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Accelerated Studies in Physics and Chemistry (ASPC) is an introductory physics and chemis-
try text designed for accelerated students in 9th grade. The text contains approximately the 
same physics content as our grade-level text for 9th grade (Introductory Physics) but moves 
along more briskly and contains more advanced mathematical content. The physics con-
tent is completed in late February of a typical school year, at which time the subject matter 
switches to chemistry. Here we highlight a few distinctive features of this text.
•	 ASPC supports our signature philosophy of science education based on wonder, inte-

gration, and mastery. We always seek to build on and stimulate the student’s innate 
sense of wonder at the marvels found in nature. Integration refers to the epistemol-
ogy, mathematics, and history embedded in the text, and a curriculum designed 
to help develop the student’s facility with using language to communicate scientific 
concepts. ASPC is designed to be used in a mastery-learning environment, using the 
mastery teaching model John developed and describes in From Wonder to Mastery: A 
Transformative Model for Science Education. When teachers use this mastery-learning 
model, the result is high student achievement and exceptional long-term retention 
for all students.

•	 The text includes six unique experiments. These experiments are a departure from 
the norm. Students make pendulums with washers and string; make velocity predic-
tions with Hot Wheels™ cars going down ramps; push real cars in the parking lot to 
measure acceleration; measure the density of aluminum and PVC; build test circuits 
using precision resistors, a voltmeter, and an electronic breadboard; and measure the 
solubility of salt and sugar.

•	 The mathematical content is grade-appropriate and thorough. We leave the vector 
analysis for a later course. The math level is designed for students simultaneously 
enrolled in geometry and focuses strongly on basic skills such as unit conversions, 
scientific notation, metric units and prefixes, and isolating variables. In addition to 
learning these essential basic skills, students will practice using significant digits. 
The result of the numerous practice problems, combined with the mastery-learn-
ing teaching model referred to above, is that every student completely masters the 
basic math skills—a real game-changer for students’ preparedness for future science 
studies. 

SUPPORT RESOURCES
A number of support resources are available to accompany ASPC. They include: 

The Student Lab Report Handbook  
Students should begin writing their lab reports from scratch in 9th grade. This popular 
manual gives them everything they need. We recommend supplying this handbook to ev-
ery freshman so they can refer to it throughout high school. Read more about this resource 
on page 10.
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Solutions Manual to Accompany Accelerated Studies in Physics and Chemistry  
This book contains complete written solutions for all the computations in the chapter 
exercises. 

Favorite Experiments for Physics and Physical Science  
This reference book contains complete background information, procedures, and material 
lists for the experiments and demonstrations used in all three of our high school physics 
courses. 

Experiments for Introductory Physics and ASPC  
This reference book contains the material for the experiments in ASPC, taken from Favorite 
Experiments listed above.

Digital Resources
The following materials are accessible exclusively through Novare Science:
•	 a full year of weekly, cumulative quizzes
•	 two semester exams
•	 a document containing all keys and sample answers to all verbal questions (text and 

exams)
•	 a full year of Weekly Review Guides
•	 a document with recommendations for teaching the course
•	 a lesson list and example calendar
•	 a sample graded lab report

ABOUT NOVARE SCIENCE
Novare Science is an imprint of Classical Academic Press that focuses on the highest-qual-
ity science curriculum for Christian schools and home schools. Founded by educator John 
D. Mays, Novare Science offers a completely unique approach to secondary science curric-
ulum. For more information on our vision for secondary science education, please refer to 
the Overview section on pages 3-7 in this series of samples.
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CONTACT US
Our team is here to assist as you choose curricula that will be the best fit for your classroom. 
We encourage you to take advantage of the following resources:
 
Questions & Guidance
We look forward to answering any questions you might have regarding our curriculum, 
placement, or pricing. Please contact us!
Email: info@classicalsubjects.com
Phone: (717) 730-0711
 
Quotes and Vendor Applications
We are able to provide formal quotes for all of our materials, and can also submit appli-
cations required to become an approved vendor for your school district. Inquire at info@
classicalsubjects.com. 

Get the Latest Information from Novare Science and Classical Academic Press
For more information on Novare Science products, visit www.NovareScience.com. 

 
SAMPLE CHAPTERS
The following pages contain samples from the text. The Table of Contents is shown, as well 
as Chapters 1, 2, and 4, and the first two experiments.

mailto:info@classicalsubjects.com
mailto:info@classicalsubjects.com
mailto:info@classicalsubjects.com
http://www.centripetalpress.com
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CHAPTER 1
The Nature of Scientific Knowledge

Theory → Hypothesis → Experiment

In 1915, Albert Einstein produced his general theory of relativity. In 1917, Einstein 
announced an amazing new hypothesis: according to the theory, light traveling 
through space bends as it passes near a star. In 1919, this hypothesis was confirmed by 
teams under the leadership of Sir Arthur Eddington, using photographs taken of stars 
positioned near the sun in the sky during a solar eclipse.

The image above appeared in the Illustrated London News.
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OBJECTIVES
After studying this chapter and completing the exercises, students will be able to do 
each of the following tasks, using supporting terms and principles as necessary:

1. Define science, theory, hypothesis, and scientific fact.
2. Explain the difference between truth and scientific facts and describe how we 

obtain knowledge of each.
3. Describe the difference between General Revelation and Special Revelation and 

relate these to our definition of truth.
4. Describe the “Cycle of Scientific Enterprise,” including the relationships between 

facts, theories, hypotheses, and experiments.
5. Explain what a theory is and describe the two main characteristics of a theory.
6. Explain what is meant by the statement, “a theory is a model.”
7. Explain the role and importance of theories in scientific research.
8. State and describe the steps of the “scientific method.”
9. Define explanatory, response, and lurking variables in the context of an 

experiment.
10. Explain why experiments are designed to test only one explanatory variable at 

a time. Use the procedures the class followed in the Pendulum Experiment as a 
case in point.

11. Explain the purpose of the control group in an experiment.
12. Describe the possible implications of a negative experimental result. In other 

words, if the hypothesis is not confirmed, explain what this might imply about 
the experiment, the hypothesis, or the theory itself.

1.1 Modeling Knowledge

1.1.1 Kinds of Knowledge
There are many different kinds of knowledge. One kind of knowledge is truth. As Chris-

tians, we are very concerned about truth because of its close relation to knowledge revealed 
to us by God. The facts and theories of science constitute a different kind of knowledge, and 
as students of the natural sciences we are also concerned about these.

Some people handle the distinction between the truths of the faith and scientific 
knowledge by referring to religious teachings as one kind of truth and scientific teaching 
as a different kind of truth. The problem here is that there are not different kinds of truth. 
There is only one truth, but there are different kinds of knowledge. Truth is one kind of 
knowledge, and scientific knowledge is a different kind of knowledge.

We are going to unpack this further over the next few pages, but here is a taste of where 
we are going. Scientific knowledge is not static. It is always changing as new discoveries are 
made. On the other hand, the core teachings of Christianity do not change. They are always 
true. We know this because God reveals them to us in his Word, which is true. This differ-
ence between scientific knowledge and knowledge from Scripture indicates to us that the 
knowledge we have from the Scriptures is a different kind of knowledge than what we learn 
from scientific investigations. 

I have developed a model of knowledge that emphasizes the differences between what 
God reveals to us and what scientific investigations teach us. This model is not perfect (no 
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model is), nor is it exhaustive, but it is very useful, as all good models are. Our main goal in 
the next few sections is to develop this model of knowledge. The material in this chapter is 
crucial if you wish to have a proper understanding of what science is all about.

To understand science correctly, we need to understand what we mean by scientific 
knowledge. Unfortunately, there is much confusion among non-scientists about the nature 
of scientific knowledge and this confusion often leads to misunderstandings when we talk 
about scientific findings and scientific claims. This is nothing new. Misconceptions about 
scientific claims have plagued public discourse for thousands of years and continue to do so 
to this day. This confusion is a severe problem, one much written about within the scientific 
community in recent years.

To clear the air on this issue, it is necessary to examine what we mean by the term truth, 
as well as the different ways we discover truth. Then we must discuss the specific character-
istics of scientific knowledge, including the key scientific terms fact, theory, and hypothesis.

1.1.2 What is Truth and How Do We Know It?
Epistemology, one of the major branches of philosophy, is the study of what we can 

know and how we know it. Both philosophers and theologians claim to have important 
insights on the issue of knowing truth, and because of the roles science and religion have 
played in our culture over the centuries, we need to look at what both philosophers and 
theologians have to say. The issue we need to treat briefly here is captured in this ques-
tion: what is truth and how do we know it? In other words, what do we mean when we say 
something is true? And if we can agree on a definition for truth, how can we know whether 
something is true?

These are really complex questions, and philosophers and theologians have been work-
ing on them for thousands of years. But a few simple principles will be adequate for our 
purpose.

As for what truth is, my simple but practical definition is this:

Truth is the way things really are.

 Whatever reality is like, that is the truth. If there really is life on other planets, then it 
is true to say, “There is life on other planets.” If you live in Poughkeepsie, then when you say 
“I live in Poughkeepsie” you are speaking the truth.

The harder question is: how do we know the truth? According to most philosophers, 
there are two ways that we can know truth, and these involve either our senses or our use of 
reason. First, truths that are obvious to us by direct observation of the world around us are 
said to be evident. It is evident that birds can fly. No proof is needed; we all observe this for 
ourselves. So the proposition, “Birds can fly,” conveys truth. Similarly, it is evident that hu-
mans can read books and birds cannot. Of course, when we speak of people knowing truth 
this way we are referring to people whose perceptive faculties are functioning normally.

The second way philosophers say we can know truth is through the valid use of logic. 
Logical conclusions are typically derived from a sequence of logical statements called a syl-
logism, in which two or more statements (called premises) lead to a conclusion. For exam-
ple, if we begin with the premises, “All men are mortal,” and, “Socrates was a man,” then it 
is a valid conclusion to state, “Socrates was mortal.” The truth of the conclusion of a logical 
syllogism definitely depends on the truth of the premises. The truth of the conclusion also 
depends on the syllogism having a valid structure. Some logical structures are not logically 
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valid. (These invalid structures are called logical fallacies.) If the premises are true and the 
structure is valid, then the conclusion must be true.

So the philosophers provide us with two ways of knowing truth that most people agree 
upon—truths can be evident (according to our senses) or they can be proven with reason 
(by valid use of logic, starting from true premises).

Believers in some faith traditions—including Christianity—argue for a crucial third 
possibility for knowing truth, which is by revelation from supernatural agents such as God 
or angels. Jesus said, “I am the way, and the truth, and the life” (John 14:6). As Christians, 
we believe that Jesus was “God with us” and that all he said and did were revelations of truth 
to us from God the Father. Further, we believe that the Bible is inspired by God and reveals 
truth to us. We return to the ways God reveals truth to us at the end of this section.

Obviously, not everyone accepts the possibility of knowing truth by revelation. Specifi-
cally, those who do not believe in God do not accept the possibility of revelations from God. 
Additionally, there are some who accept the existence of a transcendent power or being, but 
do not accept the possibility of revelations of truth from that power. So this third way of 
knowing truth is embraced by many people, but certainly not by everyone.

Few people would deny that knowing truth is important. This is why we started our 
study by briefly exploring what truth is. But this is a book about science, and we need now 
to move to addressing a different question: what does science have to do with truth? The 
question is not as simple as it seems, as evidenced by the continuous disputes between 
religious and scientific communities stretching back over the past 700 years. To get at the 
relationship between science and truth, we first look at the relationship between proposi-
tions and truth claims.

1.1.3 Propositions and Truth Claims
Not all that passes as valid knowledge can be regarded as truth, which I defined in the 

previous section as “the way things really are.” In many circumstances—maybe most—we 
do not actually know the way things really are. People do, of course, often use propositions 
or statements with the intention of conveying truth. But with other kinds of statements, 
people intend to convey something else.

Let’s unpack this with a few example statements. Consider the following propositions:

1. I have two arms.

2. My wife and I have three children.

3. I worked out at the gym last week.

4. My car is at the repair shop.

5. Texas gained its independence from Mexico in 1836.

6. Atoms are composed of three fundamental particles—protons, neutrons, and electrons.

7. God made the world.

Among these seven statements are actually three different types of claims. From the 
discussion in the previous section you may already be able to spot two of them. But some of 
these statements do not fit into any of the categories we explored in our discussion of truth. 
We can discover some important aspects about these claims be examining them one by one. 
So suppose for a moment that I, the writer, am the person asserting each of these statements 
as we examine the nature of the claim in each case.
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I have two arms. This is true. I do have two arms, as is evident to everyone who sees me.

My wife and I have three children. This is true. To me it is just as evident as my two arms. 
I might also point out that it is true regardless of whether other people believe me when 
I say it. (Of course, someone could claim that I am delusional, but let’s just keep it simple 
here and assume I am in normal possession of my faculties.) This bit about the statement 
being true regardless of others’ acceptance of it comes up because of a slight difference here 
between the statement about children and the statement about arms. Anyone who looks at 
me will accept the truth that I have two arms. It will be evident, that is, obvious, to them. 
But the truth about my children is only really evident to a few people (my wife and I, and 
perhaps a few doctors and close family members). Nevertheless, the statement is true.

I worked out at the gym last week. This is also true; I did work out last week. The state-
ment is evident to me because I clearly remember going there. Of course, people besides 
myself must depend on me to know it because they cannot know it directly for themselves 
unless they saw me there. Note that I cannot prove it is true. I can produce evidence, if 
needed, but the statement cannot be proven without appealing to premises that may or may 
not be true. Still, the statement is true.

My car is at the repair shop. Here is a statement that we cannot regard as a truth claim. 
It is merely a proposition about where I understand my car to be at present, based on where 
I left it this morning and what the people at the shop told me they were going to do with it. 
For all I know, they may have taken my car joy riding and presently it may be flying along 
the back roads of the Texas hill country. I can say that the statement is correct so far as I 
know.

Texas gained its independence from Mexico in 1836. We Texans were all taught this 
in school and we believe it to be correct, but as with the previous statement we must stop 
short of calling this a truth claim. It is certainly a historical fact, based on a lot of historical 
evidence. The statement is correct so far as we know. But it is possible there is more to that 
story than we know at present (or will ever know) and none of those now living were there.

Atoms are composed of three fundamental particles—protons, neutrons, and electrons.  
This statement is, of course, a scientific fact. But like the previous two statements, this state-
ment is not—surprise!—a truth claim. We simply do not know the truth about atoms. The 
truth about atoms is clearly not evident to our senses. We cannot guarantee the truth of any 
premises we might use to construct a logical proof about the insides of atoms, so proof is 
not able to lead us to the truth. And so far as I know, there are no supernatural agents who 
have revealed to us anything about atoms. So we have no access to knowing how atoms 
really are. What we do have are the data from many experiments, which may or may not 
tell the whole story. Atoms may have other components we don’t know about yet. The best 
we can say about this statement is that it is correct so far as we know (that is, so far as the 
scientific community knows).

God made the world. This statement clearly is a truth claim, and we Christians joyfully 
believe it. But other people disagree on whether the statement is true. I include this example 
here because we soon see what happens when scientific claims and religious truth claims 
get confused. I hope you are a Christian, but regardless of whether you are, the issue is 
important. We all need to learn to speak correctly about the different claims people make. 

To summarize this section, some statements we make are evidently or obviously true. 
But for many statements, we must recognize that we don’t know if they actually are true. The 
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best we can say about these kinds of statements—and scientific facts are like this—is that 
they are correct so far as we know. Finally, there are metaphysical or religious statements 
about which people disagree; some claim they are true, some deny the same, and some say 
there is no way to know.

1.1.4 Truth and Scientific Claims
Let’s think a bit further about the truth of reality, both natural and supernatural. Most 

people agree that regardless of what different people think about God and nature, there is 
some actual truth or reality about nature and the supernatural. Regarding nature, there is 
some full reality about the way, say, atoms are structured, regardless of whether we currently 
understand that structure correctly. So far as we know, this reality does not shift or change 
from day to day, at least not since the early history of the universe. So the reality about at-
oms—the truth about atoms—does not change.

And regarding the supernatural, there is some reality about the supernatural realm, re-
gardless of whether anyone knows what that is. Whatever these realities are, they are truths, 
and these truths do not change either.

Now, I have observed over the years that since (roughly) the beginning of the 20th cen-
tury, careful scientists do not refer to scientific claims as truth claims. They do not profess 
to knowing the ultimate truth about how nature really is. For example, Niels Bohr, one of 
the great physicists of the 20th century, said, “It is wrong to think that the task of physics is 
to find out how nature is. Physics concerns what we can say about nature.” Scientific claims 
are understood to be statements about our best understanding of the way things are. Most 
scientists believe that over time our scientific theories get closer and closer to the truth of 
the way things really are. But when they are speaking carefully, scientists do not claim that 
our present understanding of this or that is the truth about this or that.

1.1.5 Truth vs. Facts
Whatever the truth is about the way things are, that truth is presumably absolute and 

unchanging. If there is a God, then that’s the way it is, period. And if matter is made of at-
oms as we think it is, then that is the truth about matter and it is always the truth. But what 
we call scientific facts, by their very nature, are not like this. Facts are subject to change, 
and sometimes do, as new information comes becomes known through ongoing scientific 
research. Our definitions for truth and for scientific facts need to take this difference into 
account. As we have seen, truth is the way things really are. By contrast, here is a definition 
for scientific facts:

A scientific fact is a proposition supported by a great deal of evidence.

Scientific facts are discovered by observation and experiment, and by making infer-
ences from what we observe or from the results of our experiments.

A scientific fact is correct so far as we know, but can change as new information be-
comes known.

So facts can change. Scientists do not put them forward as truth claims, but as proposi-
tions that are correct so far as we know. In other words, scientific facts are provisional. They 
are always subject to revision in the future. As scientists make new scientific discoveries, 
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they must sometimes revise facts that formerly were considered to be correct. But the truth 
about reality, whatever it is, is absolute and unchanging.

The distinction between truth and scientific facts is crucial for a correct understanding 
of the nature of scientific knowledge. Facts can change; truth does not.

1.1.6 Revelation of Truth
In Section 1.1.2, I describe the ways we can know truth. Here we need to say a bit more 

about what Christian theology says about revealed truth. 
Christians believe that the supreme revelation of God to us was through Jesus Christ 

in the incarnation. Those who knew Jesus and those who heard Jesus teach were receiving 
direct revelation from God. Jesus said, “Whoever has seen me has seen the Father” (John 
14:9).

Jesus no longer walks with us on the earth in a physical body (although we look for-
ward to his return when he will again be with us). But Christians believe that when Jesus 
departed he sent his Holy Spirit to us, and today the Spirit guides us in the truth. According 
to traditional Christian theology, God continues to reveal truth to us through the Spirit in 
two ways: Special Revelation and General Revelation. Special Revelation is the term theolo-
gians use to describe truths God teaches us in the Bible, his holy word. General Revelation 
refers to truths God teaches us through the world he made. Sometimes theologians have 
described Special and General Revelation as the two “books” of God’s revelation to us, the 
book of God’s word (the Bible) and the book of God’s works (creation). And it is crucial to 
note that the truths revealed in God’s word and those revealed in his works do not conflict.

Truth is not discovered the same way scientific facts are. Truth is true for all people, all 
times, and all places. Truth never changes. Here are just a few examples of the many truths 
revealed in God’s word:

• Jesus is the divine Son of God (Matthew 16:16).

• All have sinned and fall short of what God requires (Romans 3:23).

• All people must die once and then face judgment (Hebrews 9:27).

• God is the creator of all that is (Colossians 1:16, Revelation 4:11).

• God loves us (John 3:16).

Examples of Changing Facts 
In 2006, the planet Pluto was declared not to be a planet any more.

In the 17th century, the fact that the planets and moon all orbit the earth changed to the pres-
ent fact that the planets all orbit the sun, and only the moon orbits the earth.

At present, we know of only one kind of matter that causes gravitational fields. This is the mat-
ter made up of protons, electrons, and neutrons, which we discuss in a later chapter. But sci-
entists now think there may be another kind of matter contributing to the gravitational forces 
in the universe. They call it dark matter because apparently this kind of matter does not reflect 
or refract light the way ordinary matter does. (We also study reflection and refraction later 
on.) For the existence of dark matter to become a scientific fact, a lot of evidence is required, 
evidence which is just beginning to emerge. If we are able to get enough evidence, then the 
facts about matter will change.
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Each of these statements is true, and we know they are true because God has revealed 
them to us in his word. (The reasons for believing God’s word are important for all of us to 
know and understand, but that is a subject for a different course of study.)

1.1.7 Relating Scientific Knowledge and Truth
There are two ways in which our discussion of scientific knowledge relates to our dis-

cussion of truth. First, we have seen that one way to know truth is by direct observation. We 
have also seen that scientists use observation as a way of discovering scientific facts. How 
do these two uses of observation relate to each other?

Imagine a scientist studying tigers who observes a tiger eating the meat of another ani-
mal. The scientist can say, “It is true that this tiger eats meat.” The scientist might observe 25 
other tigers exhibiting this same behavior. She can then say, “These 25 tigers all eat meat.” 
So far, all the scientist has done is to say things that she has found to be true by direct ob-
servation.

But now suppose the scientist takes this information and makes a general claim about 
tigers: “It is a scientific fact that tigers are carnivores.” The scientist has now made a leap 
from tigers she has directly observed to many other tigers she has not directly observed. 
Who knows whether there might be a species of vegetarian tiger somewhere out there? We 
have no way of knowing the eating habits of every single tiger. This is why we cannot say 
that meat eating is a truth about all tigers. We can only say that it is a scientific fact about 
tigers. The scientific fact about tigers is a statement based on a lot of evidence that is correct 
so far as we know, but it may need to be changed if further research shows that there are 
species of tigers that do not eat meat.

Second, we have studied tigers for a long time and are pretty sure that the statement, 
“all tigers are carnivores” is true. We are so sure that most of us probably do regard this 
statement as true. This is fine, but we must keep in mind that it is always possible that a 
scientific claim may turn out to be false.

1.2 The Cycle of Scientific Enterprise

1.2.1 Science
Having established some basic principles about the distinction between scientific facts 

and truth, we are now ready to define science itself and examine what science is and how it 
works. Here is a definition:

Science is the process of using experiment, observation, and logical thinking to build 
“mental models” of the natural world. These mental models are called theories.

We do not and cannot know the natural world perfectly or completely, so we construct 
models of how it works. We explain these models to one another with descriptions, dia-
grams, and mathematics. These models are our scientific theories. Theories never explain 
the world to us perfectly. To know the world perfectly, we would have to know the absolute 
truth about reality just as God knows it, which in this present age we do not. So theories 
always have their limits, but we hope they become more accurate and more complete over 
time, accounting for more and more physical phenomena (data, facts), and helping us to 
understand creation as a coherent whole.
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Scientific knowledge is continuously changing and advancing through a cyclic process 
that I call the Cycle of Scientific Enterprise, represented in Figure 1.1. In the next few sec-
tions, we examine the individual parts of this cycle in detail.

1.2.2 Theories
Theories are the grandest thing in science. In fact, it is fair 

to say that theories are the glory of science, and developing good 
theories is what science is all about. Electromagnetic field theo-
ry, atomic theory, quantum theory, the general theory of relativ-
ity—these are all theories in physics that have had a profound 
effect on scientific progress and on the way we all live.1

Now, even though many people do not realize it, all scien-
tific knowledge is theoretically based. Let me explain. A theory is 
a mental model or explanatory system that explains and relates together most or all of the 
facts (the data) in a certain sphere of knowledge. A theory is not a hunch or a guess or a wild 
idea. Theories are the mental structures we use to make sense of the data we have. We can-
not understand any scientific data without a theory to organize it and explain it. This is why 
I write that all scientific knowledge is theoretically based. And for this reason, it is inappro-
priate and scientifically incorrect to scorn these explanatory systems as “merely a theory” or 
“just a theory.” Theories are explanations that account for a lot of different facts. If a theory 
has stood the test of time, that means it has wide support within the scientific community.

