 {% endfor %}

 {% endif %}

 {% endfor %}

{% endif %}

{% endfor %}

Chapter 7 | Using Link Lists in Your Shopify Theme 52

Summary
Link lists are a very powerful element of the Shopify platform. Having
the ability to create an array of list items that can be changed in the
admin gives you lots of flexibility. We’ve seen theme developers use
them far beyond menu structures. Knowing how to create nested
navigation that can then be styled with CSS is a great tool to have at
your disposal.

Chapter 8 | Using Snippets in Your Shopify Theme 53

CHAPTER 8

Using Snippets
in Your Shopify
Theme

If you’ve worked with server-side languages, you’ll already be familiar
with the concept of partials or includes. In Shopify, includes/partials
are known as snippets.

Chapter 8 | Using Snippets in Your Shopify Theme 54

To help you understand how Shopify uses them, here’s a brief overview:

• Snippets are files containing chunks of reusable code.

• They reside in the snippets folder.

• They have the .liquid extension.

• They are most often used for code that appears on more than
one page but not across the entire theme.

• They are included in a template using the Liquid tag
 render . For example:
 {% render ‘snippet name’ %} .

• You don’t need to append the .liquid extension when
referencing the snippet name.

• Examples of snippets include social links and
pagination blocks.

Advanced snippet use
Snippets are extremely useful and allow you to keep repeated code in
a single file. Above all, this has the benefit of enabling us to update all
instances of that code from one file.

We use snippets a lot when designing themes. The main benefit we
find is that they allow us to concentrate on discrete chunks of code, as
opposed to dealing with long files. Given that there’s no performance
disadvantage, we find that it’s just a nice way of working.

Of course, everyone has a different workflow style. But beyond the
aesthetic and organizational benefits of snippets, there are other
reasons that you might wish to consider using them.

Chapter 8 | Using Snippets in Your Shopify Theme 55

Conditional loading of snippets
One example of an alternative use of a snippet is conditional loading.
For example, let’s say we wanted to show a special offer box for a set
of particular products, each of which has coffee cup in its product
handle.

Every object within Shopify has a unique handle . In other
platforms, such as WordPress, this is known as a slug . A handle is a
URL-safe representation of an object. Every product has a handle that
is automatically created based on the product title, but you have the
potential to manipulate the handle in the admin to be whatever you
like.

Given their unique nature, handles are easy to use in Shopify
templates for comparison. By using a simple Liquid if statement,
we can check for the current products handle and make a decision on
whether or not to include the snippet.

Here’s an example to explain the concept that would be placed in
 product.liquid :

 {% if product.handle contains “coffee-cup” %}

 {% render “special-offer” %}

 {% endif %}

As you can see, this if statement checks for the currently viewed
products handle. If the returned value contains coffee-cup , the
template will include the snippet special-offer . If the returned
value doesn’t match, the template will simply carry on rendering.

This is a very simplistic example of conditional loading, but it
shows how we can use the power of Liquid to output different markup
dependent on the product. By using this simple method, you can
create exceedingly flexible themes.

Chapter 8 | Using Snippets in Your Shopify Theme 56

Naming conventions
As mentioned earlier, the snippets folder acts as one big bucket for
all of your theme’s snippet files. As a result, we tend to prefix our files
with their function to make working with them cleaner and easier.

For example:

• product-limited-edition-coffee-cup.liquid

• product-showcase.liquid

• collections-coffee-cups.liquid

You’ll notice that these are very much in line with the template naming
conventions, making them much easier to integrate into your workflow.

Variable scope
When a snippet is rendered in a template file, the code inside it
does not automatically have access to the variables assigned using
variable tags within the snippet’s parent template. Similarly, variables
assigned within the snippet can’t be accessed by the code outside of
the snippet.

However, what if we’d like to make use of a snippet, and reference
a variable that is a template variable? In order to achieve this, we
simply use the Liquid tag {% assign %} and list the variables as
parameters on the render tag.

Here’s an example:
 {% assign my_variable = ‘apples’ %}

 {% render ‘name’, my_variable: my_variable, my_other_

variable: ‘oranges’ %}

The snippet will now have access to both the apples variable
and the oranges variable. We could also make a Liquid collection

Chapter 8 | Using Snippets in Your Shopify Theme 57

available in the following format: {% assign all_products =
collections.all.products %} {% render ‘snippet’ %}

Using with
To round out our look at snippets, let’s spend some time looking at an
example that uses the render tag parameter with . This approach
really shows off the power of snippets and allows us to create reusable
code that can be used in a variety of contexts.

