LESSON 20 (p1 of 3)

Multimeter Setup

VERY IMPORTANT INFORMATION ABOUT USING THE MULTIMETER

To avoid damage to the DMM, this is the correct procedure to set up the meter:

1. If the meter has an ON/OFF switch, turn the meter OFF.

2. With the meter turned OFF, set the meter dial to the correct position.
3. If there is an on/off switch, turn it to ON.
4. Touch the tips of the meter probes to the circuit or device under test.
a. Measuring current requires much caution. If you put the meter on the wrong Amps scale, you can blow the internal fuse. Always start with the highest Amps scale and then go down if it shows a very low reading.
b. The meter we show here has a 5 Amp DC jack. That is for 5 Amps or less.
c. The meter also has four other ranges for current. 200u which means 200 microAmps or less, 2000u which means 2000 microAmps or less, 20 m which means 20 milliAmps or less, and 200 m which means 200 milliAmps or less.
d. Every meter is different, so study carefully the current ranges before connecting the meter to read the current in a circuit.

Measuring Voltages: If you want to measure a voltage and you are not sure what range to use, start at the highest voltage position on the dial which is the 250 V position which is the highest on this meter. Touch the probes to see what you read. If it is too low, then move a lower range of voltage.

Here are the 3 steps to avoid damaging the meter.
Multimeter Setup

Step \#1: With the meter switched OFF, rotate the dial to the correct measurement position you need.

Step \#2: Then move the meter ON/OFF switch to the ON position.

Step \#3: Plug in the meter leads to the correct sockets and then touch the meter probe tips to the circuit.

MR CIRCUIT LAB \#1201 - MULTIMETER FUNDAMENTALS "Ohm's Law and More!"

MR CIRCUIT LAB \#1201
Reading OHMs

Let's practice reading OHMs on the DMM. Use your actual meter to verify clearly what the dial setting is.

Be careful with the ' k ' as explained in the lesson on page 20a2.

Write the ohms value under each meter shown. (Don't use ' k ' in your answer.)

Ans:

(1) 1.2Ω,
(2) $12,280 \Omega$
(3) $18,200 \Omega$
(4) $74,400 \Omega$
(5) 3Ω
(6) 148.5Ω
(7) $24,100 \Omega$
(8) 1568Ω
(9) $64,000 \Omega$
(10) $1,007,000 \Omega$

Resistance Scales

MR CIRCUIT LAB \#1201 - MULTIMETER FUNDAMENTALS "Ohm’s Law and More!"

Resistance Tolerance Chart

Activity Page

± 5 \% Resistors

The resistors in this lab have a fourth band which is Gold and that means that these resistors are rated at $a \pm 5 \%$ Tolerance. To be within tolerance, a $\pm 5 \%$ resistor has to be between 5% less to 5% more than the nominal resistance. (By nominal, we mean the named or labeled value of a component.) Our resistors have color bands to tell you the nominal resistance value of each resistor.
Instructions: Take each resistor's nominal value and multiply it by 0.95 (which equals the nominal value less 5%) and then multiply the nominal value by 1.05 (which equals the nominal value plus 5%) Fill in the Tolerance Chart below by writing in the ohms values you calculate. Follow the example below.

Example: Nominal value $=100$ ohms (Brown, Black, Brown, Gold)
100×0.95 = 95 ohms Min. 100×1.05 = $\mathbf{1 0 5}$ ohms Max.

Nominal value $=220$ ohms (Red, Red, Brown, Gold)
$220 \times 0.95=\quad$ Min. $220 \times 1.05=\quad$ Max.

Nominal value $=330$ ohms (Orange, Orange, Brown, Gold)
$330 \times 0.95=\quad$ Min. $330 \times 1.05=\quad$ Max.

Nominal value $=10,000$ ohms (10k) (Brown, Black, Orange, Gold)
$10,000 \times 0.95=\quad$ Min. $\quad 10,000 \times 1.05=1$ Max.

Nominal value $=39,000$ ohms (390k) (Orange, White, Orange, Gold)
$39,000 \times 0.95=\quad$ Min. $39,000 \times 1.05=1$ Max.

Nominal value $=330$, 000 ohms (330k) (Orange, Orange, Yellow, Gold)
$330,000 \times 0.95=\quad$ Min. $330,000 \times 1.05=\quad$ Max.

Nominal value $=470,000$ ohms (470k) (Yellow, Violet, Yellow, Gold)
$470,000 \times 0.95=\quad$ Min. $470,000 \times 1.05=1$ Max.

Nominal value $=1,000,000$ ohms (1Meg) (Brown, Black, Green, Gold)
$1,000,000 \times 0.95=\quad$ Min. $\quad 1,000,000 \times 1.05=\quad$ Max.

FILL IN THE CHART

20a4	Compare to Tolerance LESSON	Activity Page	$\pm 5 \%$ Resistors

Now we are going to measure the resistance of each of the listed resistors below with the meter set to all the different ranges. Fill in the rectangle with what you see in the display for each resistor and each range.
Circle the most accurate reading for each resistor. Then, we will compare this reading to the Tolerance
Chart on 20a2 to check if each resistor is within tolerance. (Remember, that to be within tolerance, a $\pm 5 \%$ resistor has to be between 5% less to 5% more than its nominal resistance value.) We will again use the 100Ω resistor as an example. Notice that it says 98.7 ohms. To be within tolerance, this $\pm 5 \%$ resistor with a nominal value of 100Ω has to be between 95Ω and 105Ω. It is and therefore it is within tolerance. Now let's check all the rest of the resistors on this page and on page 20b3..

MR CIRCUIT LAB \#1201 - MULTIMETER FUNDAMENTALS "Ohm’s Law and More!"

MR CIRCUIT LAB \#1201

MR CIRCUIT LAB \#1201 - MULTIMETER FUNDAMENTALS "Ohm’s Law and More!"

