Research use only

Taq-Probe Polymerase

Type and Catalog Number

Taq-Probe Polymerase, Cat RT-PCR 145, 500U/2500U for 250/1250 reactions x 20 μ L (No ROX, Low ROX or High ROX)

Intended Use

- This DNA-dependent DNA polymerase is specially engineered for real-time PCR and RT-PCR amplification with TaqMan probe, singleplex or multiplex.
- It is used together with Thermophilic Reverse Transcriptate (Cat 140) for RT-PCR.

Characteristics

- *Taq*-Probe polymerase is specially engineered for TaqMan probe, its increased 5'-3' exoclease activity generating S-shaped curve.
- The 5x buffer has three formulations of ROX, Low ROX or High ROX concentrations for your choice.

Table 1. Tag-Probe polymerase properties

Table 1: Tag-1 Tobe polymerase properties		
5'-3' polymerase activity	Yes	
5'-3' exonuclease activity	Yes	
3'-5' exonuclease activity	No	
Reverse transcriptase activity	Neglectable	
Incorporation of modified nucleotides	Yes, such as dUTP, fluorescence dye-labeled dNTPs	
Terminal transferase activity	Minimal	

Table 2. PCR and RT-PCR optimal parameters

Optimal RTase amount	Singleplex: 0.5-1U/20µl reaction	
	Multiplex: 1-2U/20µl reaction	
Ontimal Tax Drobo	Singleplex: 2U/20µl reaction	
Optimal Taq-Probe polymerase amount	Multiplex up to four templates: 4U/20µl reaction	
Optimal temperature	72-75°C	
Heat inactivation	>96°C	
dNTP concentration	Each 200uM	
MgCl2 concentration	3mM	

Primer concentration	Each ≥0.15µM, depending on primer design and thermocycling	
TaqMan probe	Each 0.15-0.25µM	
Tomplete	RNA: as low as single digit copies of target RNA	
Template	Human genomic DNA: ≤1000ng/20µl reaction	
Product size	Preferably 75-150bp	

Unit Definition

One unit of the enzyme catalyzes incorporation of 10nmol of deoxyribonucleotides into polynucleotide in 30 min.

Production Source

E. coli strain

Transportation and Storage

The kit can be stored at ≤-20°C for 24 months. The product can be transported below 4 °C for up to 3 days.

Table 3. Kit Contents

Content	Amount
<i>Taq</i> -Probe polymerase, 25U/μΙ	500U/2500U
5x Taq-Probe buffer C	2x1mL/10mL
User manual	1

Setup Reaction and Thermocycling

- 1. Thaw 5x Buffer and other reaction components at room temperature, mix each component, centrifuge and then place on ice.
- 2. Determine the total volume for the number of reactions, add 5-10% extra volume, and prepare assay mix of all components except RNA template. Mix the assay mix, centrifuge and then place on ice.
- 3. Aliquot the assay mix into PCR tubes or plate.
- 4. Add RNA template to PCR tubes or plate.
- 5. Seal tubes with flat, optically transparent caps or seal plates with optically transparent film.
- 6. Mix and then briefly centrifuge the tubes or plate.
- 7. Program PCR instrument with indicated thermo-cycling protocol.
- 8. Load PCR tubes or plate and start to run.
- 9. Perform data analysis according to the PCR instrument instructions.

Table 4. Set up a 20µl of reaction

Content	Amount and final concentration	
5x Buffer C	4µl	
dNTPs	Each 200μM	
Primers ^a	Each ≥0.15µM	
TaqMan probe ^b	Each 0.15-0.25μM	
Thermophilic Reverse	Singleplex: 0.5-1U	
Transcriptase	Multiplex: 1-2U	
Tag Probe polymorose	Singleplex: 2U	
Taq-Probe polymerase	Multiplex: 4U	
Tomplete	RNA: as low as single digit copies of target RNA	
Template	Human genomic DNA: ≤1000ng/20µl reaction	
H ₂ O	Το 20μΙ	

Footnotes of Table 4

Table 5. Compatible instruments

RT-PCR Instrument	ROX required by instrument	Passive dye setup
Bio-Rad® iQ™5, CFX96, CFX384, Opticon Roche Lightcycler® Qiagen Rotor-Gene™ Eppendorf Mastercycler® Cepheid® SmartCycler®	Not recommended	Not necessary
Applied Biosystems® 7500, 7500 Fast, QuantStudio™, ViiA7™, Agilent Mx™	Low ROX (50nM final concentration)	Turn on ROX passive reference dye button
Applied Biosystems® 5700, 7000, 7300, 7700, 7900, 7900HT, 7900HT	High ROX (500nM final concentration)	Turn on ROX passive reference

Fast, StepOne™,	dye button
StepOnePlus™	-

Table 6. Standard thermocycling protocol

Stage	Temperature	Period	Number of cycles
1	60°C	10min	1
II	95°C	2min	1
III	95°C	10sec	
	60°C, signal acquisition	60sec	35-40

Table 7. Three-Step Thermocycling Protocol

Stage	Temperature	Period	Number of cycles
I	60°C	10min	1
II	95°C	2min	1
III	95°C	10sec	. 35-40
	60°C	30sec	
	68-72°C, signal acquisition	30sec	

Footnotes of Tables 6 and 7

The three-step thermocycling protocol in Table 7 increases overall DNA polymerase activity by 50%, a more effective protocol than Table 6.

The primer concentration used in Tables 6 and 7 is typically 0.15-0.2uM.

Related Products

- Thermophilic Reverse Transcriptase, Cat RT-PCR 140
- Taq-Probe Polymerase, Cat RT-PCR 145
- Tag-Fast Polymerase, Cat RT-PCR 148
- 1-Step 2X Fast RT-PCR Master Mix-SYBR Green, Cat RT-PCR 147
- 1-Step 2X RT-PCR Master Mix-TaqMan Probe, Cat RT-PCR 143
- 1-Step 2X Multiplex RT-PCR Master Mix-TaqMan Probe, Cat RT-PCR 146
- 1-Step 2X Super Multiplex RT-PCR Master Mix-TaqMan Probe, Cat RT-PCR 149

^a The primer T_m should be designed ≥60°C, preferably between 62°C to 65°C, using primer3 software for high efficiency and specificity.

 $^{^{\}rm b}$ The probe's $T_{\rm m}$ should be designed between 70-75°C.

^c Thermophilic Reverse Transcriptase, Cat RT-PCR 140, is not included.