

Benefits \& features

KOHLER SDMO premium quality

- Design offices using the latest technical innovations
- Modern fully certified factories
- A cutting edge laboratory
- The generating set, its components and a wide range of options have been fully developed, prototype tested, factory built, and production tested

KOHLER SDMO premium performances

- Optimized and certified sound levels
- Reliable power, even in extreme conditions
- Optimized fuel consumption
- Compact footprint
- Best quality of electricity, high starting and loading capacity, according to ISO8528-5
- Robust base frames and high-quality enclosures
- Protection of installations and people
- Approved in line with the most stringent standards

Engines

- Premium level engines, in-house or from strong partners
- High power density, small footprint
- Low temperature starting capability
- Long maintenance interval

Alternator

- Provide industry leading motor starting capability
- Made in Europe
- Built with a class H insulation and IP23

Cooling

- A flexible solution using an electrical driven radiator fan
- Designed or optimized by KOHLER-SDMO
- High temperature and altitude product capacity available

Base frame and enclosure

- High quality steel with enhanced corrosion resistance
- Highly durable QUALICOAT-certified epoxy paint
- Minimum 1000 hours of resistance to salt spray in accordance with ISO12944
- Ergonomic access to allow easy maintenance and connection of the generator
- Robust design optimized for transportation

RATINGS $230 \mathrm{~V}-50$		
Hz		
	kVA	26
	kWe	26
	kVA	23,60
	kWe	23,60

GENERAL SPECIFICATIONS	
Engine brand	KOHLER KDI
Alternator commercial brand	KOHLER
Voltage (V)	230 single phase
Standard Control Panel	APM303
Optional control panel	APM403
Consumption @ 100\% load ESP (L/h)	8
Consumption @ 100\% load PRP (L/h)	8
Type of Cooling	Mechanical driven fan
Performance class	G3

GENERATOR SETS RATINGS

	Standby Rating				Prime Rating			
K26M	Voltage	PH	Hz	kWe	kVA	Amps	kWe	kVA
	240 MONO	3	50	26	26	108	23,60	23,60
	230 MONO	3	50	26	26	113	23,60	23,60
	220 MONO	3	50	26	26	118	23,60	23,60

DIMENSIONS COMPACT VERSION

Length (mm)	1700
Width (mm)	896
Height (mm)	1200
Tank capacity (L)	100
Dry weight (kg)	604

DIMENSIONS SOUNDPROOFED VERSION

Type soundproofing	M137
Length (mm)	2100
Width (mm)	938
Height (mm)	1285
Tank capacity (L)	100
Dry weight (kg)	792
Acoustic pressure level @1m in dB(A) 50Hz (75\% PRP)	76
Acoustic pressure level @7m in dB(A) 50Hz (75\% PRP)	63

[^0]| Engine | |
| :--- | :---: |
| General | KOHLER KDI |
| Engine brand | KDI2504TM-30 * |
| Engine ref. | Turbo |
| Air inlet system | L |
| Cylinders configuration | 4 |
| Number of cylinders | 2,48 |
| Displacement (I) | $88 * 102$ |
| Bore (mm) * Stroke (mm) | $18.5: 1$ |
| Compression ratio | 1500 |
| Speed (RPM) | 31 |
| Maximum stand-by power at rated RPM (kW) | Direct |
| Injection Type | Mechanical |
| Governor type | Dry |
| Air cleaner type, models | |
| Fuel system | 55 |
| Maximum fuel pump flow (I/h) | |
| Consumption with cooling system | 5,50 |
| Consumption @ 100\% load ESP (I/h) | 8,50 |
| Consumption @ 100\% PRP load (I/h) | 4,20 |
| Consumption @ 75\% PRP load (I/h) | |
| Consumption @ 50\% PRP load (I/h) | |
| Emissions | |
| Emission PM (g/kW.h) | |
| Emission CO (g/kW.h) | |

Lubrication System	
Oil system capacity including filters (I)	11,50
Min. oil pressure (bar)	0,70
Max. oil pressure (bar)	
Oil sump capacity (1)	
Oil consumption 100\% ESP 50Hz (I/h)	0,01
Air Intake system	
Max. intake restriction (mm H 2 O)	
Intake air flow (1/s)	
Exhaust system	
	PRP ESP
Exhaust gas temperature (${ }^{\circ} \mathrm{C}$)	455
Exhaust gas flow (L/s)	103
Max. exhaust back pressure (mm H2O)	800
Cooling system	
Radiator \& Engine capacity (I)	9,10
Fan power $50 \mathrm{~Hz}(\mathrm{~kW})$	0,90
Fan air flow w/o restriction (m3/s)	1,18
Available restriction on air flow (mm H 2 O)	20
Type of coolant	Glycol-Ethylene
Radiated heat to ambiant (kW)	5
Heat rejection to coolant HT (kW)	24
Max coolant temperature, Shutdown (${ }^{\circ} \mathrm{C}$)	110
Thermostat begin of opening $\mathrm{HT}\left({ }^{\circ} \mathrm{C}\right)$	79
Thermostat end of opening $\mathrm{HT}\left({ }^{\circ} \mathrm{C}\right.$)	94

* Engine reference may be partially modified depending on genset application, options selected by the customer and lead time required.