1 The term law is just a historical (and obsolete) term for what we now call a theory.
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It is popular in some circles to speak dis-
missively of certain scientific theories, as if they 
represent some kind of untested speculation. 
It is simply incorrect—and very unhelpful—to 
speak this way. As students in high-school sci-
ence, one of the important things you need to 
understand is the nature of scientific knowledge, 
the purpose of theories, and the way scientific 
knowledge progresses. These are the issues this 
chapter is about.

All useful scientific theories possess several 
characteristics. The two most important ones 
are: 

• The theory accounts for and explains most 
or all of the related facts.

• The theory enables new hypotheses to be formed and tested. 

Theories typically take decades or even centuries to gain credibility. If a theory gets 
replaced by a new, better theory, this also usually takes decades or even centuries to happen. 
No theory is ever “proven” or “disproven” and we should not speak of them in this way. We 
also should not speak of them as being “true” because, as we have seen, we do not use the 
word “truth” when speaking of scientific knowledge. Instead, we speak of facts being cor-
rect so far as we know, or of current theories as representing our best understanding, or of 
theories being successful and useful models that lead to accurate predictions.

An experiment in which the hypothesis is confirmed is said to support the theory. 
After such an experiment, the theory is stronger but it is not proven. If a hypothesis is not 
confirmed by an experiment, the theory might be weakened but it is not disproven. Scien-

Key Points About Theories 
1. A theory is a way of modeling nature, enabling us to explain why things happen in the 

natural world from a scientific point of view.

2. A theory tries to account for and explain the known facts that relate to it.

3. Theories must enable us to make new predictions about the natural world so we can 
learn new facts.

4. Strong, successful theories are the glory and goal of scientific research.

5. A theory becomes stronger by producing successful predictions that are confirmed by 
experiment. A theory is gradually weakened when new experimental results repeatedly 
turn out to be inconsistent with the theory.

6. It is incorrect to speak dismissively of successful theories because theories are not just 
guesses.

7. We don’t speak of theories as being proven or disproven. Instead, we speak of them in 
terms such as how successful they have been at making predictions and how accurate 
the predictions have been.

Figure 1.2. Key points about theories.

Examples of Famous Theories
In the next chapter, we encounter Ein-
stein’s general theory of relativity, one of 
the most important theories in modern 
physics. Einstein’s theory represents our 
best current understanding of how grav-
ity works.

Another famous theory we address later 
is the kinetic theory of gases, our present 
understanding of how molecules of gas 
too small to see are able to create pres-
sure inside a container.
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tists require a great deal of experimental evidence before a new theory can be established as 
the best explanation for a body of data. This is why it takes so long for theories to become 
widely accepted. And since no theory ever explains everything perfectly, there are always 
phenomena we know about that our best theories do not adequately explain. Of course, 
scientists continue their work in a certain field hoping eventually to have a theory that does 
explain all the facts. But since no theory explains everything perfectly, it is impossible for 
one experimental failure to bring down a theory. Just as it takes a lot of evidence to estab-
lish a theory, so it takes a large and growing body of conflicting evidence before scientists 
abandon an established theory.

At the beginning of this section, I state that theories are mental models. This statement 
needs a bit more explanation. A model is a representation of something, and models are 
designed for a purpose. You have probably seen a model of the organs in the human body 
in a science classroom or textbook. A model like this is a physical model and its purpose 
is to help people understand how the human body is put together. A mental model is not 
physical; it is an intellectual understanding, although we often use illustrations or physical 
models to help communicate to one another our mental ideas. But as in the example of the 
model of the human body, a theory is also a model. That is, a theory is a representation of 
how part of the world works. In physics and chemistry, scientific models generally take the 
form of mathematical equations that allow scientists to make numerical predictions and 
calculate the results of experiments. The more accurately a theory represents the way the 
world works, which we judge by forming new hypotheses and testing them with experi-
ments, the better and more successful the theory is.

To summarize, a successful theory represents the natural world accurately. This means 
the model (theory) is useful because if a theory is an accurate representation, then it leads 
to accurate predictions about nature. When a theory repeatedly leads to predictions that 
are confirmed in scientific experiments, it is a strong, useful theory. The key points about 
theories are summarized in Figure 1.2.

1.2.3 Hypotheses
A hypothesis is a positively stated, informed prediction 

about what will happen in certain circumstances. We say a 
hypothesis is an informed prediction because when we form 
hypotheses we are not just speculating out of the blue. We 
are applying a certain theoretical understanding of the subject to the new situation be-

fore us and predicting what will happen or what 
we expect to find in the new situation based on 
the theory the hypothesis is coming from. Ev-
ery scientific hypothesis is based on a particular 
theory,and competing theories can lead to differ-
ent hypotheses.

Often hypotheses are worded as if-then state-
ments, such as, “If various forces are applied to a 
vehicle, then the vehicle accelerates at a rate that 
is in direct proportion to the net force.” Every sci-
entific hypothesis is based on a theory and it is the 
hypothesis that is directly tested by an experiment. 
If the experiment turns out the way the hypothesis 
predicts, the hypothesis is confirmed and the the-

Key Points About Hypotheses 
1. A hypothesis is an informed pre-

diction about what will happen in 
certain circumstances.

2. Every hypothesis is based on a par-
ticular theory.

3. Well-formed scientific hypotheses 
must be testable, which is what 
scientific experiments are de-
signed to do.

Figure 1.3. Key points about hypotheses.
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ory it came from is strengthened. 
Of course, the hypothesis may not 
be confirmed by the experiment. 
We see how scientists respond to 
this situation in Section 1.2.6.

The terms theory and hypoth-
esis are often used interchangeably 
in common speech, but in science 
they mean different things. For this 
reason, you should make note of 
the distinction.

One more point about hypoth-
eses. A hypothesis that cannot be 
tested is not a scientific hypothesis. 

For example, horoscopes purport to predict the future with statements like, “You will meet 
someone important to your career in the coming weeks.” Statements like this are so vague 
they are untestable and do not qualify as scientific hypotheses.

The key points about hypotheses are summarized in Figure 1.3.

1.2.4 Experiments
Experiments are tests of the predictions in hypotheses, under con-

trolled conditions. Effective experiments are difficult to perform. Thus, 
for any experimental outcome to become regarded as a “fact” it must 
be replicated by several different experimental teams, often working 
in different labs around the world. Scientists have developed rigorous 
methods for conducting valid experiments. We consider these in Sec-
tion 1.3.

1.2.5 Analysis
In the Analysis phase of the Cycle of Scientific 

Enterprise, researchers must interpret the experi-
mental results. The results of an experiment are es-
sentially data, and data must always be interpreted. 
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Examples of Famous Hypotheses 
Einstein used his general theory of relativity to make an incredible prediction in 1917: that 
gravity causes light to bend as it travels through space. In the next chapter, you read about the 
stunning result that occurred when this hypothesis was put to the test.

The year 2012 was a very important year for the standard theory in the world of subatomic 
particles, called the Standard Model. This theory led in the 1960s to the prediction that there 
are weird particles in nature, now called Higgs bosons, which no one had ever detected. Until 
2012, that is! An enormous machine that could detect these particles, called the Large Hadron 
Collider, was built in Switzerland and completed in 2008. In 2012, scientists announced that 
the Higgs boson had been detected at last, a major victory for the Standard Model, and for 
Peter Higgs, the physicist who first proposed the particle that now bears his name.
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The main goal of this analysis is to determine whether the original hypothesis is confirmed 
by the experiment. If it is, then the result of the experiment is new facts that are consistent 
with the original theory because the hypothesis is based on that theory. As a result, the sup-
port for the theory is increased—the theory was successful in generating a hypothesis that 
was confirmed by experiment. As a result of the experiment, our confidence in the theory 
as a useful model is increased and the theory is even more strongly supported than before. 

1.2.6 Review
If the outcome of an experiment does not 

confirm the hypothesis, the researchers must 
consider all the possibilities for why this might 
have happened. Why didn’t our theory, which is 
our best explanation of how things work, enable 
us to form a correct prediction? There are a num-
ber of possibilities, beginning with the experi-
ment and going backwards around the cycle:

• The experiment may have been flawed. Scientists double check everything about the 
experiment, making sure all equipment is working properly, double checking the cal-
culations, looking for unknown factors that may have inadvertently influenced the out-
come, verifying that the measurement instruments are accurate enough and precise 
enough to do the job, and so on. They also wait for other experimental teams to try the 
experiment to see if they get the same results or different results, and then compare. 
(Although, naturally, every scientific team likes to be the first one to complete an im-
portant new experiment.)

• The hypothesis may have been based on a incorrect understanding of the theory. May-
be the experimenters did not understand the theory well enough, and maybe the hy-
pothesis is not a correct statement of what the theory says will happen.

• The values used in the calculation of the hypothesis’ predictions may not have been 
accurate or precise enough, throwing off the hypothesis’ predictions.

• Finally, if all else fails, and the hypothesis still cannot be confirmed by experiment, 
it is time to look again at the theory. Maybe the theory can be altered to account for 
this new fact. If the theory simply cannot account for the new fact, then the theory 
has a weakness, namely, there are facts it doesn’t adequately account for. If enough of 
these weaknesses accumulate, then over a long period of time (like decades) the theory 
might eventually need to be replaced with a different theory, that is, another, better 
theory that does a better job of explaining all the facts we know. Of course, for this to 
happen someone would have to conceive of a new theory, which usually takes a great 
deal of scientific insight. And remember, it is also possible that the facts themselves can 
change.

1.3 The Scientific Method

1.3.1 Conducting Reliable Experiments
The so-called scientific method that you have been studying ever since about 4th grade 

is simply a way of conducting reliable experiments. Experiments are an important part 

No
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of the Cycle of Scientific Enter-
prise, so the scientific method is 
important to know. You probably 
remember studying the steps in 
the scientific method from prior 
courses, so they are listed in Table 
1.1 without further comment.

We discuss variables and 
measurements a lot in this course, 
so we take the opportunity here to identify some of the language researchers use during the 
experimental process. In a scientific experiment, the researchers have a question they are 
trying to answer (from the State the Problem step in the scientific method), and typically 
it is some kind of question about the way one physical quantity affects another one. So the 
researchers design an experiment in which one quantity can be manipulated (that is, de-
liberately varied in a controlled fashion) while the value of another quantity is monitored.

A simple example of this in everyday life that you can easily relate to is varying the 
amount of time you spend each week studying for your math class in order to see what ef-
fect the time spent has on the grades you earn. If you reduce the time you spend, will your 
grades go down? If you increase the time, will they go up? A precise answer depends on a lot 
of things, of course, including the person involved, but in general we would expect that if a 
student varies the study time enough we will see the grades vary as well. And in particular, 
we expect more study time to result in higher grades. The way your study time and math 
grades relate together can be represented in a diagram such as Figure 1.4.

Now let us consider this same concept in the context of scientific experiments. An ex-
periment typically involves some kind of complex system that the scientists are modeling. 
The system could be virtually anything in the 
natural world—a galaxy, a system of atoms, a 
mixture of chemicals, a protein, or a badger. 
The variables in the scientists’ mathemati-
cal models of the system correspond to the 
physical quantities that can be manipulated 
or measured in the system. As I describe the 
different kinds of variables, refer to Figure 
1.5.

1.3.2 Experimental Variables
When performing an experiment, the variable that is deliberately manipulated by the 

researchers is called the explanatory variable. As the explanatory variable is manipulated, 
the researchers monitor the effect this variation has on the response variable.  In the example 
of study time versus math grade, the study time is the explanatory variable and the grade 
earned is the response variable.

Usually, a good experimental design allows only one explanatory variable to be ma-
nipulated at a time so that the researchers can tell definitively what its effect is on the re-
sponse variable. If more than one explanatory variable is changing during the course of 
the experiment, researchers may not be able to tell which one is causing the effect on the 
response variable.

A third kind of variable that plays a role in experiments is the lurking variable. A lurk-
ing variable is a variable that affects the response variable without the researchers being 

Figure 1.4. Study time and math grades in a simple 
experimental system.

Experimental System

Study Time
Grades in Math

This is the quantity you adjust.

This is where you look to see the effect.

Table 1.1. Steps in the scientific method.

The Scientific Method

1. State the problem. 5. Collect data.

2. Research the problem. 6. Analyze the data.

3. Form a hypothesis. 7. Form a conclusion.

4. Conduct an experiment. 8. Repeat the work.
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aware of it. This 
is undesirable, of 
course, because 
with unknown in-
fluences present the 
researchers may not 
be able to make a 
correct conclusion 
about the effect of 
the known explana-
tory variables on 
the response vari-

able under study. So researchers study their experimental projects very carefully to mini-
mize the possibility of lurking variables affecting their results.

In our example about study time and math grades, there could be a number of lurking 
variables affecting the results of the experiment. Possible lurking variables include changes 
in the difficulty of the material from one chapter to the next and variations in the student’s 
ability to concentrate due to fatigue from seasonal sports activities.

1.3.3 Experimental Controls
The last thing we consider in this section is an important way researchers control an 

experiment to ensure the results are valid. You are probably aware that developing new 
medical treatments is one of the major goals of experimental research in the 21st century. 
Many experiments in the field of medical research are designed to test some new kind of 
treatment by comparing the results of the new treatment to those obtained using a conven-
tional treatment or no treatment at all. This is the situation in medical research all the time 
for experiments testing new therapies, medications, or procedures.

Clinical trials are experiments conducted by researchers on people to test new thera-
pies or medications. In experiments like these, the people (patients) involved in the study 
are divided into two groups—the control group and the experimental group. The control 

group receives no treatment or some kind of standard treatment. 
The experimental group receives the new treatment being tested. 
The results of the experimental group are assessed by comparing 
them to those of the control group.

Another example will help to clarify all these terms. Let’s say 
researchers have developed a variety of fruit tree that they believe 
is more resistant to drought than other varieties. According to the 
researchers’ theoretical understanding of how chemical reactions 
and water storage work in the biological systems of the plant, they 
hypothesize that the new variety of tree will be able to bear better 
fruit during drought conditions. To test this hypothesis by experi-
ment, the scientists develop a group of the new trees. Then they 
place the trees in a test plot, along with other trees of other va-
rieties, and see how they perform. Figure 1.6 shows a researcher 
working in an agricultural test plot. In our fruit tree example, the 
trees of the new variety are in the experimental group and the trees 
of the other varieties are in the control group.

Figure 1.6. An agricultural 
research assistant working in 
a test plot.

Figure 1.5. The variables in an experimental system.

Experimental System

Explanatory Variable
Response Variable

Lurking VariableResearchers 
manipulate input here

Researchers measure 
outcome here
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The response variable is the quality of the plant’s fruit. Researchers expect that under 
drought conditions, the fruit of the new variety will be better than the fruit of the other 
varieties. The explanatory variable is the unique feature of the new variety that relates to 
the plant’s use of water. The trees are exposed to drought conditions in the experiment. If 
the new variety produces higher quality fruit than the control group, then the hypothesis 
is confirmed, and the theory that led to the hypothesis has gained credibility through this 
success. One can imagine many different lurking variables that could affect the outcome of 
this experiment without the scientists’ awareness. For example, the new variety trees could 
be planted in locations that receive different amounts of moisture or sun than the locations 

Do you know ... Double-blind experiments
The human mind is so powerful that if a person believes a new medication might help, the 
person’s condition can sometimes improve even if the medication itself isn’t doing a thing! 
This is amazing, but in medical research it means that the researchers can have a hard time 
determining whether a person is helped by the new medication, or by feeling positively 
about the medication, or even by the attention given to him or her by the doctor.

Pictured below is Lauren Wood, a clinician involved in vaccine research at the Center for 
Cancer Research, which is part of the National Cancer Institute. Just as with every other 

scientific researcher, Dr. Wood’s research is conducted according to 
methods that have been developed to ensure that people’s beliefs 
about the research don’t influence the outcome of the research.

The approach is to divide the patients who will participate in testing 
a new medication into two groups, control and experimental. The ex-
perimental group is given the new medication. The control group is 
given a placebo—a fake medication such as a sugar pill—that has no 
effect on the person’s medical condition. Further, none of the patients 
know whether they are given the placebo or the real medication. This 
technique, called a blind experiment, allows the researchers to deter-
mine whether a new medication actually helps, as they compare the 
results of the control and experimental groups.

But there’s more. It turns out that the researchers themselves can affect 
the results of the experiment if they know which patients are receiv-

ing a placebo and which ones are receiving the medication under study. How can this 
happen? Well, if the researchers know who is getting the real medication, they might sub-
consciously act more positively with them than with other patients. This might be because 
the researchers expect those getting the new medication to improve, and this expecta-
tion gets subconsciously communicated to the patients. The positive attitude might be 
perceived as more encouraging and patients might improve just because of the encour-
agement!

The way around this dilemma is to use a double-blind experiment. In a double-blind ex-
periment, neither the patients nor the researchers know which patients are getting the 
placebo and which are getting the real treatment. A team of technicians is in the middle, 
administering the medication and keeping records of who receives what. The researchers 
are not allowed to see the lists until the research results are finalized. The double-blind 
experiment is the standard protocol followed today for new medical research.



37418

Chapter 1

Chapter 1 Exercises
As you go through the chapters in this book, always answer the questions in complete 
sentences, using correct grammar and spelling.

Here is a tip to help improve the quality of your written responses: avoid pronouns! 
Pronouns almost always make your responses vague or ambiguous. If you want to 
receive full credit for written responses, avoid them. (Oops. I mean, avoid pronouns!)

Study Questions
Answer the following questions with a few complete sentences.

1. Distinguish between theories and hypotheses.

2. Explain why a single experiment can never prove or disprove a theory.

3. Explain how an experiment can still provide valuable data even if the hypothesis 
under test is not confirmed.

4. Explain the difference between truth and facts and describe the sources of each.

5. State the two primary characteristics of a theory.

6. Does a theory need to account for all known facts? Why or why not?

7. It is common to hear people say, “I don’t accept that; it’s just a theory.” What is the 
error in a comment like this?

8. Distinguish between facts and theories.

9. Distinguish between explanatory variables, response variables, and lurking vari-
ables.

10. Why do good experiments that seek to test some kind of new treatment or ther-
apy include a control group?

11. Explain specifically how the procedure students follow in the Pendulum Experi-
ment satisfies every step of the “scientific method.”

12. This chapter argues that scientific facts should not be regarded as true. Someone 
might question this and ask, If they aren’t true, then what are they good for? De-
velop a response to this question.

13. Explain what a model is and why theories are often described as models.

where the control group trees are, or, the nutrients in the soil in different locations might 
vary.

In a good experimental design, researchers seek to identify such factors and take mea-
sures to ensure that they do not affect the outcome of the experiment. They do this by mak-
ing sure there are trees from both the experimental group and the control group in all the 
different conditions the trees will experience. This way, variations in sunlight, soil type, soil 
water content, elevation, exposure to wind, and other factors are experienced equally by 
trees in both groups.
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14. Consider an experiment that does not deliver the result the experimenters ex-
pect. In other words, the result is negative because the hypothesis is not con-
firmed. There are many reasons why this might happen. Consider each of the fol-
lowing elements of the Cycle of Scientific Enterprise. For each one, describe how 
it might be the driving factor that results in the experiment’s failure to confirm 
the hypothesis.
a. the experiment
b. the hypothesis
c. the theory

15. Identify the explanatory and response variables in the Pendulum Experiment, 
and identify two realistic possibilities for ways the results may be influenced by 
lurking variables.

Do you know ... Hero Sir Humphry Davy
Sir Humphry Davy (1778–1829) was one of 
the leading experimenters and inventors 
in England in the early nineteenth century. 
He conducted many early experiments with 
gases; discovered sodium, potassium, and 
numerous other elements; and produced the 
first electric light from a carbon arc.

In the early nineteenth century, explosions in 
coal mines were frequent, resulting in much 
tragic loss of life. The explosions were caused 
by the miners’ lamps igniting the methane 
gas found in the mines.

Davy became a national hero when he invent-
ed the Davy Safety Lamp (below). This lamp 
incorporated an iron mesh screen around the 
flame. The 

cooling from the iron reduces the flame tempera-
ture so the flame does not pass through the mesh, 
and thus cannot cause an explosion. The Davy 
Lamp was produced in 1816 and was soon in wide 
use.

Davy’s experimental work proceeded by reason-
ing from first principles (theory) to hypothesis and 
experiment. Davy stated, “The gratification of the 
love of knowledge is delightful to every refined 
mind; but a much higher motive is offered in in-
dulging it, when that knowledge is felt to be prac-
tical power, and when that power may be applied 
to lessen the miseries or increase the comfort of 
our fellow-creatures.”
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Orrery

Orreries, mechanical models of the solar system, were well-known teaching tools in the 
18th century, often forming the centerpiece of lessons on astronomy. They demonstrated 
Copernicus’ theory that the earth and other planets orbit the sun. This example, from 
around 1750, is smaller but otherwise similar to George II’s grand orrery.

This photo of the orrery was taken in the British Museum in London.
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OBJECTIVES
Memorize and learn how to use these equations:

v = d
t   

a =
v f −vi

t

After studying this chapter and completing the exercises, students will be able to do 
each of the following tasks, using supporting terms and principles as necessary: 

1. Define and distinguish between velocity and acceleration.
2. Use scientific notation correctly with a scientific calculator.
3. Calculate distance, velocity, and acceleration using the correct equations, MKS 

units, and correct dimensional analysis.
4. Use from memory the conversion factors, metric prefixes, and physical 

constants listed in Appendix A.
5. Explain the difference between accuracy and precision and apply these terms to 

questions about measurement.
6. Demonstrate correct understanding of precision by using the correct number of 

significant digits in calculations and rounding.
7. Draw and interpret graphs of distance, velocity, and acceleration vs. time and 

describe an object’s motion from the graphs.
8. Describe the key features of the Ptolemaic model of the heavens, including all 

the spheres and regions in the model.
9. State several additional features of the medieval model of the heavens and 

relate them to the theological views of the Christian authorities opposing 
Copernicanism.

10. Briefly describe the roles and major scientific models or discoveries of 
Copernicus, Tycho, Kepler, and Galileo in the Copernican Revolution. Also, 
describe the significant later contributions of Isaac Newton and Albert Einstein 
to our theories of motion and gravity.

11. Describe the theoretical shift that occurred in the Copernican Revolution and 
how Christian officials (both supporters and opponents) were involved.

12. State Kepler’s three laws of planetary motion.
13. Describe how the gravitational theories of Kepler, Newton, and Einstein 

illustrate the way the Cycle of Scientific Enterprise works.

2.1 Computations in Physics
In this chapter. you begin mastering the skill of applying mathematics to the study of 

physics. To do this well, you must know a number of things about the way measurements 
are handled in scientific work. You must also have a solid problem-solving strategy that you 
can depend on to help you solve problems correctly without becoming confused. These are 
the topics of the next few sections.
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2.1.1 The Metric System
Units of measure are crucial in science. Science is about making measurements and a 

measurement without its units of measure is a meaningless number. For this reason, your 
answers to computations in scientific calculations must always show the units of measure.

The two major unit systems you must know about are the SI (from the French Système 
international d’unités), typically known in the United States as the metric system, and the 
USCS (U.S. Customary System). You have probably studied these systems before and should 
already be familiar with some of the SI units and prefixes, so our treatment here is brief.

If you think about it, you would probably agree that the USCS is cumbersome. One 
problem is that there are many different units of measure for every kind of physical quan-
tity. For example, just for measuring length or distance we have the inch, foot, yard, and 
mile. The USCS is also full of random numbers like 3, 12, and 5,280, and there is no inher-
ent connection between units for different types of quantities.

By contrast, the SI system is simple and has many advantages. There is only one basic 
unit for each kind of quantity, such as the meter for measuring length. Instead of having 
many unrelated units of measure for measuring quantities of different sizes, fractional and 
multiple prefixes based on powers of ten are used with the units to accommodate various 
sizes of measurements.

A second advantage is that since quantities with different prefixes are related by some 
power of ten, unit conversions can often be performed mentally. To convert 4,555 ounc-
es into gallons, we first have to look up the conversion from ounces to gallons (which is 
hard to remember), and then use a calculator to perform the conversion. But to convert 
40,555 cubic centimeters into cubic meters is simple—simply divide by 1,000,000 and you 
have 0.040555 m3. (If this doesn’t seem to click for you, take time to study the unit conver-
sions tutorial in Appendix E.

