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a b s t r a c t

In this paper, a dynamic model is proposed for the charging process of a cold energy storage made of a
fixed bed of spherical nodules containing a Phase Change Material (PCM). During the charging process,
even if the temperature of the cooling liquid that flows through the storage is uniform, the solidification
process does not begin at the same temperature among the nodules due to the supercooling
phenomenon. A first number distribution can be defined according to the solid mass fraction among
the nodules experiencing solidification. At the end of the solidification process, the temperature of the
solid phase is not the same among the nodules population having completed the solidification. A second
number distribution can be defined according to their mean temperature. In order to calculate the time
evolution of these two number distributions, we propose to use the population balance equation
approach coupled with nodules energy balance equations. The resulting partial differential equations
are spatially discretized by the finite difference method. The supercooling phenomenon is taken into
account as a boundary condition of the population balance equation associated with the solid mass
fraction by using a nucleation kinetic model. The resulting set of ordinary differential equations is
numerically solved. The model is applied for simulating the charge cycle of an ice storage system. Good
agreement between simulation results and experimental data is achieved.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Thermal energy storage using the solidification/fusion enthalpy
of Phase Change Materials (PCM) is considered as an effective and
sustainable tool for energy use owing to its energy storage high
density and low CO2 emission [1,2]. The large amount of heat that
can be exchanged during the phase change processes permits to
make containers small in size. Cold energy storage with PCM has
recently been studied for shifting electricity consumption from
pick hours in Heating, Ventilation and Air-Conditioning (HVAC)
applications [3–5]. The PCM is solidified by a chiller when the
buildings cooling demand is low, whereas the storage operates in
parallel with the chiller when the cooling demand is high.

Modeling PCM storage systems is important since it helps to
make predictions during operations for design and control purposes.
An accurate and efficient model can be used to evaluate the thermal
behavior and thus to reduce the time and expense of experimenta-
tion. Numerous models of PCM thermal storage systems are
available in the literature, some of them being reviewed by Dutil
et al. [6], Verma and Singal [7] and Liu et al. [8]. Developing a
detailed model to characterize the thermal behavior of PCM thermal
energy storages is complex due to the heat transfer problems asso-
ciated to phase change and to the supercooling phenomenon [2,6].

Ismail and Henriquez [9] developed a numerical model for a
storage system composed of a cylindrical tank and spherical nod-
ules filled with water, using a finite difference approach and mov-
ing grid technique. In this model the heat transfer inside the
nodules is calculated by using one-dimensional heat conduction
model, and the natural convection between the PCM and the envel-
ope is neglected. Bilir and Ilken [10] presented a numerical study
on the inward solidification of a liquid PCM encapsulated in a
cylindrical/spherical container. The governing equations are for-
mulated and solved with control volume approach. The solid vol-
ume fraction is used to characterize the variations of the phase
change front. Bony and Citherlet [11] realized a numerical and
experimental study on the heat transfer in PCM plunged in water
tank storage. An effective conduction coefficient approach is used
to take into account for the internal convection inside PCM nod-
ules. Zsembinszki et al. [3] developed a two-dimensional model
for simulating the melting process of a cold storage tank filled with
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Nomenclature

A pre-exponential factor (s�1)
a thermal diffusivity (m2 s�1)
cp specific heat capacity (J K�1 kg�1)
CSTR Continuous Stirred Tank Reactor
D diameter (m)
f flux
H height (m)
I probability of crystallization per unit time and volume

(m�3 s�1)
J probability of crystallization per unit time (s�1)
k thermal equivalent conductance (s�1)
K Boltzmann constant (J K�1)
m mass (kg)
q mass flow rate (kg s�1)
n number of nodules
N number of discrete elements
Nu Nusselt number
p source term per unit volume in a balance equation

(�m�3 s�1)
Pr Prandtl number
r nodule radius (m)
R thermal resistance (K W�1)
Re Reynolds number
S surface area of capsule (m2)
T temperature (K)
Tm melting temperature (K)
t time (s)
u fluid velocity (m s�1)
v phase space velocity
x solid mass fraction

Greek symbols
a heat transfer coefficient (W m�2 K�1)
b extensity density (�m�3)
c solidification level
DA⁄ potential barrier for nucleation (J)
Dhsl enthalpy of fusion per unit of mass (J kg�1)
k thermal conductivity (W m�1 K�1)
l fluid dynamic viscosity (Pa s)
q mass density (kg m�3)
rsl solid-liquid interfacial tension (N m�1)
/ heat flux (W)
wx number density at a certain solid mass fraction
wTs

number density at a certain solid temperature (K�1)

