

Certificate of Analysis Powered by Confident Cannabis

Sample: 2303DBL0031.0578.R2
METRC Sample:

Ordered: 03/08/2023; Sampled: 03/08/2023; Completed: 04/04/2023

Strain: GUSTW2304

Gold Naturals

Provo. UT 84606 findrelief@goldnaturalshemp.com (800) 566-3162 Lic. #CBD

Stress Gummy - Watermelon

Ingestible, Soft Chew, CO2

B > labs APPROVED

Pesticides

Mycotoxins

Heavy Metals

Foreign Matter

Solvents

Terpenes

Analyzed by 300.13 GC/FID and GC/MS

<LOQ **Total Terpenes**

Compound	LOQ	Mass	Mass
Compound			
	mg/unit	mg/unit	mg/g
α-Bisabolol	0.677	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
α-Humulene	0.677	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
α-Pinene	0.677	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
α-Terpinene	0.677	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
β-Caryophyllene	0.677	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
β-Myrcene	0.677	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
β-Pinene	0.677	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Camphene	0.677	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Caryophyllene Oxide	0.677	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
cis-Nerolidol	0.440	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
cis-Ocimene	0.440	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
δ-3-Carene	0.677	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
δ-Limonene	0.677	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Eucalyptol	0.677	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
y-Terpinene	0.677	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Geraniol	0.677	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Guaiol	0.677	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Isopulegol	0.677	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Linalool	0.677	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
p-Cymene	0.677	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Terpinolene	0.677	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
trans-Nerolidol	0.237	<loo< td=""><td><loq< td=""></loq<></td></loo<>	<loq< td=""></loq<>
trans-Ocimene	0.237	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
	0.207	200	-00

Cannabinoid Relative Concentration

Analyzed by 300.18 UHPLC/PDA

			Pa	iss
2.936 mg/unit Δ9-THC + Δ8-THC	80.110 mg	/unit	pH: Aw:	NT 0.61
	87.051 mg Total Cannal			ested geneity
Compound LO	Q Mass	Mass	Relative Con	centration
CBC 0.19 CBCa 0.19 CBDa 0.19 CBDba 0.19 CBDba 0.19 CBDVa 0.19 CBDVa 0.19 CBG 0.19 CBG 0.19 CBG 0.19 CBG 0.19 CBG 0.19 CBH 0.19 CBN 0.19 Δ8-THC 0.19 THCa 0.19 THCV 0.19 THCVa 0.19	2.561 <lo>9 80.110 <lo>9</lo> 80.100 <lo>9</lo> 1.000 <lo>9</lo> 1.046 <lo>9</lo> 1.046 <lo>9</lo> 1.046 <lo>9</lo> 2.000 <lo>9</lo> 2.338 <lo>9</lo> 2.936 <lo>0</lo> 3.936 <lo>0</lo> 4.000 <lo>0</lo> <lo>0 4.000 <lo>0</lo> <lo>0 4.000 <lo>0</lo> 4.000 <lo>0</lo> <lo>0 4.000 <lo>0</lo> <lo>0 4.000 <lo>0</lo> <lo>0 <lo>0<td>mg/g 0.419 <loq 13.108 <loq <loq 0.171 <loq 0.065 <loq 0.480 <loq <loq <loq< td=""><td></td><td></td></loq<></loq </loq </loq </loq </loq </loq </loq </td></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo>	mg/g 0.419 <loq 13.108 <loq <loq 0.171 <loq 0.065 <loq 0.480 <loq <loq <loq< td=""><td></td><td></td></loq<></loq </loq </loq </loq </loq </loq </loq 		

Total THC = $0.877 \times THC-A + \Delta 9-THC + \Delta 8-THC$; Total CBD = CBDa * 0.877 + CBD

Notes: Corrected cannabinoid data. Added Full-Panel results.

Glen Marquez Laboratory Director

Kelly Zaugg **Quality Control**

DB Labs will not discuss any part of this study with personnel other than those authorized by the client, this report is considered highly confidential and the sole property of the client. This Certificate shall not be reproduced except in full, without the written approval of DB Labs. The results described in this report only apply to the samples analyzed. Edibles are picked up prior to final packaging unless otherwise stated. The reported result is based on a sample weight with the applicable moisture content for that sample. LOQ-Limit of Quantitation. Pesticide LOQ-Instrument Limit of Quantitation, Na-Not Apploto Detected, NR-Not Reported, NT-Not Tested, TNC=Too Numerous to Count (microbial), PGR=Plant Growth Regulator. Unless otherwise stated all quality control samples performed within specifications established by the Laboratory. DB Labs makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. Action levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The "Decision Rule" for the pass/fail does not include the UM. The UM associated with the result reported in this certificate is available upon requaliable upon requali