To set the scene, let’s say we have a snippet that allows us to output a
product collection in a template. Here’s a very basic example that we
could save as collection-product-list.liquid :

Since the collections variable is global, this will work as intended in
any template. This snippet simply outputs an unordered list of links to
every product in the store.

{% for product in collections.all.products %}
 {{ product.title }}
{% endfor %}

Chapter 8 | Using Snippets in Your Shopify Theme 58

What if we wanted to make it possible to work with any individual
product collection? In order to achieve this, we need to refactor the
snippet to:

You’ll notice that instead of looping over every item in the
 collections.all.products.liquid collection, we have a
placeholder variable that has the same name as our snippet, minus
the .liquid extension.

Let’s have a look at how we make use of this more generic snippet:
 {% assign c = collections.all.products %}

 {% render ‘collection-product-list’ with c %}

Firstly, we’re assigning the collection.all.products to a
Liquid variable. In this instance, it’s called c but can be named
however you see fit.

Next, we move onto the render tag and reference the snippet
without the .liquid extension, following it with with c .
The with parameter assigns a value to a variable inside a snippet
that shares the same name as the snippet. While this might sound
confusing at first, have a quick look at the example above which has
the following line:
 {% for product in collection-product-list %}

Effectively what is happening is that the variable c is referenced within
the snippet by collection-product-list . As such, our snippet

{% for product in collection-product-list %}
 {{ product.title }}
{% endfor %}

Chapter 8 | Using Snippets in Your Shopify Theme 59

will now function with any product collection we pass in using the
 with parameter.

Extending our generic snippet
It’s also possible to pass in more than one variable to our snippet.
A good example of this is the number of products to show. We can
achieve this in our snippet by using a limit clause on the
 for loop.

Here’s the refactored snippet:

And here’s how we would pass in a value for our limit clause
to reference:
 {% assign c = collections.all.products %}

 {% render ‘collection-product-list’ with c, limit_

count: 2 %}

When the snippet is rendered, it will exit after the second loop. This makes
our snippet even more generic and will allow us to use it in a variety of
situations.

Note that omitting this variable will mean all the items in the Liquid
collection are iterated over. Also, if the limit_count is higher than
the number of items in the list, it will exit the for loop after the
final list item.

{% for product in collection-product-list limit:
limit_count %}
 {{ product.title }}
{% endfor %}

Chapter 8 | Using Snippets in Your Shopify Theme 60

You can pass in further variables by comma-separating them after the
 with parameter. For example:
 {% render ‘collection-product-list’ with c, limit_

count: 2, heading_text: ‘All Products’ %}

You can output the heading_text within the snippet in the
following way: {{ heading_text }}

Start using snippets today
While snippets might at first seem to be just another simple tool in
your arsenal, it’s possible to turn them into a very powerful part of
your theme that allows you to create boilerplate markup to be used in
a variety of contexts.

Chapter 9 | Using Sections and Blocks in Your Shopify Theme 61

CHAPTER 9

Using Sections
and Blocks in Your
Shopify Theme

Sections are modular, customizable elements of a page, which
can have specific functions. Sections are similar to snippets, in
that they are partials, but they allow customization options on the
Online Store Editor.

Here’s an overview of some of their features:

• Sections can be statically included in a theme’s templates,
or dynamically added to the theme’s homepage from the
Online Store Editor.

• Sections are included in template files using the
 {% section ‘section_name’ %} Liquid tag, or automatically
added to homepages when there are presets in the
section file.

• Sections support three Liquid tags, which are not usable
outside of section files: {% schema %} , {% javascript %} ,
and {% stylesheet %} .

• While there are Liquid tags for adding section-specific
CSS, by default a section will pull its styling from the main
stylesheet, such as theme.scss.liquid .

• Sections can include basic and specialized input types.

https://help.shopify.com/themes/development/theme-editor/settings-schema#input-setting-types

Chapter 9 | Using Sections and Blocks in Your Shopify Theme 62

Creating a static section in your Shopify theme
When you create a new section from the theme file editor, a scaffold is
automatically created with schema, CSS, and JavaScript tags. Within
the schema tags we would add JSON, which would define how the
Theme Editor “reads” our content. The CSS and JavaScript tags can be
used to add styling or functions specific to this section, but by default
the section will pull its styles from the main stylesheet of the theme.
This is what a section scaffold would look like:

To add content to a section, you’ll want to add HTML and Liquid tags
to the very top of the file. Sections use the Liquid syntax
 {{ section.settings.name }} to be identified as fields or
custom content. Liquid tags can then be defined within the schema,
so the section can be customized in the Online Store Editor. You
can see the different input values that can be added to the schema
settings in our documentation.