Subscripts
c capsule
d two phase
e outside of nodules
env envelope of nodules
f cooling fluid
i inside of nodules
k kth CSTR
l liquid
s solid
R spatial coordinates
t total
Z phase space coordinates
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commercial PCM flat slabs. They used the implicit finite difference
method for solving the energy balance equations of nodules and
heat transfer fluid. Votyakov and Bonanos [12] applied the pertur-
bation theory to predict the performance of packed bed thermo-
cline thermal energy storage tanks. Their work is based upon a
one-dimensional one-phase model, in neglecting heat conduction
in the solid filler and in the fluid, and assuming a lumped heat
capacitance model.

During a cooling process, a liquid PCM does not generally crys-
tallize immediately when the temperature reaches its melting
temperature, whereas there is no delay when a solid PCM melts.
In order to achieve the solidification process, the liquid PCM has
to be supercooled. The supercooling phenomenon is characterized
by the difference between the melting temperature and the aver-
age temperature at which the liquid starts to crystallise. It can sig-
nificantly increase the storage charging duration and the load of
refrigeration systems, so it is important to account for the phe-
nomenon in dynamic modeling of thermal energy storages [13,14].

As far as we know, only few authors have taken into consid-
eration the supercooling phenomenon in dynamic modeling of
thermal energy storage systems: Wu et al. [15] and Calvet et al.
[16] assumed that the PCM has a constant solidifying temperature
which is less than the melting temperature. The solidifying tem-
perature is fixed at an average value determined by experimental
tests. It is a simplified approach since the PCM does not always
crystallize at the same temperature according to experimental
investigations [17]. Bédécarrats et al. [18] proposed to use the
probability of crystallization per unit time, a concept originated
from the conventional theory of nucleation, to account for the
stochastic character of the freezing process due to the supercooling
phenomenon. This approach has proven to be efficient and accu-
rate in predicting the thermal behavior of PCM storages [19,20].
A theoretical and experimental investigation is presented by El
Rhafiki et al. [21] for characterizing the probability of crystalliza-
tion of PCMs inside an emulsion.

In this paper, we propose to use the population balance equation
approach to derive a dynamic model of the charging process of a
cold energy thermal storage, which is made of a fixed bed of sphe-
rical nodules containing a PCM. This framework allows describing
in a simple and elegant way the influence of the supercooling phe-
nomenon by introducing two number distributions among the nod-
ules. The first one allows describing the repartition of nodules the
content of which is experiencing solidification: this repartition is
defined as a function of the solid mass fraction and time. The second
one allows describing the repartition of nodules the content of
which is solid and is experiencing solid phase cooling: this reparti-
tion is defined as a function of the solid mean temperature and
time. To our better knowledge, at present no applications of the
population balance equations approach to thermal storage model-
ing are available in the literature.

This paper is organized as follows. An introduction to the prin-
ciple of the population balance equations is presented in Section 2.
A novel thermal energy storage model based on the population and
energy balance equations that we propose in this work is described
in Section 3. Simulation results and comparison with experimental
data are presented in Section 4 and finally conclusions are given in
Section 5.
2. Principle of the population balance equations

The general form of the balance equation for a scalar extensive
quantity is very well described in numerous textbooks (see for
example [22]):
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@b
@t
þrR � f R ¼ p ð1Þ

where b is the volumetric density, f R is the flux and p is the
volumetric source term. The divergence operator rR� is taken over
the spatial coordinates R ¼ ½R1 R2 R3 �T . A population balance
equation can be considered as an extension of an ordinary balance
equation to a supplementary coordinates vector Z ¼ ½ Z1 Z2 . . . �T ,
which represents some properties or phase variables associated to
the extensive quantity that is counted [23]. The latter is discrete
in nature so that a number density function wðR;Z; tÞ can be defined
as follows:

dn ¼ wðR;Z; tÞdR1dR2dR3dZ1dZ2 . . . ð2Þ

dn is the number of discrete entities being in the elementary spatial
volume dR1dR2dR3 and having their properties Zj included in the
intervals ½Zj; Zj þ dZj�. The flux in the phase space is generally con-
sidered as purely convective so that the total flux f is given by:

f ¼ vZwþ f R ð3Þ

where vZ is the velocity in the phase space. A population balance
equation is then as follows:

@w
@t
þrZ � ½vZw� þ rR � f R ¼ p ð4Þ

The volumetric source term p includes death and birth processes
as well as breakage and agglomeration ones. The latter are repre-
sented by integrals involving specific kernels.

