Research use only

2X Multiplex qPCR Master Mix-TaqMan Probe

Product Name and Catalog Number

2X Multiplex qPCR Master Mix-TaqMan Probe, Cat qPCR 156, 2x1mL/5x1mL/10mL for 200/500/1000 reactions (No ROX, Low ROX or High ROX)

Intended Use

- The 2X Multiplex qPCR Master Mix is used for real-time qualitative and quantitative multiplex qPCR with TagMan probes for up to 4 targets.
- The master mix is a premixed, 2X concentrated solution that has all the components except for gene-specific primers, probes and templates

Kit Characterizations

- The kit is designed for multiplex qPCR with TaqMan probes.
- The kit uses Taq-Probe DNA polymerase specially engineered for TaqMan probes, which increased 5' to 3' exonuclease activity produces S-shaped curve.
- Two–four pairs of gene-specific primers can be applied in one reaction.
- The concentrations of the primers and probes are variable depending on specific assays and thermocycling protocols (Table 1).
- The preferable PCR product size is ≤150bp.
- The kit has three formulations of ROX, Low ROX or High ROX concentrations for your choice (see Table 2).

Kit Contents

2X Master Mix (2x1mL/5x1mL/10mL for 200/500/1000 reactions) and an instruction for use.

Transportation and storage

The kit can be transported at ≤4°C for up to 3 days.

The kit should be kept stable in the dark at -20°C for ≤24 months with ≤10 times of freeze-thaw cycles. The kit can be stored at 4°C for a weak.

Table 1. Setting Up a 20µL or 10µL Reaction

Component	Volume per 20µL	Volume per 10µL	Final concentration
2X Master Mix	10µL	5µL	1X
Primers ^a	Variable	Variable	Each 150- 900nM
TaqMan probes ^b	Variable	Variable	Each 150- 250nM
DNA templates ^c	Variable	Variable	≤500ng human genomic DNA/20µL
H ₂ O	To 20µL	To 10μL	

Footnotes of Table 1

 a Each primer's T_{m} should be designed ≥60°C, preferably between 62°C to 65°C, using primer3 software for high efficiency and specificity.

^cDNA templates should be extracted by a qualified silicabased kit and eluted with low EDTA TE buffer (10mM Tris-HCl, 0.1mM EDTA, pH 8.0-8.3).

Applicable Instruments

Table 2. Compatible instruments

qPCR Instrument	ROX required by instrument	Passive dye setup
Bio-Rad® iQ [™] 5, CFX96, CFX384, Opticon Roche Lightcycler® Qiagen Rotor- Gene [™] Eppendorf Mastercycler® Cepheid® SmartCycler®	Not recommended	Not necessary
Applied Biosystems® 7500, 7500 Fast, QuantStudio™, ViiA7™, Agilent Mx™	Low ROX (50nM final concentration)	Turn on ROX passive reference dye button

 $[^]b$ Each probe's T_m should be 8-10°C higher than the primer's T_m preferably between 70-75°C.

Applied Biosystems® 5700, 7000, 7300, 7700, 7900, 7900HT, 7900HT Fast, StepOne™, StepOnePlus™	High ROX (500nM final concentration)	Turn on ROX passive reference dye button
---	--	--

Setting Up Thermal Cycling

Table 3. Standard Thermocycling Protocol

Stage	Temperature	Period	Number of cycles
I	95°C	2min	1
	95°C	10sec	
II	60°C, signal acquisition	60sec	35-40

Footnotes of Table 3

The primer concentration used is typically 0.2uM.

Table 4. Fast Thermocycling Protocol

Stage	Temperature	Period	Number of cycles
Ι	95°C	1min	1
	95°C	5sec	
II	60°C, signal acquisition	30sec	35-40

Footnotes of Table 4

The product size for the fast thermocycling protocol is preferred to be less than 90bp.

The primer concentration used is typically between 0.4uM and 0.9uM.

Quality control

Not detectable DNase and RNase contaminations.

Related Products

- 2X qPCR Master Mix-TaqMan Probe, Cat qPCR 153 (No ROX, High ROX or Low ROX)
- 2X Fast qPCR Master Mix-SYBR Green, Cat qPCR 157 (No ROX, High ROX or Low ROX)

Precautions

If you order a "No ROX" master mix but you have an Applied Biosystems/ThermoFisher instrument, please turn off ROX passive reference dye button when setup assays.