One example section we could create is a custom text box, with a
personalizable heading and rich text box. You can see that the Liquid
tags in the HTML correspond with the IDs within the settings of the
schema section:

{% schema %}
 {
 “name”: “Section name”,
 “settings”: []
 }

{% endschema %}
{% stylesheet %}
{% endstylesheet %}
{% javascript %}
{% endjavascript %}

https://help.shopify.com/themes/development/theme-editor/settings-schema#input-setting-types
https://help.shopify.com/themes/development/theme-editor/settings-schema#input-setting-types

Chapter 9 | Using Sections and Blocks in Your Shopify Theme 63

In the example above, we’ve created a plain text box and a rich text
box, but you can add a wide range of output types depending on your
requirements. Other valid input types include image_picker ,
 radio , video_url , and font .

Within the schema tags, id refers to the Liquid tag being
defined, type is assigning the kind of output we’re creating,
 label is defining a name for this output, and default is
assigning a placeholder.

To add this section to a specific template (eg: product.liquid
or page.liquid), we would add {% section ‘name_of_

<div id=“textsection”>
 <div class=“simpletext”>
 <h1> {{ section.settings.text-box }} </h1>
 <h3> {{ section.settings.text }} </h3>
 </div>
</div>

{% schema %}
 {
 “name”: “Text Box”,
 “settings”: [
 {
 “id”: “text-box”,
 “type”: “text”,
 “label”: “Heading”,
 “default”: “Title”
 },

 {
 “id”: “text”,
 “type”: “richtext”,
 “label”: “Add custom text below”,
 “default”: “<p>Add your text here</p>”
 }
]
 }

{% endschema %}
{% stylesheet %}
{% endstylesheet %}
{% javascript %}
{% endjavascript %}

Chapter 9 | Using Sections and Blocks in Your Shopify Theme 64

section’ %} to the required Liquid template file. This works similar
to how you would include a snippet in a page template, but the syntax
is slightly different.

Creating a dynamic section on your
Shopify theme
Unlike static sections, dynamic sections can be moved into different
positions on the homepage. This drag and drop functionality means
that when you build custom dynamic sections, a wide range of options
for personalizing homepages are available.

To make a dynamic section, we need to add presets within the
 schema tags of the section file. Presets will define how the section
appears in the Theme Editor, and the presets must have a name
and category .

Once these presets are added, the sections will automatically be
available to be added to the index page. Presets are not included in
the base file when you add a new section, but adding them manually is
straightforward.

For example, presets for a call-to-action button section could look like
this:

Once these presets are added to the end of the schema file, the
theme will automatically recognize this as a dynamic section, which

 “presets”: [
 {
 “name”: “Call to Action”,
 “category”: “CTA button”
 }
]

Chapter 9 | Using Sections and Blocks in Your Shopify Theme 65

can be added to the index page. This means that when we access the
Online Store Editor and add a section to the homepage, an option for
“Call to Action” would appear. This section can now be moved around
the page into different positions.

Adding blocks to sections
Blocks are containers of settings and content that can be added,
removed, and reordered within a section. What makes blocks
different from sections is that elements can be moved around
within a section. A range of different types of blocks can be added to
sections, and the positions of these blocks can be changed, all from
the Theme Editor. A block could be an image, video, custom text, or
any of the input setting type options seen below:

Value Application

text Single-line text fields

textarea Multi-line text areas

image_picker Image uploads

radio Radio buttons

select Selection drop-downs

checkbox Checkboxes

range Range sliders

https://help.shopify.com/themes/development/theme-editor/settings-schema#text
https://help.shopify.com/themes/development/theme-editor/settings-schema#textarea
https://help.shopify.com/themes/development/theme-editor/settings-schema#image-picker
https://help.shopify.com/themes/development/theme-editor/settings-schema#radio
https://help.shopify.com/themes/development/theme-editor/settings-schema#select
https://help.shopify.com/themes/development/theme-editor/settings-schema#checkbox
https://help.shopify.com/themes/development/theme-editor/settings-schema#range

Chapter 9 | Using Sections and Blocks in Your Shopify Theme 66

When we’re creating blocks, we wrap our block objects in the Liquid
logic loop {% for block in section.blocks %} so that the
block will render on the Online Store Editor. The structure for this
would look like:

 {% for block in section.blocks %}

 <!-- output block content -->

 {% endfor %}

We use Liquid tags to denote a block object, and the attributes
of this block are defined in the schema array of each section file. The
syntax of a block object would look like {{ block.settings.id }},
where id would be the attribute referenced using JSON
in the schema array. For example, a block to add an image could
be {{ block.settings.image }} .