Population balance equations approach has been widely used
for modeling particulate processes such as suspension polymeriza-
tion [24], crystallization [25] and emulsification [26] for example.
In the case of anisotropic particles crystallization, a distribution
defined over two property phase variables like length and width
can be used [27,28]. If the volumetric density function does not
depend on the spatial position R, the population balance equation
is reduced to:

@w
@t
þrZ � ½vZw� ¼ p ð5Þ

For example, this assumption corresponds to the case of a per-
fectly mixed or mixed-suspension, mixed-product-removal crys-
tallizer [27].

3. Application to a PCM thermal storage modeling

3.1. Thermal storage principle

The general vertical tank configuration of a cold energy storage
system is shown in Fig. 1. It is composed of a cylindrical tank filled
with a fixed bed of spherical nodules containing the PCM and a
cooling fluid flowing through the bed. Diffusers that are placed
inside the tank ensure that the cooling fluid is homogeneously dis-
Fig. 1. Charging configuration of cold energy storage system.
patched on all the tank section. The heat transfer is carried out by
the contact between the nodules and the fluid. The inlet cooling
fluid temperature is controlled by a refrigeration loop. During the
charging process, the cooling fluid enters from the bottom of the
tank and flows through the PCM nodules. The cooling fluid inlet
temperature is lower than the PCM melting temperature so that
the initially liquid PCM is gradually cooled and then releases heat
through solidification.

Finally, the nodules solid content temperature decreases after
the freezing process is completed. During the discharging process,
warmer fluid is supplied from the top so that the PCM melts.

3.2. Global structure of the model

The cooling fluid flow is assumed to be equivalent to a cascade
of N identical Continuous Stirred Tank Reactors. In the sequel, we
describe the elementary sub-model that we propose for the kth
Continuous Stirred Tank Reactors (k ¼ 1 . . . N), the complete model
being a serial interconnection of N elementary sub-models. A
population of nodules is associated to the kth Continuous Stirred
Tank Reactor as shown in Fig. 2.

Let us consider the cooling and freezing processes of the content
of these nodules. From the definition of a Continuous Stirred Tank
Reactor, the cooling fluid temperature is uniform so that it is only a

function of time Tk
f ðtÞ. At the beginning of the charging process, the

nodules content is liquid. If the cooling fluid temperature is suffi-
ciently low, the freezing process begins in some nodules whereas
the content of the others remains liquid due to the supercooling
phenomenon. It has been experimentally found that once the
freezing process has begun in a nodule, the temperature of its con-
tent reaches immediately the melting temperature Tm and it
remains constant as the solid mass fraction x increases until the
nodule content to be totally solid [16]. From that point, the solid
phase temperature begins to decrease according to the cooling flu-
id temperature. Since the freezing process does not begin at the
same time in all the nodules, it does not stop at the same time
either. Due to this global freezing process, the total number of nod-
ules within the kth Continuous Stirred Tank Reactor under consid-
eration, that is denoted by nk

t , can be decomposed into the sum of
three terms at each time t:

nk
t ¼ nk

dðtÞ þ nk
s ðtÞ þ nk

l ðtÞ ¼ cte ð6Þ

nk
dðtÞ is the number of nodules containing a mixture of liquid and

solid. Since the freezing process does not begin at the same time
in all the nodules, a number density function wk

xðx; tÞ can be
defined that is assumed to depend on the solid mass fraction
and the time:

dnk
d ¼ wk

xðx; tÞdx

nk
dðtÞ ¼

R 1
e wk

xðx; tÞdx

(
ð7Þ
Fig. 2. Scheme of the kth Continuous Stirred Tank Reactor and the associated
nodules.
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dnk
d is the number of nodules containing a mixture of liquid and

solid having a solid mass fraction between x and xþ dx at time t.
The normalization condition gives the total number of nodules
nk

dðtÞ. e is the value of x at the beginning of the freezing process,
which is determined in Section 3.4.

nk
s ðtÞ is the number of nodules containing a solid phase. Let us

define Ts as the mean value of the solid phase temperature within
a nodule. This temperature is not the same among all the nodules
containing a solid phase since the freezing process does not begin
and stop at the same time in all the nodules. A number density
function wk