Another SI advantage is that the units for different types of quantities relate to one 
another in some way. Unlike the gallon and the foot, which have nothing to do with each 
other, the liter (a volume) relates to the centimeter (a length): 1 liter = 1,000 cubic centime-
ters.1 For all these reasons, the USCS is not used much in scientific work. The SI system is 
the international standard and it is important to know it well.

In the SI unit system, there are seven 
base units, listed in Table 2.1. (In this text, 
we use only the first five of them.) There 
are also many additional units of measure, 
known as derived units. All the derived units 
are formed by various combinations of the 
seven base units. To illustrate, below are a 
few examples of derived units that we dis-
cuss and use in this book. Note, however, 
that we won’t be working much with the 
messy fractions; they are simply shown to 
illustrate how base units are combined to 
form derived units.

1 The liter is not actually an official SI unit of measure, but it is used all the time anyway in scientific 
work.

Unit Symbol Quantity

meter m length

kilogram kg mass

second s time

ampere A electric current

kelvin K temperature

candela Cd luminous intensity

mole mol amount of substance

Table 2.1. The seven base units in the SI unit system.
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• the newton (N) is the SI unit for measuring force: 1 N =1 kg ⋅m
s2

• the joule (J) is the SI unit for measuring energy: 1 J =1 kg ⋅m2

s2

• the watt (W) is the SI unit for measuring power: 1 W =1 kg ⋅m2

s3

Using the SI system requires knowing the units of measure—base and derived—and 
the prefi xes that are applied to the units to form fractional units (such as the centimeter) 
and multiple units (such as the kilometer). Th e complete list of metric prefi xes is shown in 
Appendix A in Table A.1. Th e short list of prefi xes you must know by memory for use in 
this course is in Table A.2. Note that even though the kilogram is a base unit, prefi xes are 
not added to the kilogram. Instead, prefi xes are added to the gram to form units such as the 
milligram and microgram.

2.1.2 MKS Units
A subset of the SI system is the MKS system. Th e MKS system, summarized in Table 

2.2, uses the meter, the kilogram, and 
the second (hence, “MKS”) as primary 
units. Dealing with diff erent systems of 
units can become very confusing. But 
the wonderful thing about sticking to 
the MKS system is that any calculation 
performed with MKS units gives a re-
sult in MKS units. Th is is why the MKS 
system is so handy and why we use it 
almost exclusively in physics.

Variable Variable 
Symbol

Unit Unit 
Symbol

length d (distance)
L (length)
h (height)

r (radius), etc.

meter m

mass m kilogram kg

time t second s

Table 2.2. The three base units in the MKS system.

Do You Know ... How are the base units defi ned?
The defi nitions of the base units all have inter-

esting stories behind them. In the past, several 
units were defi ned by physical objects, such as a 
metal bar (the meter) or metal cylinder (the kilo-
gram). But over time these defi nitions have been 
replaced. (The last one was the kilogram, replaced 
in 2019.) Now, each base unit is defi ned in terms 
of a physical constant that itself is defi ned with a 
specifi c, exact value. The defi nitions of all but two 
of the units also depend on other unit defi nitions, 
as the arrows in the graphic indicate. The offi  cial 
defi nition of the second is based on waves of light 
emitted by cesium atoms. The speed of light is 
defi ned as 299,792,458 m/s, and the meter is de-
fi ned as the distance light travels in 1/299,792,458 
seconds.

h

N

Kk

e

c s

kg

mol

cdK

A

m

Δν

A

Cs

cdB
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To convert the units of measure given in problems into MKS units, you must know the 
conversion factors listed in Appendix A (Tables A.2 and A.3). Appendix A also lists several 
physical constants you must know (Table A.4) and some common unit conversion factors 
that you are not required to memorize, but should have handy when working problem as-
signments.

2.1.3 Dimensional Analysis
Dimensional analysis is a term that refers to all the work of dealing with units of mea-

sure in computations. This work includes converting units from one set of units to another 
and using units consistently in equations. You are probably already familiar with methods 
for performing unit conversions. I have a lot of practice problems cued up for you (coming 
up soon!), but if you need a refresher on using unit conversion factors to convert from one 
set of dimensions to another, please refer to the tutorial in Appendix E.

2.1.4 Accuracy and Precision
The terms accuracy and precision refer to the limitations inherent in making measure-

ments. Science is all about investigating nature and to do that we must make measurements. 
Accuracy relates to error, which is the difference between a measured value and the true 
value of a given quantity. The lower the error is in a measurement, the better the accuracy. 
Error can be caused by a number of different factors, including human mistakes, malfunc-
tioning equipment, incorrectly calibrated instruments, or unknown factors that influence a 
measurement without the knowledge of the experimenter. All measurements contain error 
because (alas!) perfection is simply not a thing we have access to in this world.

Precision refers to the resolution or degree of “fine-ness” in a measurement. The limit 
to the precision obtained in a measurement is ultimately dependent on the instrument used 
to make the measurement. If you want greater precision, you must use a more precise in-
strument. The precision of a measurement is indicated by the number of significant digits 
(or significant figures) included when the measurement is written down (see next section).

Figure 2.1 is a photograph of a machinist’s rule and an architect’s scale placed side by 
side. Since the marks on the two scales line up consistently, these two scales are equally 
accurate. But the machinist’s rule (on top) is more precise. The architect’s scale is marked 
in 1/16-inch increments, but the machinist’s rule is marked in 1/64-inch increments. The 
machinist’s rule has higher resolution, and thus greater precision.

It is important that you are able to distinguish between accuracy and precision. Here 
is an example to illustrate the difference. Let’s say Shana and Marius each buy digital ther-
mometers for their homes. The thermometer Shana buys cost $10 and measures to the near-

est 1°F. Marius pays $40 and 
gets one that reads to the near-
est 0.1°F. Note that on a day 
when the actual temperature 
is 95.1°F, if the two thermom-
eters are reading accurately 
Shana’s thermometer reads 95° 
and Marius’ reads 95.1°. Thus, 
Marius’ thermometer is more 
precise.

Figure 2.1. The accuracy of these two scales is the same, but the 
machinist’s rule on the top is more precise.
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Now suppose Shana reads the directions and properly installs the sensor for her new 
thermometer in the shade. Marius doesn’t read the directions and mounts his sensor in the 
direct sunlight, which causes a significant error in the measurement for much of the day. 
The result is that Shana has lower-precision, higher-accuracy measurements!

2.1.5 Significant Digits
The precision in any measurement is indicated by the number of significant digits it 

contains. Thus, the number of digits we write in any measurement we deal with in science is 
very important. The number of digits is meaningful because it shows the precision present 
in the instrument used to make the measurement.

Let’s say you are working a computational exercise in a science book. The problem tells 
you that a person drives a distance of 110 miles at an average speed of 55 miles per hour 
and wants you to calculate how long the trip takes. The correct answer to this problem will 
be different from the correct answer to a similar problem with given values of 110.0 miles 
and 55.0 miles per hour. And if the given values are 110.0 miles and 55.00 miles per hour, 
the correct answer is different yet again. Mathematically, of course, all three answers are the 
same. If you drive 110 miles at 55 miles per hour, the trip takes two hours. But scientifi-
cally, the correct answers to these three problems are different: 2.0 hours, 2.00 hours, and 
2.000 hours, respectively. The difference between these cases is in the precision indicated by 
the given data, which are measurements. (Even though this is just a made-up problem in a 
book and not an actual measurement someone made in an experiment, the given data are 
still measurements. There is no way to talk about distances or speeds without talking about 
measurements, even if the measurements are only imaginary or hypothetical.)

When you perform a calculation with physical quantities (measurements), you cannot 
simply write down all the digits shown by your calculator. The precision inherent in the 
measurements used in a computation governs the precision in any result you calculate from 
those measurements. And since the precision in a measurement is indicated by the number 
of significant digits, data and calculations must be written with the correct numbers of sig-
nificant digits. To do this, you need to know how to count significant digits and you must 
use the correct number of significant digits in all your calculations and experimental data.

Correctly counting significant digits involves four different cases:

1. A rule for determining how many significant digits there are in a given measurement.

2. Rules for writing down the correct number of significant digits in a measurement you 
are making and recording.

3. Rules for computations you perform with measurements—multiplication and division.

4. Rules for computations you perform with measurements—addition and subtraction.

In this course, we do not use the rules for addition and subtraction, so we leave those for a 
future course (probably chemistry). We now address the first three cases, in order.

Case 1   We begin with the rule for determining how many significant digits there are in a 
given measurement value. The rule is as follows:

The number of significant digits (or figures) in a number is found by counting all the 
digits from left to right beginning with the first nonzero digit on the left. When no 
decimal is present, trailing zeros are not considered significant.
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Let’s apply this rule to several example values to see how it works:

15,679 This value has five significant digits.

21.0005 This value has six significant digits.

37,000 This value has only two significant digits because when there is no decimal, 
trailing zeros are not significant. Notice that the word significant here is a refer-
ence to the precision of the measurement, which in this case is rounded to the 
nearest thousand. The zeros in this value are certainly important, but they are 
not significant in the context of precision.

0.0105 This value has three significant digits because we start counting with the first 
nonzero digit on the left.

0.001350 This value has four significant digits. Trailing zeros count when there is a deci-
mal.

The significant digit rules enable us to tell the difference between two measurements 
such as 13.05 m and 13.0500 m. Mathematically, of course, these values are equivalent. But 
they are different in what they tell us about the process of how the measurements were 
made. The first measurement has four significant digits. The second measurement is more 
precise. It has six significant digits and would come from a more precise instrument.

Now, just in case you are bothered by the zeros at the end of 37,000 that are not signifi-
cant, here is one more way to think about significant digits that may help. The precision in 
a measurement depends on the instrument used to make the measurement. If we express 
the measurement in different units, this does not change the precision. A measurement 
of 37,000 grams is equivalent to 37 kilograms. Whether we express this value in grams or 
kilograms, it still has two significant digits.

Case 2   The second case addresses the rules that apply when you record a measure-
ment yourself, rather than reading a measurement someone else has made. When you take 
measurements yourself, as you do in laboratory experiments, you must know the rules for 
which digits are significant in the reading you are taking on the measurement instrument. 
The rule for taking measurements depends on whether the instrument you are using is a 
digital instrument or an analog instrument. Here are the rules for these two possibilities:

Rule 1 for digital instruments

For the digital instruments commonly found in high school or undergraduate science 
labs, assume all the digits in the reading are significant, except leading zeros.

Rule 2 for analog instruments

The significant digits in a measurement include all the digits known with certainty, 
plus one digit at the end that must be estimated between the finest marks on the 
scale of your instrument.

The first of these rules is illustrated in Figure 2.2. The reading on the left has leading 
zeros, which do not count as significant. Thus, the first reading has three significant digits. 
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The second reading also has 
three significant digits. The 
third reading has five signifi-
cant digits.

The fourth reading also 
has five significant digits be-
cause with a digital display, 
the only zeros that don’t count are the leading zeros. 
Trailing zeros are significant with a digital instrument. 
However, when you write this measurement down, you 
must write it in a way that shows those zeros to be sig-
nificant. The way to do this is by using scientific notation. 
Thus, the right-hand value in Figure 2.2 must be written 
as 4.2000 × 104.

Dealing with digital instruments is actually more 
involved than the simple rule above implies, but the is-
sues involved go beyond what we typically deal with in 
introductory or intermediate science classes. So, simply 
take your readings and assume that all the digits in the 
reading except leading zeros are significant.

Now let’s look at some examples illustrating the rule 
for analog instruments. Figure 2.3 shows a machinist’s 
rule being used to measure the length in millimeters 
(mm) of a brass block. We know the first two digits of the 
length with certainty; the block is clearly between 31 mm 
and 32 mm long. We have to estimate the third signifi-
cant digit. The scale on the rule is marked in increments 
of 0.5 mm. Comparing the edge of the block with these 
marks, I would estimate the next digit to be a 6, giving a 
measurement of 31.6 mm. Others might estimate the last 
digit to be 5 or 7; these small differences in the last digit 
are unavoidable because the last digit is estimated. What-
ever you estimate the last digit to be, two digits of this 
measurement are known with certainty, the third digit 
is estimated, and the measurement has three significant 
digits.

The photograph in Figure 2.4 shows a measurement 
in milliliters (mL) being taken with a piece of appara-
tus called a buret—a long glass tube used for measuring 
liquid volumes. Notice in this figure that when measur-
ing liquid volume, the surface of the liquid curls up at 
the edge of the cylinder. This curved surface is called a 
meniscus. The liquid measurement must be made at the 
bottom of the meniscus for most liquids, including water. 
The scale on the buret shown is marked in increments of 
0.1 mL. This means we estimate to the nearest 0.01 mL. 
To one person, the bottom of the meniscus (the black 
curve) may appear to be just below 2.2 mL, so that per-

Figure 2.2. With digital instruments, all digits are significant except 
leading zeros. Thus, the numbers of significant digits in these readings 
are, from left to right, three, three, five, and five.

0042.0 42.00042.0 42,000

Figure 2.4. Reading the significant digits 
on a buret.

Figure 2.3. Reading the significant digits 
with a machinist’s rule.
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son would call this measurement 2.21 mL. To someone 
else, it may seem that the bottom of the meniscus is right 
on 2.2, in which case that person would call the reading 
2.20 mL. Either way, the reading has three significant dig-
its and the last digit is estimated to be either 1 or 0.

As a third example, Figure 2.5 shows a liquid volume 
measurement being taken with a piece of apparatus called 
a graduated cylinder.  (We use graduated cylinders in an 
experiment we perform later on in this course.) The scale 
on the graduated cylinder shown is marked in increments 
of 1 mL. In the photo, the entire meniscus appears silvery 
in color with a black curve at the bottom. For the liquid 
shown in the figure, we know the first two digits of the 
volume measurement with certainty because the reading 
at the bottom of the meniscus is clearly between 82 mL 
and 83 mL. We have to estimate the third digit, and I 
would estimate the black line to be at 40% of the distance 
between 82 and 83, giving a reading of 82.4 mL. Someone 
else might read 82.5 mL, or even 82.6 mL.

It is important for you to keep the significant digits 
rules in mind when you are taking measurements and entering data for your lab reports. 
The data in your lab journal and the values you use in your calculations and report must 
correctly reflect the use of the significant digits rules as they apply to the actual instruments 
you use to take your measurements. Note also the helpful fact that when a measurement 
is written in scientific notation, the digits written in the stem (the numerals in front of the 
power of 10) are the significant digits.

Case 3   The third case of rules for significant digits applies to the calculations (multipli-
cation and division) you perform with measurements. The main idea behind the rule for 
multiplying and dividing is that the precision you report in your result cannot be higher 
than the precision you have in the measurements to start with. The precision in a measure-
ment depends on the instrument used to make the measurement, nothing else. Multiplying 
and dividing things cannot improve that precision, and thus your results can be no more 
precise than the measurements that go into the calculations. In fact, your result can be no 
more precise than the least precise value used in the calculation. The least precise value is, 
so to speak, the “weak link” in the chain, and a chain is no stronger than its weakest link.

There are two rules for combining the measured values into calculated values, includ-
ing any unit conversions that must be performed. Here are the two rules for using signifi-
cant digits in our calculations in this course:

Rule 1

Count the significant digits in each of the values you use in a calculation, including 
the conversion factors you use. (Exact conversion factors are not considered.) Deter-
mine how many significant digits there are in the least precise of these values. The 
result of your calculation must have this same number of significant digits.

Figure 2.5. Reading the significant digits 
on a graduated cylinder.
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Rule 1 is the rule for multiplying and dividing, which is what most of our calculations entail. 
(As I mentioned previously, there is another rule for adding and subtracting that you learn 
later in chemistry.)

Rule 2

When performing a multi-step calculation, you must keep at least one extra digit dur-
ing intermediate calculations and round off to the final number of significant digits 
you need at the very end. This practice ensures that small round-off errors don’t add 
up during the calculation. This extra digit rule also applies to unit conversions per-
formed as part of the computation.

As I present example problems in the coming chapters, I frequently refer to these rules 
and show how they apply to the example at hand. Get this skill down as soon as you can 
because soon you must use significant digits correctly in your computations to obtain the 
highest scores on your quizzes.

2.1.6 Scientific Notation
In this course, we are assuming you already know how to use scientific notation in 

computations. However, you must also make sure you are correctly using the EE or EXP 
feature on your scientific calculator for executing computations that involve values in scien-
tific notation. All scientific calculators have a key for entering values in scientific notation. 
This key is labeled EE  or EXP  on most calculators, but others use a different label.2 It is 
very common for those new to scientific calculators to use this key incorrectly, sometimes 
obtaining incorrect results. So read carefully as I outline the general procedure.

The whole point of using the EE  key is to make keying in the value as quick and error-
free as possible. When using the scientific notation key to enter a value, you do not press the 
×  key, nor do you enter the 10. The scientific calculator is designed to reduce all this key 

entry, and the potential for error, by use of the scientific notation key. You only enter the 
stem of the value and the power on the ten and let the calculator do the rest.

Here’s how. To enter a value, simply enter the digits and decimal in the stem of the 
number, then hit the EE  key, then enter the power on the ten. The value is now entered 
and you may do with it as you wish. As an example, to multiply the value 7.29 × 109 by 25 
using a standard scientific calculator, the sequence of key strokes is as follows:

7.29 EE  9 ×  25 =

Notice that between the stem and the power, the only key pushed is the EE  key.
When entering values in scientific notation with negative powers on the 10, the +/−  key 

is used before the power to make the power negative. Thus, to divide 1.6 × 10−8 by 36.17, the 
sequence of key strokes is:

1.6 EE  +/−  8 ÷  36.17 =

2 One infuriating model uses the extremely unfortunate label x10x  which looks a lot like 10x , a 
different key with a completely different function.
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Again, neither the “10” nor the “×” sign that comes before it is keyed in. The EE  key 
has these built in.

Students sometimes wonder why it is incorrect to use the 10x  key for scientific nota-
tion. To execute 7.29 × 109 times 25, they are tempted to enter the following:

7.29 ×  10x  9 ×  25 =

The answer is that sometimes this works, and sometimes it doesn’t, and calculator us-
ers must use key entries that always work. The scientific notation key ( EE ) keeps a value 
in scientific notation all together as one number. That is, when the EE  key is used, the 
calculator regards 7.29 × 109 not as two numbers but as a single numerical value. But when 
the ×  key is manually inserted, the calculator treats the numbers separated by the ×  key 
as two separate values. This causes the calculator to render an incorrect answer for a calcula-
tion such as

3.0×106

1.5×106

The denominator of this expression is exactly half the numerator, so the value of this 
fraction is obviously 2. But when using the 10x  key, the 1.5 and the 106 in the denominator 
are separated and treated as separate values. The calculator then performs the following 
calculation:

3.0×106

1.5
×106

This comes out to 2,000,000,000,000 (2 × 1012), which is not the same as 2!
The bottom line is that the EE  key, however it may be labeled, is the correct key to use 

for scientific notation.

2.1.7 Problem Solving Methods
Organizing problems on your paper in a reliable and orderly fashion is an essential 

practice. Physics problems can get very complex and proper solution practices can often 
make the difference between getting most or all the points for a problem and getting few or 
none. Each time you start a new problem, you must set it up and follow the steps according 
to the outline presented in the box on pages 32 and 33, entitled Universal Problem Solving 
Method. It is important that you always show all your work. Do not give in to the tempta-
tion to skips steps or take shortcuts. Develop correct habits for problem solving and stick 
with them!

2.2 Motion
In this course, we address two types of motion: motion at a constant velocity, when an 

object is not accelerating, and motion with uniform acceleration. Defining these terms is a 
lot simpler if we stick to motion in one dimension, that is, motion in a straight line. So in 
this course, this is what we do.
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2.2.1 Velocity
When thinking about motion, one of the first things we must consider is how fast an 

object is moving. The common word for how fast an object is moving is speed. A similar 
term is the word velocity. For the purposes of this course, you may treat these two terms as 
synonyms. The difference is technical. Technically, the term velocity means not only how 
fast an object is moving, but also in what direction. The term speed refers only to how fast 
an object is moving. But since we only consider motion in one direction at a time, we can 
use the terms speed and velocity interchangeably.

An important type of motion is motion at a constant velocity, as with a car with the 
cruise control on. At a constant velocity, the velocity of an object is defined as the distance 
the object travels in a certain period of time. Expressed mathematically, the velocity, v, of 
an object is calculated as

v = d
t

The velocity is calculated by dividing the distance the object travels, d, by the amount 
of time, t, it takes to travel that distance. So, if you walk 5.0 miles in 2.0 hours, your velocity 
is v = (5.0 miles)/(2.0 hours), or 2.5 miles per hour.

Notice that for a given length of time, if an object covers a greater distance it is moving 
with a higher velocity. In other words, the velocity is proportional to the distance traveled 
in a certain length of time. When performing calculations using the SI System of units, dis-
tances are measured in meters and times are measured in seconds. This means the units for 
a velocity are meters per second, or m/s.

The relationship between velocity, distance, and time for motion at a constant velocity 
is shown graphically in Figure 2.6. Travel time is shown on the horizontal axis and distance 
traveled is shown on the vertical axis. The steeper curve3 shows distances and times for an 

3 The lines or curves on a graph are all referred to as curves, whether they are curved or straight.

Figure 2.6. A plot of distance versus time for an object moving at constant velocity. Two 
different velocity cases are shown.

1

1

2

2

3

3

4

4

5

5

6

6

7

7 8 9 10 11 12
time (s)

di
st

an
ce

 (m
)

v = 2 m/s v = 0.5 m/s



38832

Chapter 2

Universal Problem Solving Method
Solid Steps to Reliable Problem Solving

In ASPC, you learn how to use math to solve scientific problems. Developing a sound 
and reliable method for approaching problems is crucial. The problem solving meth-
od shown below is used in scientific work everywhere. Always follow every step close-
ly and show all your work.

1. Write down the given quantities at the left side of your paper. Include the variable 
quantities given in the problem statement and the variable you must solve for. 
Make a mental note of the precision in each given quantity.

2. For each given quantity that is not already in MKS units, work immediately to the 
right of it to convert the units of measure into MKS units. To help prevent mis-
takes, always use horizontal fraction bars in your units and unit conversion fac-
tors. Write the results of these unit conversions with one extra digit of precision 
over what is required in your final result.

3. Write the standard form of the equation to be used in solving the problem.
4. If necessary, use algebra to isolate the variable you are solving for on the left side 

of the equation. Never put values into the equation until this step is done.
5. Write the equation again with the values in it, using only MKS units, and compute 

the result.
6. If you are asked to state the answer in non-MKS units, perform the final unit con-

version now.
7. Write the result, with the correct number of significant digits and the correct 

units of measure.
8. Check your work.
9. Make sure your result is reasonable.

Example Problem
If you want a complete and happy life, do ’em just like this!

A car is traveling at 35.0 mph. The driver then accelerates uniformly at a rate of 
0.15 m/s2 for 2 minutes and 10.0 seconds. Determine the final velocity of the car in 
mph.

Step 1 Write down the given information in a column down the left side of your 
page, using horizontal lines for the fraction bars in the units of measure.

vi = 35.0 mi
hr

a = 0.15 m
s2

t = 2 min 10.0 s
v f = ?
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Step 2 Perform the needed unit conversions, writing the conversion factors to the 
right of the given quantities you wrote in the previous step. Use only hori-
zontal bars in unit fractions.

vi = 35.0 mi
hr

⋅1609 m
mi

⋅ 1 hr
3600 s

=15.6 m
s

a = 0.15 m
s2

t = 2 min 10.0 s =130.0 s
v f = ?