Certificate of Analysis Powered by Confident Cannabis

Sample: 2303DBL0031.0578.R2

METRC Sample:

Provo, UT 84606 findrelief@goldnaturalshemp.com

Gold Naturals

(800) 566-3162 Lic. #CBD

Strain: GUSTW2304 Ordered: 03/08/2023; Sampled: 03/08/2023; Completed: 04/04/2023

Stress Gummy - Watermelon

Ingestible, Soft Chew, CO2

Pesticides Analyzed by 300.9 LC/MS/MS and GC/	MS/MS			Pass
Compound	LOQ	Limit	Mass	Status
	PPB	PPB	PPB	
Abamectin	10	200	<loo< td=""><td>Pass</td></loo<>	Pass
Acequinocyl	10	4000	<l00< td=""><td>Pass</td></l00<>	Pass
Bifenazate	10	400	<loq< td=""><td>Pass</td></loq<>	Pass
Bifenthrin	10	100	<loo< td=""><td>Pass</td></loo<>	Pass
Cyfluthrin	10	2000	<loo< td=""><td>Pass</td></loo<>	Pass
Cypermethrin	10	1000	<loo< td=""><td>Pass</td></loo<>	Pass
Daminozide	10	800	<loq< td=""><td>Pass</td></loq<>	Pass
Dimethomorph	10	2000	<loq< td=""><td>Pass</td></loq<>	Pass
Etoxazole	10	400	<loq< td=""><td>Pass</td></loq<>	Pass
Fenhexamid	10	1000	<loq< td=""><td>Pass</td></loq<>	Pass
Flonicamid	10	1000	<loq< td=""><td>Pass</td></loq<>	Pass
Fludioxonil	10	500	<loq< td=""><td>Pass</td></loq<>	Pass
Imidacloprid	10	500	<loq< td=""><td>Pass</td></loq<>	Pass
Myclobutanil	10	400	<loq< td=""><td>Pass</td></loq<>	Pass
Paclobutrazol	10	400	<loq< td=""><td>Pass</td></loq<>	Pass
Piperonyl Butoxide	10	3000	<loq< td=""><td>Pass</td></loq<>	Pass
Pyrethrins	10	2000	<loq< td=""><td>Pass</td></loq<>	Pass
Quintozene	10	800	<loq< td=""><td>Pass</td></loq<>	Pass
Spinetoram	10	1000	<loq< td=""><td>Pass</td></loq<>	Pass
Spinosad	10	1000	<loq< td=""><td>Pass</td></loq<>	Pass
Spirotetramat	10	1000	<loq< td=""><td>Pass</td></loq<>	Pass
Thiamethoxam	10	400	<loq< td=""><td>Pass</td></loq<>	Pass
Trifloxystrobin	10	1000	<loq< th=""><th>Pass</th></loq<>	Pass
Plant Growth Regulators	10	50	<loq< th=""><th>Pass</th></loq<>	Pass

Microbials Analyzed by 300.1 Plating/QPCR			F	Pass
Quantitative Analysis	LOQ	Limit	Mass	Status
Aerobic Bacteria Bile-Tolerant Gram-Negative Bacteria	CFU/g 1000	CFU/g 100000 1000	CFU/g <loq <loq< td=""><td>Pass Pass</td></loq<></loq 	Pass Pass
Qualitative Analysis	Detected or Not D	etected		Status
E. Coli Salmonella	Not Detected Not Detected			Pass Pass

Mycotoxins Analyzed by 300.2 Elisa				Pass
Mycotoxin	LOQ	Limit	Mass	Status
	PPB	PPB	PPB	
Aflatoxins	4.0	20.0	<loq< td=""><td>Pass</td></loq<>	Pass
Ochratoxin A	2.0	20.0	2.6	Pass

Heavy Meta Analyzed by 300.8 IC				Pass
Element	LOQ	Limit	Mass	Status
	PPB	PPB	PPB	
Arsenic	254	2000	<loq< td=""><td>Pass</td></loq<>	Pass
Cadmium	254	820	<loq< td=""><td>Pass</td></loq<>	Pass
Lead	254	1200	<loq< td=""><td>Pass</td></loq<>	Pass
Mercury	254	400	<loq< td=""><td>Pass</td></loq<>	Pass

Residual Solv Analyzed by 300.13 GO				Pass
Compound	LOQ	Limit	Mass	Status
	PPM	PPM	PPM	
Butanes	83	500	<loq< td=""><td>Pas</td></loq<>	Pas
Ethanol	83		<loq< td=""><td>Teste</td></loq<>	Teste
Heptanes	83	500	142	Pas
Propane	83	500	<loq< td=""><td>Pas</td></loq<>	Pas

Kelly Zaugg **Quality Control**