Ts
ðTs; tÞ can be defined that is assumed to depend on

the mean solid temperature and the time:

dnk
s ¼ wk

Ts
ðTs; tÞdTs

nk
s ðtÞ ¼

R Tm

Ts;min
wk

Ts
ðTs; tÞdTs

8<
: ð8Þ

dnk
s is the number of nodules containing a solid phase having a

mean temperature between Ts and Ts þ dTs at time t. The normal-
ization condition gives the total number of nodules nk

s ðtÞ of which
the mean temperature is necessarily lower than the melting tem-
perature Tm. A lowest value of Ts, denoted by Ts;min, can be defined
according to the final value of the cooling fluid temperature.

nk
l ðtÞ is the number of nodules containing a liquid phase. Tk

l is
the mean value of the liquid phase temperature within a nodule.
Due to the way the charging process is performed, the content of
all the nodules containing a liquid phase is assumed to have the
same mean temperature so that it is not necessary to define any
density function for this population.

3.3. Population balance equations

The number densities wk
x and wk

Ts
are assumed to be independent

of the spatial position in the kth Continuous Stirred Tank Reactor
so that Eq. (5) applies. Since the storage contains separated nod-
ules, the population balance equations do not contain any breakage
or agglomeration terms.

The population balance equation related to the nodules contain-
ing a mixture of liquid and solid is:

@wk
xðx; tÞ
@t

þ @ðv
k
xw

k
xðx; tÞÞ
@x

¼ 0 ð9Þ

The source term is equal to zero since the birth of nodules con-
taining PCM beginning to solidify occurs only at a tiny value of x:
this phenomenon is treated as a boundary condition of Eq. (9)
(see Section 3.4). No death occurs, once a crystal has begun to grow
within a nodule, the process continues until the nodule content is
totally solidified. This phenomenon is also treated as a boundary
condition (see Section 3.4).

The velocity in the solid mass fraction space vk
x is given by the

energy balance equation of one nodule content during the solidifi-
cation process:

mcDhsl
dxk

dt
¼ mcDhlsvk

x ¼ /k
x ¼

Tm � Tk
f

� �
Rk

d

ð10Þ

Rk
d is the global heat transfer resistance during the solidification

process, mc is the nodule content mass and Dhsl the PCM fusion
enthalpy. In Eq. (10), the nodule content temperature is assumed
to be uniform and equal to the melting temperature according to
available experimental results [16].

In the same manner, the population balance equation related to
the nodules containing solid phase is:

@wk
Ts
ðTs; tÞ
@t

þ
@ðvk

Ts
wk

Ts
ðTs; tÞÞ

@Ts
¼ 0 ð11Þ
The source term is also equal to zero since the birth of nodules
containing newly totally solidified PCM occurs only at the melting
temperature: this phenomenon is also treated as a boundary con-
dition of Eq. (11) (see Section 3.4). No death occurs, once the solid
phase temperature has begun to decrease in a nodule, the process
continues according to the cooling fluid temperature.

The velocity in the mean solid temperature space vk
Ts

is also
given by the energy balance equation of the nodule content during
the solid phase cooling:

mccps
dTk

s

dt
¼ mccpsvk

Ts
¼ �/k

s ¼
Tk

f � Tk
s

� �
Rk

s

ð12Þ

Rk
s is the global heat transfer resistance during the solid phase

cooling process, cps is the solid phase heat capacity.

3.4. Population balance equations initial and boundary conditions

We simulate a charge cycle where the initial PCM state is liquid
within all the nodules, so that:

wk
s ðx; t ¼ 0Þ ¼ 0 ð13Þ

wk
Ts
ðTs; t ¼ 0Þ ¼ 0 ð14Þ

Due to the supercooling phenomenon, the solidification process
leads to the formation of very small nuclei within the nodules at a
temperature lower than the melting temperature. According to the
work carried out by Bédécarrats et al. [18], the birth rate of nodules
containing a first nucleus can be derived from the conventional
theory of nucleation as a first order process with respect to the
number of nodules containing liquid phase:

rnuc ¼ JðTlÞnl ð15Þ

where Tl is the temperature of the supercooled liquid, J(Tl) is the so-
called probability of crystallization per unit time.