Step 3 Write the equation to be used in its standard form.

a =
v f −vi

t

Step 4 Perform the algebra necessary to isolate the unknown you are solving for on 
the left side of the equation.

a =
v f −vi

t
at = v f −vi
v f = vi +at

Step 5 Using only values in MKS units, insert the values and compute the result.

v f = vi +at =15.6 m
s
+0.15 m

s2 ⋅130.0 s = 35.1 m
s

Step 6 Convert to non-MKS units, if required in the problem.

v f = 35.1 m
s
⋅ 1 mi
1609 m

⋅3600 s
1 hr

= 78.5 mi
hr

Step 7 Write the result with correct significant digits and units of measure.

v f = 79 mph

Step 8 Check over your work, looking for errors.

Step 9 Make sure your result is reasonable. First, check to see if your result makes 
sense. The example above is about an accelerating car, so the final velocity 
we calculate should be a velocity a car can have. A result like 14,000 mph is 
obviously incorrect. (And remember that nothing can travel faster than the 
speed of light, so make sure your results are reasonable in this way as well.) 
Second, if possible, estimate the answer from the given information and 
compare your estimate to your result. In step 6 above, we see that 3600/1609 
is about 2, and 2 ∙35.1 is about 70. Thus our result of 79 mph makes sense.

(Optional Step 10: Revel in the satisfaction of knowing that once you get this down 
you can work physics problems perfectly nearly every time!)
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object moving at 2 m/s. At a time of one second, the distance traveled is two meters because 
the object is moving at two meters per second (2 m/s). After two seconds at this speed, the 
object has moved four meters: (4 m)/(2 s) = 2 m/s. And after three seconds, the object has 
moved six meters: (6 m)/(3 s) = 2 m/s.

The right-hand curve in Figure 2.6 represents an object traveling at the much slower 
velocity of 0.5 m/s. At this speed, the graph shows that an object travels two meters in four 
seconds, four meters in eight seconds, and so on.

To see this algebraically, look again at the velocity equation above. This equation can 
be written as

d = vt

Written this way, t is the independent variable, d is the dependent variable, and v serves as 
the slope of the line relating d to t. With this form of the velocity equation, we can calculate 
how far an object travels in a given amount of time, assuming the object is moving at a 
constant velocity.

Now we work a couple of example problems, following the problem-solving method 
described on pages 32–33. And remember, all the unit conversion factors you need are 
listed in Appendix A.

 Example 2.1

Sound travels 1,120 ft/s in air. How much time does it take to hear the crack of a gun fired 
1,695.5 m away?

First, write down the given information and perform the required unit conversions so that 
all given values are in MKS units. Check to see how many significant digits your result must 
have and do the unit conversions with one extra significant digit. The given speed of sound 
has three significant digits, so we perform our unit conversions with four digits.

v =1120 ft
s
⋅0.3048 m

ft
= 341.4 m

s
d =1695.5 m
t = ?

Next, write the appropriate equation to use.

v = d
t

Perform any necessary algebra, insert the values in MKS units, and compute the result.

t = d
v
= 1695.5 m

341.4 m
s

= 4.966 s

Next, round the result so that it has the correct number of significant digits. In the velocity 
unit conversion and in the calculated result, I used four significant digits. The given veloc-
ity has three significant digits and the given distance has five significant digits. Thus, our 



391 35

 Motion

result must be reported with three significant digits, but all intermediate calculations must 
use one extra digit. This is why I use four digits. But now we have he result, and it must be 
rounded to three significant digits because the least precise measurement in the problem 
has three significant digits. Rounding our result accordingly, we have

t = 4.97 s

The final step is to check the result for reasonableness. The result should be roughly the 
same as 1500/300 or 2000/400, both of which equal 5. Thus, our result makes sense.

2.2.2 Acceleration
An object’s velocity is a measure of how fast it is going; it is not a measure of whether 

its velocity is changing. The quantity we use to measure if a velocity is changing, and if so, 
how fast it is changing, is the acceleration. If an object’s velocity is changing, the object is 
accelerating, and the value of the acceleration is the rate at which the velocity is changing. 
The equation we use to calculate uniform acceleration, in terms of an initial velocity vi and 
a final velocity vf, is

a =
v f −vi

t

where a is the acceleration (m/s2), t is the time spent accelerating (s), and vi and vf are the 
initial and final velocities, respectively, (m/s).

Notice that the MKS units for acceleration are meters per second squared (m/s2). These 
units sometimes drive students crazy, so we pause here to discuss what this means so you 
can sleep peacefully tonight. I mention just above that the acceleration is the rate at which 
the velocity is changing. The acceleration simply means that the velocity is increasing by so 
many meters per second, every (per) second. Now, “per” indicates a fraction, and if a veloc-
ity is changing so many meters per second, per second, we write these units in a fraction 
this way and simplify the expression:

m
s
s
=

m
s
s
1

= m
s
⋅1
s
= m

s2

Because the acceleration equation results in negative accelerations when the initial ve-
locity is greater than the final velocity, you can see that a negative value for acceleration 
means the object is slowing down. In future physics courses, you may learn more sophis-
ticated interpretations for what a negative acceleration means, but in this course you are 
safe associating negative accelerations with decreasing velocity. In common speech, people 
sometimes use the term “deceleration” when an object is slowing down, but mathematically 
we just say the acceleration is negative.

Before we work through some examples, let’s look at a graphical depiction of uniform 
acceleration the same way we did with velocity. Figure 2.7 shows two different acceleration 
curves, representing two different acceleration values. For the curve on the right, after 1 s 
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the object is going 1 m/s. Aft er 2 s, the object is going 2 m/s. Aft er 12 s, the object is going 
12 m/s. You can take the velocity that corresponds to any length of time (by fi nding where 
their lines intersect on the curve) and calculate the acceleration by dividing the velocity by 
the time to get a = 1 m/s2. Th e other curve has a higher acceleration, 4 m/s2. An acceleration 
of 4 m/s2 means the velocity is increasing by 4 m/s every second. Accordingly, aft er 2 s the 
velocity is 8 m/s, and aft er 3 s, the velocity is 12 m/s. No matter what point you select on 
that curve, v/t = 4 m/s2.

We must be careful to distinguish between velocity (m/s) and acceleration (m/s2). Ac-
celeration is a measure of how fast an object’s velocity is changing. To see the diff erence, 
note that an object can be at rest (v = 0) and accelerating at the same instant.

Now, although you may not see this at fi rst, it is important for you to think this through 
and understand how this counter-intuitive situation 
can come about. Here are two examples. Th e instant 
an object starts from rest, such as when the driver hits 
the gas while sitting at a traffi  c light, the object is si-
multaneously at rest and accelerating. Th is is because 
if an object at rest is to ever begin moving, its veloc-
ity must change from zero to something else. In other 
words, the object must accelerate. Of course, this situ-
ation only holds for an instant; the velocity instantly 
begins changing and does not stay zero.

Perhaps my point will be easier to see with this 
second example. As depicted in Figure 2.8, when 
a ball is thrown straight up and reaches its highest 
point, it stops for an instant as it starts to come back 
down. At its highest point, the ball is simultaneously 
at rest and accelerating due to the force of gravity pull-
ing it down. As before, this situation only holds for a 
single instant.

Th e point of these two examples is to help you 
understand the diff erence between the two variables 
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we are discussing, velocity and acceleration. If an object is moving at all, then it has a ve-
locity that is not zero. The object may or may not be accelerating. But acceleration is about 
whether the velocity itself is changing. If the velocity is constant, then the acceleration is 
zero. If the object is speeding up or slowing down, then the acceleration is not zero.

And now for another example problem, this time using the acceleration equation.

 Example 2.2

A truck is moving with a velocity of 42 mph (miles per hour) when the driver hits the brakes 
and brings the truck to a stop. The total time required to stop the truck is 8.75 s. Determine 
the acceleration of the truck, assuming the acceleration is uniform.

Begin by writing the givens and performing the unit conversions.

vi = 42 mi
hr

⋅1609 m
mi

⋅ 1 hr
3600 s

=18.8 m
s

v f = 0
t = 8.75 s
a = ?

Now write the equation and complete the problem.

a =
v f −vi

t
=

0−18.8 m
s

8.75 s
= −2.15 m

s2

The initial velocity has two significant digits, so I perform the calculations with three sig-
nificant digits until the end. Now we round off to two digits giving

a = −2.2 m
s2

If you keep all the digits in your calculator throughout the calculation and round to two 
digits at the end, you have −2.1 m/s2. This answer is fine, too. Remember, the last digit of 
a measurement or computation always contains some uncertainty, so it is reasonable to 
expect small variations in the last significant digit. A check of our work shows the result 
should be about –20/10, which is –2. Thus the result makes sense.

One more point on this example: Notice that the calculated acceleration value is negative. 
This is because the final velocity is lower than the initial velocity. Thus we see that a negative 
acceleration means the vehicle is slowing down.

If you haven’t yet read the example problem in the yellow Universal Problem Solving 
Method box on page 32, you should read it now to see a slightly more difficult example us-
ing this same equation.
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2.2.3 Graphical Analysis of Motion
Analyzing motion graphically is a powerful tool. When you understand the graphical 

analysis in this section, you will be off to a solid start in being able to think conceptually and 
quantitatively about motion the way a student of physics should be able to do.

The graphs in Figure 2.9 show representative curves for three different motion states 
an object can be in: at rest (no motion), moving at a constant velocity, and accelerating 
uniformly. Each vertical group of curves depicts distance, velocity, and acceleration as func-
tions of time. In the first group, the object is at rest, which means the distance from the 
object to the “starting line” (from which we measure how far it has gone) is a constant. The 
only way this can happen is for the object to be at rest. (Well, yes, technically the object 
could be moving in a circle, but we are not going to consider that in this course!) 

d = constant
(at rest)

v = constant
(constant velocity)

a = constant
(uniform acceleration)
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Figure 2.9. Graphical depictions of states of motion.
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In the second group, the velocity is a constant (and not zero). This means the distance 
to the starting line is changing at a constant rate, and the object is not accelerating. In the 
third group, the object is accelerating uniformly, which means its velocity is changing at a 
constant rate. Notice that I always start the distance graphs at an arbitrary point. This is just 
to make the curves as generic as possible. When drawing your own curves if you wish to 
start the distance curves at the origin that is fine. However, the origin on a velocity graph 
represents a velocity of zero, meaning the object is at rest. Thus, you can only start a velocity 
graph at the origin if you are depicting an object that is starting from rest.

Interestingly, when an object is accelerating the distance graph is no longer linear. In-
stead, it is a type of curve called a quadratic. We address this type of curve in Chapter 4, but 
essentially it is the type of curve that occurs when the relationship between y and x, that is, 
between the distance and time in this case, can be modeled by an equation such as y = kx 2, 
or, in our specific case, d = kt 2. In an equation like this, k is simply a constant that depends 
on the circumstances.

In these time diagrams, the distance graph is the only one that is ever curved. All the 
others are linear. Also make note that in this course if an object is accelerating the accelera-
tion is always uniform. On graphs like these, this means the acceleration is always a hori-
zontal line. This horizontal line is at a positive value when the object is speeding up and at 
a negative value when the object is slowing down.

As I mention above, when an object is accelerating the graph of the object’s distance 
vs. time has a quadratic curvature. This curvature makes this graph more complex than the 
others, so we now look more closely at this type of graph. There are four ways this graph can 
curve, depending on what the object is doing, shown in Figure 2.10.

The first thing to notice is that if the object is going forward the distance is increasing, 
so the curve slopes upward. If the slope is getting steeper, the object is speeding up. If it is 
getting less steep, the object is slowing down. The only way the curve can slope downward 
is if the object is going backwards, so that the distance to the starting line is decreasing. Just 
as before, if the curve is getting steeper, the object is going faster. If the curve is getting less 
steep (more horizontal), the object is slowing down.

Figure 2.11 highlights additional details of distance and velocity graphs. When a 
distance graph curves all the way over to horizontal it means the object stops. If it stays 
stopped, then the distance graph becomes a horizontal line. A downward sloping velocity 
graph means the object is slowing, but if the velocity curve actually goes below the horizon-
tal axis that means the velocity is negative and the object is going in reverse.

When given a description of an object’s motion for a graphing exercise, your task is to 
piece together segments from different representative curves to represent motion in differ-
ent time intervals. For example, a vehicle could be traveling at one velocity, accelerate for a 
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while, and then travel at a new velocity. In such a case, there are three distinct time intervals 
associated with this motion—one for the constant speed at the beginning, one for the ac-
celeration in the middle, and one for the new constant speed motion at the end.

 Example 2.3

Consider a car driving down the road at a constant velocity. The driver then accelerates 
uniformly to a higher velocity and continues at this new, higher velocity. Draw diagrams 
of d vs. t, v vs. t, and a vs. t de-
picting this scenario. Show the 
time intervals distinctly in your 
diagrams and align your time 
intervals vertically.

There are three distinct time 
intervals in this scenario. First, 
there is a period of time at the 
initial constant velocity. Then 
there is an interval when the car 
is accelerating. Finally, the car 
continues at the new velocity.

The graphical depiction of this 
sequence of events is shown in 
Figure 2.12. The three graphs 
(distance, velocity and accel-
eration vs. time) are drawn 
above one another so the time 
intervals can be aligned in each 
graph. The three time intervals 
are separated by the dashed 
lines. Notice some key details. 
First, on the distance graph, the 
slope is higher in the third in-
terval than in the first because 
the car’s velocity is higher. Sec-
ond, the two linear sections on 
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the distance graph are smoothly connected to the curved (quadratic) section in the middle. 
There should never be kinks (sharp corners) in a distance graph. The quadratic curvature 
only occurs in the distance graph, and only when the car is accelerating. Finally, the ac-
celeration graph is zero everywhere except in the middle when the car is accelerating, and 
there the curve is a horizontal line representing positive, uniform acceleration.

2.3 Planetary Motion and the Copernican Revolution

2.3.1 Science History and the Science of Motion
People have been fascinated with the heavens since ancient times. God’s people love to 

quote Psalm 19: 

The heavens declare the glory of God, and the sky above proclaims his handiwork.
Day to day pours out speech, and night to night reveals knowledge.

The psalmist tells us that the glory of the stars and other heavenly bodies reveals the glory 
of their creator, our God. This means they convey truth to us, the truth we call General 
Revelation.

The study of motion has always been associated with the motion of the heavenly bod-
ies we see in the sky, so it is particularly fitting in this chapter on motion for us to review 
the history of views about the solar system and the rest of the universe, referred to as “the 
heavens” by those in ancient times. As we will see, the particular episode known as the Co-
pernican Revolution was a pivotal moment in that history and was the setting for the emer-
gence of our contemporary understanding of scientific epistemology—what knowledge is 
and how we know what we know.

As you recall, Chapter 1 addresses the Cycle of Scientific Enterprise and examines the 
way science works. From that discussion you know that science is an ongoing process of 
modeling nature—at least that is the way we understand science now. We now understand 
that scientists use theories as models of the way nature works, and over time theories change 
and evolve as scientists learn more. Sometimes scientists find that a theory is so far off the 
mark that they have to toss it out completely and replace it with a different one.

The present general understanding among scientists that science is a process of model-
ling nature took hold around the beginning of the 20th century. The ideas that led to this 
understanding began to emerge at the time of the Copernican Revolution in the 16th and 
17th centuries. But since natural philosophy was then entering new territory, there was a 
period of difficult struggle that involved both theologians and philosophers.

There are a lot of misconceptions about what happened at that time. The conflict in 
Galileo’s day is often regarded as a fight between faith and science, and these misconcep-
tions have led many people in today’s world to the position that faith is dead and only sci-
ence gives us real knowledge. But that depiction is not even close to what really happened, 
and that belief about science is not even close to the truth. The real issue with Galileo was 
about epistemology. The so-called “faith versus science” debate rages today as much as ever, 
so it is worth spending some time to understand that crucial period in scientific history.



39842

Chapter 2

2.3.2 Aristotle
The study of astronomy and astrology dates back to the ancient Babylonians, but we 

pick up the story with the ancient Greeks and the Greek philosopher Aristotle in the 4th 
century BC (Figure 2.13). Aristotle was a highly influential philosopher who wrote a lot 

about philosophy, physics, biology, and other fields of learn-
ing. Back then, science was called natural philosophy and there 
was really no distinction between scientists and philosophers.

That time was also many centuries before experiments 
became part of scientific research. Natural philosophy did 
involve making observations about the world, but the con-
clusions reached by ancient philosophers like Aristotle were 
based simply on observation and philosophical thought. It 
was still about 2,000 years before natural philosophers real-
ized that the way things appear to our ordinary senses might 
not be the way they actually are and that to understand more 
about the world required scientific experiments. For example, 
if you just walk outside and quietly look around you notice 
that the earth does not appear to be in motion; it feels solid 
and at rest. The sun, planets, and stars appear to move across 
the sky each day. In fact, watching a sunrise gives the distinct 
impression that the sun is moving up and then across the sky. 
Today, we understand things differently, but that is the result 

of the revolution we are about to explore and the experimental science that emerged at that 
time.

Aristotle’s ideas were grounded in the concept of telos—a Greek term meaning pur-
pose, goal, or end. Aristotle believed that each thing that exists has its own telos, an idea we 
can heartily embrace today as Christians who believe that God made the world with specific 
purposes in mind.

Aristotle observed the serene beauty of the stars, the planets, the sun, and moon as 
they appear majestically to rotate around the earth day after day. He also noticed that noth-
ing in the heavens ever seems to change. Other than the motions of the heavenly bodies, 
everything in the heavens seems to be pure and eternal. On earth, of course, Aristotle was 
surrounded by change: decay, corruption, birth, and death are all around. Animals and 
plants live and die, forests grow and burn, rivers flow and flood, storms come and go. These 
observations led Aristotle to conclude that change and corruption occur only on the earth. 
He wrote that imperfection and change of any kind occur only on the earth, while the heav-
ens are pure and unchanging. Aristotle taught that the heavenly bodies—planets, stars, sun, 
and moon—are eternal and perfect. Further, he said that their motions must be in perfect 
circles since the circle is the purest and most perfect geometric shape. He conceived of the 
sun, moon, and planets as inhabiting celestial spheres, centered on the earth, one inside the 
other—an exquisite geocentric (earth-centered) system.

Aristotle was a tremendous moral philosopher whose ideas still have a profound influ-
ence on us today. Back in ancient times, he was regarded so highly that questioning his ideas 
was virtually unthinkable. Thus, his views about the heavenly motions became the basis for 
all further work on understanding the motions of the heavenly bodies.

Figure 2.13. Greek philosopher 
Aristotle (384–322 BC).
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2.3.3 Ptolemy
In the second century AD, the famous Alexandrian 

astronomer Claudius Ptolemy (Figure 2.14) worked out a 
detailed mathematical system based on Aristotle’s ideas. 
(By the way, the “P” in Ptolemy is silent.) Many Greek 
philosophers, including Ptolemy, believed the cosmos to 
be pervaded by a moral order. Contemplating the heavens 
and studying the mathematics were stages toward con-
templation of the divine. Ptolemy’s practical goal was to 
be able to make predictions about the movements of the 
planets and stars, along with other astronomical events 
such as eclipses, because these events were widely believed 
to be omens signifying important events on earth.

Ptolemy started with Aristotle’s basic ideas and de-
veloped a complex mathematical system—a model—that 
was quite effective in making the desired predictions. 
There were other astronomers around that time who developed different systems, but Ptol-
emy’s system became the most widely accepted understanding of the heavens for over a 
thousand years.

2.3.4 The Ptolemaic Model
The basic structure of Ptolemy’s geocentric model of the heavens is depicted in Figure 

2.15. As with Aristotle, there are seven heavenly bodies, each inhabiting a sphere centered 
on the earth. Each of the heavenly bodies is also itself a perfect sphere.

The contents of the spheres are summarized in Table 2.3. The first seven spheres con-
tain the five planets (not includ-
ing the earth), the sun, and the 
moon. Sphere 8 contains the so-
called Firmament, the fixed layer 
of stars. The stars do not move 
relative to each other; their po-
sitions are fixed and they rotate 
as a body in the 8th sphere each 
day. Within the firmament, the 
stars are arranged according to 
the zodiac, a belt of twelve con-
stellations around the earth. The 
term zodiac derives from the 
Latin and Greek terms mean-
ing “circle of animals,” and is 
so named because many of the 
constellations in the zodiac rep-
resent animals.

The ninth sphere contains 
the Primum Mobile, which is 
Latin for “prime mover” (or 
“first mover”). The Primum 

Figure 2.14. Alexandrian astronomer 
Claudius Ptolemy (c. AD 100–170).

Figure 2.15. The Ptolemaic model of the heavens.
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Mobile is the sphere set into mo-
tion by God or the gods. As the 
Primum Mobile turns, it pulls all 
the other spheres with it, making 
them rotate as well. Outside the 
ninth sphere is the so-called Em-
pyrean, the dwelling place of God 
or the gods. 

There is a great deal more 
to the model than shown in the 
diagram of Figure 2.15. This is 
because all seven of the heavenly 
bodies appear to move around 
in the nighttime sky against the 
background of the fixed stars. If 
all the heavenly bodies simply 
moved in their spheres around 
the earth together once each day,  
there would be no way to account 
for why the planets’ positions 
change relative to the stars. Ptol-
emy accounted for the changes by 
a system of epicycles. An epicycle 

is a circular planetary orbit with its center moving in 
a separate circular path, as depicted in Figure 2.16. 
As the center of an epicycle moves along its path in 
the sphere, the planet in the epicycle rotates about 
the center of the epicycle, as if the epicycle were a 
wheel rolling around a path centered on the earth.

To help you understand why epicycles are nec-
essary in Ptolemy’s model, we discuss them in more 
detail in the next section. A planet moving in an epi-

cycle moves in a path similar to a person 
riding in a “tea cup ride” at an amusement 
park, like the one pictured in Figure 2.17. 
To account for the complex motions of 
the heavenly bodies, Ptolemy’s model con-
tained some 80 different epicycles. Ptol-

Sphere 1 Moon

Sphere 2 Mercury

Sphere 3 Venus

Sphere 4 Sun

Sphere 5 Mars

Sphere 6 Jupiter

Sphere 7 Saturn

Sphere 8 The Firmament. This region consists of the 
stars arranged in their constellations ac-
cording to the zodiac.

Sphere 9 The Primum Mobile. This Latin name means 
“first mover.” This sphere rotates around the 
earth every 24 hours and drags all the oth-
er spheres with it, making them all move.

Beyond The Empyrean. This is the region beyond 
the spheres. The Empyrean is the abode of 
God, or the gods.

Table 2.3. Contents of the spheres in the Ptolemaic model.

Figure 2.17. The people in the cups spin in a circle while 
the cup moves in a larger circle,  motion like that of a 
planet moving on an epicycle.

Figure 2.16. A planet moving in a path 
defined by an epicycle around the earth.

epicycle

earth

planet

planetary sphere
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emy’s model has some of the planets in an epicycle riding on the rim of another epicycle, 
which in turn moved in the sphere around the earth. Ptolemy’s system was mathematically 
very complex, but its genius was that it worked pretty well! The main features of Ptolemy’s 
model are summarized in the box in Figure 2.18.

Among the different astronomers of the ancient world, there were those who held to 
variations on this basic model. For example, some astronomers reckoned that Mercury and 
Venus orbited the sun while the other heavenly bodies orbited the earth. But the basic Ptol-
emaic model is as described in Figure 2.15.

2.3.5 The Ancient Understanding of the Heavens
We soon address the new ideas that began unfolding when Nicolaus Copernicus intro-

duced his new heliocentric (sun-centered) model of the heavens. But before pressing on, let’s 
pause to consider a couple of things about the way the motion of the planets in the night sky 
appears to observers on earth. This will make it easier to understand why Ptolemy’s system 
became so widely accepted.

Stationary Earth   First, as I mention above, the earth does not seem to be moving. To you 
and I, who grew up in a time when everyone knows that the earth and other planets orbit 
the sun, it seems obvious that day and night are caused by the earth’s rotation on its axis. 
We have heard about this all our lives. But stop and consider that if all we had to go on was 
our simple observations, it does appear that everything is orbiting around the earth while 
the earth sits still: the sun and moon rise each day, track across the sky, and set, and the 
planets and stars all do the same thing. Also, it doesn’t feel at all like earth is rotating. We 
all know that anytime we spin in a circle, like people on a merry-go-round, we have to hold 
on to keep from falling off. We also feel the wind in our hair. Again, if we have something 
with us on the merry-go-round that is tall and flexible, such as a sapling, it does not remain 
vertical when it is moving in a circular fashion like this. Instead, it bends over because of the 
acceleration pulling it in its circular motion.