Within the array, a block must be assigned a name and a type .
A block’s type can be any value set by the theme developer.
A block has settings in the same format as settings_schema.json
, for example:

{% schema %}
 {
 “blocks”: [
 {
 “type”: “quote”,
 “name”: “Quote”,
 “settings”: [
 {
 “id”: “content”,
 “type”: “text”,
 “label”: “Quote”
 }
]
 }
]
 }
{% endschema %}

Chapter 9 | Using Sections and Blocks in Your Shopify Theme 67

Within the main schema settings, we can assign the max number
of blocks in the section. We have set this to three, but it can be any
number. Depending on the type of output, you may want to limit or
“cap” the possible number of blocks differently, so that a page does
not get cluttered.

Below this, because it’s a dynamic section, we have presets ,
which will allow this section to be added to the index page. We can
define how many blocks appear by default, by adding blocks within
the presets . This means two call to action buttons will appear,
and since we set the max to three, an additional block can be added.

Using “case/when” control flow tags
with blocks
By making use of the case/when control flow tags, we can set up
different options for including types of output. For example, if we wanted
a section to have block options for custom text or a newsletter signup
form, the code for these block options could look like this:

{% for block in section.blocks %}
 {% case block.type %}

 {% when ‘text’ %}
 <div class=“grid__item {{ column_width }}”>
 <h3 class=“h4”>{{ block.settings.title }}</h3>
 <div class=“rte”>{{ block.settings.richtext }} </div>
 </div>

 {% when ‘newsletter’ %}
 <div class=“grid__item {{ column_width }}”>
 <h3 class=“h4”>{{ ‘layout.footer.newsletter_title’
 | t }}</h3>
 <p>{{ ‘layout.footer.newsletter_caption’ | t }} </p>
 {% render ‘newsletter-form’ %}
 </div>

 {% endcase %}
{% endfor %}

https://help.shopify.com/themes/liquid/tags/control-flow-tags

Chapter 9 | Using Sections and Blocks in Your Shopify Theme 68

With great power, comes great responsibility

Now that you’ve seen how easy it is to add sections to your themes,
you can add endless options to your clients’ stores.

However, it’s worth keeping in mind the possible risks of repeating
blocks, especially for elements such as images and videos. Over-
repeating these could result in slow page loading times and a poor
user-experience for customers, which could have a negative effect
on conversions.

But by implementing blocks carefully, and considering their context,
you can create a winning formula for your client

Chapter 10 | How to Use ‘all_products’ in a Shopify Theme 69

CHAPTER 10

How to Use
 all_products in a
Shopify Theme

This chapter will explore a way to access product information without
having to loop over a collection or be on a product detail page.

Chapter 10 | How to Use ‘all_products’ in a Shopify Theme 70

We can achieve this by using all_products . Here’s a quick
example:
 {{ all_products[“coffee-cup”].title }}

Let’s have a look at what’s happening. The syntax is pretty simple:
 all_products takes a quoted product handle as its argument.

Liquid handles
If you aren’t familiar with handles, the Shopify Help Center provides a
great explanation:

Handles are used to access the attributes of Liquid objects. By default,
a handle is the object’s title in lowercase with any spaces and special
characters replaced by hyphens (-). Most objects in Shopify (products,
collections, blogs, articles, menus) have handles.

In the above example, we have a handle of coffee-cup , which
represents the product available at yourstore.com/products/
coffee . We follow that by .title . When rendered, this will output
the title of the product with the handle of coffee-cup .

Using all_products we can access any property of the product:

• all_products[“coffee-cup”].available all_
products[“coffee-cup”].collections

• all_products[“coffee-cup”].compare_at_price_
max

• all_products[“coffee-cup”].compare_at_price_
min

• all_products[“coffee-cup”].compare_at_price_
varies

• all_products[“coffee-cup”].content

https://shopify.dev/docs/themes/liquid/reference/basics/handle

Chapter 10 | How to Use ‘all_products’ in a Shopify Theme 71

• all_products[“coffee-cup”].description all_
products[“coffee-cup”].featured_image

• all_products[“coffee-cup”].first_available_
variant

• all_products[“coffee-cup”].handle

• all_products[“coffee-cup”].id all_
products[“coffee-cup”].images

• all_products[“coffee-cup”].image

• all_products[“coffee-cup”].options all_
products[“coffee-cup”].price

• all_products[“coffee-cup”].price_max all_
products[“coffee-cup”].price_min

• all_products[“coffee-cup”].price_varies

• all_products[“coffee-cup”].selected_variant

• all_products[“coffee-cup”].selected_or_first_
available_variant

• all_products[“coffee-cup”].tags all_
products[“coffee-cup”].template_suffix

• all_products[“coffee-cup”].title all_
products[“coffee-cup”].type

• all_products[“coffee-cup”].url all_
products[“coffee-cup”].variants

• all_products[“coffee-cup”].vendor

Chapter 10 | How to Use ‘all_products’ in a Shopify Theme 72

Note that some of the returned values will be a Liquid collection, and
because of this would need to be “looped” over. Let’s use the images
collection as an example:
 {% for image in all_products[“coffee-cup”].images %}

 {% endfor %}

This example would output all of the images associated with the
coffee-cup product.