The general formula for the probability of crystallization per
unit time and per unit volume is [29]:

IðTlÞ ¼ AðTlÞ exp �DA�
KTl

� �
ð16Þ

where K is the Boltzmann constant, DA⁄ is the potential barrier for
nucleation:

DA� ¼ 16pr2
sl

3ðqsDhslÞ2
Tm

Tm � Tl

� �2

ð17Þ

with rsl being the solid–liquid interfacial tension and qs the mass
density of the crystal.

The pre-exponential factor A(Tl) in Eq. (16) varies slower than
the exponential term and can thus be considered as a constant
[21]. For a given volume, the probability of crystallization per unit
time can be expressed as:

JðTlÞ ¼ a exp � b

TlðTm � TlÞ2

 !
ð18Þ

The main assumption that is taken to derive Eq. (15) is that
there is only one nucleus per nodule. This assumption is similar
to the one that is taken for the modeling of crystallization in emul-
sions for example [30].

The flux of nodules entering the population containing a solid–
liquid mixture at a very small quantity of solid phase characterized
by the smallest mass fraction e is then related to the nucleation
rate according to the following boundary condition:

wk
xðx ¼ e; tÞvk

xðx ¼ e; tÞ ¼ JðTk
l Þnk

l ð19Þ
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As it has been pointed out in [16], once the solidification pro-
cess has begun in a nodule, the temperature reaches very rapidly
the melting temperature. This process can be considered to be
adiabatic and the value of e can be calculated by solving the follow-
ing energy balance:

hlðTl;cÞ ¼ ehsðTmÞ þ ð1� eÞhlðTmÞ ð20Þ

where hl and hs are respectively the liquid and solid phase specific
enthalpy. Tl;c is the liquid phase temperature at which the crystal-
lization begins.

From the balance Eq. (20), it is easy to derive the following
expression if the liquid phase heat capacity cpl is assumed to be
constant:

e ¼ cplðTm � Tl;cÞ
Dhsl

ð21Þ

In the case of water, 1:25% < e < 7:53% for 1 �C < ðTm � Tl;cÞ <
6 �C. As a consequence, a mean constant value can be taken for e:
e ¼ 0:0253.

The flux of nodules leaving the population containing a solid–
liquid mixture at x ¼ 1 is equal to the flux of nodules entering
the population of nodules containing solid phase at Ts ¼ Tm since
the solidification process temperature is constant and equal
to the melting temperature. The boundary condition for wk

Ts
is then:

wk
Ts
ðTs ¼ Tm; tÞvk

Ts
ðTs ¼ Tm; tÞ ¼ �wk

xðx ¼ 1; tÞvk
xðx ¼ 1; tÞ ð22Þ
3.5. Model of the nodules containing liquid phase

The variation of the number of nodules containing liquid phase
is given by the following balance equation:

dnk
l

dt
¼ �J Tk

l

� �
nk

l ð23Þ

Due to the initial conditions (13) and (14), ndð0Þ ¼ nsð0Þ ¼ 0 so
that according to Eq. (6), the initial condition for nk

l is:

nk
l ð0Þ ¼ nk

t ð24Þ

In order to calculate the evolution of the mean temperature of
nodules containing liquid phase, we use the following energy bal-
ance of a nodule and the associated initial condition:

mccpl
dTk

l

dt
¼ �/k

l ¼
Tk

f � Tk
l

� �
Rk

l

Tk
l ð0Þ ¼ Tk

l;0

ð25Þ

where Rk
l is the global heat transfer resistance during the liquid

phase cooling process.

3.6. Continuous Stirred Tank Reactor cooling fluid model

The kth Continuous Stirred Tank Reactor inlet and outlet cooling
fluid mass flow rates are identical. In order to calculate the kth
Continuous Stirred Tank Reactor cooling fluid temperature, one
has to solve the following energy balance:

mf cpf
dTk

f

dt
¼ qf cpf Tk�1

f � Tk
f

� �
þ nk

l /
k
l þ

Z 1

e
wk

xðx; tÞ/
k
xdx

þ
Z Tm

Ts;min

wk
Ts
ðTs; tÞ/k

s dTs ð26Þ

where mf is the cooling fluid constant mass of each CSTR, cpf is the

cooling fluid heat capacity that is assumed to be constant, Tk�1
f is the

cooling fluid kth Continuous Stirred Tank Reactor inlet temperature
that is the cooling fluid outlet temperature of the (k � 1)th ones. As a
matter of fact, due to the definition of a Continuous Stirred Tank
Reactor, its outlet fluid temperature is equal to the fluid tem-
perature inside the Continuous Stirred Tank Reactor. In Eq. (26),
we have assumed that the storage tank heat losses are negligible.
The last three terms of the right-hand side of Eq. (26) are the heat
fluxes that are exchanged respectively with the nodules containing
a liquid phase, a mixture of liquid and solid and a solid phase.