Alternator Specifications

Alternator commercial brand	KOHLER
Alternator ref.	KH00500TO4N
Number of pole	4
Number of bearing	Single Bearing
Technology	Brushless
Indication of protection	IP23
Insulation class	H
Number of wires	12
AVR Regulation	Yes
Coupling	Direct
Capacity for maintaining short circuit	Yes

Application data	
Overspeed (rpm)	2250
Power factor (Cos Phi)	1
Voltage regulation at established	1
rating (+/- \%)	<45
Wave form : NEMA=TIF	<2
Wave form : CEI=FHT	3,0
Total Harmonic Distortion in no-load DHT (\%) Total Harmonic Distortion, on linear load DHT (\%) Recovery time (Delta U = 20\% transcient) (ms)	1,6

Performance datas

Continuous Nominal Rating $40^{\circ} \mathrm{C}$27
(kVA) 100
(\%)
Peak motor starting (kVA) based on $\mathrm{x} \%$ voltage dip power factor at 0.3

Alternator Standard Features

- All models are brushless, rotating-field alternators
- NEMA MG1, IEEE, and ANSI standards compliance for temperature rise and motor starting
- The AVR voltage regulator provides superior short circuit capability
- Self-ventilated and dip proof construction
- Superior voltage waveform

Note: See Alternator Data Sheets for alternator application data and ratings, efficiency curves, voltage dip with motor starting curves, and short circuit decrement curves.

Dimensions compact version

Length (mm) * Width (mm) * Height (mm)	1700 * 896 * 1200
Dry weight (kg)	604
Tank capacity (L)	100

Dimensions soundproofed version	
M137	$2100 * 938 * 1285$
Length (mm) * Width (mm) * Height (mm)	792
Dry weight (kg)	100
Tank capacity (L)	76
Acoustic pressure level @1m in dB(A) 50Hz (75\% PRP)	93
Sound power level guaranteed (Lwa) 50Hz (75\% PRP)	63
Acoustic pressure level @7m in dB(A) 50Hz (75\% PRP)	63

Dimensions DW compact version

Length (mm) * Width (mm) * Height (mm)	$2074^{*} 932$ *1401
Dry weight (kg)	812
Tank capacity (L)	240
Dimensions DW soundproofed version	2100 *938*1486
M137-DW	1000
Length (mm) * Width (mm) * Height (mm)	240
Dry weight (kg)	75
Tank capacity (L)	93
Acoustic pressure level @1m in dB(A) 50Hz (75\% PRP)	63
Sound power level guaranteed (Lwa) 50Hz (75\% PRP)	
Acoustic pressure level @7m in dB(A) 50Hz (75\% PRP)	63
Dimensions DW 48h soundproofed version	
M137-DW48	2100 *938 * 1540
Length (mm) * Width (mm) * Height (mm)	1012
Dry weight (kg)	470
Tank capacity (L)	75
Acoustic pressure level @1m in dB(A) 50Hz (75\% PRP)	93
Acoustic pressure level @7m in dB(A) 50Hz (75\% PRP)	

Industrial Diesel Generator Set - K 26 M

APM303

APM403

The APM303 is a versatile unit which can be operated in manual or automatic mode. It offers the following features:

- Measurements: phase-to-neutral and phase-to-phase voltages, fuel level (In option : active power currents, effective power, power factors, Kw / h energy meter, oil pressure and coolant temperature levels)
- Supervision: Modbus RTU communication on RS485
- Reports: (In option : 2 configurable reports)
- Safety features: Overspeed, oil pressure, coolant temperatures, minimum and maximum voltage, minimum and maximum frequency (Maximum active power $\mathrm{P}<66 \mathrm{kVA}$)
Traceability: Stack of 12 stored events
For further information, please refer to the data sheet for the APM303

BASIC GENERATING SET AND POWER PLANT CONTROL

The APM403 is a versatile control unit which allows operation in manual or automatic mode

- Measurements : voltage and current
- kW/kWh/kVA power meters
- Standard specifications: Voltmeter, Frequency meter.
- Optional : Battery ammeter.
- J1939 CAN ECU engine control
- Alarms and faults: Oil pressure, Coolant temperature, Overspeed, Startup failure, alternator min/max, Emergency stop button.
- Engine parameters: Fuel level, hour counter, battery voltage.
- Optional (standard at 24V): Oil pressure, water temperature.
- Event log/ Management of the last 300 genset events.
- Mains and genset protection
- Clock management
- USB connections, USB Host and PC,
- Communications: RS485 INTERFACE
- ModBUS protocol /SNMP
- Optional : Ethernet, GPRS, remote control, 3G, 4G,
- Websupervisor, SMS, E-mails

