

SGS IBR JN: 25747A14

Report to: **Docs Diesel**

> 614 E. Edgerton St. Bryan, OH 43506

PO Number: Credit Card

Sample Description: Spin-on Filter

Sample Source: Doc's Diesel

Sample Received Date: 2nd August 2022

Test Method: SAE J1985 (OCT2013) Fuel Filter- Initial Single-Pass Efficiency Test Method

Mirchael Michael Conrad

Senior Test Technician

Authorized by:

Casey L. Frantz Liquid Lab Manager

	Editorial or		Approved	Release
Revision	Technical	Description	Ву	Date
		Initial Report Release	cf	5-Aug-22

Disclaimer:

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

The sample(s) to which the findings recording herein (the "findings") relate was[were] drawn and [or] provided by the Client or by a third party acting at the Client's direction. The findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is[are] said to be extracted.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

pg 1/4

Test Method: SAE J1985 (OCT2013) Fuel Filter- Initial Single-Pass Efficiency Test Method

Test Laboratory: SGS IBR Laboratories Test Date: 4th August 2022
Performed for: Docs Diesel Location: Bryan, OH 43506

SGS IBR Test No: 25747A14 Contact:

Source: Doc's Diesel Date Received: 2nd August 2022

Filter Element Identification:

Customer Sample ID: Doc's Premium Fuel Filter DFD4625 SGS IBR ID: 25747-23

Housing ID: HC34-9155-AJ, FEWVA FoMoCo

Filter Orientation: Vertical Flow Direction: Outside to Inside

Operating Conditions

Test Fluid: Viscor L42	64 V96D		Batch: 176014
Viscosity at test Tempe	erature (mm²/s)	2.7	Temperature: 40-41°C
Test Contaminant: ISC) 12103-1 A2 Fine Te	est Dust	Analysis # 14855F
Test System:			
Flow Rate:	4 lpm		System Volume (L): 7
Injection System			
Injection Parameters	Initial	Final	Average injection parameters

Injection Parameters	Initial	Final
Injector Gravimetric Level (mg/L)	178	184
Rase Unstream Gravimetric	5.4	

Average injection	on paramet	ers	
	Initial	Final	
Injection flow (L/min)	0.12	0.12	
Gravimetric level (mg/L)	5.3	5.5	

Test Results

Element Integrity					•			
Bubble Point to ISO 2942 ("H20):							
	2							
Differential Pressure Filter Assembly	3.2	psid	-					
Filtration Ratio and Efficiency								
Average Filtration Ratio	2	10	75	100	200	1000		
Average Efficiency	50%	90%	98.7%	99%	99.5%	99.9%		
Particle Size, μm	<3	<3	3.0	3.2	3.5	4.8		

pg 2/4 Performed by: MAC Data Location: MAC-220803

Notice: These data relate only to the samples tested. This report may be copied only in its entirety. SGS IBR 11599 Morrissey Rd Grass Lake MI USA 49240 Phone 517-522-8453 Fax 517-522-3695

Performed for: Docs Diesel SGS IBR Test No: 25747A14 Test Date: 4th August 2022 Location: Bryan, OH 43506 Contact: Max Nihart