More than one handle
You can go one step further and create a simple Liquid array
of handles that you can use to output specific products.
Here’s an example:

Using the Liquid assign tag, we create a new variable called favorites,
which are product handles separated by a | character. The | is
used as a delimiter to divide the string into an array that we can loop
over using for .

We now have access to both products in turn and can output any
property associated with it — in the example above we simply display
the title.

{% assign favorites = “hand-made-coffee-tamper|
edible-coffee-cup” | split: “|” %}

{% for product in favorites %}
{{ all_products[product].title }}
{% endfor %}

Chapter 10 | How to Use ‘all_products’ in a Shopify Theme 73

When to use all_products
 all_products is a great option when you need to pull out a
couple of products in a particular template. Of course, if you are
outputting a lot of products, a collection is still the best way forward,
as you won’t have to manually know all the different product handles.
However, all_products makes a great option when you need
to output a single or small number of products that won’t change
frequently.

Chapter 11 | Manipulate Images with the `img_url` Filter 74

CHAPTER 11

Manipulate Images
with the img_url
Filter

In this chapter, we’ll look at how to use the img_url filter and examine
the recently added parameters that allow you to manipulate images
within Shopify in new and exciting ways.

Chapter 11 | Manipulate Images with the `img_url` Filter 75

Let’s begin by looking at the function of the img_url filter. In its
basic form, it will return the URL of an image. In order to do this, you
need to pass in a mandatory size parameter. It’s also quite a versatile
filter as it can be used with the following objects, which have images
associated with them:

• product

• variant

• line item

• collection

• article

• image

We’ll focus on using the product object in this chapter.
Here’s an example:
 {{ product.featured_image | img_url: ‘100x100’ }}

In the example above, the img_url filter has a parameter of
 100x100 . This value corresponds to a particular size of image that
was created automatically by Shopify, after it was uploaded via the
Shopify Admin.

In this case, the image will be no bigger than 100x100 pixels.
If you upload a square image, it will be perfectly resized. However,
if your original image is longer on one side than the other, Shopify will
resize accordingly so that the longest side will be 100 pixels.
In other words, all resizing is proportional unless you crop
the image.

Chapter 11 | Manipulate Images with the `img_url` Filter 76

Here’s the list of sizes with their corresponding image names:

1024 x 1024 (width and height) 1024x1024

Width only 100x

Height only x100

Largest / original image master

You can also chain the img_url filter with the img_tag filter to
output the full element:
 {{ product.featured_image | img_url: ‘100x100’ |

img_tag }}

So far, we’ve looked at the basic function of the img_url filter.
There wasn’t much more you could do with the img_url until a new
set of parameters were added, making it possible to resize and crop
images from within your template files.

Additional parameters
Before moving on, it’s worth noting that the following techniques can
be used with a range of filters in addition to img_url . They are:

• product_img_url

• collection_img_url

• article_img_url

We’ll use img_url in all the following examples, but we want to
highlight that the techniques work with the three other filters, too.

1. Size

Let’s begin by looking at how we can resize an image. In order to do
this, we replace the image “name” with a specific size in pixels.

Chapter 11 | Manipulate Images with the `img_url` Filter 77

Here’s an example:
 {{ product.featured_image | img_url: ‘450x450’ }}

View generated image

The “names” mentioned above will of course work as they always
have. However, using the above syntax puts the control of the image
dimensions in your hands. In this example, we’ve specified both the
width and height (in that order).

You can also specify only a width, or only a height.

Width only:
 {{ product.featured_image | img_url: ‘450x’ }}

View generated image

Height only:
 {{ product.featured_image | img_url: ‘x450’ }}

View generated image

When only specifying a single value, Shopify will calculate the other
dimension based on the original image size, keeping the original
image’s aspect ratio intact.

Going back to our original example, you might think that it would
result in a 450x450 version of your image being rendered.
This, however, isn’t always the case.