3.7. Determination of the nodule global heat transfer resistances

The heat exchange between the PCM and the fluid can be char-
acterized by a series of three heat transfer resistances: the external
convective resistance between the nodule envelope and the cool-
ing fluid, the conductive resistance within the nodule envelope
and the resistance within the PCM.

In order to calculate the external heat transfer coefficient, the
correlation proposed by Wakao and Kaguei [31] for flows through
fixed beds of spheres is used:

Nu ¼ ae2re

kf
¼ 2:0þ 1:1Pr1=3Re0:6 ð27Þ

The conductive resistance of the nodule envelope that is
assumed to operate at steady state is:

Renv ¼
1

4pkenv

1
ri
� 1

re

� �
ð28Þ

As far as the heat transfer within the PCM is concerned, one has
to consider three configurations: the PCM is entirely solid, entirely
liquid or a mixture of liquid and solid.

Zhu and Zhang [32] have proposed an empirical correlation for
the equivalent heat transfer coefficient within the PCM during the
solidification process that we use here:

ai;d ¼ 69� 27:8x� 128:9x2 þ 95:8x3 ð29Þ

where x is the solid mass fraction.
Let us now consider the heat transfer within a solid PCM, which

is purely conductive. In order to calculate the mean solid phase
temperature Ts, we propose to use the so-called Linear Driving
Force model that is extensively applied in the domain of adsorption
processes modeling [33,34]. This model has been proposed by
Glueckauf [35] to describe transient diffusion within spheres. If
we transpose the Linear Driving Force model to conductive tran-
sient heat transfer (see the Appendix A), the mean value of the
solid phase temperature can be accurately calculated by solving
the following simplified energy balance:

dTs

dt
¼ ksðTi � TsÞ ¼

aisSi

mccps
ðTi � TsÞ ð30Þ

Ti is the temperature of the sphere surface and ks is an equiva-
lent conductance that is given by [33,35]:

ks ¼
15as

r2
i

ð31Þ

where as is the solid thermal diffusivity.
We can also apply this model when the PCM is totally liquid to

calculate the nodule content mean temperature Tl:

dTl

dt
¼ klðTi � TlÞ ¼

ailSi

mccpl
ðTi � TlÞ

kl ¼
15al

r2
i

ð32Þ

Since convective contribution can exist within the liquid phase,
the liquid phase thermal diffusivity al can be replaced by an
equivalent one as suggested in [11].
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Finally, the total resistance to heat transfer within the nodules
are given by the following equations according to the three
configurations:

Rs ¼
1

Seae
þ Renv þ

1
Siais

Rl ¼
1

Seae
þ Renv þ

1
Siail

Rd ¼
1

Seae
þ Renv þ

1
Siaid

ð33Þ
3.8. Numerical solution of the model

The population balance Eqs. (9), (11) and the associated bound-
ary conditions (19) and (22) are spatially discretized by using the
finite difference technique. In combination with Eqs. (10), (12),
(23), (25) and (26), we obtain an ordinary differential equations
system that is solved numerically by using the fourth-fifth order
Runge–Kutta method with adaptive step size.

4. Model simulation and validation

4.1. Simulation conditions

In Table 1 are given the values of the main parameters that are
used for the simulations. The detailed test facility description and
experimental data were published by Bédécarrats et al. [36].

The investigated PCM is water/ice with melting temperature
Tm ¼ 0 �C. The cooling fluid is an aqueous solution containing
30% of ethylene glycol by volume. The measured cooling fluid flow
rate and inlet fluid temperature are used as input conditions for the
model. We have considered that the cooling fluid flow is equivalent
to a cascade of 10 Continuous Stirred Tank Reactors.

4.2. Estimation of a and b and sensitivity analysis to the nucleation
rate model

The values of J or those of the parameters a and b in Eq. (18) are
generally determined by curve fitting from specific experiments.
For example, in order to estimate the values of J in the case of crys-
tallization in emulsions, Kashiev et al. [30] have used experimental
values of the velocity of ultrasounds in oil-in-water emulsion
obtained during isothermal crystallization experiments while El
Rhafiki et al. [21] have used Differential Scanning Calorimetry
(DSC) technique. Bédécarrats et al. [18] have fitted a and b from
isothermal crystallization experiments in a batch cooling system
containing nodules similar to ones considered here.