Now, the ancients knew about the large size of the earth—the Greek mathematician 
and geographer Eratosthenes (Figure 2.19) made a very accurate estimate of the earth’s 
circumference—a bit under 25,000 miles—as far back as 240 BC. If a sphere that size spins 
in a circle once a day, the people on its surface move very fast (over 1,000 miles per hour 

The Main Principles in Ptolemy’s Celestial Model
1. There are seven heavenly bodies.
2. All the heavenly bodies move in circular orbital regions called spheres. In the 

model, there are nine spheres plus the region beyond the spheres, with contents 
as listed in Table 2.3.

3. All the heavenly bodies are perfectly spherical.
4. All the spheres are centered on the earth, so this system is a geocentric system.
5. Corruption and change exist only on earth. All other places in the universe, in-

cluding all the heavenly bodies and stars, are perfect and unchanging.
6. All the spheres containing the heavenly bodies and all the stars in the Firmament 

rotate completely around the earth every 24 hours.
7. Epicycles are used to explain the motion of the planets relative to the stars.

Figure 2.18. The main principles in the Ptolemaic model.
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on the equator). For this to be the case, it seemed that we 
would be hanging on for dear life! The trees would be lay-
ing down and we would constantly feel winds that make a 
hurricane seem like a calm summer day!

For all these reasons, it did not seem reasonable to be-
lieve that the apparent motion of the heavenly bodies across 
the sky every day was due to the earth’s rotation. These ar-
guments seemed obvious to nearly everyone before 1500, 
and to everyone except a few cutting-edge astronomers 
right up to the end of the 17th century. Only a crazy person 
imagined that the earth spins, and people used these argu-
ments all the way up to the time of Galileo to prove that the 
earth was not orbiting the sun and spinning around once a 
day. Back then, these were persuasive arguments.

Forward and Retrograde Motion   The second item to 
consider here has to do with the apparent motion of the 
planets in the sky against the background of the stars. If 
you go out and look at, say, Mars each night and make a 
note of its location against the stars, you see that it is in a 
slightly different place each night. The planet gradually works its way along in a pathway 
against the starry background night after night. If you track the planet for several months 
or a year, it moves quite far. As mentioned above, Ptolemy used epicycles to account for this 
forward motion of planets against the background of fixed stars.

Going back to watching Mars, if you follow the planet’s progress long enough, you see 
that there are periods of time lasting several weeks when the nightly progress of the planet 

reverses course. Mars 
appears to be backing 
up! This apparent back-
ing up is called retro-
grade motion. Ptolemy 
used epicycles to ac-
count for this, too.

Figure 2.20 illus-
trates how epicycles 
are used in the geo-
centric system to ac-
count for the planetary 
motions—both for-
ward and retrograde—
against the background 
of the fixed stars. Mars 
is shown in red moving 
on an epicycle, while 
the center of the epi-
cycle moves around the 
earth. The dashed lines 
are the lines of sight 

Figure 2.19. Greek mathematician 
and geographer Eratosthenes (c. 
276–194 BC).
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Figure 2.20. Using epicycles to explain the forward and retrograde motion of 
heavenly bodies against the background of fixed stars.
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from earth to Mars, 
and the letters and 
numbers outside the 
firmament show the 
locations where Mars 
appears among the 
stars at different times.

The lower right 
part of the diagram 
shows Mars in three 
locations (labeled 1, 2, 
and 3) over the course 
of a few weeks. Com-
pared to the back-
ground of fixed stars, 
Mars exhibits forward 
motion during a se-
quence of nighttime 
observations.

The upper right 
part of the figure shows 
Mars’ locations during 
a different sequence of 
observations (a, b, and c) some months later. Mars is now on the other side of its epicycle. 
The center of the epicycle continues to move in the same direction in its sphere around 
earth. But since Mars is on the near side of its epicycle, the sequence of observations of its 
location against the starry background—a, b, and c—maps along the starry background in 
the opposite direction. This apparent motion of Mars in the opposite direction is retrograde 
motion.

While we are on the subject, we may as well look at how forward and retrograde mo-
tion are explained in a heliocentric system—a system in which the planets orbit the sun. The 
system introduced by Copernicus is a heliocentric system. Assuming that the earth moves 
faster in its orbit than Mars (which is correct), the explanation is straightforward. As shown 
in the upper part of Figure 2.21, when the earth and Mars are on opposite sides of their or-
bits, the observations of Mars’ location against the stars exhibit forward motion. But when 
the earth and Mars are on the same side of the sun, as in the center-right part of the figure, 
the earth’s greater velocity makes Mars’ position against the stars exhibit retrograde motion.

To summarize, none of the planets actually reverses course in its orbit, and neither 
the geocentric nor heliocentric models depict planets as reversing direction. But depend-
ing on the system, the presence of epicycles and the relative locations of earth and a planet 
can combine to account for the appearance of forward or retrograde motion of the planet 
against the fixed background of the stars.

2.3.6 The Ptolemaic Model and Theology
We soon continue our history of the science of planetary motion by reviewing the 

momentous events of the 16th and 17th centuries. Between Ptolemy and Copernicus were 
1,300 years of theology and philosophy. During this long period of history, a strong tradi-
tion emerged among many theologians that the Ptolemaic model of the heavens aligned 
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Figure 2.21. Explanation of forward and retrograde motion in the Copernican 
system.
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very well with certain passages in the Bible. This circumstance led theologians in this tradi-
tion to assume that such passages were to be interpreted as literal descriptions of the mo-
tions of the heavenly bodies. Here are a few examples of passages that seem to describe the 
earth as motionless, with the sun and stars going around the earth:

He set the earth on its foundations, so that it should never be moved (Psalm 104:5).

He made the moon to mark the seasons; the sun knows its time for setting (Psalm 104:19).

[The sun’s] rising is from the end of the heavens, and its circuit to the end of them (Psalm 
19:6).

The sun rises and the sun goes down, and hastens to the place where it rises (Ecclesiastes 
1:5).

Additionally, other features in the Ptolemaic model (derived from Aristotle) seemed to 
line up with biblical symbolism. For example:

• Seven is the biblical number symbolizing perfection, so it made sense that God’s cre-
ation contains seven heavenly bodies.

• Circles are the most perfect shape, regarded as divine from the times of the ancient 
Greeks, so the spherical bodies inhabiting spheres in which they move seemed to re-
flect the perfection of their creator.

• Corruption was thought to exist only on earth, and it seemed this was obviously be-
cause of the curse that resulted from the Fall of man.

The result of such teaching was that many theologians assumed that the biblical pas-
sages and doctrines described above, along with the Ptolemaic model of the heavens, were 
literal descriptions of the true nature of reality. To these theologians, anyone who had dif-
ferent ideas about the heavens—such as, for example, the idea that the earth moved and 
orbited the sun—should be censored and prevented from spreading teachings they felt were 
unbiblical.

Although widespread, this tradition of associating the Ptolemaic model with the Bible 
was by no means universal. Many theologians took a completely different position, includ-
ing the great theologian and philosopher Augustine, a bishop in northern Africa in the 4th 
and 5th centuries AD. An insightful and relevant passage from Augustine is found in his 
book On the Literal Meaning of Genesis:

Usually, even a non-Christian knows something about the earth, the heavens, and 
the other elements of this world, about the motion and orbit of the stars and even 
their sizes and relative positions, about the predictable eclipses of the sun and 
moon, the cycles of the years and the seasons, about the kinds of animals, shrubs, 
stones, and so forth, and this knowledge he holds to as being certain from reason 
and experience. Now it is a disgraceful and dangerous thing for an infidel to hear a 
Christian, presumably giving the meaning of Holy Scripture, talking nonsense on 
these topics, and we should take all means to prevent such an embarrassing situa-
tion, in which people show up vast ignorance in a Christian and laugh it to scorn. 
The shame is not so much that an ignorant individual is derided, but that people 
outside the household of faith think our sacred writers held such opinions, and, to 
the great loss of those for whose salvation we toil, the writers of our Scripture are 
criticized and rejected as unlearned men.
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As we open the curtain now on the rest of our story, it is key to remember that many 
church theologians were strong supporters of those engaged in natural philosophy. The Ro-
man Catholic Church—which figures prominently in these events—had a long tradition of 
supporting intellectual inquiry, including natural philosophy, and many of the individual 
theologians in the church were admirers of the scientists involved in these events.

2.3.7 Copernicus and Tycho
Nicolaus Copernicus (Figure 2.22), a Polish astrono-

mer, first proposed a detailed, mathematical, heliocentric 
model of the heavens, with the earth rotating on its axis, all 
the planets moving in circular orbits around the sun, and 
the moon orbiting the earth.

Copernicus’ system was about as accurate—and about 
as complex—as the Ptolemaic system. The Copernican 
model still used circular orbits and because of this he still 
had to use epicycles to make the model accurate. Still, the 
model is an arrangement that is a lot closer to today’s un-
derstanding than the Ptolemaic model is. 

As mentioned in the accompanying box, Copernicus 
dedicated his famous work On the Revolutions of the Heav-
enly Spheres to Pope Paul III. This dedication indicates that 
the Roman Catholic Church itself was not opposed to Co-
pernicus’ ideas. Nevertheless, Copernicus knew there were 
scholars in the Church who were strongly opposed to the suggestion that the earth moved. 
Being a sensitive and godly man, he didn’t want to cause trouble so he published his work 
privately to his close friends in 1514. Just before Copernicus’ death in 1543, his student and 
admirer, mathematician and astronomer Georg Joachim Rheticus, persuaded Copernicus 
to publish the work. Rheticus delivered the manuscript to the printer and brought proofs 
back to Copernicus to review. Rheticus was not continuously present with the printer, and 
during his absence a theologian named Andreas Osiander added an unsigned “note to the 
reader” to the front of Copernicus’ book stating that the heliocentric ideas were hypotheses 
(although theory is the better term, since we are talking about a model) that were useful for 
the purpose of performing computations and not descriptions of actual reality. Because of 
this note, people generally thought that it expressed Copernicus’ own viewpoint. However, 
Rheticus was outraged by the addition and marked it out with a red crayon in the copies 
he sent to people. Copernicus did not live to see the final printed version of his book, but 
Rheticus’ reaction to Osiander’s note suggests that Copernicus regarded his model as more 
than merely an imaginary convenience that made computations easier.

Tycho Brahe (Figure 2.23), was a Danish nobleman and astronomer. Tycho4 built a 
magnificent observatory called the Uraniborg on an island Denmark ruled at the time. This 
observatory is depicted in Figure 2.24.

Tycho was a passionate and hotheaded guy, as evidenced by the fact he had the bridge 
of his nose cut off in a duel. (You can see his prosthesis in Figure 2.23 if you look closely.) 

4 I know it is appropriate to refer to historical figures by their last names, but most references in the 
literature refer to Tycho; historians rarely call him Brahe. I love the name Tycho, so I also call him 
that.

Figure 2.22. Polish astronomer 
Nicolaus Copernicus (1473–1543).
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Even though Tycho’s Uraniborg must have been the most palatial observatory in the world, 
he had a falling out with the new King of Denmark and decided to leave. In 1597, Ty-
cho moved to Prague in Bohemia (the modern-day Czech Republic) and became Imperial 
Mathematician for Rudolph II, King of Bohemia and Holy Roman Emperor there. Tycho 
spent his life cataloging astronomical data for over 1,000 stars (with cleverly contrived in-
struments, but only a primitive telescope). His work was published much later (1627) by 
Johannes Kepler in a new star catalog that identified the positions of these stars with un-
precedented accuracy.

Tycho witnessed and recorded two astronomical events that became historically very 
important. First, in 1563 he observed a conjunction between Jupiter and Saturn. A con-

junction, illustrated in Figure 2.25, occurs when two plan-
ets are in a straight line with the earth so that from earth 
they appear to be in the same place in the sky. Tycho pre-
dicted the date for this conjunction using Copernicus’ new 
heliocentric model. The prediction was close (this is good) 
but was still off by a few days (not so good). The error in-
dicated there was still something lacking in Copernicus’ 
model. (There was: the orbits are not circular as Copernicus 
assumed.) Second, in 1572 Tycho observed what he called 
a “nova” (which is Latin for new; today we call this event 
a supernova) and proved that it was a new star. This dis-
covery rocked the Renaissance world because it was strong 
evidence that the stars are not perfect and unchanging as 
Aristotle had thought and as the Ptolemaic model of the 
heavens declared.

Although familiar with Copernicus’ model, Tycho was 
a proud advocate of his own model, in which the sun and 
moon orbit the earth and the other planets orbit the sun, 
which in turn orbits the earth. His model did have the ad-

Nicolaus Copernicus, On the Revolutions of Heavenly Spheres (1543)

Nicolaus Copernicus gave us a beautiful description of our creator, one that is often quoted. In 
the preface to his book On the Revolutions of Heavenly Spheres he dedicated the book to Pope 
Paul III. Copernicus wrote:

I can reckon easily enough, Most Holy Father, that as soon as certain people learn that 
in these books of mine which I have written about the revolutions of the spheres of the 
world I attribute certain motions to the terrestrial globe, they will immediately shout to 
have me and my opinions hooted off the stage.

Copernicus went on to review the shortcomings of the work of other astronomers, and then 
justified his own work: 

Accordingly, when I had meditated upon this lack of certitude in the traditional math-
ematics concerning the composition of movements of the spheres of the world, I began to 
be annoyed that the philosophers, who in other respects had made a very careful scrutiny 
of the least details of the world, had discovered no sure scheme for the movements of the 
machinery of the world, which has been built for us by the Best and Most Orderly Work-
man of all.

Figure 2.23. Danish astronomer 
Tycho Brahe (1546–1601).
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vantage of maintaining a stationary 
earth, which allowed Tycho to avoid 
controversy with those who insisted 
that the Bible taught that the earth did 
not move.

Tycho also had a good techni-
cal reason for rejecting Copernicus’ 
model. If the earth moves in an orbit, 
then earth’s location is different in the 
summer from its location in the win-
ter. This means the relative positions of 
the stars should be slightly different at 
these different times of the year, an ef-
fect called stellar parallax. (As an anal-
ogy, imagine yourself looking at the 
trees in a forest. If you take a few steps 
to one side, the positions of the trees 
relative to each other in your new lo-
cation are different.) At that time, no stellar parallax 
had been observed, and Tycho knew this meant that 
either the earth was stationary or the stars were in-
credibly far away. Copernicus had accepted the great 
distance of the stars but Tycho did not, and  famously 
wondered, “What purpose would all that emptiness 
serve?” In fact, stellar parallax was not observed un-
til 1838, when telescopes were finally up to the task. 
The discovery of stellar parallax in 1838 was one of 
the first pieces of actual evidence that Copernicus was 
right. It helps to keep this in mind when we get to the 
controversy surrounding Galileo.

2.3.8 Kepler and the Laws of Planetary Motion
Johannes Kepler (Figure 2.26), a German astronomer 

and mathematician, was invited in 1600 to join the research 
staff at Tycho’s observatory in Prague and replaced Tycho 
as Imperial Mathematician there the following year, after 
Tycho’s death. Kepler had access to Tycho’s massive body of 
research data and used it to develop his famous three laws of 
planetary motion, the first two of which were published in 
1609. He discovered the third law a few years later and pub-
lished it in 1619. Today, Kepler’s laws of planetary motion 
remain the currently accepted model describing our solar 
system.

Kepler was a godly man and took his faith very seri-
ously, even though he was caught in the middle during the 
Counter-Reformation, a time of serious conflict between 
Roman Catholics and Protestants. Kepler was also an amaz-
ing scientist who believed that he had been called to glorify 

Figure 2.24. Tycho’s Danish observatory, the Uraniborg.

Figure 2.25. The alignment of three planets, 
called a conjunction.

Figure 2.26. German astronomer 
and mathematician Johannes 
Kepler (1571–1630).
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God through his discoveries. In addition to his astronomical discoveries, he made impor-
tant discoveries in geometry and optics, he figured out some of the major principles of 
gravity later synthesized by Isaac Newton, and he was the first to hypothesize that the sun 
exerted a force on the earth.

Kepler’s first law of planetary motion is as follows:

First Law Each of the planetary orbits is an ellipse, with the sun at one focus.

A planet in an elliptical orbit is depicted in Fig-
ure 2.27. You may not have studied ellipses yet in 
math, so I will describe them. An ellipse is a geomet-
ric figure shaped like this: . An ellipse is simi-
lar to a circle, except that instead of having a single 
point locating the center, an ellipse has two points 
on either side of the center called foci that define 
its shape. (The term foci is plural, and pronounced 
FOH-sigh; the singular is focus.) Out in space, each 
planet travels on a path defined by a geometrical el-
lipse. The planetary orbits all have one focus located 
at the same place in space and this is where the sun 
is. Think how incredible it is that Kepler figured this 

out! He was a monster mathematician (no calculator!) and an extremely careful scientist, 
and the fact that scientists had understood the orbits to be circular for two thousand years 
did not get in his way. To me, this is simply amazing.

Kepler’s second law of planetary motion is:

Second Law A line drawn from the sun to any planet sweeps out a region in 
space that has equal area for any equivalent length of time.

The second law is depicted in Figure 2.28. The idea is that for a given period of time—
say, a month or a week—the shaded region in the figure has the same area, regardless of 

where the planet is in 
its orbit. Since the sun 
is off-center, this law 
implies that the planets 
travel faster when they 
are closer to the sun 
and slower when they 
are farther away. Keep 
thinking about how 
stunning it is that a guy 
without a calculator or 
any modern computer 
could figure this out, all 
from the observational 
data that Tycho had as-
sembled.

planet travels a 
specific length 

of time
specific area swept 

out in space

planet
travels an
equal length of time

equal area swept out 
in space

Figure 2.28. Equal areas are swept in space for equal periods of time (Kepler’s 
second law).

Figure 2.27. A planet in an elliptical orbit 
around the sun (Kepler’s first law).

elliptical orbit
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planet
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Kepler’s third law is:

Third Law The orbits of any two planets are related as follows:

T1

T2

⎛
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⎞
⎠⎟

2

= R1

R2

⎛
⎝⎜

⎞
⎠⎟

3

where T1 and T2 are the planets’ orbital periods, and R1 and R2 are their mean distances 
from the sun.

This third law of Kepler is a stunning example of mathematical modeling and is quite 
accurate. The equation can be expressed in a way that shows that the ratio of the square of 
the period to the cube of the mean distance is a constant. That is, this ratio has the same 
value for every planet. It can also be expressed such that the orbital period, T, for any planet 
is a function of the planet’s mean distance from the sun, R. In equation form, this expression 
of the third law can be written as

T = k R3

or simply

Johannes Kepler, Harmonies of the World (1618)

Johannes Kepler viewed his discoveries of the mathematical order of nature as amaz-
ing revelations given to him by God. Some of the things Kepler worked on were very 
strange, such as his attempt to develop a theory of the spheres associated with the 
five regular Platonic solids and the mathematics of musical ratios developed by the 
Greeks. Although those ideas were abandoned, Kepler had the courage to look care-
fully at the astronomical data, and this led him to his discovery of the laws of plan-
etary motion.

Kepler placed this prayer at the end of his book Harmonies of the World:

O Thou Who dost by the light of nature promote in us the desire for the light of 
grace, that by its means Thou mayest transport us into the light of glory, I give 
thanks to Thee, O Lord Creator, Who hast delighted me with Thy makings and in 
the works of Thy hands have I exulted. Behold! now, I have completed the work 
of my profession, having employed as much power of mind as Thou didst give to 
me; to the men who are going to read those demonstrations I have made mani-
fest the glory of Thy works, as much of its infinity as the narrows of my intellect 
could apprehend. My mind has been given over to philosophizing most correctly: 
if there is anything unworthy of Thy designs brought forth by me—a worm born 
and nourished in a wallowing place of sins—breathe into me also that which 
Thou dost wish men to know, that I may make the correction: If I have been al-
lured into rashness by the wonderful beauty of Thy works, or if I have loved my 
own glory among men, while I am advancing in the work destined for Thy glory, 
be gentle and merciful and pardon me; and finally design graciously to effect 
that these demonstrations give way to Thy glory and the salvation of souls and 
nowhere be an obstacle to that.
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T = kR 3
2

In these equations, k is just a constant that depends on the units used for T and R. I write the 
equation in two ways to show that taking a square root of a quantity is equivalent to raising 
the quantity to the 1/2 power, which multiplies by the power of 3 already there to give the 
3/2 power on R. I am not trying to go crazy with the math here. I just want to show how 
simple Kepler’s third law really is. Think about it. This simple equation accurately relates the 
period of any planet’s orbit to that planet’s mean distance from the sun.

Now I don’t know about you, but when I see an equation that is as amazing and as 
simple as this, it sets me thinking. First, Kepler’s work as a scientist is first class. He figured 
this out from data collected in the era before calculators and before computers. This was 
only three years after Shakespeare died!

Second, this equation says something deep about the universe we live in. The universe 
can be modeled with simple mathematics that can be understood by high school kids! How 
do you think this could be possible? Is it possible that a randomly evolving universe that 
occurred by chance, with no plan, could exhibit this kind of deep mathematical structure? 
I do not believe it is and I am not alone. Many great scientists—even non-Christian sci-
entists—have called attention to the beautiful mathematical structure that appears every-
where in nature and have called it either a great mystery or evidence of God’s handiwork. 
The fact that our solar system has the kind of beautiful and simple mathematical structure 
represented by Kepler’s third law is strong evidence for an intelligent creator. This is not to 
say that Kepler’s third law is itself the truth about nature. It is quite accurate, but as we will 
see below, claiming that it is the truth is an overstatement. But the fact that creation can be 
accurately modeled with mathematics by humans—even if we don’t know the exact truth of 
nature itself—is because nature exhibits an order and regularity that can only be explained 
by the hand of “the Best and Most Orderly Workman of all.”

2.3.9 Galileo
Galileo Galilei (Figure 2.29) worked at the uni-

versity at Padua, Italy, and later as chief mathemati-
cian and philosopher for the ruling Medici family in 
Florence, Italy. Galileo’s work in astronomy represents 
the climax of the Copernican Revolution. He made 
significant improvements to the telescope and used 
the telescope to see the craters on the moon and sun-
spots, which provided additional evidence that the 
heavens were not perfect and unchanging as Aristo-
tle and Ptolemy had maintained. In 1610, he used the 
telescope to discover four of the moons around Ju-
piter, which was clearly in conflict with the idea that 
there had to be exactly seven heavenly bodies. He was 
fully on board with all the new science of the Coper-
nican model, but, oddly, he never did accept Kepler’s 
discovery that the planets’ orbits are elliptical rather 
than circular. Galileo published his early astronomical 
discoveries in 1610 in a book called The Starry Mes-
senger.

Figure 2.29. Florentine scientist Galileo 
Galilei (1564–1642).
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Most people know that Galileo was put on trial in 1633 by the Holy Office of the In-
quisition established by Roman Catholic Church. However, the reasons for that trial are 
widely and seriously misunderstood. The real story is rather illuminating, as I explain here 
as briefly as possible.

Galileo is famous for this remark: “Philosophy is written in this grand book—I mean 
the universe—which stands continually open to our gaze, but it cannot be understood un-
less one first learns to comprehend the language in which it is written. It is written in the 
language of mathematics.” This beautiful statement calls attention to the mathematical 
structure of creation, which, as noted in the previous section, is strong evidence for a wise 
creator behind the existence of the universe. However, Galileo erred in taking his statement 
too far, claiming that the mathematics he used in his astronomical discoveries was the truth 
about nature. Galileo felt that his work proved beyond question that Copernicus was right. 
Galileo, along with other scientists over the next three centuries, still had to learn the limits 
associated with human modeling of nature. 