This request would result in a perfect square only if both of the
following conditions are met:

1.	 The original image was 450px or greater on both axes.

2.	 Both sides are of the same length.

https://cdn.shopify.com/s/files/1/1405/0664/products/4791207-9790062099-Pizza1_450x450.jpg?v=1469649640
https://cdn.shopify.com/s/files/1/1405/0664/products/4791207-9790062099-Pizza1_450x.jpg?v=1469649640
https://cdn.shopify.com/s/files/1/1405/0664/products/4791207-9790062099-Pizza1_x450.jpg?v=1469649640

Chapter 11 | Manipulate Images with the `img_url` Filter 78

If both conditions are true, a 450x450 square image will be
rendered. If not, Shopify will resize it using the same logic as if you’ve
specified only height or width. The longest side wins out in this
situation and is scaled accordingly.

2. Crop

Thankfully, creating perfect squares won’t require you to upload
square images. All that it requires is the addition of another new
parameter called crop . You specify a crop parameter to ensure that
the resulting image’s dimensions match the requested dimensions.
If the entire image won’t fit in your requested dimensions, the crop
parameter specifies which part of the image to show.

Valid options include:

• top

• center

• bottom

• left

• right

Here’s an example building on the one we discussed earlier:
 {{ product.featured_image | img_url: ‘450x450’,

crop: ‘center’ }}

View generated image

3. Scale

As well as dimensions, we can also request a certain pixel density
using the scale parameter.

The two valid options are:

https://cdn.shopify.com/s/files/1/1405/0664/products/4791207-9790062099-Pizza1_450x450_crop_center.jpg?v=1469649640

Chapter 11 | Manipulate Images with the `img_url` Filter 79

• 2

• 3

You can simply add this as another argument to the img_url filter
as follows:
 { product.featured_image | img_url: ‘450x450’, crop:

‘center’, scale: 2 }}

View generated image

This would result in a resized image of 900x900 pixels. Again, this
will only be scaled up if the original image is large enough. If this isn’t
the case, the closest image in size will be returned.

4. Format

There’s one final parameter you can add, which is format.

Valid options for this are:

• jpg

• pjpg

Here’s an example incorporating format:
 {{ product.featured_image | img_url: ‘450x450’,

crop: ‘center’, scale: 2, format: ‘pjpg’ }}

View generated image

This would result in the image being rendered as a progressive JPG
— these load as a full-sized image with gradually increasing quality,
as opposed to a top-to-bottom load. It’s a great option to have
depending on your needs.

Shopify can do the following format conversions for you:

• PNG to JPG

https://cdn.shopify.com/s/files/1/1405/0664/products/4791207-9790062099-Pizza1_450x450_crop_center@2x.jpg?v=1469649640
https://cdn.shopify.com/s/files/1/1405/0664/products/4791207-9790062099-Pizza1_450x450_crop_center@2x.progressive.jpg?v=1469649640

Chapter 11 | Manipulate Images with the `img_url` Filter 80

• PNG to PJPG

• JPG to PJPG

It’s not practical to convert a lossy image format like JPG to a lossless
one like PNG, so those conversions aren’t possible.

Caching
Finally, it’s worth noting that once the requested image has been
created, it will be cached and made available on the Shopify CDN
(Content Delivery Network). Consequently, there’s no need to worry
about the image being created every time your template is rendered.

Conclusion
Thanks to these new parameters, it’s now possible to implement
responsive image techniques in your templates. Whether you want to
start using the srcset and sizes attributes, or the
 <picture> element, you can start offering the most appropriate
image for screen size, resolution, and bandwidth.

Chapter 12 | Ways to Customize the ‘img’ Element 81

CHAPTER 12

Ways to Customize
the img Element

Now we’re going to have a look at the humble HTML img element.

When creating a Shopify theme, you can add any number of images,
in any format, and at any size to the assets folder within your theme
directory. Typically, these images are used for backgrounds, sprites,
and branding elements.

Chapter 12 | Ways to Customize the ‘img’ Element 82

Referencing these images in a theme is very straightforward.
Let’s assume we have a logo.png in our assets folder. We can
output this image in any template using the following Liquid syntax:
{{ ‘logo.png’ | asset_url | img_tag: ‘Logo’ }}

This approach uses two Liquid filters to create a fully formed HTML
 element. The first, asset_url , prepends the full path
to the assets folder for the current store’s theme, while the second,
 img_tag , uses this URL and creates an HTML element
complete with the alt attribute. If omitted, the alt attribute will
be blank.