In this work, the parameters a and b are estimated in order that
the calculated storage fluid outlet temperature to be as close as
Table 1
Parameters used in the model.

Symbol Description Value

Dt Tank diameter (m) 0.5
Ht Tank height (m) 2.6
qf Fluid flow rate (m3 h�1) 1.57
re External radius of nodules (mm) 49
ri Internal radius of nodules (mm) 47.4
nt Total nodules number 1900
Dhsl Fusion enthalpy (kJ kg�1) 333
cpl Specific heat of liquid water (J K�1 kg�1) 4217
cps Specific heat of ice (J K�1 kg�1) 2060
cpf Specific heat of cooling fluid (J K�1 kg�1) 3589
as Thermal diffusivity of ice (10�6 m2 s�1) 1.2
al Thermal diffusivity of liquid water (10�6 m2 s�1) 0.13
kenv Thermal conductivity of envelope (W m�1 K�1) 0.43
possible to the measured one. The best fit that has been obtained
is shown in Fig. 3 for a ¼ a� ¼ 0:198 s�1 and b ¼ b� ¼ 8350 K3.
The model provides a good agreement between the predicted
and measured outlet temperatures.

The deviations are less than 5%, they may result from the inac-
curacy of heat transfer coefficients. We observe that the inlet and
outlet temperatures fall off sharply during the liquid phase cooling
in the beginning, and then they are stabilized at �5 �C and �2 �C
respectively which correspond the solidification step. From 11 h
the temperatures begin to decrease smoothly again, indicating
the existence of entirely solidified nodules.

In order to test the sensitivity of the model to the nucleation
rate model, different values of a and b (see Eq. (18)) are used to
see their influence on the probability of crystallization (Fig. 4)
and on the calculated cooling fluid outlet temperature (Fig. 5).

As shown in Fig. 4, the main influence of the a parameter is on
the intensity of J, that is to say the liquid PCM probability to begin
solidification is increased with a greater value of a. The b para-
meter not only affects the intensity of J but also significantly affects
the temperature from which the PCM begins significantly to soli-
dify. With a lower value of b, more liquid PCM will begin to solidify
at a higher temperature.

As indicated in Fig. 5, the model is rather insensitive to the coef-
ficient a, which has just a sight impact on the temperature of the
turning point (at about 3 h). The coefficient b has a more consider-
able influence on the model, according to the results shown in
Fig. 4. The variation of b shifts the curve of the cooling fluid outlet
temperature during the freezing process, and more nodules have
finally solidified with a lesser value of b.

4.3. Solidification process simulation

With the heat exchange between the fluid and the nodules
going on, the initially liquid PCM gradually solidifies and finally a
few nodules turn into solid as seen in Figs. 6 and 7. Most of the
nodules in the first Continuous Stirred Tank Reactor begin to soli-
dify in less than 4 h, but only few of them have finished by the end
of 15 h. This demonstrates that the solidification step takes much
more time than the liquid phase cooling step.

One can define number densities over the whole storage tank as
follows:

wxðx; tÞ ¼
XN

k¼1

wk
xðx; tÞ

wTs
ðTs; tÞ ¼

XN

k¼1

wk
Ts
ðTs; tÞ

ð34Þ
Fig. 3. Comparison of predicted and experimental outlet cooling fluid temperature.



Fig. 4. Probability of crystallization J for different values of a and b.

Fig. 5. Calculated cooling fluid outlet temperature for different values of a and b.

Fig. 6. Calculated profiles of liquid nodules number at various time.
Fig. 7. Calculated profiles of entirely solidified nodules number at various time.
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These distributions are depicted in Figs. 8 and 9. We see that the
peak of the density according to the mass fraction moves from x = 0
to x = 1, which describes the evolution of the global solid mass frac-
tion during the charging process. As seen in Fig. 8, once upon the
PCM has entirely solidified, the mean solid phase temperature
begins to decrease significantly.

In order to globally quantify the solidification process, let us
define ckðtÞ as the mean solid phase mass fraction within the kth

Continuous Stirred Tank Reactor and cðtÞ the one over the whole
storage tank:
ckðtÞ ¼
R 1

e
wk

xðx;tÞxdxþ
R Tm

Ts;min
wk

Ts
ðTs ;tÞdTs

nk
t

cðtÞ ¼
R 1

e
wxðx;tÞxdxþ

R Tm

Ts;min
wTs ðTs ;tÞdTsPN

k¼1
nk

t

8>>>><
>>>>:

ð35Þ

c ¼ ck ¼ 0 when the content of all the nodules under consideration
is liquid, and c ¼ ck ¼ 1 when the content of all the nodules under
consideration is entirely solidified.



