1. Interpret dimensions and tolerances per ASME Y14.5-2009

REVISION HISTORY		
REV	DCN	DATE
A		$2021-03-18$

3. Single-segment feature control frames (FCFs) and the upper segment of composite FCFs apply simultaneously
4. FCF segments denoted by a letter-in-triangle (example: $\widehat{\imath}$) apply simultaneously with FCF segments denoted by the same letter-in-triangle
5. Default surface roughness: Ra shall not exceed 4% of the form requirement. ASME B46.1-2009 Table 3-2 specifies cutoff values
6. Dimensions are given in millimeters. Default tolerances: $\varnothing \mid \phi 0.2 \mathbb{M})$ for screw threads. $\square 0.3$ for surfaces
7. Laser marks with solid infill. Data matrix comprises 16×16 pixels encoded with information in the following format: SE HH:MM:SS DDDYYYY LOTNUM SE indicates Slice Engineering is the brand. HH:MM:SS stands for the time of day of laser marking in hours, minutes, and seconds. DDD stands for the number of the day in the year ($001-365$) and YYYY the year at the time of laser marking. LOTNUM stands for a unique 6 -digit numerical lot code. Data matrix shall be readable by Cognex Corporation's Barcode Scanner application for Apple iOS and Google Android

SECTION C-C

 surfaces

(c) (1) () Slice Engineering

sLICE ENGINEERING, LLC • GAINESVILLE, FLORIDA • SLICEENGINEERRG.COM

BALLOON	QTY.	MANUFACTURER	ITEM NUMBER	DESCRIPTION
1	1	SLICE ENGINEERING	COP-P032	HEAT BREAK SHANK STANDARD G2
2	1	SLICE ENGINEERING	COP-P041	HEAT BREAK BUSHING 1.75
3	1	SLICE ENGINEERING	COP-P051	HEAT BREAK TUBE 1.75

REVISION HISTORY		
REV	DCN	DATE
A		$2021-03-18$

1. Interpret dimensions and tolerances per ASME Y14.5-2009. Third-angle projection is used to project drawing views
2. For complete product definition, use this drawing in conjuction with associated model. CAD geometry is basic
3. Single-segment feature control frames (FCFs) and the upper segment of composite FCFs apply simultaneously
4. FCF segments denoted by a letter-in-triangle (example: z) apply simultaneously with FCF segments denoted by the same letter-in-triangle
5. Default surface roughness: Ra shall not exceed 4% of the form requirement. ASME B46.1-2009 Table 3-2 specifies cutoff values
6. Dimensions are given in millimeters. Default tolerances: $\phi \phi 0.2 \otimes$ for screw threads. $\triangle 0.2$ for surfaces
7. Tolerances apply after application of any specified plating or coating

SECTION A-A
0.02 radial interference shown between

COP-P051 and COP-P032. Radial interference
shall be chosen by supplier to resist a
300 N axial extraction force at $20^{\circ} \mathrm{C}$

0.02 radial interference shown between COP-P051 and COP-P041. Radial interference shall be chosen by supplier to resist a 300 N axial extraction force at $20^{\circ} \mathrm{C}$
\square
BLUE SURFACE

1. Interpret dimensions and tolerances per ASME Y14.5-2009. Third-angle projection is used to project drawing views

2. For complete product definition, use this drawing in conjuction with associated model. CAD geometry is basic
3. Single-segment feature control frames (FCFs) and the upper segment of composite FCFs apply simultaneously
4. FCF segments denoted by a letter-in-triangle (example: z) apply simultaneously with FCF segments denoted by the same letter-in-triangle
5. Default surface roughness: Ra shall not exceed 4% of the form requirement. ASME B46.1-2009 Table 3-2 specifies cutoff values
6. Dimensions are given in millimeters. Default tolerances: $\phi \mid \phi 0.2 \mathbb{M}$ for screw threads. $\bigcirc 0.2$ for surfaces
7. Tolerances apply after application of any specified plating or coating
8. Minimum plating thickness: 0.005

REVISION HISTORY		
REV	DCN	DATE
00		$2019-08-08$
A		$2020-01-19$
B	121	$2020-12-04$
C	128	$2021-02-11$
D	131	$2021-02-21$

ORANGE surfaces

SECTION ABA
(5) Slice Engineering