Here’s the end result:
 <img src=”//cdn.shopify.com/s/files/1/0222/9076/t/10/

assets/logo.png?796” alt=”Logo”>

You’ll notice that the src attribute references the Shopify CDN.
Every image that you add, regardless of its type, will be pushed out to
the Shopify CDN. You’ll never need to worry about the location of your
images, as the asset_url filter will work this out for you when the
page is rendered.

Adding classes to the img element
In the example above, we added in the alt attribute. It’s also
possible to add a further parameter that allows you to add classes to
the element. Here’s our example refactored:
 {{ ‘logo.png’ | asset_url | img_tag: ‘Logo’,

‘cssclass1 cssclass2’ }}

This would result in the following output:
 <img src=”//cdn.shopify.com/s/files/1/0222/9076/t/10/

assets/logo.png?796” alt=”Logo” class=”cssclass1

cssclass2”>

Chapter 12 | Ways to Customize the ‘img’ Element 83

More control
There will of course be occasions where you need a little more control
over the markup. By simply omitting the img_tag filter, we can
build up our markup as we wish.

Here’s an approach that would allow you to add your own attributes
such as an id :
 <img src=”{{ ‘logo.png’ | asset_url }}” alt=”Logo”

class=”cssclass1 cssclass2” id=”logo”>

We hope you found these examples useful in your own
theme building.

Chapter 13 | Creating Useful CSS Hooks in Liquid 84

CHAPTER 13

Creating Useful
CSS Hooks
in Liquid

Many of us use the <body> class for CSS as well as JavaScript hooks
and, just like in WordPress, it’s pretty easy to add a number of useful
classes to our <body> element in Shopify.

Here are a few ideas that you might find useful placing in your main
(or alternate) layout file.

Chapter 13 | Creating Useful CSS Hooks in Liquid 85

Add the currently rendered template name
to the body class

<body class=”{{ template | handleize }}”>

In this example, we’re using the template object to return the
name of the currently used template. This can be really useful when
you need to target a specific alternate template, for example. Some
examples of this are:
 <body class=”index”>

 <body class=”product”>

 <body class=”collection”>

Add the currently rendered product handle
to the body class
Building on this, we may wish to add the current product handle
to our body class. To keep things neat and tidy, we can use an if
statement to conditionally add the product handle only when we’re
viewing a product:
 <body class=”{{ template }}{% if template ==

“product” %}{{ product.handle }}{% endif %}”>

Note how we include the space before the {{ product.handle }}
output tag. This is to ensure that classes are separated by spaces and
rendered individually.

If you are using alternate product templates, you may wish to use the
contains operator instead:
 <body class=”{{ template }}{% if template contains

“product” %}{{ product.handle }}{% endif %}”>

Chapter 13 | Creating Useful CSS Hooks in Liquid 86

Add the current page title to the body class
Some themes also add the current page title to the body element in
the form of an id . Building on the above, our code would now look
as follows:
 <body id=”{{ page_title | handleize }}” class={{

template }}{% if template == “product” %} {{ product.

handle }}{% endif %}”>

Note that in this example we’re using the Liquid filter handleize
to ensure that the id or class that we add is URL safe and
therefore easy to reference in our CSS and JS files. For example,
it will turn a page title of “Blue Jeans” into “blue-jeans”.

Add the currently viewed collection’s name
to the body class
For good measure, we could even add in a check for collections:
 <body id=”{{ page_title | handleize }}” class={{

template }}{% if template == “product” %} {{ product.

handle }}{% endif %}{% if template == “collection” %}

{{ collection.handle }}{% endif %}”>

It’s pretty easy to adjust this logic for your own purposes.
Again, you may wish to use the contains operator if you are
utilizing alternate templates.

Summary
Hopefully you’ve seen how flexible Liquid is in the above examples.
Being able to add a variety of classes to the <body> element gives
us useful hooks that we can use in CSS and JavaScript.

Chapter 14 | Using Liquid’s “case / when” Control Tags 87

CHAPTER 14

Using Liquid’s
 case/when
Control Tags

We’re sure many of you are more than familiar with Liquid control tags
such as if and else , but are you familiar with case/when ?

Here’s how the Shopify Help Center describes it:

 Case/when creates a switch statement to execute a particular
block of code when a variable has a specified value. case
initializes the switch statement, and when statements define the
various conditions.

https://docs.shopify.com/themes/liquid-documentation/tags/control-flow-tags
https://shopify.dev/docs/themes/liquid/reference/tags/control-flow-tags#case-when

Chapter 14 | Using Liquid’s “case / when” Control Tags 88

Here’s an example:

{% assign handle = ‘cake’ %} {% case handle %}
{% when ‘cake’ %}
 This is a cake
{% when ‘cookie’ %}
 This is a cookie
{% else %}
 This is not a cake nor a cookie
{% endcase %}

In this instance, the output will be determined when the variable
called handle is equal to “cake” or is equal to “cookie”. If neither
condition evaluates to true , it will output the text after the last
 else clause.