Date Received: 2nd August 2022

Customer Sample ID: Doc's Premium Fuel Filter DFD4625

SGS IBR ID: 25747-23

	Filter Assembly																	
	Differential																	
Time	Pressure			Particles / 120 ml at: (micron c)														
MIN	psid	Port	≥3	Beta	≥4	Beta	≥5	Beta	≥8	Beta	≥10	Beta	≥12	Beta	≥15	Beta	≥20	Beta
2	3.2	Upstream	2843397		1358284		650964		170536		70101		37471		22684		8833	
		Downstream	35376	80	2809	484	854	762	149	1145	22	3186	4	9368	2	11342	0	>8833
		Efficiency	98.76		99.79		99.87		99.91		99.97		99.99		>99.99		>99.9	
5	2.8	Upstream	2785097		1320212		634746		164883		68706		35492		21253		8233	
		Downstream	36485	76	2664	496	664	956	105	1570	16	4294	5	7098	3	7084	1	8233
		Efficiency	98.69		99.80		99.90		99.94		99.98		99.99		99.99		>99.9	
10	2.8	Upstream	2708671		1274897		607150		154583		64731		33708		19946		8197	
		Downstream	34566	78	2338	545	571	1063	73	2118	24	2697	5	6742	3	6649	0	>8197
		Efficiency	98.72		99.82		99.91		99.95		99.96		99.99		99.98		>99.9	
20	2.9	Upstream	3410903		1612702		775408		197195		82857		43902		25970		10406	
		Downstream	47373	72	2714	594	492	1576	62	3181	12	6905	7	6272	2	12985	0	>10406
		Efficiency	98.61		99.83		99.94		99.97		99.99		99.98		>99.99		>99.9	
30	2.9	Upstream	2801439		1299224		623792		159636		66974		35704		20935		8409	
		Downstream	39672	71	2441	532	428	1457	60	2661	21	3189	7	5101	2	10468	1	8409
		Efficiency	98.58		99.81		99.93		99.96		99.97		99.98		>99.99		>99.9	
40	2.9	Upstream	2996373		1407910		675609		171225		72045		37047		22401		9487	
		Downstream	41243	73	2542	554	501	1349	60	2854		5542	2	18524	-	>22401	0	>9487
		Efficiency	98.62		99.82		99.93		99.96		99.98		>99.99		>99.99		>99.9	
50	3.0	Upstream	2959962		1376852		661440		167038		70048		35492		20900		8250	
		Downstream	42991	69	2707	509	524	1262		3037		4670	6	5915	3	6967	1	8250
		Efficiency	98.55		99.80		99.92		99.97		99.98		99.98		99.99		>99.9	
60	3.0	Upstream	2956835		1383742		663578		167233		69624		36570		21871		9045	
		Downstream	42134	70	2884	480	574	1156	-	1779	_	2487	9	4063	3	7290	0	>9045
		Efficiency	98.58		99.79		99.91		99.94		99.96		99.98		99.99		>99.9	
Average	2.9	Upstream	2932835		1379228		661586		169041		70636		36923		21995		8858	
		Downstream	39980	73	2637	523	576	1149	82	2055	_	3742	6	6564	2	9776	0	23620
		Efficiency	98.64		99.81	l	99.91		99.95		99.97		99.98		99.99		>99.9	

Notice: These data relate only to the samples tested. This report may be copied only in its entirety. pg 3/4 Performed by: MAC Data Location: MAC-220803 SGS IBR 11599 Morrissey Rd Grass Lake MI USA 49240 Phone 517-522-8453 Fax 517-522-3695

INSTRUMENT LIST - Reported Values

Performed for:	Docs Diesel
SGS IBR Test No:	25747A14
Test Date:	4th August 2022
Data Location:	MAC-220803

Reported Instruments:									
Function	Range	Manufacturer	Model#	SGS IBR #	Calibration Due				
Differential									
Pressure	2-20 psid	Omega	PX60600WCDI	ODP-44	October 2022				
Test Flow	0.4-30 lpm	Endress + Hauser	63FS08	OF-103	November 2023				
Temperature	-40 - 200 °C	Extech	407907	T-32	November 2022				
Particle Counters (calibrated per ISO 11171)									
Location	Range	Manufacturer	Model#	Serial #	Next Primary Calibration				
Upstream Sensor	N/A	Pacific Scientific	8000A	G01101	November 2022				
Downstream									
Sensor	N/A	Pacific Scientific	8000S	E12106	November 2022				
Upstream Counter	3-100 µm	Pacific Scientific	LD-400	D6062701	July 2023				
Downstream									
Counter	3-100 μm	Pacific Scientific	LD-400	D6062702	July 2023				

Notice: These data relate only to the samples tested. This report may be copied only in its entirety. pg 4/4 Performed by: MAC

SGS IBR 11599 Morrissey Rd Grass Lake MI USA 49240 Phone 517-522-8453 Fax 517-522-3695