In contrast to Galileo’s attitude toward his work is the attitude of his friend Cardi-
nal Roberto Bellarmine, an important Church official. Bellarmine was a great admirer of 
Galileo’s work, but Bellarmine’s thinking was very much along the lines of our discussion 
in the previous chapter: scientific inquiry leads to theories which are models and cannot 
be regarded as truths; models are provisional and subject to change. In this attitude of an 

Galileo’s Abjuration (1633)

I, Galileo Galilei, son of the late Vincenzio Galilei of Florence, aged seventy years, being 
brought personally to judgment, and kneeling before you, Most Eminent and Most 
Reverend Lords Cardinals, General Inquisitors of the Universal Christian Common-
wealth against heretical depravity, having before my eyes the Holy Gospels which 
I touch with my own hands, swear that I have always believed, and, with the help of 
God, will in future believe, every article which the Holy Catholic and Apostolic Church 
of Rome holds, teaches and preaches. But because I have been enjoined, by this Holy 
Office, altogether to abandon the false opinion which maintains that the Sun is the 
center and immovable, and forbidden to hold, defend, or teach, the said false doc-
trine in any manner...I am willing to remove from the minds of your Eminences, and 
of every Catholic Christian, this vehement suspicion rightly entertained towards me, 
therefore, with a sincere heart and unfeigned faith, I abjure, curse, and detest the said 
errors and heresies, and generally every other error and sect contrary to the said Holy 
Church; and I swear that I will never more in future say, or assert anything, verbally 
or in writing which may give rise to a similar suspicion of me; but that if I shall know 
any heretic, or anyone suspected of heresy, I will denounce him to this Holy Office, or 
to the Inquisitor and Ordinary of the place in which I may be. I swear, moreover, and 
promise that I will fulfill and observe fully all the penances which have been or shall 
be laid on me by this Holy Office. But if it shall happen that I violate any of my said 
promises, oaths, and protestations (which God avert!), I subject myself to all the pains 
and punishments which have been decreed and promulgated by the sacred canons 
and other general and particular constitutions against delinquents of this descrip-
tion. So, may God help me, and His Holy Gospels, which I touch with my own hands, 
I, the above named Galileo Galilei, have abjured, sworn, promised, and bound myself 
as above; and, in witness thereof, with my own hand have subscribed this present 
writing of my abjuration, which I have recited word for word.
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important Church official, we recognize a remarkable early statement of the attitude toward 
scientific knowledge that today is held as the correct way to think about scientific theories. 
Bellarmine cautioned Galileo that no natural science could make claims as to truth and 
urged him to present his ideas as everyone thought Copernicus had done—as hypotheses 
rather than as truths.

There were definitely mistakes on both sides of the conflict that led eventually to Gali-
leo’s trial by the Holy Office. On Galileo’s part, the mistake was in pushing his ideas too 
forcefully with the claim that they were true. Galileo’s position implied that the theologians 
who claimed that the Bible lined up with the Ptolemaic system were wrong in their interpre-
tation of the Bible. Galileo wrote an important letter at that time explaining that the theo-
logians needed to reconsider their interpretations of Scripture in light of what the scientific 
evidence was showing. Galileo was correct in his views about interpreting Scripture, but his 
claims pertaining to the truth of his discoveries went too far.

To the theologians and church officials who held to the Ptolemaic view, having their 
views called into question was equivalent to calling the Bible itself into question. This was 
their mistake: they did not yet understand that the Bible has to be interpreted just as ob-
servations of nature have to be interpreted, and they were not yet ready to reconsider their 
views about the heavens and their interpretations of Scripture. It is interesting to note that 
in 1992, Pope John Paul II gave an address in which he commended Galileo’s comments on 
the necessity of interpreting Scripture!

Recall that at this time, there was as yet no physical evidence that the earth was moving 
and rotating on an axis. As I mention in Section 2.3.7, the first actual evidence for earth’s 
motion around the sun came in 1838 with the discovery of stellar parallax. Evidence for the 
rotation of the earth came a bit later in 1851 with the invention of Foucault’s pendulum, an 

example of which is shown in Figure 2.30. 
The rotation of the earth causes a small 
change of direction in each swing of a very 
long, massive pendulum. If the earth were 
not rotating, the pendulum would swing 
steadily back and forth in the same direc-
tion. 

Now, briefly, here is the sequence of 
events that led to Galileo’s trial. Rumors 
got around that Galileo had been secretly 
examined by the Holy Office and forced to 
abjure (renounce) his views about Coper-
nicus. To help Galileo fight these annoying 
rumors, Cardinal Bellarmine wrote Galileo 
a letter in 1616 stating that the rumors were 
false. The letter went on to say that though 

Galileo had not been taken before the Holy Office, he had been told not to defend or teach 
as true the system of Copernicus. Then in 1632, Galileo published another major work on 
astronomy in which he did in fact uphold the system of Copernicus against the system of 
Ptolemy. The Pope at the time, Urban VIII, was also a friend and admirer of Galileo, but 
when he heard that Galileo had published such a book after having specifically been told 
not to, he was extremely upset and had no choice but to have Galileo examined by the Holy 
Office. This was Galileo’s famous 1633 trial.

Figure 2.30. A Foucault Pendulum in the Panthéon in 
Paris.
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The details leading to Galileo’s trial are very complex, but the controversy boils down to 
the two issues I have emphasized. First, Galileo pushed his scientific claims too far, claiming 
truth for a scientific theory which could not be regarded as more than a model of nature. 
Second, he published a book in defiance of an injunction against doing so. Galileo was a 
pious and godly man. There is good evidence that he never did actually intend to fall afoul 
of the injunction. But when the Holy Office persuaded him that he had, he was immediately 
ready to confess his actions and abjure them. This he did. Galileo was never tortured, but it 
was necessary that he be punished in some way. His friend Pope Urban VIII made it as easy 
on Galileo as he could by confining him to “house arrest” and prohibited him from further 
publishing. He lived for a few months in Rome in the palace of one of the cardinals, and 
then was allowed to return to his home in Florence were he lived in house arrest for the last 
eight years of his life.

In addition to his work in astronomy, Galileo developed ground-breaking ideas in 
physics over the course of 30 years of work. These ideas were published after his trial in 
what would be his final book.5 Before Galileo, scientists had always accepted Aristotle’s 
physics, which held that a force was needed to keep an object moving. Galileo broke with 
this 2,000-year-old idea and hypothesized that force was needed to change motion but not 
to sustain motion as Aristotle had taught. Galileo was the first to formulate the idea of a fric-
tion force that caused objects to slow down. By conducting his own experiments, Galileo 
also discovered that all falling objects accelerate at the same rate (the acceleration of gravity, 
9.80 m/s2), which is mathematically very close to Isaac Newton’s second law of motion (our 
topic in the next chapter). Galileo’s studies in physics thrust forward the Scientific Revolu-
tion and set the stage for the work of Isaac Newton, where the Scientific Revolution reached 
its climax.

The saga of the Copernican Revolution ends more or less with Galileo. Within 50 years 
of Galileo’s death, the heliocentric model of the planetary orbits was becoming widely ac-
cepted. But while we are studying the planets and gravity, the whole story just isn’t complete 
unless we mention two more key figures in the history of science.

2.3.10 Newton, Einstein, and Gravitational Theory
Sir Isaac Newton (Figure 2.31) is perhaps the most cel-

ebrated mathematician and scientist of all time. He was Eng-
lish, as his title implies, and he was truly phenomenal. He 
held a famous professorship in mathematics at Cambridge 
University. He developed calculus. He developed the famous 
laws of motion, which we examine in the next chapter. He 
developed an entire theory of optics and light. He formu-
lated the first quantitative law of gravity called the law of uni-
versal gravitation. His massive work on motion, gravity, and 
the planets, Principia Mathematica, was published in 1687. 
This work is one of the most important publications in the 
history of science.

5 Since he was forbidden to publish through the Catholic Church, the book was published by a 
Protestant publisher in Holland.

Figure 2.31. English scientist Isaac 
Newton (1643–1727).
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In this course, we do not perform computations with Newton’s law of universal gravita-
tion, and you do not need to memorize the equation for it. But let’s look at it here briefly. 
The law is usually written as

F =Gm1m2

d2

where G is a constant, m1 and m2 are the masses of any two objects (such as the sun and a 
planet), and d is the distance between the centers of the two objects.

Newton theorized that every object in the universe pulls on every other object in the 
universe, which is why his law is called the law of universal gravitation. We now under-
stand that he was correct. Everything in the universe pulls on everything else. I have no idea 
how Newton figured this out. The equation above gives the force of gravitational attraction 
between any two objects in the universe. Amazingly, this equation is quite accurate, too! 
Notice from the equation that Newton’s model depends on each object having mass because 
the force of gravity has both masses in it multiplied together. Newton’s model implies that if 
either mass is zero, the force of gravitational attraction is zero.

While we are here looking at Isaac Newton, we should pause and consider the relation-
ship between his physical theories (including law of universal gravitation and his laws of 
motion) and Kepler’s mathematical theory of planetary motion. It turns out that Kepler’s 
discovery about the elliptical orbits and the relationship between the period and mean ra-
dius of the orbit can be directly derived from Newton’s theories, and Newton does derive 
them in Principia Mathematica. But Newton’s equations apply much more generally than 
Kepler’s do. As we see in the next chapter, Newton’s laws apply to all objects in motion—
planets, baseballs, rockets—while Kepler’s laws apply to the special case of the planets’ or-
bits. If we consider this in light of my comments in Chapter 1 about the way theories work, 
we see that Newton’s laws explain everything Kepler’s laws explain, and more. This places 
Newton’s theory about motion and gravity above Kepler’s, so Newton’s theories took over 
as the most widely-accepted theoretical model explaining gravity and motion in general. 
However, even though Newton’s laws ruled the scientific world for nearly 230 years, they do 
not tell the whole story.

This is where the German physicist Albert Einstein (Figure 2.32) comes in with his gen-
eral theory of relativity, published in 1915. Einstein’s theory 
explains gravity in terms of the curvature of space (or more 
accurately, spacetime) around a massive object, such as the 
sun or a planet. This spacetime curvature is represented vi-
sually in Figure 2.33. Fascinatingly, since Einstein’s theory is 
about curving space, the theory predicts that even phenom-
ena without mass, such as rays of light, are affected by grav-
ity. Einstein noticed this and made the stunning prediction 
in 1917 that starlight bends as it travels through space when 
it passes near a massive object such as the sun. He formed 
this hypothesis, including the amount light bends, based on 
his general theory of relativity, which is based completely on 
mathematics. What do you think about that? It practically 
leaves me speechless.

Einstein became instantly world famous in 1919 when 
his prediction was confirmed. To test this hypothesis, Ein-Figure 2.32. German physicist Albert 

Einstein (1879–1955).
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stein proposed photographing the stars we see near the sun during a solar eclipse. Th is has 
to be done during an eclipse because looking at the sky while the sun is nearby means it is 
broad daylight and we aren’t able to see the stars. Einstein predicted that the apparent posi-
tion of the stars shift s a tiny amount relative to where they appear when the sun is not near 
the path of the starlight. British scientist Sir Arthur Eddington commissioned two teams 
of photographers to photograph the stars during the solar eclipse of 1919. Aft er analyzing 
their photographic plates (one of which is shown on the opening page of Chapter 1), they 
found the starlight shift ed by exactly the amount Einstein said it would. Talk about sudden 
fame—Einstein became the instant global rock star of physics when this happened! (And 
his puppy dog eyes contributed even more to his popularity!)

Just as Kepler’s laws were superseded by Newton’s laws and can be derived from New-
ton’s laws, Newton’s law of universal gravitation was superseded by Einstein’s general theory 
of relativity and can be derived from general relativity. Einstein believed that his own theo-
ries would some day be superseded by 
an even more all-encompassing theory, 
but so far (aft er 103 years) that has not 
happened. Th e general theory of rela-
tivity remains today the reigning cham-
pion theory of gravity, our best under-
standing of how gravity works, and one 
of the most important theories in 20th- 
and 21st-century physics.

Do you know ... The fi rst monster telescope
William Herschel was a German astronomer who moved to England when he was a 
young man. He was a major contributor to pushing the technology of the refl ecting 
telescope to new limits, and spent vast amounts of time casting and polishing his 
own mirrors. He constructed the largest telescopes ever built at the time.

In 1781, Herschel discovered the 
planet Uranus. Herschel’s sister Caro-
line was an important astronomer 
herself. She worked closely with her 
brother. Herschel gave her a tele-
scope of her own and with it she 
discovered many new comets, for 
which she became recognized.

Herschel’s monster 40-foot tele-
scope, shown to the left, had a pri-
mary mirror over four feet in diam-
eter. In 1789, on the fi rst night of 
using the new telescope, Herschel 
discovered a new moon of Saturn. 
He discovered another new moon 
about a month later.

Figure 2.33. A visual representation of the curvature of 
spacetime around the earth.
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Chapter 2 Exercises

Unit Conversions
Perform the following unit conversions. Express your results both in standard nota-
tion and in scientific notation using the correct number of significant digits. The unit 
conversion factors you need are all in Appendix A. On the first 20 problems, you use 
the standard method of multiplying conversion factors. The last four problems re-
quire somewhat different methods, which you can figure out.

Convert this Quantity Into these Units

1 1,750 meters (m) feet (ft)

2 3.54 grams (g) kilograms (kg)

3 41.11 milliliters (mL) liters (L)

4 7 × 108 m
(radius of the sun)

miles (mi)

5 1.5499 × 10–12 millimeters (mm) m

6 750 cubic centimeters (cm3 or cc)
(size of the engine in my old motorcycle)

m3

7 2.9979 × 108 meters/second (m/s)
(speed of light)

ft/s

8 168 hours (hr)
(one week)

s

9 5,570 kilograms/cubic meter (kg/m3)
(average density of the earth)

g/cm3

10 45 gallons per second (gps)
(flow rate of Mississippi River at the source)

m3/minute
(m3/min)

11 600,000 cubic feet/second (ft3/s)
(flow rate of Mississippi River at New Orleans)

liters/hour (L/hr)

12 5,200 mL
(volume of blood in a typical man’s body)

m3

13 5.65 × 102 mm2

(area of a postage stamp)
square inches 
(in2)

14 32.16 ft/s2

(acceleration of gravity, or one “g”)
m/s2

15 5,001 μg/s kg/min

16 4.771 g/mL kg/m3

17 13.6 g/cm3

(density of mercury)
mg/m3

18 93,000,000 mi
(distance from earth to the sun)

cm

19 65 miles per hour (mph) m/s
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Convert this Quantity Into these Units

20 633 nanometers (nm)
(wavelength of light from a red laser)

in

21 5.015% of the speed of light mph

22 98.6 degrees Fahrenheit (°F)
(human body temperature)

degrees Celsius 
(°C)

23 50.0 °C
(It gets this hot in northwest Australia.)

°F

24 4.3 lightyears (lt-yr)
(distance to the closest star, Proxima Centauri)
(A lightyear is the distance light travels in one year. 
You will have to work this out first.)

kilometers (km)

Answers
(A dash indicates that it would be either silly or incorrect to write the answer that way, 
so I didn’t. Silly is because there are simply too many zeros, or no zeros at all. Incor-
rect is because we are unable to express the result this way and still show the correct 
number of significant digits.)

Standard Notation Scientific Notation

1 5,740 ft 5.74 × 103 ft

2 0.00354 kg 3.54 × 10–3 kg

3 0.04111 L 4.111 × 10–2 L

4 400,000 mi 4 × 105 mi

5 – 1.5499 × 10–15 m

6 0.00075 m3 7.5 × 10–4 m3

7 983,560,000 ft/s 9.8356 × 108 ft/s

8 605,000 s 6.05 × 105 s

9 5.57 g/cm3 –

10 – 1.0 × 101 m3/min

11 60,000,000,000 L/hr 6 × 1010 L/hr

12 0.0052 m3 5.2 × 10–3 m3

13 0.876 in2 8.76 × 10–1 in2

14 9.802 m/s2 –

15 0.0003001 kg/min 3.001 × 10–4 kg/min

16 4,771 kg/m3 4.771 × 103 kg/m3

17 13,600,000,000 mg/m3 1.36 × 1010 mg/m3

18 – 1.5 × 1013 cm
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Standard Notation Scientific Notation

19 29 m/s 2.9 × 101 m/s

20 0.0000249 in 2.49 × 10–5 in

21 33,700,000 mph 3.37 × 107 mph

22 37.0 °C 3.70 × 101 °C

23 122 °F 1.22 × 102 °F

24 – 4.1 × 1013 km

Motion Study Questions Set 1
1. A train travels 25.1 miles in 0.50 hr. Calculate the velocity of the train.

2. Convert your answer to the previous problem to km/hr.

3. How far can you walk in 4.25 hours if you keep up a steady pace of 5.0000 km/hr? 
State your answer in km.

4. For the previous problem, how far is this in miles?

5. On the German autobahn, there is no speed limit and many cars travel at veloci-
ties exceeding 150.0 mi/hr. How fast is this in km/hr?

6. Referring again to the previous question, how long does it take a car at this veloc-
ity to travel 10.0 miles? State your answer in minutes.

7. An object travels 3.0 km at a constant velocity in 1 hr 20.0 min. Calculate the ob-
ject’s velocity and state your answer in m/s.

8. A car starts from rest and accelerates to 45 mi/hr in 36 s. Calculate the car’s accel-
eration and state your answer in m/s2.

9. A rocket traveling at 31 m/s fires its retro-rockets, generating a negative accelera-
tion (it is slowing down). The rockets are fired for 17 s and afterwards the rocket is 
traveling at 22 m/s. What is the rocket’s acceleration?

10. A person is sitting in a car watching a traffic light. The light is 14.5 m away. When 
the light changes color, how long does it take the new color of light to travel to 
the driver so that he can see it? State your answer in nanoseconds. (The speed of 
light in a vacuum or air, c, is one of the physical constants listed in Appendix A 
that you must know.)

11. A proton is uniformly accelerated from rest to 80.0% of the speed of light in 
18 hours, 6 minutes, 45 seconds. What is the acceleration of the proton?

12. A space ship travels 8.96 × 109 km at 3.45 × 105 m/s. How long does this trip take? 
Convert your answer from seconds to days.

13. An electron experiences an acceleration of 5.556 × 106 cm/s2 for a period of 45 ms. 
If the electron is initially at rest, what is its final velocity?

14. A space ship is traveling at a velocity of 4.005 × 103 m/s when it switches on its 
rockets. The rockets accelerate the ship at 23.1 m/s2 for a period of 13.5 s. What is 
the final velocity of the rocket?
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15. A more precise value for c (the speed of light) than the value given in Appendix A 
is 2.9979 × 108 m/s. Use this value for this problem. On a particular day, the earth 
is 1.4965 × 108 km from the sun. If on this day a solar flare suddenly occurs on the 
sun, how long does it take an observer on the earth to see it? State your answer 
in minutes.

Answers
1. 22 m/s 2. 79 km/hr 3. 21.3 km 4. 13.2 mi

5. 241.4 km/hr 6. 4.00 min 7. 0.63 m/s 8. 0.56 m/s2

9. –0.53 m/s2 10. 48.3 ns 11. 3,680 m/s2 12. 301 days

13. 2.5 × 103 m/s 14. 4.32 × 103 m/s 15. 8.3197 min

Motion Study Questions Set 2
1. Construct three simple graphs like those discussed in this chapter showing dis-

tance vs. time, velocity vs. time, and acceleration vs. time. Draw your graphs one 
beneath the other and line them up vertically so that the time intervals on each 
of them line up. Here is the situation: An SUV is at rest at a traffic signal. Then the 
car starts moving, accelerating uniformly to a certain velocity, and then contin-
ues at a constant velocity after that. Be sure to label the axes of your graphs.

2. Sketch the same three graphs for this situation: A pick-up truck is traveling at a 
constant velocity. Then the driver slams on the brakes. Before the car stops, the 
driver releases the brakes so that the car continues to roll along at a constant (but 
much slower) velocity. Be sure to label the axes of your graphs.

3. Sketch the same three graphs for this situation: An MG convertible is coasting 
out of gas and gradually slowing down when it arrives at the entrance to a gas 
station. Next, the car begins rolling up the entrance ramp to the gas station, but 
the ramp is steep and the car slows down rapidly to a stop. Next, the driver fails 
to step on the brake, so after stopping at the top of the ramp the car immediately 
begins to roll backwards down the ramp. Note that there are only two time in-
tervals here: before the ramp and on the ramp. (Ignore the up and down motion 
due to the ramp and any turning the car would do to turn into the gas station 
ramp. Just think about how far the car has traveled from the point where it ran 
out of gas.)

4. A space ship in space is cruising at a constant velocity. The captain switches on 
the retro-rockets, which begin slowing the vehicle. The captain never turns the 
rockets off, so after it comes to rest it immediately begins moving (still accelerat-
ing) in the opposite direction. Note that there are only two time intervals in this 
scenario.
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5. The three graphs below represent three different scenarios involving an object in 
motion. For each one write a one-sentence description of the object’s motion. In 
your descriptions use terms like “speeding up,” “slowing down,” “at rest,” “backing 
up,” “constant velocity,” etc.

Answers

5. a) The object is speeding up (accelerating) uniformly, then it begins moving at a 
constant velocity. b) The object slows rapidly to a complete stop, stays at rest for a 
while, then begins accelerating again, moving in the same direction as before. c) The 
object is speeding up (accelerating) uniformly, then it begins moving at a constant 
velocity.

Ptolemaic Model and Copernican Revolution Study Questions
1. Make a list of all the regions in the Ptolemaic Model in their correct order. (There 

are 10 of them and the first nine are called spheres.) For each of the last three 
regions write a brief description of the meaning of the name.

2. Describe why some theologians in the 16th century were strongly opposed to 
Copernicus’ heliocentric theory.

3. State six features of the Ptolemaic model other than the spheres.
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Do you know ... Saturn
Saturn is the farthest planet visible to the naked eye. Ancient astronomers had no 
idea about Saturn’s rings, 
beautifully captured now 
by the Hubble Space Tele-
scope. From NASA’s web-
site: “As Saturn takes its 
29-year journey around the 
Sun, its tilt allows us to see 
its rings from different per-
spectives. Saturn’s tilt also 
gives it seasons. The low-
est image on the left shows 
the northern hemisphere’s 
autumn, while the upper-
most right image shows 
the winter.”

4. Describe Copernicus’ model of the heavens.

5. What are some of the “proofs” people used in arguing that there is no way that the 
earth rotates on an axis?

6. For what reason did Copernicus decide to keep his theory private?

7. Write a description of the two key observations Tycho made (including dates) 
that challenged the Ptolemaic system.

8. Briefly describe the cosmological model put forward by Tycho.

9. State Kepler’s three laws of planetary motion.

10. This is a bit difficult, but explain retrograde motion and epicycles as well as you 
can in a few sentences.

11. Explain the two main mistakes individuals made that led to Galileo’s trial.

12. Explain the actual cause of Galileo’s trial and the results of that trial.

13. Describe why Pope John Paul II commended Galileo in 1992.

14. Distinguish between Newton’s and Einstein’s theories of gravitation. According to 
each of these two geniuses, what is the cause of gravity and what are the effects 
of gravity?

15. The theories reviewed in this chapter suggest that the universe possesses a very 
deep mathematical structure. What does this structure indicate about where the 
universe came from?

16. Describe some of Kepler’s scientific achievements, aside from his laws of plan-
etary motion.

17. Write a paragraph or two explaining how the Copernican Revolution illustrates 
the Cycle of Scientific Enterprise.
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The Planets with Their Sizes to Scale

In Chapter 2, we briefly consider Newton’s law of universal gravitation, an equation that 
describes the force of attraction between any two objects, including the sun and planets 
in the solar system. The law of universal gravitation is an example of an inverse-square 
law. In an inverse-square law, the strength of one quantity depends on the inverse of 
the square of another quantity. The force of gravity between the sun and a planet is 
inversely proportional to the square of the distance between their centers.