If you omit the else clause and the handle variable never evaluates
to true , no output will be output. This is because the
 else clause acts as a fallback in the above example.

Real world example
As nice as our example is, you might be wondering when you might
use this in your own theme development.

One example we’ve seen used in the past is in relation to banners in
a theme. Despite our love of alternate templates, there are occasions
when creating a variety of templates simply to display different
promotional banners would be very time consuming. Not only would
you have to build the templates, but you’d also have to assign them to
each product in turn. A more practical approach is to let Shopify do
the heavy lifting for you.

Let’s say we wanted to display different promotional banners on
particular products. One way we could do this is to use product

Chapter 14 | Using Liquid’s “case / when” Control Tags 89

handles and case/when . This code example will work in a
 product.liquid template.

{% assign handle = product.handle %}
{% case handle %}
{% when ‘coffee-cup’ %}
 {% render ‘promo-coffee-cup’ %}
{% when ‘cup-saucer’ %}
 {% render ‘promo-cup-saucer’ %}
{% else %}
 {% render ‘promo-default’ %}
{% endcase %}

We start off by creating a variable called handle and assign it the
current value of product.handle . Next we instantiate our
case clause, followed by a series of when statements.

In our example, if our product handle is equal to coffee-cup ,
the snippet titled promo-coffee-cup will be rendered and Shopify
will head right to endcase and carry on.

Alternatively, if the product handle is equal to cup-saucer
then the snippet titled promo-cup-saucer will be rendered. If the
product handle is neither coffee-cup or cup-saucer , then the
else clause kicks in and the snippet titled promo-default will
be rendered.

We have achieved quite a lot with a little. We’re conditionally
outputting different snippets depending on the product being
viewed and outputting a default promotional banner if neither
condition is met. We’ve also achieved this without having to create
alternate templates. To extend the example, you could simply
add in further specific product handles when needed. However, an
alternative approach might be needed if you wanted
to include tens of different banners.

The Shopify
Partner Program
Building a profitable business with Shopify

At Shopify, we not only provide a product that merchants love, but
offer a partnership you can build your business on.

Shopify is a commerce platform that lets entrepreneurs design, set up,
and manage their store across multiple channels, including through an
ecommerce website, social media, brick-and-mortar retail locations,
and more. Shopify currently powers over 1 million businesses across
175 countries, and is trusted by brands like Unilever, Kylie Cosmetics,
Allbirds, MVMT, and many more.

With thousands of integrations available in the Shopify App Store, your
client can access the unique functionality they need to get set up.
And with one back office for all their sales channels, managing their
business is easier than ever.

In addition to supporting merchants, we also understand the unique
challenges that come with running your own web design and
development business. As a freelancer, consultant, or agency working
with commerce clients, you can join the Shopify Partner Program.

This vast and collaborative network of international designers,
developers, marketers, and consultants use Shopify as the commerce
tool of choice for their clients.

https://apps.shopify.com/
https://www.shopify.com/partners

Becoming a Shopify Partner is free, and gives you access to:

• Development stores to test the platform and build your
client’s site

• Revenue share opportunities

• Developer preview environments

• Priority partner support

• Educational resources

• And more

Together, these opportunities have enabled thousands of Shopify
Partners to learn from one another, and build successful and profitable
businesses.

We hope you’ll join us.

Become a Shopify Partner

https://www.shopify.ca/partners/blog/development-stores
https://help.shopify.com/en/partners/how-to-earn
https://help.shopify.com/en/partners/dashboard/managing-stores/development-stores#developer-previews
https://www.shopify.ca/partners/blog
https://www.shopify.ca/partners?utm_campaign=learningliquid+guide+vap&utm_content=conclusion&utm_medium=resource&utm_source=guide

	An Overview
of Liquid: What You Need to Know
	How to Setup
a “Local”
Shopify Theme Development Environment
	How URLs Map to Shopify Template
	The
	 product.liquid Template
	How to Use Alternate Templates
	The Power
of Alternate Layout Files
	Using Link Lists in Your Shopify Theme
	Using Snippets in Your Shopify Theme
	Using Sections and Blocks in Your Shopify Theme
	How to Use
 all_products in a Shopify Theme
	Manipulate Images with the img_url Filter
	Ways to Customize the img Element
	Creating Useful CSS Hooks
in Liquid
	Using Liquid’s
 case/when Control Tags
	The Shopify Partner Program