Fig. 8. Calculated distribution of the number density of nodules containing a solid–
liquid mixture at various time in the entire storage.

Fig. 9. Calculated distribution of the number density of nodules containing solid
phase at various time in the entire storage.

Fig. 10. Calculated evolutions of mean solid mass fraction in different Continuous
Stirred Tank Reactors and in the whole tank.
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The evolutions of c with time in different Continuous Stirred
Tank Reactors and in the whole tank are presented in Fig. 10. Con-
sidering that the fluid absorbs heat as it flows through the nodules,
its cooling capacity decreases along the flow direction. Therefore
the mean solid mass fraction drops along the flow direction as well.
In this case, the solidification process is not entirely complete dur-
ing the charging process, and approximately 80% of the total mass
of PCM has been finally solidified.
5. Conclusions

In this paper a novel dynamic model to simulate the charging
process of cold energy storage tank using population balance equa-
tions is presented. Through characterizing the system state by the
distribution of the nodules associated with different properties, the
dynamic of the system is represented by the evolution of nodules
number density. The supercooling phenomenon is taken into
account in the model by using a nucleation rate model which per-
mits to represent the stochastic character of the solidification dur-
ing the cooling process. The transitions between different nodules
states are taken as boundary conditions for the population balance
equations, so the evolution of the system state is continuous and it
is unnecessary to account for discrete events related to the
transitions.

The model is validated by comparing the model predictions
with experimental data. The simulation provides good results of
the evolution of the storage cooling fluid outlet temperature, and
the other calculated results are pertinent as well. As far as we
know, it is the first time that this population balance equations
approach is used for PCM thermal storage modeling.
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Appendix A. The Linear Driving Force Glueckauf model

As given by Carslaw and Jaeger [37], the mean temperature TðtÞ
of a sphere of radius r that is subject to transient heat conduction
and a step variation of its surface temperature can be expressed as:

TðtÞ ¼ T0 þ ðTi � T0Þ 1� 6
p2

X1

n¼1

1
n2 exp �n2p2a

r2 t
� �� �

ðA-1Þ

where T0 is the initial uniform temperature within the sphere and Ti

the constant surface temperature. Glueckauf [35] has transposed
this transient heat conduction problem into a transient diffusion
problem. Actually, one can continue to apply this approach to the
transient heat conduction problem. If Ti varies over time, one can
calculate TðtÞ by using Duhamel’s theorem [38] and then calculate

its variation over time dT
dt as:

dT
dt
¼ 6a

r2

Z s¼t

s¼0

dTi

ds
X1
n¼1

expð�n2p2a
r2 tÞds ðA-2Þ

By performing successive integration by parts and assuming a
rapid convergence of the series involved in the derivation, Glueck-
auf [35] has finally obtained:

dT
dt
¼ 6a

r2 p2ðTi � TÞ þ 1� p2

15

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

0:342

dTi

dt
� 1

15
� 2p2

315

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

0:0040

d2Ti

dt2 þ . . .

0
BBB@

1
CCCA
ðA-3Þ

where the terms involving second- and higher order derivatives can

usually be neglected. By considering that dT
dt �

dTi
dt , the final form of

the Linear Driving Force model is then as follows:
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dT
dt
¼ 15a

r2 ðTi � TÞ ðA-4Þ

Yao and Tien [39] have shown that the Linear Driving Force mod-
el is equivalent to the solution of the unsteady-state conduction
equation by using the orthogonal collocation method with one col-
location point. They have also shown that the Linear Driving Force
expression gives the best approximation (in the least-square sense)
if a parabolic temperature profile within the sphere is assumed. In
the case of a step response to Ti, the difference between the Linear
Driving Force model and the exact solution is less than 4% for a time

duration t > 0:1 r2

a . In our case, r = ri = 47.4 mm and a � 10�6 m2 s�1,
so that a good approximation can be obtained for t > 225 s. There-
fore, the use of the Linear Driving Force model provides a sufficient
approximation in our model since the time duration of the storage
charge cycle is much longer than necessary (see Fig. 3).
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