STANDARD SCOPE OF SUPPLY

All our gensets are fitted with:

- Industrial water cooled DIESEL engine
- Electric starter \& charge alternator
- Standard air filter
- Schneider or ABB electric circuit breaker, adapted to the short-circuit current of the generating set
- \quad Single bearing alternator IP $23 \mathrm{~T}^{\circ}$ rise/ insulation to class H / H
- Welded steel base frame with 85% vibration attenuation mounts
- 4 lifting points on the chassis, lifting bar on the top included from 165 kVA ESP or optional
- highly durable QUALICOAT certified epoxy paint
- frame height optimized to allow it to be moved safely by forklift
- enclosure made of new high-quality European steel with enhanced corrosion resistance
- IP 64 locks, made from stainless materials
- enclosures and base frames tested and analyzed by the French Corrosion Institut
- 100% of tanks tested for permeability
- Personal protection ensured by protective grilles on hot and rotating parts
- Separate $9 \mathrm{~dB}(\mathrm{~A})$ silencer
- Fuel tank welded inside the genset frame
- Retention bund included for gensets up to 110 kVA ESP
- Charged DC starting battery with electrolyte
- Emergency stop button on the outside
- Flexible fuel lines \& lub oil drain cock
- Exhaust outlet with flexible and flanges
- User's manual (1 copy)
- Packing under plastic film
- Delivered with oil and antifreeze liquid

CODES AND STANDARDS

Engine-generators set is designed and manufactured in facilities certified to standards ISO9001:2015 \& ISO14001:2015. The generator sets and its components are prototype-tested, factory built and production tested and are in compliance with the relevant standards:

- Machinery Directive 2006/42/EC of May 17th 2006
- EMC Directive2014/30/UE
- Safety objectives set out in the Low Voltage Directive 2014/35/UE
- EN ISO 8528-13, EN 60034-1, EN 61000-6-1, EN 61000-6-2, EN 61000-6-3, EN 55011, EN 1679-1 et EN 60204-1

POWER RATINGS DEFINITION according to ISO8528-1 (2018-02 edition) and ISO-3046-1

Emergency Standby Power (ESP): The standby rating is applicable to varying loads for the duration of a power outage. There is no overload capability for this rating. Average load factor per 24 hours of operation is $<70 \%$.

Prime Power (PRP): At varying load, the number of generator set operating hours is unlimited. A 10\% overload capacity is available for one hour within 12 hour of operation. Average load factor per 24 hours of operation is $<70 \%$.

[^1]Industrial Diesel Generator Set - K 26 M

According to the standard, the nominal power assigned by the genset is given for $25^{\circ} \mathrm{C}$ Air Intlet Temperature, of a barometric pressure of 100 kPA (100 m A.S.L), and 30% relative humidity. For particular conditions in your installation, refer to the derating table.

WARRANTY INFORMATIONS

Standard Warranty Period:

- for Products in "back-up" service
- 30 months from the date the Product leaves the plant
- 24 months from the Product's commissioning date
- 1,000 running hours

The warranty expires when one of the above conditions is met.

- for Products in "prime" or "continuous" service (continuous supply of electricity, either in the absence of any normal electricity grid or to complement the grid),
- 18 months from the date the Product leaves the plant
- 12 months from the Product's commissioning date
- 2,500 running hours

The warranty expires when one of the above conditions is met.

For more details regarding conditions of application and scope of the warranty please refer to our General "terms \& conditions of sales".

[^0]: Reference Conditions: $25^{\circ} \mathrm{C}$ Air Inlet Temperature, $40^{\circ} \mathrm{C}$ Fuel Inlet Temperature, 100 kPa Barometric Pressure; $10.7 \mathrm{~g} / \mathrm{kg}$ of dry air Humidity. Intake Restriction set to maximum allowable limit for clean filter; Exhaust Back pressure set to maximum allowable limit.
 Data was taken from a single engine test according to the test methods, fuel specification and reference conditions stated above and is subjected to instrumentation and engine-to-engine variability. Test conducted with alternate test methods, instrumentation, fuel or reference conditions can yield different results. Data and specifications subject to change without notice.

[^1]: Reference Conditions: $25^{\circ} \mathrm{C}$ Air Inlet Temperature, $40^{\circ} \mathrm{C}$ Fuel Inlet Temperature, 100 kPa Barometric Pressure; $10.7 \mathrm{~g} / \mathrm{kg}$ of dry air Humidity. Intake Restriction set to maximum allowable limit for clean filter; Exhaust Back pressure set to maximum allowable limit.
 Data was taken from a single engine test according to the test methods, fuel specification and reference conditions stated above and is subjected to instrumentation and engine-to-engine variability. Test conducted with alternate test methods, instrumentation, fuel or reference conditions can yield different results. Data and specifications subject to change without notice.