The masses of Uranus and Neptune are roughly equal, but Neptune is about three times 
farther away from the sun than Uranus is. Since the strength of the gravitational force 
is inversely proportional to the square of the distance, the force of the sun’s gravity on 
Neptune is only 1/9 the strength of the sun’s gravity on Uranus.
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OBJECTIVES
After studying this chapter and completing the exercises, students will be able to do 
each of the following tasks, using supporting terms and principles as necessary: 

1. Identify and graph linear and nonlinear variation.
2. Identify the constant of proportionality in a physical equation.
3. Identify direct, inverse, square, inverse square, and cubic proportions when seen 

in equations.
4. Identify direct, square, and inverse proportions when seen graphically.
5. Identify dependent and independent variables in physical equations.
6. Graph functional relationships, making proper use of dependent and 

independent variables.
7. Normalize non-essential constants and variables in a given physical equation, 

and describe how the remaining two variables vary with respect to each other.
8. Describe the way variations occur between variables in physical equations, 

including:
a. area of a triangle
b. area of a circle
c. volume of a sphere
d. gravitational potential energy
e. kinetic energy
f. pressure under water
g. force of gravitational attraction
h. Charles’ law
i. Boyle’s law

Note: 

The purpose of this study is to learn about how physical quantities vary in equations, 
not to understand completely all the physical equations used as examples. The stu-
dent should gain some understanding of the physical relationships involved, but de-
tailed study of the physics involved occurs later in the course or in future courses.

4.1 The Language of Nature
The fact that nature can be modeled with mathematics is so surprising that famous 

scientists have repeatedly referred to it as some kind of miracle. As Galileo famously said, 
“The laws of nature are written in the language of mathematics.” One of the key ways scien-
tists describe the mathematical properties in the laws of nature is in terms of the different 
proportionalities that are present. In other words, they describe how one variable in an 
equation varies with respect to another variable. This chapter is about learning how to see 
these relationships in equations and appreciate what they indicate about what one quantity 
does when another quantity is manipulated.

The presentation in this chapter is short. This is because there is not that much con-
tent to learn. Most of the time spent in this chapter comes not from learning new laws and 
equations, but from working through a set of exercises that immerses you in the principles 
and language of variation and proportionality, with both analytic and graphical exercises. 
These exercises are in the Variation and Proportion Study Packet presented at the end of 
the chapter.
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4.2 The Mathematics of Variation

4.2.1 Independent and Dependent Variables
As every algebra student knows, the generic equation for a line is

y =mx +b

This equation is called the slope-intercept form of an equation for a line because the con-
stant m is the slope of the line and the constant b is the y-intercept of the line. In this equa-
tion, the variable x is called the independent variable and the variable y is called the depen-
dent variable because the value of y depends on the value we choose for x. In general, we 
write our equations so the dependent variable is alone on the left side and all other variables 
and constants are on the right side.

When graphing a line or curve relating two variables, say p and r, we often speak of “a 
graph of p vs. r.” The phrase “p vs. r” means that p is the dependent variable, represented by 
the scale on the vertical axis of the graph, and r is the independent variable, represented by 
the scale on the horizontal axis of the graph. Referring to “r vs. p” would call to mind a dif-
ferent graph, with the variables on the axes switched. The order matters in this expression. 
The graph of “p vs. r” has p on the vertical axis and r on the horizontal axis.

It is important that you think this through and get this down. In this course, you are 
repeatedly asked to generate a graph representing the relationship between two variables, 
both in the exercises and in your lab reports. It is quite common for students to see a state-
ment like “develop a graph of p vs. r” and fail to consider which of these variables should be 
placed on the vertical axis and which on the horizontal axis.

Now, if a line passes through the origin, the y-intercept b is zero. The equation for the 
line then becomes

y =mx

Many of the equations in physics are linear functions of the form y = mx. We have al-
ready learned several of them, such as d = vt and Fw = mg. In many physical linear equations 
like these, the y-intercept is zero; a graph of the equation is a line that passes through the 
origin. These are examples of direct variation, as described in more detail below.

4.2.2 Common Types of Variation
Quantities in nature often exhibit common types of variation with respect to other 

quantities. This is part of what Galileo was talking about, and if you think about it, it is 
quite wonderful that nature behaves this way. Just as an aside, I discuss this a bit back in 
Chapter 2 where we consider the work of Johannes Kepler. The regular, mathematical way 
nature behaves, from planets and stars down to quarks and molecules, is stunning evidence 
that nature was created and is maintained each moment by the wise hand of an intelligent 
and rational creator. Notice that I am not claiming that the mathematical order in nature is 
proof for God. (I doubt there are such proofs.) But it is strong evidence because it is unrea-
sonable to think that mathematical order like this can come about by chance from random 
bunches of matter and energy, just as it is unreasonable to suppose that if you drop all your 
loose ASPC papers off the roof of a building they might organize themselves neatly into a 
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binder when they hit the sidewalk down below. And it is nice to know that there is strong 
evidence in creation itself for the faith we have in the God who created it.

Now going back to the common types of variation found in physics, we desire to know 
how to describe these common types of variation using appropriate language. The graphs 
in Figure 4.1 show five common types of variation. Each of these is a graph of y vs. x, with 
k as a generic constant. The constant is usually called the constant of proportionality. There 
are many other common types of variation in addition to those shown in Figure 4.1. You 
will learn about those in future math or science classes.

One of our objectives is to use correct scientific language to describe the variation go-
ing on between the variables in an equation. Here are the correct phrases we use to describe 
each of the types of variation represented in the figure. The prepositions are important.

y = kx y varies directly with x, or y varies in direct proportion to x
y = kx 2 y varies as the square of x, or y varies as x squared
y = kx 3 y varies as the cube of x, or y varies as x cubed
y = k/x y varies inversely with x
y = k/x 2 y varies inversely with the square of x

This last type of variation is often called an “inverse square law.” There are many quantities 
in nature that follow inverse square laws.

Here are a couple of examples of how to apply this language using equations we have 
already learned.

 Example 4.1

In the weight equation, how does the weight of an object vary with respect to the accelera-
tion of gravity?

The weight equation is

Figure 4.1. Five common types of variation.

y = kx y = kx 2 y = kx 3

y = k/x y = k/x 2

y yy

yy

x x x

x x
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Fw =mg

In this equation, the acceleration of gravity, g, is the independent variable, weight, Fw , is the 
dependent variable, and the mass, m, is the constant of proportionality. Thus, this equa-
tion represents the same kind of variation as in the first graph of Figure 4.1, and Fw varies 
directly with g.

 Example 4.2

In the standard equation for calculating uniform acceleration, how does acceleration vary 
with time?

The equation is

a =
v f −vi

t

Time, t, is the independent variable and acceleration, a, is the dependent variable. Since the 
time is in the denominator without an exponent, this variation is like the fourth graph in 
Figure 4.1 and a varies inversely with t.

4.2.3 Normalizing Equations
Often equations involve many variables and constants, such as Newton’s law of univer-

sal gravitation, considered in Chapters 2 and 3. We frequently want to consider only two of 
the variables to see how they vary with respect to one another, while holding everything else 
constant. To do this we normalize the equation and rewrite it as a proportion. To normalize 
an equation, take all the constants and all the extra variables and set them equal to “1.” Write 
what is left as a proportion.

For example, let’s say we wish to consider the variables E and V in the equation

E = 1
2CV

2

Don’t worry what this equation is about; we do not address it in this course.1 All we are do-
ing here is using the equation to learn about variation.

We desire to determine how E, the dependent variable, varies with respect to V, the 
independent variable, assuming everything else is held constant. Normalizing the equation 
means we set the 1/2 and the variable C each equal to 1, and write what remains as a propor-
tion. Doing so gives

E∝V 2

1 For those who are curious, this equation relates the energy, E, (measured in joules) stored in a 
capacitor to the capacitance of the capacitor, C, (measured in farads) and the voltage, V, across the 
capacitor (measured in volts).
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This expression is read “E is proportional to V squared.” When we write a normalized equa-
tion, we must replace the equals (=) sign with the mathematical symbol meaning “is pro-
portional to” ( ∝ ). This is because although the proportionality is the same, the two sides 
are not strictly equal any more. With the normalized expression, it is easier to see that this 
expression has the same form as y = x 2, which is graphed in the second graph of Figure 4.1. 
So we say that “E varies as the square of V.”

Be sure to notice that any exponent that is present on the independent variable is a 
crucial part of the proportionality and appears in the normalized expression. Exponents 
are not variables, nor are they constants, so they must be retained. Only the variables and 
the constants are replaced with “1,” and only these vanish from the normalized expression.

The graph of a normalized expression has the same basic shape as the original equa-
tion; it is only stretched horizontally or vertically. This means normalizing a complicated 
equation helps us to see how the variation between the two variables of interest works be-
cause the nature of the relationship between the two variables is preserved while making the 
equation (which becomes a proportion) simpler and easier to analyze.

 Example 4.3

Consider the following equation from the field of fluid dynamics:

Q = −kA
µ

Pb − Pa( )
L

Assume that we are interested in L as the independent variable and Q as the dependent 
variable. Normalize this equation and describe how Q varies with respect to L, assuming all 
else is held constant.

To normalize, we set all constants and variables other than the ones under consideration 
equal to 1. Treating the parenthetical sum as a single variable and normalizing, we have

Q∝ 1
L

From this expression, we see that Q varies inversely with L.
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Chapter 4 Exercises

The Variation and Proportion Study Packet
Completion of this packet counts as a major grade. For full credit, do all the activities 
and graphs with great care, thoroughness, and neatness.

Packet Requirements: 

• Use a separate sheet of graph paper for each activity.

• Answer each question on a separate line on your graph paper.

• Each graph must include a minimum of five plotted points, and must be accom-
panied by the table of values used to make the plot.

• Make it neat.

• Use a straightedge for all axes.

• Choose scales to fit the data well so that the graph is well proportioned and 
large enough to read easily.

• Label all axes and scales with the variable name and units of measure. Make sure 
your scales are linear.

• Title each graph.

• Label each curve as the normalized curve or the regular curve.

• All graphs should be approximately the size of an index card (3” × 5”).

 The packet consists of the following activities:

• Activity 1:  How does the area of a triangle vary with its height?

• Activity 2:  How does the area of a circle vary with its radius?

• Activity 3:  How does the volume of a sphere vary with its radius?

• Activity 4:  How does the gravitational potential energy of an object vary with 
its height?

• Activity 5:  How does the kinetic energy of an object vary with its velocity?

• Activity 6:  How does pressure vary with depth under water?

• Activity 7:  How does the force of gravitational attraction between two objects 
vary with the distance between their centers?

• Activity 8:  At constant pressure, how does the volume of a gas vary with its 
temperature?

• Activity 9:  At constant temperature, how does the volume of a gas vary with its 
pressure?
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Activity 1. How does the area of a triangle vary with its height, if all else 
is held constant?

1. What is the relation for the area of a triangle?
2. What are the two key variables to be compared in this activity?
3. Which variable is the independent variable and which is the dependent variable?
4. After combining and normalizing all non-essential variables and constants, what 

is the expression relating area to height?
5. Select any value other than 2 to use for the base of a triangle. Using this value for 

the base, choose several values for the height of the triangle and calculate the 
area of the triangle for each height. Enter all these in a table of values.

6. Prepare a graph of area vs. height using the values you computed in the previous 
step.

7. Compute another table of values for the normalized expression from step 4. Treat 
the proportional sign as an equals sign for this.

8. Graph the normalized equation on the same set of coordinate axes you used for 
the graph in step 6.

9. Describe the similarities and the differences between the two “curves” on your 
graph.

10. Answer the main question (the title) for this activity.

Activity 2. How does the area of a circle vary with its radius, if all else is 
held constant?

1. What is the relation for area of a circle?
2. What are the two key variables to be compared in this activity?
3. Which variable is the independent variable and which is the dependent variable?
4. After combining and normalizing all non-essential variables and constants, what 

is the expression relating area to radius?
5. Choose several values for the radius of the circle and calculate the area of the 

circle for each radius. Enter all these in a table of values.
6. Prepare a graph of area vs. radius using the values you computed in the previous 

step.
7. Compute another table of values for the normalized expression from step 4. Treat 

the proportional sign as an equals sign for this.
8. Graph the normalized equation on the same set of coordinate axes you used for 

the graph in step 6.
9. Describe the similarities and the differences between the two curves on your 

graph.
10. Answer the main question for this activity.
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Activity 3. How does the volume of a sphere vary with its radius, if all 
else is held constant?

1. What is the relation for volume of a sphere? Look it up if you don’t know it.
2. What are the two key variables to be compared in this activity?
3. Which variable is the independent variable and which is the dependent variable?
4. After combining and normalizing all non-essential variables and constants, what 

is the expression relating volume to radius?
5. Choose several values for the radius of the sphere and calculate the volume of the 

sphere for each radius. Enter all these in a table of values.
6. Prepare a graph of volume vs. radius using the values you computed in the previ-

ous step.
7. Compute another table of values for the normalized expression from step 4. Treat 

the proportional sign as an equals sign for this.
8. Graph the normalized equation on the same set of coordinate axes you used for 

the graph in step 6.
9. Describe the similarities and the differences between the two curves on your 

graph.
10. Answer the main question for this activity.

Activity 4. How does the gravitational potential energy (EG ) of an object 
vary with its height, if all else is held constant?

The equation for EG is

EG =mgh

where
EG is the gravitational potential energy in joules (J),
m is the mass of an object in kilograms (kg), 
g is the acceleration of gravity, 9.80 m/s2, and 
h is the height above the ground (or other reference) of the object in meters (m).

1. What are the two key variables to be compared in this activity?
2. Which variable is the independent variable and which is the dependent variable?
3. After combining and normalizing all non-essential variables and constants, what 

is the expression relating EG to height?
4. Select a value to use for the mass of the object for this activity. Using this value, 

choose several values for the height of the object and calculate the EG of the ob-
ject for each height. Enter all these in a table of values.

5. Prepare a graph of EG vs. height using the values you computed in the previous 
step.

6. Compute another table of values for the normalized expression from step 3. Treat 
the proportional sign as an equals sign for this.

7. Graph the normalized equation on the same set of coordinate axes you used for 
the graph in step 5.

8. Describe the similarities and the differences between the two “curves” on your 
graph.

9. Answer the main question for this activity.
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Activity 5. How does the kinetic energy (EK ) of an object vary with its 
velocity, if all else is held constant?

The equation for EK is

EK = 1
2mv2

where 
EK is the kinetic energy in joules (J),
m is the mass of an object in kilograms (kg), and 
v is the velocity of the object in meters per second (m/s). 

1. What are the two key variables to be compared in this activity?
2. Which variable is the independent variable and which is the dependent variable?
3. After combining and normalizing all non-essential variables and constants, what 

is the expression relating EK to velocity?
4. Select a value other than 2 kg to use for the mass of the object for this activity. 

Using this value, choose several values for the velocity of the object and calculate 
the EK of the object for each velocity. Enter all these in a table of values.

5. Prepare a graph of EK vs. velocity using the values you computed in the previous 
step.

6. Compute another table of values for the normalized expression from step 3. Treat 
the proportional sign as an equals sign for this.

7. Graph the normalized equation on the same set of coordinate axes you used for 
the graph in step 5.

8. Describe the similarities and the differences between the two curves on your 
graph.

9. Answer the main question for this activity.
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Activity 6. How does pressure under water vary with depth, if all else is 
held constant?

The equation for pressure under any liquid is

P = ρgh

where
P is the pressure in pascals (Pa), 
ρ (that is, the Greek letter rho, the r in the 
Greek alphabet) is the density of the liquid in kg/m3, 
g is the acceleration of gravity, 9.80 m/s2, and
h is the depth under the liquid in meters (m).

For water, ρ = 998 kg/m3 (at room temperature).

1. What are the two key variables to be compared in this activity?
2. Which variable is the independent variable and which is the dependent variable?
3. After combining and normalizing all non-essential variables and constants, what 

is the expression relating pressure to depth?
4. Using the value for the density of water given above, choose several values for 

the depth under water and calculate the pressure for each depth. Enter all these 
in a table of values.

5. Prepare a graph of pressure vs. depth using the values you computed in the pre-
vious step.

6. Compute another table of values for the normalized expression from step 3. Treat 
the proportional sign as an equals sign for this.

7. Graph the normalized equation on a separate set of coordinate axes.
8. Describe the similarities and the differences between the curves in the two 

graphs.
9. Answer the main question for this activity.

The Pascal is the derived unit we use for 
pressure in the MKS system. If you multi-
ply all the units together for the variables 
in this equation you get kg/(ms2). Thus, 
1 Pa = 1 kg/(ms2).
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Activity 7. How does the force of gravitational attraction vary with the 
distance between the centers of two objects?

The equation for the force of gravitational attraction between any two objects is giv-
en by Newton’s law of universal gravitation:

F =Gm1m2

d2

where
F is the force in newtons (N),
G is the gravitational constant, 6.67 x 10–11 Nm2/kg2,
m1 and m2 are the masses of the two objects in kilograms (kg), and
d is the distance between the centers of the two objects in meters (m).

1. What are the two key variables to be compared in this activity?
2. Which variable is the independent variable and which is the dependent variable?
3. After combining and normalizing all non-essential variables and constants, what 

is the expression relating the gravitational force between two objects to the dis-
tance between them (that is, between their centers)?

4. Select values to use for the two masses of the objects for this activity. Using these 
values, choose several values for the distance between the objects and calculate 
the force of attraction for each distance. Enter all these in a table of values.

5. Prepare a graph of force vs. distance using the values you computed in the previ-
ous step. (Hint: Convert all the force values in your table of values so that they 
have the same power of 10. Then scale your vertical axis using this power of 10.)

6. Compute another table of values for the normalized expression from step 3. Treat 
the proportional sign as an equals sign for this.

7. Graph the normalized equation on a separate set of coordinate axes.
8. Describe the similarities and the differences between the curves in the two 

graphs.
9. Answer the main question for this activity.

The units of measure for this con-
stant may look strange, but when G 
is placed in the equation, all the units 
cancel except for newtons, which are 
the appropriate units for force.
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Activity 8. How does the volume of a gas vary with its temperature?

This activity is different from those you have completed so far. Instead of graphing an 
equation and the normalized version of it and comparing them, you prepare a graph 
of predicted and experimental values, similar to the one you made for the experiment 
on Newton’s second law. In this activity, we do a class demonstration in which we take 
data measuring the volume and temperature of a gas (air) as it changes temperature. 
Using the values from this demonstration and the equation for Charles’ law, you pre-
pare a predicted curve of volume (V) vs. temperature (T). Then, on the same set of 
axes, you graph the data from the class demonstration.

Charles’ law for gases can be written as:

V = Vi

Ti

⎛
⎝⎜

⎞
⎠⎟
T

where
V is the volume of the gas in cubic centimeters (cm3),
T is the temperature of the gas in kelvins (K),
Vi is the initial gas volume in cubic centimeters (cm3), and
Ti is the initial gas temperature in kelvins (K).

If a certain quantity of a gas (a specific number of gas molecules) is placed in a con-
tainer which holds the gas pressure constant, Charles’ law shows how volume varies 
with temperature. The values for Vi and Ti are the conditions of the gas at the start of 
the demonstration. Charles’ law applies to so-called ideal gases, a topic addressed in 
chemistry. Air behaves like an ideal gas in our demonstration, so long as we keep the 
temperature below about 40°C.

1. If one wishes to compare how the volume of a gas changes with temperature, 
what are the two key variables to be compared? Which of these is the indepen-
dent variable and which is the dependent variable?

2. After combining and normalizing all non-essential variables, what is the expres-
sion relating volume to temperature?

3. How are these variables related to one another (i.e., what kind of proportion, 
etc.)?

4. As the instructor demonstrates the change of volume of a gas with temperature, 
take volume and temperature data in your lab journal. Document the materials, 
experimental set-up and the procedure just as you do for an experiment. The 
Charles’ law demonstration notes below guide you in what data to take and what 
calculations must be performed. Follow the notes to get your data and computa-
tions set up in a table of experimental values.

5. Use the Vi and Ti values from the demonstration (in units of cm3 and K) and the 
Charles’ law equation to calculate predicted volume values for each of the tem-
perature values recorded during the demonstration. As shown in the example 
table below, these values can be entered in the same table with the experimental 
data.

6. Prepare a graph of V vs. T. On the same set of axes, graph your predicted values 
and your experimental values. Be sure to label which curve is which. Reproduce 

The Charles’ law equation does not require 
us to use MKS units for the volume. Using 
cubic centimeters is more convenient for 
our demonstration.



435 99

 Variation and Proportion

your data table next to your graph. Use temperatures in degrees Celsius for the 
graph (even though for the calculations you must use temperatures in kelvins, as 
explained below). Also, to make your graph as accurate as possible, I encourage 
you to use software such as Microsoft Excel to prepare the graph for this activity.  

Charles’ Law Demonstration: Notes for Activity 8

Use these notes to compute the values you need to prepare the graph for this 
activity. The volume calculations described below are a bit complicated. It is not nec-
essary that you understand everything about where the equations came from. For 
those who are interested and want to learn where our equations come from, these 
notes explain the whole thing. If you find it confusing or would rather not get into it, 
that’s fine. Just use the equations from the notes to fill in the table and prepare your 
graphs. At a minimum, each student must collect data for the activity, use equations 
to calculate the values needed for the graphs of predicted and experimental volume 
vs. temperature, and prepare the graphs.

A few words about the experimental set-up are 
necessary here. In the demonstration, a small vol-
ume of air is trapped in an upside down buret. A 
buret is a glass tube marked in increments of 0.1 mL 
(which equals 0.1 cm3), and normally used for mea-
suring volumes of liquid. We use a buret that has 
been cut down to a much smaller size. It is placed 
upside down in a beaker of automotive antifreeze 
(ethylene glycol). The antifreeze is cold because it 
spends the night before the demo in a freezer. With 
the air trapped in the buret, which is immersed in 
the cold liquid, we insert a thermocouple wire up 
in the buret in the small air space at the top. A ther-
mocouple is an electrical probe used to measure 
temperature. We then slowly heat up the antifreeze 
in the beaker, reading the temperature and volume 
of air on the buret as the air warms up.

Because the buret is upside down, we are not 
able to measure the initial volume of the air (Vi) di-
rectly. This requires us to get mathematically cre-
ative to get an approximation for the initial air volume. Additionally, since the buret is 
upside down the readings of air volume we take are read with numbers on the buret 
that become smaller and smaller as the volume increases. We must take all this into 
account to figure out the volumes of air we have in the buret at different tempera-
tures.

Let’s begin with the data table for this activity. Make a table like the one below in 
your lab journal. You need about 10 or 15 rows in the table for all the data. The green 
columns are where you enter your data from the demonstration. The values that go in 
the other four columns must be calculated with the equations I present next.
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TC (°C)
Demo Data

TK (K) Vburet
(mL=cm3)

Demo Data

ΔV (cm3) Vexperimental (cm3) Vpredicted (cm3)

Ti = 0 Vi = Vi =

First, enter the data from the demo in your table. Next, convert all the tempera-
ture values from degrees Celsius (TC) to kelvins (TK). Enter all the temperatures in kel-
vins in the table. To do this use this conversion equation:

TK =TC + 273.2

Use this equation to convert all your temperature values into kelvins for the second 
column in the table.

Next, we obtain the values for ΔV. The Greek letter delta (Δ) means change when 
used in math and science. I use the symbol ΔV to mean the total change in gas volume 
from when the demo started. For example, assume the buret reading is 49.8 mL when 
the demo begins. Assume you have a data value in your table with a buret reading, 
Vburet , of 46.1 mL. The value of ΔV for this data point is 49.8 cm3 – 46.1 cm3 = 3.7 cm3. 
So, the ΔV values are all calculated using this equation:

ΔV = first reading of Vburet( )−Vburet

Use this equation to calculate the values of ΔV for the fourth column in the table. 
The first value for ΔV is zero, as I show in the table above.

Next, we must determine the value of the initial air volume in the buret, Vi . Now, 
note that the actual air volume in the buret, V, always equals the initial volume Vi , plus 
the total change in volume from Vi , which is ΔV. In other words, after we determine 
the value of Vi , the equation to use to compute all the experimental values of V is

Vexperimental =Vi +ΔV

Use this equation to compute all your experimental values for V after you deter-
mine Vi . These experimental values go in the fifth column in the table.

To get Vi , we substitute the expression from the previous equation for V into the 
Charles’ law equation to get

Vi +ΔV = Vi

Ti

⎛
⎝⎜

⎞
⎠⎟
T
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Now we solve this equation for Vi , which gives us

Vi =
ΔV
T
Ti

−1
⎛
⎝⎜

⎞
⎠⎟

Use this equation to compute Vi using the data from a temperature around 35 °C.

I suggest that if you really want to follow what’s going on here (which you should if 
you intend to study science or engineering in college), you should work out the al-
gebra for yourself to verify this new equation for Vi . (It won’t take long and it is good 
practice for you.) This equation allows us to get a good approximation for Vi . Simply 
pick one of the data points and insert the values of ΔV, T, and Ti into the equation and 
you’ve got a good estimate for Vi . Voila! Make sure you use temperature values in kel-
vins for this. I usually use one of the last data points for this calculation. Somewhere 
around 35°C (that is, 308 K) works well.

Finally, now that we have Vi , we use it with Ti and the values of T to calculate 
the predicted value of the volume for each temperature. For this calculation, we use 
Charles’ law, which is what this investigation is all about.

Vpredicted =
Vi

Ti

⎛
⎝⎜

⎞
⎠⎟
T

Use this equation to compute the predicted values for V. These go in the sixth col-
umn of the table.

The result of our work is a graph of volume vs. temperature, showing both predicted 
and experimental values of volume for each value of temperature (two curves on the 
same pair of axes).
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Activity 9. How does the volume of a gas vary with its pressure?

In Activity 8, we look at Charles’ law for gases, which relates the volume and tempera-
ture of an ideal gas. Another law for ideal gases is Boyle’s law, which relates together 
the volume and the pressure of a gas. Boyle’s law for gases can be written as:

V = ViPi
P

where
V is the volume of the gas in cubic meters (m3),
P is the pressure of the gas in pascals (Pa),
Vi is the initial gas volume in cubic meters (m3), and
Pi is the initial gas pressure in pascals (Pa).

If a certain quantity of a gas (a specific number of gas molecules) is placed in a con-
tainer which holds the gas temperature constant, Boyle’s law shows how volume var-
ies with pressure. The values for Vi and Pi are the conditions of the gas at the start of 
the event or experiment.

1. If one wishes to compare how volume changes with pressure, what are the two 
key variables to be compared?

2. Which variable is the independent variable and which is the dependent variable?
3. After combining and normalizing all non-essential variables, what is the expres-

sion relating volume to pressure?
4. How are these variables related to one another (i.e., what kind of proportion, 

etc.)?
5. To graph the variation of volume with pressure, let’s imagine that we are out in 

the middle of a deep lake with a large balloon and a kit of SCUBA diving gear. Let’s 
take our balloon and fill it with air so that it is the size of a basketball. This balloon 
is the size of a basketball without stretching. All we have to do is fill it; no extra 
pressure is required. Now let’s take our balloon down below the water. Your job is 
to use Boyle’s law to calculate the volume of the balloon at various pressures from 
atmospheric pressure at the surface of the water down to the pressure at a depth 
of 50.0 m. So your lowest pressure value is at the surface, the highest pressure 
value is the pressure at 50.0 m deep. You can pick several pressures in between 
and calculate the volume for them as well.

6. Here are the values you need. A sphere the size of a basketball has a volume of 
0.00711 m3. (Verify this value for yourself. A regulation basketball has a diameter 
of 9.39 inches.) This is Vi . Atmospheric pressure, Pi , is 101.3 kilopascals, or 
101.3 kPa. Use the equation from Activity 6 to determine the pressure at a depth 
of 50.0 m, and convert your value from pascals to kilopascals. Prepare a table of 
values for pressures ranging from 101.3 kPa to the pressure 50.0 m down, and 
the corresponding volumes. Graph the changes in the volume as the pressure 
is increased from atmospheric pressure at the surface to pressure at final depth. 

7. Just for fun, let’s now find out how big this balloon is at this depth. To do this, we 
make the slightly silly assumption that the balloon can shrink right along with the 
air inside it and remain spherical. Take the final volume you calculate for a depth 
of 50.0 m and use the equation below for the radius of a sphere to calculate the 
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radius of the balloon at the 50.0 m depth. Then double it to get the diameter. Give 
your final result in inches.

r = 3V
4π

⎛
⎝⎜

⎞
⎠⎟

1
3
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C.1 Important Notes
Please refer to pages xviii–xix in the Preface for Teachers for important information 

pertaining to the terms “experimental error” and “percent difference” as used in this text. 
The following pages contain your guidelines for six five laboratory experiments con-

ducted in this course. For each of these experiments, students submit an individual written 
report. It is your responsibility to study The Student Lab Report Handbook thoroughly so 
that you can meet the expectations for lab reports in this course.

The instructions written here are given to help you complete your experiment success-
fully. However, your report must be written in your own words. This applies to all sections 
of the report. Do not copy the descriptions in this appendix into your report in place of 
writing your report for yourself in your own words.

C.2 Lab Journals
You must maintain a proper lab journal throughout the year. Your lab journal con-

tributes to your lab grade along with your lab reports. Chapter 1 of The Student Lab Report 
Handbook contains a detailed description of the kind of information you should carefully 
include in your lab journal entries. The following are highlights from that description.

A good lab journal includes the following features:

1. The pages in the journal are quadrille ruled (graph paper) and the journal entries are 
in ink.

2. The journal is neatly maintained and free of sloppy marks, doodling, and messiness.

3. Each entry includes the date and the names of the team members present.

4. Every experiment and every demonstration that involves taking data or making obser-
vations is documented in the journal.

5. Entries for each experiment or demonstration include:

APPENDIX C
Laboratory Experiments
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• the date

• the team members’ names

• the team’s hypothesis

• an accurate list of materials and equipment, including make and model of any 
electronic equipment or test equipment used

• tables documenting all the data taken during the experiment, including the units 
of measure and identifying labels for all data

• all support calculations used during the experiment or in preparation of the lab 
report

• special notes documenting any unusual events or circumstances, such as bad data 
that require doing any part of the experiment over, unexpected occurrences or 
failures, or changes to your experimental approach

• little details about the experiment that need to be written in the report that you 
may forget about later

• important observations or discoveries made during the experiment

C.3 Experiments

Experiment 1  The Pendulum Experiment

Variables and experimental methods

Essential equipment:

• string

• meter stick

• paper clip

• large steel washers

• clock with second hand

This investigation involves a simple pendulum. The experiment is an opportunity for you to 
learn about conducting an effective experiment. In this investigation, you learn about con-
trolling variables, collecting careful data, and organizing data in tables in your lab journal.

To make your pendulum, bend a large paper clip into a hook. Then connect the hook 
to a string, and connect the string to the end of a meter stick. Lay the meter stick on a table 
with the pendulum hanging over the edge and tape the meter stick down. Finally, hang one 
or more large metal washers on the hook for the weight.

Your goal in this experiment is to identify the explanatory variables that affect the pe-
riod of a simple pendulum. A pendulum is an example of a mechanical system that oscil-
lates, that is, repeatedly “goes back and forth” in some regular fashion. In the study of any 
oscillating system, an important parameter is the period of the oscillation. The period is the 
length of time (in seconds) required for the system to complete one full cycle of its oscil-
lation. In this experiment, the period of the pendulum is the response variable you moni-
tor. (Actually, for convenience you monitor a slightly different variable, closely related to 
the period. This is explained on the next page.) After thinking about the possibilities and 
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forming your team hypothesis, construct your own simple pendulum from string and some 
weights and conduct tests on it to determine which variables affect its period and which 
variables do not.

In class, explore the possibilities for variables that may affect the pendulum’s period. 
Within the pendulum system itself there are three candidates, and your instructor will lead 
the discussion until the class has identified them. (We ignore factors such as air friction and 
the earth’s rotation in this experiment. Just stick to the obvious variables that clearly apply 
to the problem at hand.)

Then, as a team, continue the work by discussing the problem for a few minutes with 
your teammates. In this team discussion, form your 
own team hypothesis stating which variables you think 
affect the period. To form this hypothesis, you need 
not actually do any new research or tests. Just use what 
you know from your own experience to make your best 
guess.

The central challenge for this experiment is to 
devise an experimental method that tests only one ex-
planatory variable at a time. Your instructor will help 
you work this out, but the basic idea is to set up the 
pendulum so that two variables are held constant while 
you test the system with large and small values of the 
third variable to see if this change affects the period. 
You must test all combinations of holding two vari-
ables constant while manipulating the third one. All 
experimental results must be entered in tables in your 
lab journal. Recording the data for the different trials 
requires several separate tables. For each experimental 
setup, time the pendulum during three separate trials 

and record the results in your lab journal. Repeating the trials this way enables you to verify 
that you have valid, consistent data. To make sure you can tell definitively that a given vari-
able is affecting the period, make the large value of the variable at least three times the small 
value in your trials.

Here is bit of advice about how to measure the period of your pendulum. The period of 
your pendulum is likely to be quite short, only one or two seconds, so measuring it directly 
with accuracy is difficult. Here is an easy solution: assign one team member to hold the 
pendulum and release it on a signal. Assign another team member to count the number of 
swings the pendulum completes, and another member as a timer to watch the second hand 
on a clock. When the timer announces “GO” the person holding the pendulum releases 
it, and the swing counter starts counting. After exactly 10.0 seconds, the timer announces 
“STOP” and the swing counter states the number of swings completed by the pendulum 
during the trial. Record this value in a table in your lab journal. If you have four team mem-
bers, the fourth person can be responsible for recording the data during the experiment. 
After the experiment, the data recorder reads off the data to the other team members as they 
enter the data in their journals.

This method of counting the number of swings in 10 seconds does not give a direct 
measurement of the period, but you can see that your swing count works just as well for 
solving the problem posed by this experiment, and is a lot easier to measure than the period 
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itself. (The actual period is equal to 10 seconds divided by the number of swings that occur 
in 10 seconds.)

One more thing on measuring your swing count: your swing counter should state 
the number of swings completed to the nearest 1/4 swing. When the pendulum is straight 
down, it has either completed 1/4 swing or 3/4 swing. When it stops to reverse course on 
the side opposite from where it is released, it has completed 1/2 swing.

When you have finished taking data, review the data together as a team. If you did the 
experiment carefully, your data should clearly indicate which potential explanatory vari-
ables affect the period of the pendulum and which ones do not. If your swing counts for 
different trials of the same setup are not consistent, then something is wrong with your 
method. Your team must repeat the trials with greater care so that your swing counts for 
each different experimental setup are consistent.

Discuss your results with your team members and reach a consensus about the mean-
ing of your data. Expect to spend at least four hours writing, editing, and formatting your 
report. Lab reports count a significant percentage of your science course grades, so you 
should invest the time now to learn how to prepare a quality report.

Your goal for this report is to begin learning how to write lab reports that meet all the 
requirements described in The Student Lab Report Handbook. One of our major goals for 
this year is to learn what these requirements are and become proficient at generating solid 
reports. Nearly all scientific reports involve reporting data, and a key part of this first report 
is your data tables, which should all be properly labeled and titled.

After completing the experiment, all the information you need to write the report 
should be in your lab journal. If you properly journal the lab exercise, you will have all  the 
data, your hypothesis, the materials list, your team members’ names, the procedural details, 
and everything else you need to write the report. Your report must be typed and will prob-
ably be around three pages long. You should format the report as shown in the examples in 
The Student Lab Report Handbook, including major section headings and section content.

Here are a few guidelines to help you get started with your report:

1. There is only a small bit of theory to cover in the Background section, namely, to de-
scribe what a pendulum and its period are. You should also explain the experimental 
method, that is, why we are using the number of swings completed in 10 seconds in our 
work in place of the actual period. As stated in The Student Lab Report Handbook, the 
Background section must include a brief overview of your experimental method and 
your team’s hypothesis.

2. Begin your Discussion section by describing your data and considering how they relate 
to your hypothesis. In this experiment, we do not make quantitative predictions, so 
there are no calculations to perform for the discussion. We only seek to discover which 
variables affect the period of a pendulum and which do not. Your goal in the Discussion 
section is to identify what your data say and relate that to your reader.

3. Consider the following questions as you write your discussion. What variables did you 
manipulate to determine whether they had any effect on the period of the pendulum? 
What did you find? According to your data, which variables do affect the period? How 
do the data show this? Refer to specific data tables to explain specifically how the data 
support your conclusion. Are your findings consistent with your hypothesis? If not, then 
what conclusion do you reach about the question this experiment seeks to answer?
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Experiment 2  The Soul of Motion Experiment

Newton’s second law of motion

Essential equipment:

• vehicle

• duct tape

• stop watch

• bathroom weigh scale (2)

Note: The report for this experiment requires you to set up a graph showing predicted and 
experimental curves on the same set of axes. Procedures for creating such a graph on a PC 
or Mac are described in detail in The Student Lab Report Handbook.

You will have a great time with this experiment, which is conducted in a flat parking 
lot as a class or other group. The idea is to push a vehicle from the rear, using scales that 
measure the force the pushers are applying to the vehicle. You time the vehicle as it ac-
celerates from rest through a ten-meter timing zone and use the time data to calculate the 
experimental values of the vehicle’s acceleration. Using the mass of the vehicle and Newton’s 
second law, you calculate a predicted acceleration for each amount of pushing force used. 
Your goal is to compare your predicted accelerations to the experimental values of accel-
eration for four different force values. You then graph the results and calculate the percent 
difference to help you see how they compare. 

This experiment is an excellent example of how experiments in physics actually work. 
The scientists have a theory that enables them to predict, in quantitative terms, the outcome 
of an experiment. Then the scientists carefully design the experiment to measure the values 
of these variables and compare them to the predictions, seeking to account for all factors 
that affect the results. If the theory is sound and the experiment is well done, the results 
should agree well with the theoretical predictions and the percent difference should be low.

In our case, when a force is applied to a vehicle at rest, we expect the vehicle to acceler-
ate in accordance with Newton’s second law of motion:

a = F
m

This equation predicts that the acceleration depends on the force applied. So Newton’s sec-
ond law is our theoretical model for the motion of an accelerating object. Now, we know 
that a motor vehicle has a fair amount of friction in the brakes and wheel bearings, which 
means that not all the force applied by the pushers serves to accelerate the car. Some of it 
only overcomes the friction. Also, if the ground is not be perfectly level, this affects the ac-
celeration as well. So to make the model as useful as possible, you must use the actual net 
force on the vehicle in your predictions. Details are discussed below.

For the data collection, you must have a way to measure the actual vehicle’s acceleration 
so that you can compare it to your predictions. You already know an equation that gives the 
acceleration based on velocities and time. However, you have no convenient way of measur-
ing the vehicle’s velocity. (The vehicle moves too slowly for the speedometer to be of any 
use.) Fortunately, there is another equation you can use if you time the vehicle with a stop 
watch as it starts from rest and moves through a known distance. If you know the distance 
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and the time, and the acceleration is uniform, you can calculate the vehicle’s acceleration 
as follows:

a = 2d
t 2

Use this equation to determine the experimental acceleration value for each force, using the 
average time for each set of trials.

Here are some crucial details to help make this experiment as successful as possible:

1. Always have two students pushing 
on the vehicle. Thus, for each force 
value the pushers use, the total ap-
plied force is twice that amount. (You 
use four different force values in the 
experiment.)

2. Measure the friction on the vehicle so 
you can subtract it from the force the 
pushers are applying to get the net 
force applied for your predictions. To 
measure the friction, use one pusher 
and estimate the absolute minimum 
amount of force needed to keep the 
vehicle barely moving at a constant 
speed. As you know from our studies 
of the laws of motion, vehicles move 
at a constant speed when there is no net force. So if the vehicle is moving at a constant 
speed, it means that the friction and the applied force are exactly balanced. This allows 
you to infer what the friction force is.

3. Use four different values of pushing force. For each force value, time the vehicle over the 
ten-meter timing zone at least three times. The forces the pushers apply to the vehicle 
always vary quite a bit, so if you get three valid trials at each force you have three reli-
able data points for the time. You then calculate the average of these times and use it to 
calculate the experimental value of the acceleration of the vehicle for that force.

4. The major factor introducing error into this experiment is the forces applied by the 
pushers. Pushing at a constant force while the vehicle is accelerating is basically impos-
sible. (The dial on the force scale jumps all over the place.) But if the pushers are care-
ful, they can push with an average force that is pretty consistent. You need a standard 
to judge whether you have had a successful run with consistent pushing. Here is the 
criterion to use: when you obtain three trials with time measurements all within a range 
of one second from highest to lowest, accept those values as valid. If your times are not 
this close together, assume that the pushing forces are not consistent enough and keep 
running new trials until you get more consistent data.

5. The instructor will take the vehicle, with a full gas tank, to get it weighed and report 
this weight to the class. Make sure to measure the weight of the driver and the weight 
of the scale support rack (if there is one). Add these weights to the weight of the vehicle 
and determine the mass for this total weight. (Of course, the instructor must also make 
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sure the gas tank is full on the day of the experiment, since the fuel in the tank typically 
amounts to 1–2% of the vehicle weight.)

Considerations for Your Report

In the Background section of your report, be sure to give adequate treatment to the 
theory you are using for this experiment. In the Newton’s second law equation, accelera-
tion is directly proportional to force, so a graph of acceleration vs. force should be linear. In 
the Background, you should use this concept to explain why you expect your experimental 
acceleration values to vary in direct proportion to the force. Explain the equations you are 
using to get the predicted and experimental acceleration values. Since you are using two 
different equations, your Background section should include explanations for both of them 
and why they are needed. The force you are using to make your predictions takes friction 
into account. You need to explain how friction is taken into account, why you are doing so, 
and how this relates to the equations.

In the Procedure section, don’t forget the important details, such as how you measured 
the friction force, weighed the driver, and judged the validity of your time data.

In the Results section, present all time data in a single table, along with the average 
times for the trials at each force value applied by the pushers. Present all the predicted val-
ues, experimental values, and percent differences (see Preface, pages xviii–xix) in another 
table or two. Do not forget to state all the other values used in the experiment, such as the 
vehicle weight, the weights of the driver and support rack, the distance, the total mass you 
calculate, and the friction force you measure. As The Student Lab Report Handbook de-
scribes, in any report, all the data collected must be presented, and they all must be placed 
either in a table or in complete sentences.

In the Discussion, the main feature is a graph of acceleration vs. force, showing both 
the predicted and experimental values on the same graph for all four force values. Carefully 
study Chapter 7 on graphs in The Student Lab Report Handbook and make sure your graph 
meets all the requirements listed.

For your predicted values of acceleration, use the total mass of the vehicle, driver, and 
support rack. The instructor will tell you the weight of the vehicle, which you record in your 
lab journal. Also record the weights of the driver and support rack determined during the 
experiment. Convert the total weight from pounds to newtons, then determine the mass in 
kilograms by using the weight equation, Fw = mg.

For the force values in your predictions, use the nominal amount of force applied (the 
two pushers’ forces combined) less the amount of force necessary to overcome the friction 
(which is determined during the experiment).

Table C.1 summarizes the calculations you need to perform for each set of trials.
The heart of your discussion is a comparison of the two curves representing accelera-

tion vs. force (displayed on the same graph), and a discussion of how well the actual values 
of acceleration match up with the predicted values. In addition to this graphical compari-
son, compare the four predictions to the four experimental acceleration values by calculat-
ing the percent difference for each one, presenting these values in a table and discussing 
them.

To compare the curves, think about the questions below. Do not write your discus-
sion section by simply going down this list and answering each question. (Please spare 
your instructor the pain of reading such a report!) Instead, use the questions as a guide to 
the kinds of things you should discuss and then write your own discussion section in your 
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own words. Remember—this is an exercise in learning how to write a well-constructed lab 
report, not a boring fill-in-the-blank activity.

Thought Questions and Considerations for Discussion

1. Are both the curves linear? What does that mean?

2. Do they both look like direct proportions? What does that imply?

3. Do the curves have similar slopes? What does that imply?

4. How successful are the results? A percent difference of less than about 5% for an experi-
ment as crude as this can be considered a definite success. If the difference is greater 
than 5%, identify and discuss the factors that may have contributed to the difference 
between prediction and result. In this experiment, there are several such factors, includ-
ing wind that may have been blowing on the vehicle.

5. Do not make the mistake of merely assuming that the fluctuation in the pushers’ forces 
explains everything without taking into account the precautions you took to eliminate 
this factor from being a problem (the time data validity requirement).

6. Also do not make the mistake of assuming that friction explains the difference between 
prediction and result. Friction can only affect the data one way (slowing the vehicle 
down). So if friction is a factor, the data have to make sense in light of how friction af-
fects the data. But further, since measuring friction and taking it into account in your 
predictions is part of your procedure, a generic appeal to friction will not do.

7. Finally, do not make the mistake of asserting that errors in the timing or the timing zone 
distance measurement explain the difference between prediction and result. Consider 
just how large the percentage error could realistically be in these measurements, and 
whether that kind of percentage helps at all in explaining the difference you have be-
tween prediction and result. For example, the timing zone is 10 m long. If it is carefully 
laid out on the pavement, it is unlikely that the distance measurement is in error by more 
than a few centimeters or so. Even including the slight misalignments of the vehicle that 
crop up, the distance could probably not be off by more than, say, 10 or 20 cm. But this 
is only 1–2% of 10 m, and if you are trying to explain a percent difference of 5–10% or 

Table C.1. Summary of equations for the calculations.

Variable Equation Comments

force net force = 
(2 × force for each pusher) – friction 
force estimate

There are four values of net force, one 
for each set of trials.

predicted 
acceleration

predicted accel =
(net force)/(total mass)

Net force is as calculated above. Mass 
is determined from the total weight. 
There is a predicted acceleration for 
each value of net force.

experimental 
acceleration

experimental accel =
(2 × distance)/(avg time)2

Distance is the length of the timing 
zone. Average time is the average of 
the three valid times for a given trial. 
There is an experimental acceleration 
for each value of net force.
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more this won’t do it. Similar considerations apply to the time values. Given the slow 
speed the vehicle moves, how far off can the timing be? What kind of percentage error 
would this produce?

Alternate Experimental Method

If your class is using digital devices such as the PASCO Xplorer GLX to read forces, you 
can use a slightly different experimental method that improves results and lowers the dif-
ference between prediction and result. One of the major sources of error in this experiment 
is the difficulty the pushers have in accurately applying the correct amount of force to the 
vehicle. If you use bathroom scales to measure the force, there is nothing that can be done 
about this problem and the pushers simply have to do the best they can.

However, with the digital devices you can eliminate the problem of force accuracy by 
using the actual average values of the forces applied by the two pushers to calculate the 
predicted values. The Xplorer GLX can record a data file of the applied force during a given 
trial, and when reviewing the data file back at your computer you can view the mean value 
of the force during the trial. You can use this mean value to calculate the predicted accel-
eration from Newton’s second law. Using this method to form your predictions eliminates 
much of the uncertainty surrounding the forces applied to the car.

Here are a few details to consider if you use this alternative approach to collecting data:

1. You do not need to select four different force values in advance and push the vehicle 
repeatedly at each force value. Instead, only a single trial is needed for each force.

2. Select 10 or 12 different target force values and run a single trial with each. The force 
targets should range from low values that barely get the vehicle to accelerate, all the way 
up to the highest values the pushers can deliver. For each trial, tell the pushers the target 
force and tell them to do their best to stay on it during the trial. But it doesn’t matter 
nearly so much how accurate the pushers are because you are using the average of the 
actual data from the digital file to make the predictions, rather than relying on the push-
ers to maintain the target force accurately.

3. The method for determining values of net force for the predictions is similar to that 
shown in Table C.1. The difference is that instead of doubling the target force for each 
pusher, you add together the actual mean forces obtained from the data files for each 
pusher and subtract out the friction force.

4. Use the time of each trial to determine the experimental value of the acceleration for 
that trial.

5. Calculate the percent difference for each trial and report these values in the report. Also 
calculate the average of the percent difference values and use this figure in your discus-
sion of the results.




